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Abstract
This paper studies the learnability of natural concepts in the context of the conceptual spaces
framework. Previouswork proposed that natural concepts are represented by the cells of optimally
partitioned similarity spaces, where optimality was defined in terms of a number of constraints.
Among these is the constraint that optimally partitioned similarity spaces result in easily learnable
concepts. While there is evidence that systems of concepts generally regarded as natural satisfy a
number of the proposed optimality constraints, the connection between naturalness and learnabil-
ity has been less well studied. To fill this gap, we conduct a computational study employing two
standard models of concept learning. Applying these models to the learning of color concepts, we
examine whether natural color concepts are more readily learned than nonnatural ones. Our find-
ings warrant a positive answer to this question for both models employed, thus lending empirical
support to the notion that learnability is a distinctive characteristic of natural concepts.

Keywords: concepts; design; learning; naturalness; optimality; similarity spaces; simulations.

1 Introduction

In the conceptual spaces framework, as developed by Gärdenfors (2000, 2014) and others, concepts
can be represented geometrically, specifically as regions, or sets of regions, in so-called similarity spaces.
For example, the concept of redness can be identified with a certain region in perceptual color space
(see below), and the concept of tartness, with a certain region in taste space (e.g., Churchland, 2012).
However, not every region in a similarity space can represent a concept, at least not anatural one, where
natural concepts are concepts like blue, or green, or tiger, or gold, which carve nature at its joints
(in the words of Plato’s Phaedrus) and which have or can have a place in our thinking and theorizing.
The question then arises what distinguishes those regions that do or can represent natural concepts
from those that cannot.

Gärdenfors (2000, p. 71 ff) suggests that natural concepts are represented by convex regions in a
similarity space,1 where a region is convex precisely if for any two points lying in the region, every point
between them lies in the region as well. Although both empirical evidence and considerations of cogni-
tive economy support this idea, it is clear that convexity alone is not enough to define naturalness. For
instance, it is easy to pick a convex region in perceptual color space that groups together color shades
which we would not naturally associate.

*TheSupplementaryMaterials, including the Julia file thatwasused for the simulations reported, are available in aGitHub
repository which can be accessed via this link.

1Or by sets of convex regions, if we are dealing with a multi-domain concept. We take this qualification to be read from
here on.
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In response to this problem, Douven and Gärdenfors (2020) argue that natural concepts are ones
that are represented by the cells of an optimally partitioned similarity space. As they show, this proposal
encompasses, but goes beyond, the aforementioned convexity criterion. At the core of their proposal
is a set of constraints that a partitioning must satisfy to be considered optimal. While, as Douven and
Gärdenfors (2020) show, there is already support—both empirical and from computational studies—
formost of the constraints theypropose, this cannotbe said forwhat they callLearnability, according to
which anoptimal partitioning creates concepts that are easy to learn and allow for reliable generalization
from a few samples.

Previous studies have shown that people generally learn new concepts quickly. However, most
of this research focuses on the role of prototypes in concept learning. It does not specifically address
whether learnability is a distinctive characteristic of natural concepts, given thatmuch of it concerns ar-
tificial concepts—like ones about triangular patterns of dots distorted to varying degrees (Posner, Gold-
smith, & Welton, 1967; Posner & Keele, 1968, 1970) or about artificial faces (Reed, 1972)—or involves
both natural and artificial concepts (Rosch &Mervis, 1975), without however examining whether nat-
uralness differentially affects learnability.

We present evidence for Learnability in the form of the outcomes of a computational study using
twodistinctmodels of concept learning. Weuse thesemodels to simulate the learning of color concepts,
with an eye toward investigatingwhether natural color concepts (i.e., themental correlates of basic color
terms like “blue,” “red,” “green,” etc.; see Berlin&Kay, 1969) are learnedmore readily than systemswith
equal numbers of nonnatural color concepts. It will be seen that, given either model, the answer to this
question is positive. Before we delve into our study, we outline the theoretical background that informs
our work.

2 Theoretical background

We start by stating the basic tenets of the conceptual spaces framework, then summarize recent work
on the problem of how to define naturalness of concepts in that framework, and lastly describe the two
methods of concept learning our study will rely on.

2.1 From similarities to concepts

At the core of the conceptual spaces framework is the thought that concepts can be represented as re-
gions in similarity spaces, where a similarity space is a one- or multi-dimensional metric space whose
dimensions representmeasurable qualities that objects can have to varying degrees. Objects aremapped
onto points in such spaces depending on the degree to which they possess these qualities. In principle,
there is a great choice of metrics, but the ones most commonly encountered in practice are theManhat-
tan and the Euclidean metric, which, given an n-dimensional space S, are the instances of the schema
below with p = 1 and p = 2, respectively:

δS(x, y) =

( n∑
i=1

| xi – yi | p
) 1/p

,

where x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , yn⟩. The measure in which two objects representable in S are
similar to each other, in the respect corresponding to S (e.g., similar in taste, if S is taste space), is then
some inverse function of the distance between them in S, meaning that they are the more similar in the
said respect the closer together they are represented within S.
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Figure 1: The 1,625 chips from the Munsell Book of Colors shown in CIELUV space (left panel); the 320 chro-
matic chips used for the World Color Survey highlighted (right panel).

