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This work presents the first pressure–temperature-deformation-time (P–T-d-t) path

obtained for the Lower Units (Alpine Corsica, France) including the Tenda Massif that

represent fragments of the European continental margin involved in the east-dipping

Alpine subduction. The new thermobarometric data applied to metapelites and the

new 40Ar/39Ar dating of syn-kinematic muscovite sampled from metagranitoids

allowed us to define the P–T conditions and the age of the metamorphism of the

Venaco Unit, a Lower Unit located in the southernmost sector of the Alpine Corsica.

The outcoming scenario indicates that the Venaco Unit reached the baric peak

at ≈ 33 km depth, not before Bartonian time. At 35.7 Ma (i.e., during the middle Pria-

bonian), it was exhumed to a shallower structural level (i.e., at ≈ 26 km depth), mainly

through the activation of the top-to-W shear zones. This retrograde path suggests

that the Venaco Unit experienced fast exhumation, unlike the Tenda Massif

which had been involved in subduction during the Ypresian and was stationary at

25–30 km, before its exhumation in the Priabonian.

K E YWORD S

Alpine Orogeny, blueschist-facies metamorphism, cold vs. warm exhumation path, European
continental unit, Lower Units (Alpine Corsica)

1 | INTRODUCTION

Tectono-metamorphic investigation on deformed rocks helps to

constrain the evolution of collisional belts. Modelling pressure (P) and

temperature (T) conditions through time (t) and within a deformation

(d) frame (P–T-d-t path) of oceanic and continental tectonic units allow

to individualize the events of the oceanic/continental subduction,

continental collision and the subsequent progressive exhumation that

characterize the evolution of worldwide collisional belts. Because

of their ability to bind the history of tectonic units in space and time,

P–T-d-t paths have achieved a great success over the past 30 years in

the study of metamorphic rocks (e.g., Spear, 1993). One of the most

investigated collisional belts is represented by the Alpine belt, where

the study of rocks recording a wide range of deformation regimes and

metamorphic conditions that helped to highlight the geodynamic evo-

lution of this belt (e.g., Bousquet et al., 2008; Handy et al., 2010;

Lardeaux & Spalla, 1991).

The Alpine Corsica (France) is interpreted as the southern branch

of the Western Alps (Durand-Delga, 1984; Marroni & Pandolfi, 2003;

Mattauer et al., 1981; Molli & Malavieille, 2011). It is a tectonic stack

of tectono-metamorphic units with oceanic- and continental-affinities

experiencing blueschist-eclogite to very low-grade facies metamor-

phic conditions during Late Cretaceous–early Oligocene subduction

and continental collision-related processes (Elter & Pertusati, 1973;

Lagabrielle & Polino, 1988; Malavieille et al., 1998; Michard &

Martinotti, 2002; Molli, 2008; Schmid et al., 1996). Several slices with
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continental affinity, known as Lower Units, experienced blueschist-

facies metamorphism (Bezert & Caby, 1988; Di Rosa, De Giorgi,

Marroni, & Vidal, 2017; Maggi et al., 2012; Malasoma & Marroni, 2007;

Molli, 2008). They were deeply investigated because their tectono-meta-

morphic evolution provided useful information on the continental sub-

duction stage (i.e., the transition between subduction and collision

stages). Even if their P–T paths were obtained by several authors

(Di Rosa, Frassi, et al., 2019; Frassi et al., 2022; Malasoma &

Marroni, 2007; Molli et al., 2006), no age constraints on the metamor-

phic events are so far available.

In this work, we present a multidisciplinary dataset that includes

micro- to meso-structural data, thermo-baric estimates, and muscovite
40Ar/39Ar single grain dating from one of the southernmost slices

belonging to the Lower Units. The result is the first Pressure–Temper-

ature-deformation-time (P–T-d-t) path for the continental units

exposed at the western rim of the Alpine Corsica (i.e., External Conti-

nental Units, Figure 1). We discuss these new data to provide a new

geodynamic reconstruction of the Alpine collisional belt.

2 | GEOLOGICAL SETTING

Corsica Island includes two geological domains, the so-called

Hercynian and Alpine Corsica, exposed in the south-west and north-

east portions of the island, respectively (Figure 1). The Hercynian

Corsica consists of a polymetamorphic basement recording

Pan-African and Variscan orogenic events intruded by Permo-

Carboniferous magmatic rocks (Cabanis et al., 1990; Laporte

et al., 1991; Ménot & Orsini, 1990; Paquette et al., 2003; Rossi

et al., 2009; Rossi et al., 2015). This basement is covered by sedimen-

tary successions including, Permian volcaniclastic and Mesozoic, mainly

carbonates, unconformably covered by middle to late Eocene siliciclas-

tic turbidites (Di Rosa, Frassi, Marroni, et al., 2020; Durand-

Delga, 1984; Ferrandini et al., 2010; Rossi et al., 1994). The Hercynian

Corsica is interpreted as the European continental margin that escaped

from the Alpine Orogeny (e.g., Durand-Delga, 1984). The presence of

localized shear zones of Tertiary ages affecting the late-Variscan mag-

matic suite (Di Vincenzo et al., 2016), and Eocene siliciclastic turbidites

achieving blueschist metamorphic conditions (Di Rosa, 2021; Di Rosa,

Frassi, Marroni, et al., 2020), however, in contrast with this original

interpretation and demonstrate that the easternmost rim of Hercynian

Corsica was instead involved in the Alpine Orogeny.

The Alpine Corsica consists of a stack of continental-, transitional-

and oceanic-affinity units strongly deformed and affected by Creta-

ceous to Tertiary pervasive deformation and metamorphism, ranging

from sub-greenschist to blueschist-eclogite facies (e.g., Gibbons &

Horak, 1984; Malavieille et al., 1998; Marroni & Pandolfi, 2003;

Mattauer et al., 1981; Vitale Brovarone et al., 2012). The Alpine Corsica

overthrusts the Hercynian domain through an NNW–SSE trending,

high-angle dipping thrust that runs across the entire island (e.g., Durand-

Delga, 1984) (Figure 1).

The architecture of the Alpine Corsica mainly results from the

convergence-related processes which started since the Late Cretaceous

that initially produced the closure of an oceanic basin (i.e., the Liguro-

Piemontese Basin) that opened between the Europe and Adria margins

during Middle to Late Jurassic (Bill et al., 1997; Favre & Stampfli, 1992;

Froitzheim & Manatchal, 1996; Manatschal, 1995; Marroni &

Pandolfi, 2007). The convergence-related processes produced an east-

dipping subduction of the oceanic lithosphere below the Adria Plate and

the consequent Alpine accretionary. The progressive subduction of oce-

anic lithosphere led to the closure of the Liguro-Piemontese oceanic

basin and the consequent collision between the European continental

margin and the Alpine orogenic wedge during the middle Eocene-early

Oligocene (Bezert & Caby, 1988; Di Rosa, Meneghini, Marroni,

et al., 2020; Maggi et al., 2012; Malasoma et al., 2006; Mattauer &

Proust, 1976). Simultaneously, the Ligure-Piemontese oceanic litho-

sphere that had not yet been involved in underthrusting, started to sub-

duct toward the west below the European margin (Agard, 2021). This

drastic change in the geodynamic scenario resulted in the large-scale

extension of Alpine Corsica that produced the collapse and thermal re-

equilibration of the previously thickened Alpine orogenic wedge and the

consequent opening of two back-arc basins (i.e., the Liguro-Provençal

and the Tyrrhenian Sea basins) that separated the Corsica-Sardinia con-

tinental microplate from the neighbouring domains of the Alpine and

Apennine collisional belt, respectively (Daniel et al., 1996; Fournier

et al., 1991; Jakni et al., 2000; Jolivet et al., 1991; Zarki-Jakni

et al., 2004). Apatite fission track ages (≈ 23 Ma) obtained by Danišik

et al. (2007) might support this thermal re-equilibration event (Di Rosa,

Frassi, Marroni, et al., 2020).

