Restrictions on polynomial solutions of diophantine equations with sums of three unit fractions
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Abstract

The equation

01 1 1 1 ( ) ( ) ( )     m n n x y z    
is shown to be incompatible with integer valued polynomials ( ), ( ), ( )

x y z    if 1
n is prime and 0 n , 1 n are coprime. Less stringent conditions for 1 n lead to the same conclusion too.

I Introduction

Two well known conjectures by Erdös-Straus and Sierpinski state that the diophantine

equation / 1/ 1/ 1/    m n x y z (1)
has integer solutions ,, x y z for every integer (Sierpinski). The author is not aware of any peer reviewed convincing proofs for any one of the two conjectures. But there is an impressive body of evidence for the validity of both conjectures, see e.g. [START_REF] Aigner | Brüche aus Summen von Stammbrüchen[END_REF][START_REF] Bernstein | Zur Lösung der diophantischen Gleichung m/n=1/x+1/y+1/z insbesondere im Fall m=4[END_REF][START_REF] Erdös | Old and new problems and results in combinatorial number theory[END_REF][START_REF] Graham | Paul Erdős and Egyptian Fractions[END_REF].

A number of solutions with polynomial denominators of the form

01 1 1 1 ( ) ( ) ( )     m n n x y z     (2) 
for certain values of m are known, but there is no covering set of equations with fixed 1 n and 0 n running through all residues modulo 1 n , see e.g. [START_REF] Gionfriddo | A short proof of Erdös-Straus conjecture for every n ≡ 13 mod 24[END_REF]. To the contrary, for 0mod 4 m  Schinzel [START_REF] Schinzel | On sums of three unit fractions with polynomial denominators[END_REF] has shown that solutions of the form (2) are impossible if 0 n is a quadratic residue modulo 1 n .

In this short communication I will point out additional restrictions for the possibility of integer polynomial solutions of equation ( 2).

The results can be cast into two theorems. To prove the theorems preliminary considerations will be helpful. Actually one can always solve (2) in polynomials with positive rational coefficients, provided a zeroth order solution

0 0 0 0 / 1/ 1/ 1/ m n x y z    (3) 
with integer values is given [START_REF] Schuh | On polynomial solutions of the diophantine equation m/n=1/x+1/y+1/z[END_REF]. In a first step one determines the degrees of the polynomials involved. 

Proof. According to lemma 1 one of the three polynomials on the r.h.s. of (2) has degree 1.

Let this polynomial be () z  . Now consider (2) for   and compare the leading terms on both sides of the equation:

1 1 min{ ( ), ( )} 11 1 (1 ( )) (1 ( )) ( ) d x d y m O O O nz            . Since min{ ( ), ( )} 2 d x d y  by assumption, equation (4) follows. 
We now turn to the proof of the two theorems. Due to the assumptions in both theorems In case A the only solution of (2) has been derived in [START_REF] Schuh | On polynomial solutions of the diophantine equation m/n=1/x+1/y+1/z[END_REF] and yields the trivial result 

2 n  and 4 m

 4  (Erdös-Straus) or 5 m 

1 nn  and a prime modulus 1 n

 11 there are no polynomials with positive integer coefficients fulfilling equation (2). Relaxing the condition that 1 n is prime one can state the following: Theorem 2. For integers 01 ,, m n n with 4 m  , 01 ( , ) 1 nn  and 1 n not a multiple of ( 1)mod mm  and of m there are no polynomials with positve integer coefficients fulfilling equation (2).

Lemma 1 .Lemma 2 . 1 dLemma 3 .

 1213 If (2) has a solution in []  then at least one of the polynomials has degree 1. Proof. Rewrite (2) as {} mxyz n xy xz yz    (  -dependence surpressed) and let w.l.o.g. the degrees of the polynomials be ordered as d( ) d( ) ( ) z x d y  then the degree of the polynomial on the l.h.s. is d( . . .) ( ) ( ) ( ) If two polynomials in (2) have degree 1, then the degree of the third polynomial cannot be larger than 3. Proof. Let w.l.o.g. ( ) ( ) Let (2) be valid. Set 01 () z z z   . If both polynomials ( ), ( ) xy  have degrees larger than 1 then 11 / z n m 

1 / 2 d

 12 nm cannot be an integer. Thus according to lemma 3 at least two of the polynomials in (2) have degree 1. Otherwise they cannot lead to integer solutions due to (4). Thus one is left with the three possibilities A. ( ) ( ) ( ) 1 d x d y d z    ; B. ( ) ( ) 1, ( )

  Likewise case C can be discarded. It has been shown in[START_REF] Schuh | On polynomial solutions of the diophantine equation m/n=1/x+1/y+1/z[END_REF] that in this case there are no real valued solutions at all. So one is left with case B. It yields two different rational solutions (indexed + andwe derive necessary conditions for the coefficients to have integer values.

Consider the "+"-solution first. Since 01 ( , ) 1 nn  the first order coefficient 1

x in (5b) is a positive integer only if 00 /

x n a  . Then from (5a), using [START_REF] Erdös | Old and new problems and results in combinatorial number theory[END_REF] n is a multiple of ( 1)mod mm  contrary to the assumptions of theorem 2.

Consequently, solution "+" will not yield posive integer coefficients under the assumptions of neither theorem 1 nor 2.

Consider the "-"-solution next. Let 1 y and 2 y be the first und second order coefficients of y  . From (6c) one calculates should be an integer.

But 1 / nm  is excluded by the assumptions of both theorems. So none of the two potential solutions is compatible with the assumptions of theorems 1 and 2. Q.e.d.