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QUANTITATIVE STABILITY OF THE PUSHFORWARD
OPERATION BY AN OPTIMAL TRANSPORT MAP

GUILLAUME CARLIER, ALEX DELALANDE, AND QUENTIN MÉRIGOT

Abstract. We study the quantitative stability of the mapping that to a
measure associates its pushforward measure by a fixed (non-smooth) optimal
transport map. We exhibit a tight Hölder-behavior for this operation under
minimal assumptions. Our proof essentially relies on a new bound that quanti-
fies the size of the singular sets of a convex and Lipschitz continuous function
on a bounded domain.
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1. Introduction

The optimal transport problem is a two-century old foundational optimization
problem of optimal mass allocation in geometric domains [38]. The theoretical study
of this problem has allowed to define a natural geometry on spaces of probability
measures that offers precious tools for tackling both theoretical and numerical
questions involving probability measures [53, 4, 47, 45]. The main feature of this
geometry is the Wasserstein distance: on the set P2(Rd) of probability measures with
finite second moment over Rd, the (2-)Wasserstein distance between two measures
ρ, µ ∈ P2(Rd), denoted W2(ρ, µ), is defined as the square-root of the value of the
following minimization problem:

min
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥2 dγ(x, y), (1)

where Γ(ρ, µ) denotes the set of transport plans or couplings between ρ and µ,
that is the set of probability measures over Rd × Rd with first marginal ρ and
second marginal µ. Endowed with the Wasserstein distance, the metric space
(P2(Rd),W2) is a geodesic space referred to as the Wasserstein space. In this space,
the (constant-speed) geodesics connecting two measures ρ and µ in P2(Rd) are
given by the paths (((1− t)p1 + tp2)#γ)t∈[0,1] for any γ ∈ Γ(ρ, µ) that minimizes
(1), where p1 : (x, y) 7→ x and p2 : (x, y) 7→ y are the projections onto the first
and second coordinates respectively and where f#ν denotes the image measure
of a measure ν under a map f . Interestingly, the Wasserstein space has found
a physically-relevant pseudo-Riemannian structure, which has been leveraged to
describe some well known evolution PDEs (such as the Fokker-Planck or porous
medium equations) as gradient flows of some energy functionals on the space of
probability distributions [42, 27, 43, 4]. In this formal Riemannian interpretation
(formal because (P2(Rd),W2) is not locally homeomorphic to a Euclidean space or
even a Hilbert space), the geometric tangent cone TρP2(Rd) to P2(Rd) at a measure
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ρ ∈ P2(Rd) can be described as the closure of the set

{(p1, λ(p2 − p1))#γ | λ > 0, γ ∈ P2(Rd × Rd), (p1)#γ = ρ, spt(γ) ⊂ ∂ϕ, ϕ convex}

with respect to an appropriately chosen Riemannian metric (see Chapter 12 of [4]).
In this expression, spt(γ) denotes the support of γ and ∂ϕ denotes the subdifferential
of the (proper and continuous) convex function ϕ : Rd → R ∪ {∞}, that is the set

∂ϕ = {(x, y) ∈ Rd × Rd | ϕ(x) + ϕ∗(y) = ⟨x|y⟩},

where ϕ∗(·) = supz∈Rd⟨z|·⟩ − ϕ(z) corresponds to the convex conjugate or Legendre
transform of ϕ.

1.1. Problem statement. From above, it appears that the directions of the
elements of the tangent cone TρP2(Rd) to P2(Rd) at a probability measure ρ are
prescribed with convex functions. In the spirit of building a Riemannian logarithmic
map, being given a new measure µ ∈ P2(Rd), one may wonder what are the possible
directions ϕ of the elements of TρP2(Rd) that support the Wasserstein geodesics
connecting ρ to µ. These can be recovered from the convex functions ϕ or ψ∗ that
solve the following Kantorovich dual problems, which essentially correspond to the
convex dual problems of (1) (see e.g. Particular Case 5.16 in [53]):

min
ϕ:Rd→R∪{∞}

∫
Rd

ϕdρ+

∫
Rd

ϕ∗dµ = min
ψ:Rd→R∪{∞}

∫
Rd

ψ∗dρ+

∫
Rd

ψdµ. (2)