The Alpine Corsica can be subdivided, from top to bottom

(Figure 1) into: the Upper Units, the Schistes Lustrés Complex and

the Lower Units. The Lower Units and the Schistes Lustrés Complex

preserve a record of the subduction process. The Upper Units

include slices of oceanic lithosphere characterized by very low-

grade metamorphism achieved during their involvement in the

subduction simultaneously to the Schistes Lustrés Complex but at a

higher structural level (Durand-Delga et al., 1997; Marroni &

Pandolfi, 2003; Pandolfi et al., 2016; Saccani et al., 2000). The

Schistes Lustrés Complex is composed of oceanic and transitional

units with high pressure-low temperature (HP-LT) metamorphic

imprint (e.g., Guieu et al., 1994; Levi et al., 2007; Meresse

et al., 2012; Ravna et al., 2010; Warburton, 1986), ranging in age

between early and late Eocene (Brunet et al., 2000; Lahondère &

Guerrot, 1997; Maluski, 1977; Martin et al., 2011; Vitale

Brovarone & Herwartz, 2013). The Lower Units consist of continen-

tal crust slices derived from the thinned European margin involved

in the subduction and accreted to the orogenic wedge. They include

all the continental slices located along the western boundary of the

Alpine Corsica (i.e., the External Continental Units of Malasoma &

Marroni, 2007 and references therein) and the Tenda Massif, which

is located east of the Balagne nappe (Figure 1). They show the same

stratigraphic succession of the Hercynian Corsica, but in contrast,

they are affected by blueschist-facies metamorphism (e.g., Di Rosa,

Meneghini, et al., 2019; Gueydan et al., 2003; Malasoma &

Marroni, 2007; Molli et al., 2006; Tribuzio & Giacomini, 2002) and

by a polyphase deformation history with three ductile events
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(Bezert & Caby, 1988; Bezert & Caby, 1989; Di Rosa, Frassi,

et al., 2019; Garfagnoli et al., 2009; Malasoma & Marroni, 2007),

achieved during the beginning of the exhumation (D1 phase), the exhu-

mation within the subduction channel (D2 phase), and the final emplace-

ment at shallower crustal levels in the extensional setting induced by

the orogenic collapse (D3 phase). The depositional age of the Alpine

foredeep deposits (breccias and sandstones) on the European continen-

tal margin is constrained to Lutetian-Priabonian (Nummulites sp.,

Amaudric du Chaffaut et al., 1985; Bezert & Caby, 1988; Di Rosa, De

Giorgi, Marroni, & Vidal, 2017; Ferrandini et al., 2010). The age of the

HP-LT metamorphism achieved by the European-affinity continental

units was constrained only for the Tenda Massif, where Maggi et al.

(2012) and Brunet et al. (2000) detected early to late Eocene ages. Simi-

lar ages were obtained for the shear zones located within the Hercynian

Corsica (e.g., Razzo Bianco area) by Di Vincenzo et al. (2016).

After the D3 phase, a sinistral strike-slip fault system

(i.e., Central Corsica Fault Zone–CCFZ of Waters, 1990; Ostriconi

Fault of Lacombe & Jolivet, 2005) (Figure 1) cut both the stack of

the Alpine Corsica and its western boundary with the Hercynian

domain. The CCFZ is an important north–south-trending regional-

scale structure (Di Rosa, De Giorgi, Marroni, & Pandolfi, 2017; Frassi

et al., 2022; Lacombe & Jolivet, 2005; Malasoma et al., 2020;

Maluski et al., 1973) stretching from the north, where it bounds the

western side of the Tenda Massif, toward the south, where it splits

in two branches in correspondence of the Asco valley (Figures 1 and

2, Di Rosa, 2021). Although there is no radiometric dating available

to constrain the CCFZ activity, its activity can constrained by the

age of the youngest deposits deformed by faults (i.e., the Lutetian-

Priabonian foredeep deposits), and by the oldest deposits sealing

the CCFZ structures (i.e., the Burdigalian-Langhian deposits of the

Francardo basin; Alessandri et al., 1977; Ferrandini et al., 1998;

Malasoma et al., 2020).

3 | METHODS

The techniques used in this work are: (1) structural mapping and

mesoscale structural analysis, (2) microtectonic study of metagrani-

toids and metavolcaniclastics, (3) thermobarometry applied on meta-

volcaniclastics and metagranitoids and (4) 40Ar/39Ar dating of

metamorphic white micas. Mineral chemistry of chlorite and phengite

were performed with the electron probe microanalyser (EPMA) JEOL

8200 of the Università di Milano Statale “A. Desio”, equipped with

five wavelength-dispersive spectrometers. The point analyses were

acquired using 15 KeV accelerating voltage, 5 nA specimen current

and 30 s of dwell time for peaks and 10 s for background. Chlorite

and phengite structural formulas were calculated assuming 14 and

11 anhydrous oxygens, respectively (Table 1).

Thermobarometry was performed on metapelites sampled in the

metavolcaniclastics and metagranitoids. For metapelites, P–T equilib-

rium conditions of chlorite-phengite couples related to the D1 and D2

phases were estimated with the ChlMicaEqui software (Lanari, 2012)

based on the Vidal and Parra (2000) method (Data S1). The

results were compared with other thermometers (Bourdelle &

Cathelineau, 2015; Cathelineau, 1988) and barometers (Bousquet

et al., 2002; Dubacq et al., 2010). Thermobarometry on metagrani-

toids was performed using classical calibrations of Massonne and

Schreyer (1987), Cathelineau (1988) and Cathelineau and Nieva

(1985). Metamorphic white micas related to the D2 phase were sepa-

rated from three samples of metagranitoids at the Dipartimento di

Scienze della Terra (Università di Pisa) and hand-picked in CNRS

(Géoazur, Valbonne). The analytical procedures and raw data are listed

in the Appendix S1.