Wefind a great variety of similarity spaces discussed in the cognitive science literature, including the
already mentioned taste space, auditory spaces (Petitot, 1989), olfactory space (Castro, Ramanathan, &
Chennubhotla, 2013), various shape spaces, such as a space for shells (Gärdenfors, 2000, pp. 142–150),
for human faces (Valentine, Lewis, & Hills, 2016), and for container objects (Douven, 2016), various
animal spaces (e.g., Henley, 1969), as well as various action spaces (e.g., Gärdenfors & Warglien, 2012),
moral spaces (e.g., Peterson, 2017; Verheyen & Peterson, 2021), and social spaces (e.g., Deauvieau et al.,
2014; Bendifallah et al., 2023). Perhaps the best known similarity space, and certainly the onemost easily
accessible for experimentation, is perceptual color space. Because it is also the space to be used in our
study, we will describe this in more detail.

There are in effect two perceptual color spaces, CIELUV space and CIELAB space, where the for-
mer is assumed to best represent similarity judgments concerning colors perceived on screen while the
latter is assumed to best represent such judgments when colors are shown on cloth or paper (Malacara,
2002, pp. 86–90; Fairchild, 2013, Ch. 10). The spaces look very similar: both are three-dimensional,
spindle-like Euclidean spaces. The left panel of Figure 1 visualizes CIELUV space by placing in it all
1,625 chips fromwhat is commonly known as “theMunsell book of colors” (Munsell, 1941).2 The right
panel of this figure highlights the 320 chromaticMunsell chips that have beenwidely used in color nam-
ing studies, most famously those reported in Berlin and Kay (1969) and theWorld Color Survey (Cook,
Kay, & Regier, 2005). These chips will also serve as the main materials in our computational study.

There are different ways to obtain a conceptual space from a similarity space, but the currently
dominant approach combines prototype theory with the mathematical technique of Voronoi tessel-
lations (Gärdenfors, 2000, 2014). Locating the points representing prototypes in a given space S, we
can let them generate a Voronoi tessellation of S by associating each point in S with the prototype or
prototypes closest to it. Thiswill result in a partitioning of S, the cells ofwhich can be considered to rep-

2TheRGBcoordinates of theMunsell chipswere downloaded from thewebsite of theMunsellColor ScienceLaboratory
of the Rochester Institute of Technology and converted to CIELUV coordinates using the Colors.jl package for the Julia
language.
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resent concepts, while the points which are equally close to two or more prototypes form the concept
boundaries.

We briefly mention also a different approach to representing concepts in similarity spaces, which
is advocated by Nosofsky (1986, 1987). In his Generalized Context Model, concepts are conceived not
as regions of points but as sets of exemplars, or individual instances of a concept, represented in a sim-
ilarity space. Our focus will be on Gärdenfors’ model, which offers a richer mathematical structure,
thereby facilitating the formalization of more complex cognitive operations and relations.3 Nosofsky’s
GCM is still relevant to our study, inasmuch as it may provide an important complementary viewpoint
concerning concept learning, specifically, by framing this as a comparative process of assimilating new
items based on their similarity to items stored in memory, in a way to be detailed shortly.

2.2 Naturalness and optimality

The study we are to report is directly related to the question of what distinguishes natural from non-
natural concepts. What, for instance, distinguishes the natural color concepts from ones obtained by
picking a number of points in CIELUV space randomly and letting those generate a Voronoi tessella-
tion of that space? Given that any Voronoi tessellation of a Euclidean space partitions that space into
convex regions (Okabe et al., 2000, p. 58), the convexity criterion is not going to help answering this
question. As mentioned in the introduction, Douven and Gärdenfors (2020) propose to analyze the
notion of a natural concept in terms of optimally partitioned similarity spaces. More exactly, natural
concepts are those that are represented by a cell in an optimally partitioned similarity space.

In doing so, these authors took their cue from work in cognitive science relating categorization to
principles of rationality and optimality (e.g., Rosch, 1978; Marr, 1982; Anderson, 1990, 1991; Oaksford
& Chater, 1994; Chater & Oaksford, 1999; Goodman et al., 2008; Frank & Goodman, 2012; Griffiths,
Lieder, & Goodman, 2015) as well as from recent work in biology, which explains the occurrence of
certain biological traits and processes by reference to what they would look like had they been designed
according to principles of good engineering; for instance, Alon (2003) argues that many biological net-
works look as if they had been constructed by someone who obeyed the same principles of modularity,
use of recurring circuit elements, and robustness of component tolerances that guide the design of en-
gineered networks.