Conversely, in the spirit of building a Riemannian exponential map, being given
a direction from a convex function ϕ : Rd → R ∪ {∞}, one may wonder what
are the possible t = 1 endpoints of the geodesics starting from ρ and with initial
velocities directed by ϕ, that is of the form (p1, p2−p1)#γ for a coupling γ with first
marginal equal to ρ and with support included in ∂ϕ. Here, the answer is simple
and the corresponding endpoint is the measure (p2)#γ. Note that whenever ϕ is
differentiable ρ-almost-everywhere, there is only one coupling γ with first marginal
equal to ρ and support in ∂ϕ: it is given by the coupling γ = (id,∇ϕ)#ρ and in this
case ∇ϕ corresponds to the optimal transport map from ρ to µ = (∇ϕ)#ρ in the
Brenier sense [7]. In this setting, the exponential map from the base point ρ applied
to the direction ϕ reduces to the pushforward measure (∇ϕ)#ρ.

In this article, we are concerned with the quantitative stability with respect to the
base point of the above-described exponential mapping (or pushforward operation)
in a fixed direction. Namely, we investigate the following problem:

Problem 1.1. Let ϕ : Rd → R ∪ {∞} be a fixed, proper and continuous convex
function. Let ρ, ρ̃ ∈ P2(Rd) and consider γ, γ̃ ∈ P2(Rd × Rd) that are such that
(p1)#γ = ρ, (p1)#γ̃ = ρ̃, spt(γ) ⊂ ∂ϕ and spt(γ̃) ⊂ ∂ϕ. Under what conditions on
ϕ, ρ, ρ̃ and how can one upper bound W2((p2)#γ, (p2)#γ̃) in terms of W2(ρ, ρ̃)?

As mentioned above, whenever the function ϕ is differentiable ρ- and ρ̃-almost-
everywhere in Problem 1.1, the question it raises becomes that of upper bounding
W2((∇ϕ)#ρ, (∇ϕ)#ρ̃) in terms of W2(ρ, ρ̃), which is the question of the quantitative
stability of the pushforward operation by an optimal transport map.

1.2. Motivations. While of a theoretical nature, Problem 1.1 finds its relevance in
several applied contexts. In order to motivate our study, we mention some of these
contexts in what follows.
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1.2.1. Numerical resolution of the Kantorovich dual. Many numerical methods that
aim at solving the optimal transport problem (1) between two measures ρ and µ
in P2(Rd) rely on the dual problems exposed in (2) (see [45, 39] for surveys on
such methods). Focusing for instance on the right-hand side problem in (2), it is
possible to add the constraint

∫
Rd ψdµ = 0 in this problem without altering its value.

The resolution of (1) can thus be reduced to the minimization of the Kantorovich
functional Kρ : ψ 7→

∫
Rd ψ

∗dρ under the constraint
∫
Rd ψdµ = 0. The functional Kρ

being convex, its minimization is amenable to first- and second-order optimization
methods. In these methods, the user must be able to evaluate the gradient of Kρ at
a given ψ. Formally, this gradient reads

∇Kρ(ψ) = −(∇ψ∗)#ρ.

Whenever ρ is absolutely continuous, the numerical computation of such a gradient
can be challenging in dimension d ≥ 3. This happens for instance in the setting
of semi-discrete optimal transport (where in addition the target µ is assumed
to be discrete) that is used to model Euler incompressible equations [20, 24], in
computational geometry [34], optics design [37] or in cosmology [41]. In this case,
the user might instead consider a finitely supported approximation ρ̃ = 1

N

∑
i δxi

of
ρ, and set

µ̃ := − 1

N

∑
i

δyi

as an approximation for ∇Kρ(ψ), where in this definition each yi is chosen as an
element of the subdifferential ∂ψ∗(xi). This measure µ̃ is very easy to compute in
practice (one only needs to compute elements of the subdifferential of ψ∗). This
procedure then raises the question of the quality of the approximation of ∇Kρ(ψ)
offered by µ̃ in terms of the quality of the approximation of ρ given by ρ̃, which is
an instance of Problem 1.1.