As regards the Ar/Ar dating, we analysed single muscovite grains by

step heating. Sample CMD101 was crushed and 200–315 μm size frac-

tion was cleaned in ultrasonic bath. Muscovite grains were carefully

handpicked under a binocular microscope to select only grains without

evidence of alteration or inclusions. Selected grains were packaged in

aluminium foils and were irradiated for 97 h in the McMaster Nuclear

Reactor (McMaster University, Ontario) together with Fish Canyon sani-

dine grains as flux monitor (28.030 ± 0.056 Ma, Jourdan &

Renne, 2007). The argon isotopic interferences on K and Ca were deter-

mined by the irradiation of KF and CaF2 pure salts from which the fol-

lowing correction factors were obtained: (40Ar/39Ar)K = 2.97 � 10–2

± 10–3 at 1S, (38Ar/39Ar)K = 1.24 � 10–2 ± 5 � 10–4 at 1S, (39Ar/37Ar)

Ca = 7.27 � 10–4 ± 4 � 10–5 at 1S, and (36Ar/37Ar) Ca = 2.82 � 10–

4 ± 3 � 10–5 at 1S. 40Ar/39Ar step heating analyses were performed at

Géoazur Nice (France) using a continuous 100 W PhotonMachine CO2

(IR) laser used at 5%–15% during 30 s. Argon isotopes were measured in

static mode using an ARGUS VI mass spectrometer from Thermo-

Fischer. Measurements were carried out in multi-collection mode using

four Faraday cups equipped with 1012 ohm (masses 40, 39, 38 and 37)

and one low-background compact discrete dynode ion counter to mea-

sure mass 36. Collector gain calibration is performed by the computer-

controlled application of predetermined voltages to each collector. Mass

discrimination for the mass spectrometer was monitored by regularly

analysing air pipette volumes. The raw data (Data S1) were processed

using the ArArCALC software (Koppers, 2002), and ages were calculated

F IGURE 1 (a) Localization of the study area into the western Mediterranean Sea; (b) tectonic map of north-eastern Corsica (modified after Di
Rosa, Meneghini, Marroni, et al., 2020) and schematic cross-section (after Di Rosa, De Giorgi, Marroni, & Vidal, 2017). AlP, Aleria Plain; AnU,
Annunciata Unit; BaU, Balagne Unit; BoU, Bas-Ostriconi Unit; BrU, Bagliacone- Riventosa Unit; CeU, Centuri Unit; CoU, Caporalino Unit; CsU,
Castagniccia Unit; EcU, External Continental Units; cB, Francardo Basin; HcY, Hercynian Corsica; IZU, Inzecca and Lento Units; MaU, Macinaggio
Unit; MfU, Morteda-Farinole-Volpajola Unit, Nebbio Unit; NeU, Neighbourhood Energy Utility; PdU, Cima Pedani Units; QtD. Quaternary
deposits; SfB, Saint-Florent Basin; SlU, Santa Lucia Unit; SoU, Serra di Pigno and Oletta Units; SpU, Serra Debbione and Pineto Units; TeM, Tenda
Massif. The location of the study area is marked by a blue rectangle.

4 DI ROSA ET AL.



F IGURE 2 Legend on next page.

DI ROSA ET AL. 5



using the decay constants given by Steiger and Jäger (1977). Blanks were

monitored after every three sample analyses. All parameters and relative

abundance values are provided in supplementary data set and have been

corrected for blanks, mass discrimination, and radioactive decay. Atmo-

spheric 40Ar was estimated using a value of the initial 40Ar/36Ar of

298.56 (Lee et al., 2006) Our criteria for the determination of a plateau

are as follows: a plateau must include at least 70% of 39Ar released, over

a minimum of three consecutive steps agreeing at 95% confidence level.

Plateau ages are given at the 2σ error level, and the plateau age uncer-

tainties include analytical and J-value errors. All the errors on the inverse

isochron, total fusion ages, and initial 40Ar/36Ar ratios are quoted at the

2σ error.

4 | RESULTS

The presence of a continental tectonic unit (i.e., Ghisoni Unit) belong-

ing to the Lower Units in the study area (Figures 1 and 2) was recog-

nized for the first time by Di Rosa and co-authors (Di Rosa, Frassi,

et al., 2019; Di Rosa, Frassi, Malasoma, et al., 2020; Di Rosa,

Frassi, Marroni, et al., 2020). These authors interpreted the portion of

continental lithosphere cropping out between Venaco village and the

Fium'Orbo valley as the northern portion of the Ghisoni Unit. In the

light of the lithostratigraphic, structural and metamorphic evidence

collected in this work, however, this portion of the Ghisoni Unit is

here re-interpreted as an independent tectonic unit, named Venaco

TABLE 1 Representative EPMA
analysis.

Metapelites (sample CMD94) Metagranitoids (sample CMD122)

S1 foliation S2 foliation S2 foliation

Chl analyse Chl9 Phg31 Chl7 Phg30 Chl10 Chl3 Phg233 Phg238

Wt%

SiO2 29.33 53.03 28.95 48.65 28.85 28.5 52.06 52.62

TiO2 0.08 – – – 0.01 – 0.04 0.05

Al2O3 19.80 25.58 20.28 29.86 19.98 19.8 26.84 28.14

FeO 20.44 2.91 20.72 1.63 20.90 20.87 4.38 3.82

MnO 0.32 0.026 0.32 – 0.27 0.36 0.05 0.07

MgO 18.59 3.51 18.6 1.84 18.00 18.06 3.59 3.21

CaO 0.29 0.07 0.13 0.02 0.31 0.21 0.02 0.06

Na2O 0.01 0.01 0.02 0.08 0.04 0.04 0.07 0.14

K2O 0.08 9.95 0.02 10.53 0.03 0.02 9.84 10.13

tot. 88.93 95.09 89.04 92.61 88.40 87.87 96.89 98.23

Cations

Si 2.95 3.53 2.91 3.32 3.14 2.91 3.43 3.41

AlIV 1.05 0.47 1.09 0.68 1.15 1.09 0.57 0.59

AlVI 1.30 1.53 1.31 1.73 1.41 1.30 1.51 1.56

Ti 0.01 – – – – – – –

Fetot 1.72 0.16 1.74 0.09 1.90 1.78 0.24 0.21

Mn 0.03 – 0.03 – 0.03 0.03 – –

Mg 2.79 0.35 2.79 0.19 2.92 2.75 0.35 0.31

Ca 0.03 0.01 0.01 – 0.04 0.02 – –

Na – – – 0.01 0.01 0.01 0.01 0.02

K 0.01 0.84 – 0.92 0.01 – 0.83 0.88

Sum ox 14 11 14 11 14 14 11 11

F IGURE 2 Geological map, tectonic sketch, cross-section (A-A') and stereographic projections of Venaco Unit. In the sketch, HCY: Hercynian
Corsica; VEU: Venaco Unit; GHU: Ghisoni Unit; IZU: Inzecca Unit (modified from Amaudric du Chaffaut et al., 1985). In the geological cross-
section, figurative patterns were used in order to emphatize the differences in the rock types. The Roches Brunes Fm. is represented by
discontinuous line that suggest the pre-Alpine deformation. For the Herynian granitoid, black crosses are used, which become stretched where
the Alpine deformation occurs (they follow the orientation of the foliation). Detritic Limestone are represented by bricked pattern, whereas the
breccias with small irregular empty dots. For metapelites (Permian Metacolvanic and Metavolcaniclastics and Eocene Sandstone and siltstone) a
dashed line is used. The Inzecca Unit is represented by folded lines.
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Unit (VEU) (Figure 1). From the lithostratigraphic point of view, VEU