The main part of Douven and Gärdenfors’ (2020) proposal consists of a set of design principles
that a good engineer would want to follow if tasked with designing one or more conceptual spaces for
creatures with our perceptual and cognitive make-up. More exactly, these authors formulate a number
of design principles which they believe to define optimal design for representational systems generally,
regardless of which format one prefers for concepts (so regardless of whether one commits to the con-
ceptual spaces framework). But then their main concern is to show what these principles imply for the
design of conceptual spaces, specifically, for when such spaces are optimally designed—optimally de-
signed for creatures whose memories have limited storage capacity, whose discriminatory capacities are
limited as well, and who are to survive in a world with scarce commodities where competition for those
commodities can be fierce.

One of the principles is what Douven and Gärdenfors call Informativeness, according to which a
partitioning should offer fine distinctions across the similarity space. But the authors also stress the need
for Parsimony, cautioning against partitioning a space so finely that it overloads memory. Two further
principles—Contrast and Representation—have to do with the placement of prototypes in the space.

3For instance, Gärdenfors’ model has been used to derive prior probabilities for items falling under specific concepts
(Decock, Douven, & Sznajder, 2016) and to formalize vagueness (Douven et al., 2013; Douven, 2016; Douven et al., 2017) as
well as analogical reasoning (Douven et al., 2022). It is not clear to us how any of that could be accomplished using the GCM.
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According to the former, the partitioning should allow a placement of the prototypes such that they
can easily be told apart fromone another (i.e., prototypes of different concepts should be at a sufficiently
large distance from each other in the space). According to the latter, the placement should at the same
time be such that the prototypes are good representatives of the items falling under the concept they are
the prototype of (i.e., they should not be too distant from any of the items falling under the concept).
The final principle on Douven and Gärdenfors’ list is Learnability, which, as already mentioned in the
introduction, demands that the concepts resulting from the partitioning should be easy to learn, in
particular, that concept learners should be able to safely (even if not infallibly) generalize to unlabeled
instances from a relatively small number of labeled instances.

Douven and Gärdenfors explicitly leave open the possibilities that their list of principles is incom-
plete as well as that it contains redundancies. They further recognize that different ones of their princi-
ples can pull in different directions. Therefore, they define an optimal partitioning of a similarity space
to be one that strikes the or a best balance between the different desiderata.

In their paper, Douven and Gärdenfors muster a range of experimental and computational results
reported in the scientific literature which support various of their principles. For example, Informa-
tiveness and Parsimony receive strong support from Regier, Kay, and Khetarpal (2007). Following an
idea put forward by Jameson and D’Andrade (1997), these authors apply a computational clustering
algorithm implementing principles that, at bottom, amount to Informativeness and Parsimony to the
Munsell chips used in theWCS, finding that the algorithmproduces clusterings that closelymatch how
those same chips are carved up into categories by various languages spoken across the globe.4 Douven
(2019) provided evidence specifically for Contrast andRepresentation by first experimentally determin-
ing the locations in CIELUV space of the basic color prototypes and then showing via simulations that
the constellation of those prototypes is a near-to-optimal trade-off between the two designated con-
straints. As said, however, evidence supporting Learnability is still sparse, which motivated the present
paper.

2.3 Concept learning

Laboratory studies involving human participants might seem ideal to examine whether natural con-
cepts are acquired more readily than nonnatural ones. However, such studies are likely to be con-
founded by the fact that the participants are already familiar with the natural concepts. Whichever
difficulties they might have acquiring nonnatural concepts, at least as compared to natural concepts,
could be due to the fact that the concepts to be acquired (as part of the experimental task) clash with
the ones the participants have been using formost of their lives. Away around thismight be to conduct
an experiment in which toddlers in the earliest stages of language development are trained on nonnat-
ural concepts (say, nonnatural color concepts) prior to their having acquired the natural ones. But it
would probably be difficult to get such an experiment approved by the ethics committee of one’s uni-
versity.

At any rate, in this paper we take a computational rather than an experimental approach to investi-
gating concept learning. More exactly, we consider two algorithms that are suited formodeling concept
learning, supposing concepts are represented as regions in similarity spaces. One is a computational im-
plementation of Gärdenfors’ (2001) Approximate Prototype Model (APM), which is his account of
concept learning set within the conceptual spaces framework. The other is the k-Nearest Neighbors
(KNN) algorithm, which is a popular machine learning algorithm and which, as Nosofsky (2011, p. 22)

4For similar results, see Kemp and Regier (2012), Xu and Regier (2014), Xu, Regier, and Malt (2016), Zaslavsky et
al. (2019), andMollica et al. (2021).
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notes, is closely connected, or even identical (depending on the exact functional relationship between
similarity and distance), to his GCM.