1.2.2. Computation of geodesics and barycenters in the Linearized Optimal Trans-
port framework. In [54], the above-described pseudo-Riemannian structure of the
Wasserstein space was leveraged to linearize the optimal transport geometry in
order to perform tractable data analysis tasks on measure-like data, giving birth
to the Linearized Optimal Transport (LOT) framework. In this framework, an
absolutely continuous reference measure ρ ∈ P2(Rd) is chosen and fixed. Because ρ
is absolutely continuous, any continuous convex function ϕ : Rd → R is differentiable
ρ-almost everywhere, so that the tangent bundle TρP2(Rd) to P2(Rd) at ρ can be
regarded (see Chapter 8 of [4]) as the L2(ρ;Rd) closure of

{λ(∇ϕ− id) | λ > 0, ϕ convex}.

Then, the LOT framework maps any new measure µ ∈ P2(Rd) to L2(ρ;Rd) via the
embedding µ 7→ ∇ϕµ−id ∈ L2(ρ;Rd) where ϕµ is any minimizer of the left-hand side
dual problem in (2). This can be seen as sending µ ∈ P2(Rd) into the (linear) tangent
space TρP2(Rd) ⊂ L2(ρ;Rd) via a Riemannian logarithmic map. The advantage of
employing this embedding is to enable the use of all the Hilbertian tools of statistics
and machine learning on datasets of probability measures, somehow consistently
with the Wasserstein geometry. Note that working with this embedding is equivalent
to replacing the Wasserstein distance with the distance

W2,ρ(µ, ν) := ∥∇ϕµ −∇ϕν∥L2(ρ;Rd) .
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Figure 1. Linearized Optimal Transport barycenters, or general-
ized geodesic, between the discrete probability measures µ0, µ1 ∈
P([0, 1]2) (colored pixels indicate the position of support points).
For k ∈ {0, 1}, the optimal transport map ∇ϕk between the
Lebesgue measure ρ on [0, 1]2 and µk is computed using the Python
package pysdot and [28]. Then for N = 702, define 1

N

∑N
i=1 δxi to

be a discrete approximation of ρ on a uniform grid. For t ∈ (0, 1),
the interpolant is defined as µt = 1

N

∑N
i=1 δyti , where each yti is

chosen in ∂((1− t)ϕ0 + tϕ1)(xi).

This distance, with respect to which geodesics are called generalized geodesics in [4],
has been shown to be Hölder-equivalent in some settings to the original Wasserstein
distance W2 in [36, 21], justifying to some extent the successes of the LOT framework
witnessed on tasks of pattern recognition [54, 30, 6, 11], generative modeling [44] or
image processing [29]. A key advantage of the LOT embedding is that its image is
convex, in the sense that any convex combination of embeddings provide a valid new
embedding. More precisely, for a dataset (µi)1≤i≤N of N ≥ 1 probability measures in
P2(Rd) and a set (αi)1≤i≤N of non-negative weights summing to one, the L2(ρ,Rd)-
barycenter

∑N
i=1 αi(∇ϕµi

− id) of the embeddings of each µi is a valid element of
TρP2(Rd) since it reads as the gradient of a convex function minus identity. One can
thus apply the above-described exponential map to this barycenter of embeddings
in order to define the measure

µ̄ :=

(
N∑
i=1

αi∇ϕµi

)
#

ρ.