differs from Ghisoni Unit because the metagabbros are lacking,

whereas the metarhyolites are present (for a detailed description of

Ghisoni Unit, see Di Rosa, Frassi, et al., 2019). Regarding the deforma-

tion style, the differences between VEU and Ghisoni Unit regard the

degree of mylonitization reached during the D2 phase (see

F IGURE 3 Mesoscopic structures and lithotypes of Venaco Unit. (a) Metagranitoids (pc γ) hosting mafic dyke (dy); (b) S2 foliation into the
Roches Brunes Fm.; (c) folded S2 foliation in metagranitoids; (d) S2 foliation into metarhyolites; (e) S2 foliation, F3 fold and related axial plane
foliation (AP3) into Metavolcanics and Metavolcaniclastic Fm. and (f) F3 fold and related axial plane foliation into the Metavolcanics and
Metavolcaniclastic Fm.
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Sections 4.1 and 4.2), which is combined with a different metamorphic

condition (see Sections 4.3–4.5). Two strike-slip faults belonging to

CCFZ separate VEU from the Hercynian Corsica, on the west, and the

Schistes Lustrés Complex (i.e., Inzecca and Bagliacone-Riventosa

Units), on the east (Figure 2). Its lower stratigraphic portion consists

of Permian metagranitoids and is cut by mafic dykes (Figure 3a, Di

Rosa, Farina, Lanari, & Marroni, 2020) intruded into a poly-

metamorphic rocks assemblage of Pan-African age (i.e., Roches

Brunes Fm.; Figure 3b,c, Rossi et al., 1994). This basement is covered

by a Permian meta-volcano sedimentary succession (i.e., Metavolcanic

and Metavolcaniclastic Fm., e.g., Di Rosa, 2021), that consists of thin

to medium layers of metapelites, metasandstones and fine-grained

metabreccias interlayered with volcanic lavas mainly represented by

metarhyodacites (Figures 2 and 3d–f).

4.1 | Mesostructures of VEU

VEU shows a polyphase deformation composed of three ductile

events (D1-D3 phases), like those described for GHU by Di Rosa,

Frassi, et al. (2019). In this work, unpublished data regarding the

mesoscopic structural analyses are presented.

Relics of D1 phase (S1 foliation) was exclusively documented in

the hinge zones of the F2 folds within fine-grained metasandstone

and metapelites belonging to the Metavolcanic and Metavolcaniclastic

Fm. The main structures documented in all the lithotypes can be

assigned to D2 phase. In the metapelites, this phase produced F2 iso-

clinal folds with SSE–NNW trending A2 axis plunging less than 30�

towards SE and an S2 axial plane foliation bearing a stretching L2

lineation trending ESE-WNW (Figure 2). The S2 foliation strikes

NNW–SSE with variable dip due to the later D3 folding phase.

The metagranitoids show protomylonitic to ultramylonitic fabrics

(Passchier & Trouw, 2005) with a S2 mylonitic foliation wrapping

centimetre-sized quartz and feldspars grains showing strong shape

preferred orientation and high aspect ratio (long axis/short axis: 13:3

and 9:3). The intrusive contact between metagranitoids and mafic

dykes, even if locally deformed by F2 isoclinal folds, is mainly parallel

to the S2 foliation documented in the metagranitoids (Figure 3a). A

pervasive feature of the metagranitoids and Metavolcanics and Meta-

volcaniclastics Fm. is represented by syn-D2 quartz veins trending

parallel to the S2 foliation (Figure 3e,f).

The last ductile phase (D3) was documented in the Metavolcanic

and Metavolcaniclastic Fm. It produced open to close F3 asymmetric

folds with sub-horizontal NW-SE trending A3 axes and S3 spaced

axial plane foliation gently dipping to WSW (Figures 2 and 3e,f). The

interference between F2 and F3 fold produced type 3 interference

pattern (Ramsay, 1967). F3 folds affect the entire tectonic stack, con-

straining their coupling to have occurred before the D3 phase.

The last event documented in the field is responsible of the cur-

rent architecture of the unit known as CCFZ (Figure 2, Bezert &

Caby, 1989). It produced a N-S oriented, strike-slip system and related

synthetic (ca. N170) and antithetical (ca. N90) faults, whose activity

post-dates the exhumation of VEU and formed its present-day

puzzling, similar to GHU described by Di Rosa, Frassi, et al. (2019) in

the Fium'Orbo Valley.

4.2 | Microstructures of VEU

Metapelites were sampled in the Metavolcanic and Metavolcaniclas-

tic Fm. cropping out along the road T20 south of Venaco (sample

CMD94, Figure 2). In the metapelites, S1 foliation preserved in D2

microlithons, is a continuous, coarse-grained schistosity marked by

the syn-kinematic growth of chlorite (Chl), phengite (Ph), quartz (Qtz)

and albite (Ab) with minor K-feldspar (Kfs) and calcite (Cal)

(Figures 3b and 4a). Chl and Ph related to the D1 phase reach

400 μm in length. The metamorphic minerals association grown dur-

ing the D2 phase includes Chl, Phg and Qtz (Figure 4b). The syn-D2

phase Chl and Ph do not exceed 100 μm in length. Associated to the

D2 phase, Qtz veins parallel to the S2 foliation are also found. At the

microscale, the S3 foliation in metapelites is classifiable as a spaced

crenulation cleavage associated with minor recrystallization of Cal

and Qtz.

At the thin-section scale, the metagranitoids appear as pink

biotite-bearing gneisses with monzogranitic compositions (i.e., suite

U3 of Rossi et al., 2009) containing Qtz + Chl + Ab + sanidine (that

replaces the former magmatic biotite) + Ms + Kfs + epidote

(Ep) (Figure 4c–e). Accessory minerals are zircon, allanite, apatite and

titanite. The original magmatic texture is almost completely over-

printed by the D2 shearing deformation. The S2 foliation shows a

mylonitic to ultramylonitic fabric marked by discontinuous layers of

Ph + Chl ± biotite (Bt) and fine-grained recrystallized Qtz + KFs + Ab

wrapping cm-grained Ab, plagioclase, and Qtz porphyroclasts

(Figure 4c–e). The size of the white mica ranges between 50 and

200 μm. Kfs porphyroclasts into the metagranitoids of VEU (samples

CMD92, CMD101b, CMD122A, locations are shown in Figure 2) has

asymmetric tails (Figure 4a) and bookshelf structures associated to

the main deformation phase (i.e., D2). Rare relics of magmatic Kfs

wrapped by small crystals of phyllosilicates recrystallized during the

D2 phase also occur. Qtz, found in both aggregates and in syn-D2

veins, is characterized by intracrystalline deformation such as undula-

tory extinction (Figure 4c), deformation bands and sub-grain rotation

(Figure 4e). All related to the mylonitic S2 foliation. Qtz and Kfs tex-

tures corroborate the deformation temperatures of 300–400�C esti-

mated for GHU by Di Rosa, Frassi, et al. (2019). The only structures

related to the D3 phase are represented by microfolds affecting the

phyllosilicate-rich layers.