According to the APM, we learn a family of concepts (e.g., color concepts) by going through the
following steps:

1. we are shown examples of each of the concepts in the family, where these examples are labeled,
meaning that it is given, for each, under which concept it falls;

2. we estimate the prototype of each concept by averaging the examples of the concept, meaning
that, where these examples are given as points in an n-dimensional similarity space, we first group
the examples according to their labels and then calculate, for each group and each dimension i
(1 ⩽ i ⩽ n), the average i-th coordinate of the members of the group (this yields the group’s
so-called center of gravity in the space);

3. we use these estimates to generate a Voronoi tessellation of the relevant similarity space;
4. when new labeled examples come in, we repeat steps 2 and 3.

The hope is that, if all goeswell, theVoronoi tessellation generated by our best guesses of prototypeswill
converge toward the actual conceptual structure, as we come to learn more andmore labeled examples.
How accurately you will be able to classify unlabeled examples at a later point in time will depend on
how close, at that point in time, the best-guess structure is to the actual one, and is a measure of the
extent to which you can be said to possess the concepts represented in the relevant space. Figure 2
illustrates the process in the abstract.

The GCM-based model of learning is simpler. In this model, you learn a family of concepts by
storing in memory more and more exemplars (i.e., labeled examples) of each of the concepts. Upon
encountering an unlabeled example, you find the exemplars most similar to it, and you label it on the
basis of those exemplars’ labels. This leaves somedetails to befilled in. For instance, if all themost similar
exemplars have the same label, then the decision how to label the new examplewill be straightforward—
butwhat if they have different labels? Andhowmanymost-similar exemplars arewe to consider in order
to determine the label of the new example?

To start with the latter question, the k-Nearest Neighbors algorithm can be regarded as implement-
ing the GCM-based model of concept learning, and as its name suggests, this algorithm considers the
kmost similar exemplars. It allows the number k to be set by the user, though a common recommen-
dation is to set k equal to the integer nearest to the square root of the total number of exemplars. With
k fixed, the kmost similar exemplars vote on the label to be given to the new example, where this vote
can be weighted depending on the distances in the relevant similarity space between the exemplars and
the new example. For instance, suppose k = 5 and three of the exemplars most similar to a new example
are labeled l1 while two are labeled l2. Then the unweighted majority vote would yield l1 as the label for
the new example. If, however, we take weights into account, this could be different. For example, if
the l2-exemplars are much closer to the new example than any of the l1-exemplars, then the new exam-
ple could end up being labeled l2. Most packages providing KNN allow users to set a great variety of
weighting functions.5

The two learning methods to be used in our study have in common that they are both forms of
supervised learning, meaning that they both require labeled data to learn from. But they are different
in the sense that the APM is a form of what in machine learning is called greedy learning, while KNN
is a form of lazy learning. That is to say that, in learning, the former creates a map—in our case a
conceptual structure—and then labels new examples according to their place on the map. KNN, on

5InNosofsky’s GCM, there are parameters tomodel response bias, memory strength, and salience of dimensions, which
help to model recency and context effects. For our computational implementation, these do not matter. For instance, the
order in which data are stored in computer memory makes no difference to how easily they can be retrieved.
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(a) A 2D 'color' space with prototypes (b) Sampling from each concept

(c) Best guesses (d) With actual space overlaid

Figure 2: Illustration of theApproximate PrototypeModel of concept learning, using a two-dimensional “color”
space, shownwith prototypes (panel a); based on the sampling from each of the concepts (panel b), a best guess is
made of the locations of the various prototypes in the space, to which corresponds a best guess of the conceptual
structure, which is the Voronoi tessellation generated by the prototype estimates (panel c); this is compared with
the actual space (panel d), the latter shown in dotted lines.

the other hand, runs one and the same routine each time a new example is received in order to determine
the label of that example, without ever creating a map. Of course, if we want, we can let it create a map
by approximation, by asking for a fine grid of points in a given space how the algorithm would classify
them. To show how this would work, we can use the same space and sample of examples that was used
to illustrate the APM and let KNNpredict the label for each point in a grid of 500× 500 points, spaced
uniformly in each dimension. The result is shown in Figure 3. Just glancing at the results from the two
illustrations, it would seem that KNN offers a somewhat better approximation of the real conceptual
structure than the APMdoes. Needless to say, though, this is a toy example of a space and so we should
be cautious to infer anything in general from the relative performance of the two learning methods.

The main focus of this paper is on the question of how to distinguish natural from nonnatural
concepts, not on the different learning methods (though we will briefly compare their performance in
our study). It is still worth commenting onwhat could appear as problematic aspects of themethods—
problematic, at least, from the standpoint of the conceptual spaces framework.