The mafic dyke is composed of clinopyroxene (Cpx) + plagioclase

(Pl) + amphibole (Amph) ± Qtz ± opaque oxides ± Ep (Figure 4f). The

S2 mylonitic to ultramylonitic foliation is marked by an increase in

intensity of foliation and a gradual decrease in size of Cpx and Pl por-

phyroclasts, which however preserve asymmetric tails indicating a

top-to-W sense of shear (Figure 4f). Cpx are sometimes fractured and

locally replaced by Chl and Pl (Di Rosa, Farina, Lanari, &

Marroni, 2020). The intrusive magmatic contact between mafic dyke

and metagranitoids is marked by the presence of large crystals (up to
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F IGURE 4 Microscopic structures of the Venaco Unit. (a) High strain cataclastic domain related to the S2 foliation in the Metavolcanics and
Metavolcaniclastic Fm., sample CMD94 (plane-polarized light); (b) S1-S2 foliations in the Metavolcanics and Metavolcaniclastic Fm., sample
CMD32C (cross-polarized light); (c) sub-grain rotation recrystallization mechanism in boudinaged quartz vein, marking the S2 foliation in
metagranitoids. The necking of the vein and the S2 foliation are well shown, sample CMD92 (cross-polarized light); (d) white mica crystals grown
along the S2 foliation into metagranitoids, sample CMD92 (cross-polarized light); (e) sub-grain rotation fabric in metagranitoids, sample
CMD122A (cross-polarized light) and (f) μ-shear zone parallel to the S2 foliation into the mafic dyke, sample CMD122B (plane-polarized light).
Qz: quartz; Chl: chlorite; Ph: phengite, Fe-ox: iron oxides; Bt: biotite; Ep:epidote; K-Fsp: K-feldspar; Cpx: clinopyroxene.
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250 μm) of Aln hosted by the metagranitoid, which appear fractured

and filled by Ep and of apatite (Ap).

4.3 | Mineral chemistry of chlorite and phengite

Syn-kinematic Chl and Ph crystals were selected in the metapelite and

metagranitoid within structural sites related to the D1 (i.e., the S1 foli-

ation) and the D2 phases (i.e., the S2 foliation).

In metapelite (sample CMD94), chlorites grown along the S1

foliation are characterized by Si and Al contents ranging between

2.93–3.23 and 2.23–2.38 atom per formula unit (a.p.f.u., Table 1),

respectively, and by an XMg slightly higher than 0.50, indicating a pre-

dominance of the clinochlore end-member (Figure 5a). Within the

compositional space, which includes chlorite having Si content higher

than 3 a.p.f.u. (e.g., Inoue et al., 2009), these low-Al chlorites fall

nearby the solid solution between sudoite and Clc + daphnite end-

members. Having Si content ≈3 a.p.f.u. and the total content of Mg

+ Fe2+ in the M1-M4 octahedral sites greater than 3.5 a.p.f.u., the

vacancies of D1 phase Chl do not exceed 0.50 a.p.f.u. (see Figure 5a).

A second Chl generation crystallized along the S2 foliation has been

found (Figure 4b). Si content in the D2 Chl (2.83–3.10 a.p.f.u.) is on

average lower than those of the D1 phase Chl (Figure 5a). D1 and D2

phase Chl have instead similar Al, Fe2++Mg2+ contents and XMg,

F IGURE 5 Mineral chemistry of (a) chlorite and (b) phengite found along the S1 and S2 foliations of the metapelite sample CMD94 and along
the S2 foliation of the metagranitoid sample CMD122. In (a): dark and pale grey triangles indicate the compositional spaces delimited by chlorite
end-members, defined by Vidal and Parra (2000) and Inoue et al. (2009), respectively. Am: amesite, Clc: clinochlore, Dph: daphnite, Sud: sudoite,
empty square: vacancies (a.p.f.u.). In (b): grey triangles in the AlVI-1 vs. AlIV and the ternary diagrams indicate the phengite solid solutions from
Bousquet et al. (2002) and from Vidal and Parra (2000), respectively. Cel: celadonite, Prl: pyrophyllite, Ms: muscovite.
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which determine also for this second generation an affinity for the Clc

and-member and a vacancies content, which never exceed 0.5 a.p.f.u.

(Figure 5a).

In metagranitoids (CMD122A), the analysed chlorites are related

to the D2 phase. They show a more variable content in Si and Al than

those of the metapelites (2.91–3.32 and 2.22–2.56 a.p.f.u.,

F IGURE 6 Legend on next page.
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respectively): this determines a greater variability of the end-members

proportion. However, also these Chl tend to be magnesian (Figure 5a).

Phg has been found along the S1 and S2 foliations in metapelite

(CMD94) and along the S2 foliation in metagranitoid (CMD122). All

the analysed Ph roughly plots along the perfect solid solution between

celadonite and Ms end-members, with those belonging to the D1

phase of the metapelite markedly tending towards the Al-poor end-

member (Table 1 and Figure 5b). D1 phase phengites are character-

ized by a very homogeneous composition, with moderately high Si

content (≈ 3.50 a.p.f.u.) and K content between 0.85 and 0.95 a.p.f.u.

(Figure 5b). D2 phengites from metapelite have heterogeneous com-

position determining a wide range of end-member proportions, which

however tends to the Ms end-member (Figure 5b). The D2

phase phengites of the metagranitoid have Si (3.39–3.43 a.p.f.u.),

K (0.81–0.09 a.p.f.u.) and Al (2.08–2.18 a.p.f.u.) contents comparable

with those of the D2 Phg from metapelites (Figure 5b).

4.4 | Thermobarometry on metapelite

Temperature and pressure estimates of the metapelite and metagrani-

toid were obtained using different methods (Figure 6a–f). T in metape-

lites were calculated using the composition of Chl crystallized along the

S1 and S2 foliations (CMD94). The calibrations of Cathelineau (1988) as

well as those of Bourdelle and Cathelineau (2015) which includes the

chlorites having Si content >3 a.p.f.u., depict a wide thermal range where

the chlorite of the D1 phase is in equilibrium (180–310�C, Figure 6a,b

respectively) within which, however, a peak between 250 and 280�C is

clearly identified. Lower T (<225�C) are related to chlorites having Si >3

a.p.f.u. (Figure 6b). Similarly, chlorites sampled along the S2 foliation

seem to balance out at different temperatures (200–290�C), but with a

maximum in the 220–260�C range (Figure 6a,b).

Pressure equilibrium conditions during the D1 and the D2

phases were calculated by using Si in Ph calibration (Bousquet

et al., 2002; Figure 6d) and with the Ph-Qtz-water method (Dubacq

et al., 2010; Figure 6e,g). In both cases, the calculations were

obtained by fixing the T value to 260�C (D1 phase) and 250�C

(D2 phase) resulting from the temperature previously estimated,

choosing the most representative value obtained by the different

thermometers applied (see above). Si in Phg allowed to constrain the

P ranges of the D1 phase to 0.90–1.10 GPa and of the D2 phase to

0.35–0.95 GPa (Figure 6d). A less dispersed result is obtained with

the Dubacq's calibration (Dubacq et al., 2010; Figure 6e) which was

obtained fixing the water activity to 0.9, compatible with the calcite

content of the metapelite (for details see also Frassi et al., 2022) and

admitting only the P conditions for which the optimal water content

(in this case 93%–95%) is the same for the greatest amount of analysis.

By comparing the results, we can identify two peaks that are 0.90–

1.10 GPa for the D1 phase and 0.70–1.00 GPa for the D2 phase. We

were not able to obtain satisfactory P–T estimates with the Chl-Ph-Qtz-

water method of Vidal and Parra (2000), since no Chl-Ph couple was

able to equilibrate with energy conditions below 1000 J.

4.5 | Thermobarometry on metagranitoids

Temperature conditions related to the D2 phase of the metagranitoid

(sample CMD122A) were calculated using two calibrations. Applying

the calibration of Bourdelle and Cathelineau (2015), Figure 6b), our

data are included in the T range of 125–325�C. Less dispersed are the

results obtained by applying the Cathelineau and Nieva (1985) ther-

mometer (180–260�C), based on the AlIV content of Chl (Figure 6c).

However, with both the calibrations a peak between 225 and 275�C

could is identified.

Microstructures in Qtz and feldspar described in Section 4.2, indi-

cate that dislocation creep represents the main deformation mechanism

in Qtz during the development of the main foliation, suggesting defor-

mation T of 300–400�C (Stipp et al., 2002). Microstructures in feldspar

suggest deformation T of 400–450�C (Passchier & Trouw, 2005).

Pressure conditions of the D2 phase of the metagranitoid were

obtained applying the Massonne and Schreyer (1987) calibration based

on the Si content in Ph, assuming a fixed T value of 250�C. Most of the

phengite analysis yield P values of 0.75–0.80 GPa (Figure 6f).

4.6 | 40Ar/39Ar dating

As documented in Section 4.3, the most pervasive structure docu-

mented in the metagranitoids is the S2 foliation. No evidence of D1

domains or Chl/Ph composition comparable to those grown along the

S1 in metapelites were documented in metagranitoids samples. As a

consequence, metagranitoids represent the ideal lithotype to

F IGURE 6 Thermobarometric results from metapelite and metagranitoid. (a) Chlorite-based thermometer, calibration of Cathelineau (1988);
(b) chlorite-based thermometer, calibration of Bourdelle and Cathelineau (2015); (c) chlorite-based thermometer, calibration of Cathelineau and Nieva
(1985); (d) phengite-based geobarometer, calibration of Bousquet et al. (2002). Red lines indicating Si content in phengite (a.p.f.u.); (e) Dubacq et al.
(2010) calibration based on the water content in phengite. Calculations were performed fixing water activity to 0.9, % of Fe3+ to 0.32 of Fetot and the

T to 260 and 250�C for the D1 and D2 phases, respectively. Data rimmed in black and red indicate 95% or 93% of water, respectively. The reactions
that define the equilibrium are (1) pyrophyllite = pyrophylliteH + water, (2) 3 Mg-celadonite + 4 pyrophyllite = 11 alpha-quartz + 2 muscovite
+ phlogopite + 2 pyrophylliteH, (3) 3 Mg-celadonite + 2 pyrophyllite = 11 alpha-quartz + 2 muscovite + phlogopite + 2 water and (4) 3 Mg-
celadonite + 2 pyrophylliteH = 11 alpha-quartz + 2 muscovite + phlogopite + 4 water; (f) phengite-based geobarometer, calibration of Massonne
and Schreyer (1987); (g) 40Ar/39Ar age spectra as a function of 39Ar released. The error boxes of each step are at the 2S level. The error of ages is
given at the 2S level. Ages were calculated using the ArArCalc software (Koppers, 2002) Raw data are presented in Data Set S1; (h) synthesis of the
P–T–t conditions obtained from metapelite and metagranitoid of VEU in the area south of Venaco (D1 and D2 VEU).
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constrain the age of S2 foliation. For this reason, a metagranitoid sam-

ple (CMD101b) poorly weathered and collected far from both D2

shear zones and cataclastic zones related to the activity of the CCFZ,

were selected to obtain metamorphic white mica recrystallized during

the D2 phase, used for single grain 40Ar-39Ar step-heating analysis. A

single white mica grain yielded a plateau age of 35.7 ± 2.22 Ma, which

corresponds to 100% of 39Ar released and to five steps. The inverse

isochron for the plateau steps provides a concordant age at 35.25

± 3.89 Ma. It is important to underline that the 40Ar/39Ar dating of

VEU was performed on the phengite crystallized on the S2 foliation

of the metagranitoids.

An age of 35.7 ± 2.22 Ma can be considered as the most accurate

age (Figure 6g and Appendix S1).

5 | DISCUSSION

5.1 | P–T-d-t path of VEU

Linking the P and T conditions obtained using the chlorites and

phengites grown along the S1 and S2 foliation a P–T-d path of

VEU can be constructed (Figures 6h and 7). The P–T conditions of

0.9–1.10 GPa and 260�C for the D1 phase have been calculated

from metapelites (sample CMD94) using the Chl and Ph recrystal-

lized along the S1 foliation. Due to the lack of evidence for an older

relic foliation, the D1 phase can be regarded as the deformation

event during which VEU reaches its maximum depths. Considering

that the lithostatic pressure exerted on the Lower Units is given by

metamorphic rocks of both oceanic and continental affinities, we

assume an average crustal geobaric gradient of 30 MPa/km

(Best, 2003). Therefore, basing on the pressure registered by VEU

during the D1 phase, peak conditions occurred at the depth of

≈ 33 km (Figure 6h). We have also identified a second P–T event

recorded by the chlorites and phengites crystallized along S2 folia-

tion in metapelites which constrain the P and T conditions of the

D2 phase at 0.70–1.00 GPa and 250�C. These data are coherent

with the P–T estimates for the D2 phase obtained in metagranitoids

(i.e., 0.75–0.80 GPa and 225–275�C). Overall, all the collected data

indicate that the D2 phase developed during a retrograde path at

depth of ≈ 26 km (Figure 6h).

Temperatures obtained for the D2 phase using microstructure-

and petrology-based thermometers in metagranitoids is apparently in

contrast. The activity of chlorite end-members as well as AlIV in Chl

thermometers applied to the chlorite analysis of the metagranitoid

(sample CMD122) indicate a temperature of max. 275�C, whereas

microstructures of Qtz and feldspar indicate deformation tempera-

tures of about 400�C (Figure 6c,f,h). This discrepancy, already

described by Di Rosa, Frassi, Malasoma, et al. (2020) for GHU in the

Fium'Orbo valley, could be reduced including the error of 20�C

associated to the quantitative methods used to determine the T (e.g.,

Bourdelle & Cathelineau, 2015). The presence of syn-D2 veins into

the metagranitoids suggests that the process of hydrolytic weakening

was activated producing the overestimation of the deformation

temperature (Law, 2014). We can so propose a reliable T range for the

D2 phase registered by VEU between 270 and 280�C.