The first concerns the APM and is illustrated in Figure 4. As can be seen in that figure, some of
the examples that underlie the estimate of the conceptual structure end up, not in the concept they
were supposed to be an example of, but in a neighboring one. The problem was already mentioned,
though only in passing, in Gärdenfors (2001, p. 176 n), where it is speculated that these problem cases
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Figure 3: Map created by means of the k-Nearest Neighbors algorithm on the basis of the same sample of exem-
plars used for the illustration in Figure 2.

might actually give rise to the introduction of new concepts. A different response, which we want to
propose here, points to the fact that the issue of vagueness is typically “idealized away” in presentations
of the conceptual spaces framework. The framework canmodel vagueness, as was shown in Douven et
al. (2013), Decock andDouven (2014), Douven andDecock (2017), Verheyen and Égré (2018), andDou-
ven (2020), but “fuzzifying” concept boundaries in a realistic manner can be computationally costly.
A quick and dirty way of representing vagueness uses the notion of silhouette width, as developed by
Kaufman and Rousseeuw (2005), which helps to distinguish between instances that are more central
to a concept and those that are more peripheral to it. Given a family of concepts C = {C1, . . . ,Ck}
representable in some similarity space S, with x an instance of conceptCi, its silhouette width is defined

Figure 4: Best APM guess of conceptual structure and sample on which the guess is based: some sampled exem-
plars end up in a concept other than the one they exemplify.
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Figure 5: Markers sized according to the silhouette width of the exemplars.

to be
(
b(x) –a(x)

) /
max

{
a(x), b(x)

}
, with a(x) the average distance in S of x to the other instances ofCi

and b(x) the smallest average distance in S of x to the instances falling underCj ∈ C, for j ≠ i. Sizing the
point markers according to the silhouette width of the exemplars they represent, as is done in Figure 5,
suggests that the problem cases might all turn out to be borderline cases, once vagueness is taken into
account.

To see why this is relevant, note that a parent trying to teach a child the concept of redness would
probably not want to pick red–orange, or red–pink, or red–blue borderline cases. That does not mean
she will only pick examples that are typically red, as this might fail to give a good impression of the
extension or width (in Carnap’s, 1980, sense) of the concept. But she will either want to leave out
borderline instances completely or explicitly single them out as being, for instance, reddish-orangish.
Note also that, in other spaces, the boundary regions between concepts may not even have instances.
For instance, mammal space, as represented in Henley (1969), can plausibly be thought of as having
continuous dimensions, but for biological reasons, theremay be gaps in this space. Thus, one diagnosis
of the problem cases as highlighted in Figure 4 is that we have been assuming that examples are sampled
uniformly from a space, which in reality may often be false. For pedagogical purposes, we may want to
select examples that are rather central to a concept, or wemay be bound to select such examples, because
there are no borderline cases, for biological or more broadly scientific reasons.

The second problem concerns KNN, or rather, KNNas amethod for concept learning, where con-
cepts are understood as per the conceptual spaces program. After all, it was said that even if convexity
is not a sufficient condition for naturalness, it is generally agreed among proponents of the framework
that it is a necessary one. And from Figure 3 it is evident that if we learn concepts via KNN, we cannot
expect them to be convex. Note, though, that the deviations from convexity might in their entirety
fall within the boundary regions of the concepts and thus could, in a realistic setting, be nothing but
artefacts of the idealizing assumption that concepts have sharp borders. This is particularly plausible
in view of the results reported in Douven (2016), Douven et al. (2017), and Douven et al. (2018), which
show for different real similarity spaces that boundary regions can have substantial volume, relative to
the total volume of the space.
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Figure 6: The 320 chromatic Munsell chips used for the World Color Survey.

3 Computational study

As previously mentioned, perceptual color space is readily available to experimenters. CIELUV and
CIELAB space can both be accessed via dedicated packages in a great number of popular computer
languages, which is true for none of the other similarity spaces known from the psychological literature
(Sect. 2.1). For our study, we have used the Colors.jl package for the scientific computing language Ju-
lia (Bezanson et al., 2017) to work with these spaces. The results to be reported in the following were
obtained in CIELUV space, but interested readers are invited to use the code provided in the Supple-
mentary Materials to verify that rerunning the procedures to be stated below in CIELAB space yields
qualitatively identical outcomes.

Given our focus on color space, the specific research question we aim to answer becomes this: Is
the system of color concepts we use, which is widely regarded as a prime example of a system of natu-
ral concepts (e.g., Rosch, 1973; Kripke, 1980; Hardin, 1988), more easily (more quickly, more reliably)
learnable than systems of color concepts that we would regard as nonnatural? Given a number of ex-
emplars of all color concepts, can we more reliably generalize from those exemplars to the conceptual
structure if that structure is the natural one (i.e., the carving-up of perceptual color space into natural
concepts) than if it is a nonnatural structure? To further clarify, consider a paradigmatic situation of
concept learning in which a parent teaches her child color names by showing the child shades of blue,
shades of red, shades of green, and so on, while naming those shades. We can then ask how accurately
the child will be able to predict the color names of shades it has not yet seen or in any case has not been
taught to name. We can further ask whether, if our system of color concepts consisted of nonnatural
concepts, the learning process would be slower in that the child would have to see more exemplars of
each color to achieve a similar level of accuracy in naming so-far-unseen color shades. To repeat, we are
not going to use human participants to test the hypothesis that the answer will turn out in favor of the
natural color concepts, as Douven and Gärdenfors (2020) predict it will, but rather try to model the
learning process as best we can by computational means.