The geothermal gradient of 7�C/km calculated for VEU using the

recommendation of Best (2003) is comparable to those obtained from

P–T-d paths of other Lower Units (Di Rosa, De Giorgi, Marroni, &

Vidal, 2017; Di Rosa, Frassi, et al., 2019; Di Rosa, Frassi, Malasoma,

et al., 2020; Di Rosa, Meneghini, et al., 2019; Frassi et al., 2022). The

P–T-d path obtained for the VEU however indicates that the exhuma-

tion of the unit occurred under isothermal conditions (Figure 7). The

‘shape’ of its retrograde path is however similar to the retrograde

path of Castiglione-Popolasca and Ghisoni units (i.e., Lower Units

located immediately above the Hercynian Corsica, Di Rosa, Frassi,

et al., 2019). For these units, the retrograde isothermal path can be

explained assuming a fast exhumation stage during which the temper-

ature peak does not exceed the temperature achieved at pressure

peak (e.g., Di Rosa, Frassi, et al., 2019), up to shallow structural levels.

Conversely, most of the Lower Units show a warmed path (i.e., Croce

d'Arbitro, Piedigriggio-Prato, Canavaggia, Pedani, Scoltola and Tour de

Valletto units) during which the exhumation of continental units

occurred together with a substantial (>100�C) increase of temperature

(e.g., Frassi et al., 2022).

Moreover, it is important to underline that the 40Ar/39Ar dating

of VEU was performed on the phengite crystallized on the S2 foliation

of the metagranitoids. Considering the temperature estimates in this

work from D2 syn-kinematic chlorites and phengites of VEU at a max-

imum of 280�C we interpret the isotopic age at ± 2.22 Ma obtained

for syn-kinematic phengite as the crystallation age.

F IGURE 7 The P–T-d conditions of European continental units.

VEU: Venaco Unit, this work. From the Fium'Orbo area: Ghisoni Unit
(GHU, from Di Rosa, Frassi, et al., 2019). From Corte area:
Castiglione-Popolasca (CPU), Piedigriggio-Prato (PPU) and Tour de
Valletto (TVU) Units (Di Rosa, Frassi, et al., 2019; Frassi et al., 2022).
From Cima Pedani area: Canavaggia (CAU), Scoltola (SCU) and Pedani
(PEU) Units (Di Rosa, Meneghini, et al., 2019). Tenda Massif path is
taken from Molli et al. (2006).
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No thermobarometric estimates are available for the D3 phase

because of the lack of phyllosilicates crystallizations along the S3 foli-

ation. According to the map-scale structures (Di Rosa, De Giorgi, Mar-

roni, & Pandolfi, 2017; Malasoma et al., 2020), this phase occurred

when the units were already stacked and contributes to the final

exhumation of the Alpine Corsica, corroborating what had been

already suggested for the late stage of exhumation of the Lower Units

(Daniel et al., 1996; Di Rosa, Frassi, Marroni, et al., 2020; Fournier

et al., 1991; Jolivet et al., 1991; Zarki-Jakni et al., 2004). The ages

obtained by apatite fission tracks, which range from 35 to 25 Ma in

southern Hercynian Corsica, to <25 Ma, in central Hercynian Corsica

(Danišik et al., 2007), testify this later extensional tectonics, probably

driven by the progressive collapse of Alpine Corsica associated with

rifting in the Ligurian-Provençal back-arc basin.

5.2 | Metamorphism and age constraint:
Implications for Alpine Corsica evolution

In the Alpine Corsica, the remnants of the European continental mar-

gin deformed and metamorphosed under HP metamorphic conditions

have been identified in the Tenda Massif, located in northeastern Cor-

sica within the Alpine Domain (Gibbons & Horak, 1984; Maggi

et al., 2012; Molli & Tribuzio, 2004; Tribuzio & Giacomini, 2002) and

in the Lower Units cropping out with a north–south trend along the

boundary between Hercynian and Alpine Corsica (Bezert &

Caby, 1988; Di Rosa, De Giorgi, Marroni, & Pandolfi, 2017; Di Rosa,

Frassi, et al., 2019; Garfagnoli et al., 2009; Malasoma et al., 2006). In

addition, evidence of Alpine deformation has been found also in the

eastern rim of the Hercynian Corsica, along localized shear zones

close to the boundary with the Alpine Corsica (Amaudric du

Chaffaut & Saliot, 1979; Di Rosa, Frassi, Marroni, et al., 2020; Di

Vincenzo et al., 2016; Frassi et al., 2022; Rossi et al., 1994).

Most of the geodynamic reconstructions (Beaudoin et al., 2017;

Di Rosa, Meneghini, Marroni, et al., 2020; Malavieille et al., 1998;

Marroni et al., 2017; Molli, 2008) indicate that the European conti-

nental margin was dragged downward in an east-dipping subduction

zone during the Early Tertiary. It is during this stage that they acquired

the HP metamorphic imprint.

Age constraints of this HP metamorphism were obtained from the

East Tenda shear zone (Figure 1), a crustal-scale ductile shear zone

with a complex kinematics originated during the underthrusting of the

Tenda Massif in the subduction zone (Molli et al., 2006) and reacti-

vated in extensional regime during exhumation (e.g., Jolivet

et al., 1990). The age of the underthrusting event is roughly con-

strained to Early Eocene (Ypresian) by Brunet et al. (2000) that indi-

cate a maximum age of 46.6 ± 1.2 Ma by phengite 40Ar/39Ar

geochronology and by Maggi et al. (2012) that provide for the same

event a U–Pb rutile age of 54 ± 8 Ma. The available data indicate that

the Tenda Massif was buried at a depth between 30 and 40 km

(Figure 8a; Gibbons & Horak, 1984; Maggi et al., 2012; Molli

et al., 2006; Molli & Tribuzio, 2004; Rossetti et al., 2015). The ages of

34–37 Ma (Priabonian), reported by Vitale Brovarone and Herwartz

(2013) and by Brunet et al. (2000) for the East Tenda shear zone, con-

strain the exhumation of the Tenda Massif at 25–30 km of depth

(Molli et al., 2006). This picture is recently confirmed by Beaudoin

F IGURE 8 3D tectonic sketch model showing the subduction of
the European continental margin and the consequent exhumation of the
resulting tectonic units in a still compressive setting. (a) The stage of
subduction in the Bartonian: Tenda Massif is parked at ≈ 25–30 km of

depth, VEU is next to the subduction and the foredeep deposits are
settling on the margin; (b) during the late Bartonian, VEU is supposed to
be at the maximum depth of ≈ 33 km and is deforming by the D1 phase
while the Tenda Massif stands and heats up at ≈ 25–30 km; (c) in the
Priabonian, VEU is quickly exhumed (D2 phase) and reach the Tenda
Massif at about 26 km. Pink is used for both the Hercynian Corsica and
the subducted Lower Units in order to underline their provenance. VEU
and the Tenda Massif are differentiated from the other Lower Units
(blue and violet, respectively). Arrows indicate the kinematics of the
Lower Units during their subduction and exhumation. Modified from Di
Rosa (2021) and reference therein.
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et al. (2020), that constrain the end of burial and exhumation at �34

and �22 Ma (Priabonian and Aquitanian), respectively.