The materials for the computational study consisted in the 320 chromatic chips from the WCS,
whichwere already highlighted in the right panel of Figure 1 andwhich Figure 6 shows in a chart, in the
way they are usually presented in publications related to theWCS.6 The study is in two parts, each part
centering on one of the learning methods described in the previous section. The procedure is the same

6As an anonyous referee remarked, it would be interesting to conduct the simulations to be presented in the following
also for the full set of 1,625 Munsell chips, especially given that the chips for the WCS were all selected precisely because they
all show highly saturated colors, thus raising the question whether we would obtain the same results if also chips showing less
saturated colors were included. A practical problem here is that we currently lack data on how people would carve up the full
set of Munsell chips into the eleven basic color categories. Jraissati and Douven (2018) did use the full set in their study, but
presented their participants with a free-naming task, meaning that they could use any name they liked for any of the chips
they were shown.
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in both parts and involves simulating color concept learning for 10,000 randomly generated systems
of nonnatural color concepts and comparing the accuracy achieved in the learning process with that
achieved in a simulation of color concept learning for the system of natural color concepts. Specifically,
each part of our study consisted of the following steps:

1. Split up thematerials into thenatural color concepts and sample randomly from the chips in each
concept, where the number sampled from each concept is greater than 0 but otherwise random
(sampled uniformly from the number of chips in the given concept), thus obtaining a set of pairs{⟨

⟨L∗
c , u∗c , v∗c ⟩,Cc

⟩}
c ∈ s representing the CIELUV coordinates of Munsell chip c in sample s as

well as its label Cc indicating the color concept under which it falls.7
2. Apply the learning method (APM or KNN) to the set of pairs and on that basis predict the

labeling of the chips in the materials that were not sampled.
3. Measure the accuracy of the prediction—the best guess of what the system of concepts is—by

comparing it with the actual system of natural color concepts.
4. Repeat the foregoing steps 50 times.
5. Run the same procedure for 10,000 systems of color concepts, each obtained by randomly pick-

ing 10 or 11 (see below) points in CIELUV space as prototypes and using these to generate a
Voronoi tessellation of the space (so meaning that now the 320 chips in the materials are split up
according to the random system).

6. Compare the accuracy scores obtained for the natural system with those obtained for the non-
natural systems.

For KNN, we followed the customary recommendation of setting k equal to the square root of the size
of the sample, rounded to the nearest integer. Of course, given that the size of the sample was always
random, k could have a different value in every simulation. Also, given a sample s of chips and a chip c
not in the sample, the weight each of the k chips in s nearest to c had in voting on c’s label was set equal
to the inverse of their squared Euclidean distance (as measured in CIELUV space) to c.

Both parts of the study were conducted twice over, once for 10 color concepts and once for 11. This
was because some participants in color naming studies for English and French used all basic color terms
in describing the colors of the 320Munsell chips used for our study while other participants used only
10, leaving out “gray” (see Claidière, Jraissati, &Chevallier, 2008). Given that in the same color naming
studies there was quite some interpersonal variability in how the chips were named, we used the k-
means clustering algorithm to obtain a kind of objective approximation of the natural color concepts
(see Douven, 2017). The results are shown in the first two rows of Figure 7, while the bottom row of
that figure shows an example of a randomly generated system of 10 color concepts.8

Accuracy was measured in terms of NormalizedMutual Information (NMI), which quantifies the
mutual dependence of two variables. In our case, in which we are comparing clustering results, the two
variables are two different clusterings, and the NMI quantifies how similar they are. That the measure
is normalizedmeans that its values are between 0 and 1, with 0 indicating no shared information (the
clusterings are completely dissimilar) and 1 indicating perfect agreement (the clusterings are identical),
making NMI values easy to interpret and compare. Another benefit of using the NMI measure for
comparing clusterings is that it takes into account both the amount of shared information and the total

7Note that because a random number of chips was sampled randomly from each concept, there was no fixed sample size.
It was empirically determined that the sample size was, on average, 165.02 (± 31.98).

8The nonnatural concepts have the color resulting from averaging the CIELUV coordinates of the chips that fall under
the concept. Also, all color concepts that occurred in the study—both thenatural ones and thenonnatural ones—were convex,
by construction. That the charts shown in Figure 6 might suggest otherwise is simply because these charts are not meant to
represent a perceptual color space.
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Figure 7: Clusterings of the 320 chromatic WCS chips into 10 and 11 natural color concepts (top and middle
row) and clustering into 10 concepts according to randomly generated system of color concepts (bottom row;
clusters have been colored by taking the center of mass of the CIELUV coordinates of the chips in the cluster).

information in each clustering, in contrast tomost of the simplermeasures (see, e.g., Pfitzer, Leibbrandt,
& Powers, 2009).

As mentioned above, we ran the study both for 10 and for 11 color concepts. As also explained, in
each run, we sampled 50 times from each system of color concepts (the natural one plus the 10,000
randomly generated ones), the sample each time yielding a random number of examples from each
concept in the system. And applying the learning method (APM in one part of the study, KNN in the
other) gave us a clustering of the 320 chips from Figure 6, which could then be compared via the NMI
measure with what the clustering was according to the system fromwhich the sample was taken. Thus,
for each system of concepts, we obtained 50 NMI scores per learning method, which we summarized
via their means and standard deviations.

Learning via the APMmethod yielded an average NMI score of .92 (± 0.04; range = [.83, .97]) for
the system of 10 natural color concepts (shown in the top row of Fig. 7) and also an average NMI score
of .92 (± 0.03; range = [.84, .97]) for the system of 11 natural color concepts (middle row of Fig. 7). The
same learningmethod achieved, on average (i.e., averaged over the 10,000 systems), an average (i.e., aver-
aged over the 50 samplings per system) NMI score of .72 (± 0.04; range = [.53, .85]) for the nonnatural
systems with 10 color concepts and an average NMI score of .73 (± 0.03; range = [.57, .84]) for the non-
natural systems with 11 color concepts. The left panel of Figure 8 shows a density plot of the average
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Figure 8: Density plots of average NMI scores for 10-concept systems obtained for the APMmethod (left) and
theKNNmethod (right), each panel also showing the averageNMI score for the corresponding systemof natural
color concepts (dashed line).

NMI scores for 10-concept nonnatural systems, with the average score for the natural system shown as
a dashed line. The corresponding plot for 11-concept systems looks virtually identical and is not shown
here.

For the KNNmethod, we registered an averageNMI score of .84 (± 0.06; range = [.70, .93]) for the
system of 10 natural color concepts and an average NMI score of .83 (± 0.06; range = [.72, .96]) for the
system of 11 natural color concepts. The average score for the 10-concept nonnatural systems was .59
(± 0.03; range = [.47, .70]), on average, while for the 11-concept nonnatural systems it was .61 (± 0.03;
range = [.48, .71]). The right panel of Figure 8 shows again the density plot of these scores for the 10-
concept systems, together with the average score for the system with 10 natural color concepts. Here,
too, the corresponding 11-concept-systems plot is omitted, given that it looks almost the same.

For neither method need we run a statistical test to see that naturalness has a significant effect on
learning: the accuracy with which the algorithms were able to predict under which concepts the chips
fall that were not sampled was significantly better if the training sample came from the natural con-
cepts than when it came from some system of nonnatural color concepts. While that is a positive for
Learnability, it will be recalled from the previous section that Douven andGärdenfors (2020) left open
the possibility that their list of criteria contained redundancies. And in the same section, it was men-
tioned thatDouven (2019) found support for the claim that the system of natural color concepts strikes
a near to optimal balance between Representation and Contrast, which are meant to jointly guarantee
that prototypes can be placed in a space such that they are (i) good representatives of the other items
falling under the concept they are the prototype of and (ii) easily distinguishable from each other. It is
thus legitimate to ask whether the fact that the algorithms learned color conceptsmost accurately when
those concepts were the natural ones could be because those concepts satisfy criteria on Douven and
Gärdenfors’ (2020) list other than Learnability.

To address this question, specifically to examine whether Contrast and Representation might al-
ready predict learning accuracy, four linear regressions were conducted, one for each combination of
number of concepts (10 or 11) and learning algorithm (APM or KNN). For this, we first calculated for
each of the 10,000nonnatural 10-concept systems aswell as for each of the 10,000nonnatural 11-concept
systems their Contrast and Representation scores, following Douven’s (2019) proposal to operational-
ize Contrast as the sum of the Euclidean distances among all the generating points in CIELUV space
and Representation as the sum of the distances of those from the center of gravity of the concept that
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they represent (where, in this case, the center of gravity is calculated by taking the average L∗-, the av-
erage u∗-, and the average v∗-coordinate of those of the 1,625 Munsell chips that fall under the given
concept). These Contrast and Representation scores then did duty as the predictors in the said regres-
sion analyses, all of which had average NMI score as dependent variable.