The other HP continental units (i.e., Lower Units) are character-

ized by a metamorphic sequence whose youngest deposits are repre-

sented by foredeep turbidites showing Bartonian microfossils in the

uppermost stratigraphic levels (Bezert & Caby, 1988). This finding

indicates that the underthrusting event and the related HP metamor-

phism probably occurred during the late Bartonian (i.e., after 41.2 Ma,

Figure 8b). This evidence is coherent with the age of 35.7 Ma

(Priabonian) that we obtained for the D2 event (i.e., the retrograde

path) in the metagranitoids of VEU. A recent 40Ar-39Ar age of 38.0

± 0.2 Ma obtained for the Lower Units in the Golo Valley (i.e., Croce

d'Arbitro Unit by Rossetti et al., 2022) support our 40Ar-39Ar datings

for VEU.

Alpine metamorphism was also found within top-to-the west

shear zones occurring in the easternmost sector of the Hercynian Cor-

sica (Di Rosa, De Giorgi, Marroni, & Pandolfi, 2017; Malasoma

et al., 2020; Rossi et al., 1994). The dating of these shear zones indi-

cates for the Alpine metamorphism a minimum age of ≈ 46 Ma by

(40Ar/39Ar white micas; Di Vincenzo et al., 2016). As discussed by Di

Rosa, Frassi, Marroni, et al. (2020) these ages are in contrast with the

Lutetian-Bartonian age of metabreccias and metasandstones affected

by shear deformation. On the contrary, the Priabonian ages (≈ 37 and

35 Ma, Figure 8c) that we obtained for VEU perfectly fit.

Re-equilibration during exhumation at ≤33–32 Ma (Rupelian) is

also suggested by Di Vincenzo et al. (2016) and interpreted by Di

Rosa, Frassi, Marroni, et al. (2020) as developed during the exhuma-

tion of the eastern rim of the Hercynian Corsica.

The age constraint available for the Tenda Massif and Lower

Units can be framed into a coherent picture where the age of HP

metamorphism achieved by the continental crust fragments during

the underthrusting is progressively younger moving from northeast to

southwest: Ypresian in the Tenda Massif, Bartonian in the Lower

Units and probably Priabonian or younger in the westernmost rim of

the Hercynian Corsica (VEU). These data indicate that even if the

Lower Units and the Tenda Massif were subducted at different times

but at 34–36 Ma (Priabonian), they were at the same exhumation

depth, whereas the westernmost rim of Hercynian Corsica was

deformed by the top-to-W shear zones (Di Rosa, Frassi, Marroni,

et al., 2020).

5.3 | Geodynamic implications

To reconstruct the progressive involvement of the thinned European

continental margin in the E-dipping subduction zone, we compare the

age of metamorphism here presented for the VEU (i.e., Lower Units)

with those available for the continental unit of the Tenda Massif and

Croce d'Arbitro (the only continental unit of Alpine Corsica with isoto-

pic age constraints; Brunet et al., 2000; Maggi et al., 2012; Rossetti

et al., 2022). The involvement of the continental crust in the subduc-

tion zone followed the underthrusting of the last portion of the

Ligure-Piemontese oceanic crust. The data available for the Internal

Ligurian Units (i.e., the best-preserved fragments of the Ligure-

Piemontese basins exposed along the Alpine Corsica – Northern

Apennines transect) indicate that in the early Palaeocene, some por-

tions of oceanic crust were not yet involved in the subduction zone

(Marroni, 1991; Marroni et al., 2017; Meneghini et al., 2020;

Molli, 2008). The first sector of continental crust involved in the sub-

duction zone was probably the sector currently represented by the

Tenda Massif (i.e., the continental fragment showing the oldest HP

metamorphic imprint). The involvement of the continental crust con-

tinued with the underthrusting of the more internal areas of the

European margin, today represented by the Lower Units. Subse-

quently, also the westernmost rim of the Hercynian Corsica is

involved in the same subduction zone.

The data available and those provided in this paper suggest that

the Tenda Massif and the VEU (Lower Units) were dragged downward

at different times (i.e., Ypresian for the Tenda Massif and Bartonian

for the VEU), but both were exhumed simultaneously during the Pria-

bonian. Consequently, these two units experienced different station-

ary time at depth, controlled by several boundary conditions as

suggested by Frassi et al. (2022), like exhumation rate, exhumation

trajectory, thermal state of the overriding plate and mechanical and

rheological characteristics of the downgoing continental crust. The

occurrence of European continental units characterized by different

stationing time at depth has been described for the first time by Di

Rosa, Frassi, et al. (2019). According to these authors, the different

stationing time at depth is correlated to the structural position within

the subduction channel: the units with isothermal paths are located at

the base of the subduction channel immediately over the Hercynian

Corsica, whereas the units with warmed paths are located at its top,

below the Schistes Lustrés Complex. Following this distinction, the

P–T data related to the Tenda Massif, that experienced a warmed path

(Molli & Tribuzio, 2004), indicate that this continental slice experi-

enced a long stationary time at depth before its exhumation. On the

contrary, the data provided in this paper for the VEU indicate an iso-

thermal path and then an exhumation predated by a short stationary

time at depth.

6 | CONCLUSIONS

In this paper, the P–T-d path of the VEU is reconstructed and com-

bined to the 40Ar/39Ar dating of syn-kinematic muscovite to present

the first P–T-d-t path of a Lower Units. The proposed scenario indi-

cates that the VEU reached the baric peak (D1 phase) at ≈ 33 km of

depth in the Bartonian time (post 41.2 Ma). At 35.7 Ma (middle

Priabonian), VEU was exhumed at shallower structural level

(≈ 26 km of depth) mainly through the activation the D2 top-to-W

shear zones. The retrograde isothermal path of the VEU indicates

that its stationary time at depth of ca. 33 km (D1 phase) was mini-

mum and that after reaching the maximum depth it is “quickly”
exhumed. During this fast rise, VEU completed its deformation his-

tory throught the D2 phase, registered at ca. 26 km, and the D3

phase at shallower depths.
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The comparison of the new isotopic data presented in this contri-

bution with the only one available for a continental unit (i.e., Tenda

Massif) allows proposing a new scenario for the progressive involve-

ment of the thinned European continental margin in the east-dipping

subduction zone. This scenario includes the underthrusting of the

continental fragments in different time and in different structural

positions within the subduction channel of the alpine orogenic wedge.

Each fragment underwent thus a different stationing time at depth, as

indicated by the “shape” of the P–T-d path, and then started to be

exhumed together within the subduction channel. This behaviour can

be proposed as effective for all the HP continental units during the

continental subduction and must be thus considered to understand

the geological processes related to the collisional orogens.
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