For the APM method, the β-coefficients for Contrast and Representation were, respectively, 0.13
(t = 14.80, p < .0001) and –0.50 (t = 58.57, p < .0001) for the 10-concept systems and 0.12 (t = 14.23,
p < .0001) and –0.48 (t = 55.12, p < .0001) for the 11-concept systems. For the KNN method, the
corresponding β-coefficients are –0.01 (t = 0.57, p = .5674) and –0.23 (t = 23.32, p < .0001) for the
10-concept systems and –0.02 (t = 1.61, p = .1066) and –0.21 (t = 21.14, p < .0001) for the 11-concept
systems. Thus, for the APM method, Contrast and Representation were both highly significant pre-
dictors for accuracy and hence for the learnability of conceptual systems. Also note that they predicted
accuracy in the way one would expect: an increase in Contrast, as measured by an increase of the sum
of distances among the points generating the system, led, on average, to a significant increase of accu-
racy, while an increase in Representation, as measured by a decrease of the sum of distances of the chips
falling under a concept to the center of gravity of that concept, led to a significant increase of accuracy
as well. For the KNNmethod, we find that only Representation is a highly significant predictor of the
accuracy achieved by the learning method; Contrast is not significant.

Our primary aim was to shed light on the relation between naturalness and learnability. How-
ever, the learningmethods we implemented computationally are of independent interest, so it is worth
briefly comparing their performance in the above study. In the toy example we used previously to illus-
trate the methods, one got the impression that the KNNmethod did somewhat better than the APM
method. Comparing the average accuracy scores reported above, and also the two panels in Figure 8,
gives a different impression. Indeed, in our study the APM method did significantly better than the
KNN method, as was confirmed by running four t-tests on the results obtained by the two methods
for each of the following: the 10-concept natural system, the 10-concept nonnatural systems, the 11-
concept natural system, and the 11-concept nonnatural systems. For the natural 10-concept system, we
had t(98) = 7.67, p < .0001, with a value for Cohen’s d of 1.51 (which counts as large); for the nonnatu-
ral 10-concept systems, the results were t(19998) = 266.84, p < .0001, Cohen’s d = 3.77; for the natural
11-concept system, t(98) = 8.94, p < .0001, Cohen’s d = 1.76; and finally, for the nonnatural 11-concept
systems, we had t(19998) = 273.42, p < .0001, with Cohen’s d = 3.87.

4 Conclusion

Douven and Gärdenfors (2020) hypothesized that what distinguishes natural from nonnatural con-
cepts is that the former, but not the latter, are represented by the cells of an optimally partitioned sim-
ilarity space. They defined optimality in terms of a list of engineering constraints. In this paper, we
focused on the constraint that optimally partitioned similarity spaces result in easily learnable concepts,
a correlation for which empirical evidence was still missing, in contrast to most of the other constraints
on the list. This motivated the study reported in this paper.

Our study implemented computationally two plausible models of concept learning, one proposed
by Gärdenfors, the other closely connected to Nosofsky’s Generalized Context Model. We applied
these models to the learning of color concepts in order to examine whether natural color concepts are
learned more readily than nonnatural ones. The outcomes of the study confirmed this hypothesis for
both employed models, thus lending empirical support to the notion that learnability is a distinctive
characteristic of natural concepts.
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The results were still not entirely positive for Learnability. While learnability appears to be a feature
of naturalness, the learnability of systems of natural conceptsmay, as far as the results fromour study go,
be accounted for already by the fact that these systems satisfy other criteria onDouven andGärdenfors’
(2020) list, in particular, Contrast and Representation. As mentioned, this would not necessarily be
inconsistent with these authors’ proposal, given that they explicitly left open the possibility that their
list contains redundancies.

Our study had some clear limitations. First, it only involves computational models of learning,
which will not fully reflect human learning. For reasons mentioned in Section 2.3, it is not straightfor-
ward to compare the learning of natural concepts with the learning of nonnatural concepts by human
participants, given that the participants will already be familiar with the former but not with the latter.
This is not to say that such experiments are impossible, and we hope that the present results, indicating
a clear connection between learnability and naturalness, will inspire cognitive psychologists to come up
with a paradigm that will allow the connection to be tested in humans in a way that is methodologically
sound. A second limitation concerns the fact that our evidence is restricted to color concepts. In princi-
ple, it is easy to rerun the study using conceptual spaces other than color space. In practice, this is more
difficult, because the number of conceptual spaces that can be downloaded or are otherwise available
for running the kind of simulations we conducted is extremely limited, and we actually know of no
conceptual space that is as well validated as CIELUV and CIELAB space. This situation may change,
however, given that the conceptual spaces framework is an active area of research, and given also that
researchers are now commonly making their data available for others to work with. Once more con-
ceptual spaces are available for experimentation, it will be interesting to see not only whether the link
between learnability and naturalness that we found to exist for color concepts generalizes, but also (if
it does) whether that link can be more generally accounted for in terms of satisfaction of the Contrast
and Representation criteria.9
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