The measure µ̄ gives a notion of average of the dataset (µi)1≤i≤N with respect to the
weights (αi)1≤i≤N (see Figure 1 for an illustration in the case N = 2 with varying
weights). It may be used in place of the notion of Wasserstein barycenter [1], which
is defined as any minimizer of

min
µ∈P2(Rd)

N∑
i=1

αiW
2
2(µ, µi). (3)

Wasserstein barycenters provide geometrically meaningful notions of averages of
datasets of probability measures and have found many successful applications
[46, 48, 22, 18, 32, 49, 19, 25]. However, the numerical resolution of (3) is often
tedious and working with the proxy µ̄ is often preferable since it essentially requires
solving N optimal transport problems between ρ and each µi. Nonetheless, it also
requires computing the pushforward of ρ by the map

∑N
i=1 αi∇ϕµi

, which can be
difficult in dimension d ≥ 3. In practice, as for the computation of the gradient of
the Kantorovich functional above, the user may approximate µ̄ by first discretizing
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ρ and then pushing forward this discretization by the the map
∑N
i=1 αi∇ϕµi

. The
problem of controlling the bias induced by this process then gives another instance
of Problem 1.1.

1.2.3. Generative modeling with ICNNs. Over the last decade, tools from optimal
transport have made an increasing number of successful incursions in large-scale
machine learning problems. These incursions are in part due to the introduction
in [5] of the Input Convex Neural Networks (ICNNs). These are neural networks
whose architecture constraints them to be convex with respect to their input. Such
networks were shown to be able to approximate arbitrarily well in supremum norm
any convex Lipschitz function on a bounded domain [17]. ICNNs have been used in
the context of generative modeling through optimal transport, where one typically
wants to learn a model for a data probability distribution µ through the observation
of samples from it. The optimal transport approach of this problem generally sees
µ as the pushforward of a chosen simple probability distribution ρ (typically a
Gaussian) by an optimal transport map. This transport map must be learned: in
[50, 35, 31, 8], it is parametrized as the gradient of an ICNN ϕθ parametrized by θ,
and the loss functions used in these works to find the right parameter are essentially
proxies for the loss

L(θ) = W2((∇ϕθ)#ρ, µ).
In practice however, neither the source nor target distributions ρ and µ are directly
usable or known, and the user has to deal with statistical approximations ρ̂ and µ̂
instead. This leads to the minimization of the empirical loss function

L̂(θ) = W2((∇ϕθ)#ρ̂, µ̂)
in place of the original loss function L. In order to derive convergence rates for this
empirical risk minimization problem, one may want to upper bound |L̂(θ)−L(θ)| in
terms of W2(ρ̂, ρ) and W2(µ̂, µ). This reduces to yet another instance of Problem 1.1
after a use of the triangle inequality.

1.3. Positive and negative results. We expose here a positive result for Prob-
lem 1.1 in the case where ϕ is assumed to be regular. We also expose negative
results in the case where no assumptions are made on ϕ, ρ and ρ̃, justifying this way
the necessity for minimal assumptions.

1.3.1. A positive result in the regular case. In the case where the convex function ϕ
of Problem 1.1 is of class C1,α for some α > 0, the answer to the question raised in
this problem is trivial:

Proposition. Let α ∈ (0, 1] and ϕ ∈ C1,α(Rd) convex. Then for any ρ, ρ̃ ∈ P2(Rd),
W2((∇ϕ)#ρ, (∇ϕ)#ρ̃) ≤ ∥∇ϕ∥C0,α W2(ρ, ρ̃)

α.

This follows from Jensen’s inequality and the fact that for any γ ∈ Γ(ρ, ρ̃),
(∇ϕ,∇ϕ)#γ is a valid coupling between (∇ϕ)#ρ and (∇ϕ)#ρ̃. Even though this
proposition brings an answer to Problem 1.1, its outreach is limited. Indeed, when
ϕ is an optimal transport potential (i.e. a solution to a dual problem of the type
of (2)), getting regularity estimates for ϕ requires in general to make strong regular-
ity assumptions on the involved measures in order to be able to apply Caffarelli’s
regularity theory results [9, 10], assumptions that are rarely satisfied in applications
where at least one of the considered measures is often discrete. For instance, when
ϕ is the dual solution of a semi-discrete optimal transport problem (with absolutely
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continuous source and discrete target), ϕ corresponds to a maximum of affine func-
tions and as such it has many singularities. These singularities are actually often
desirable, as for instance in the context of generative modeling of a data probability
distribution µ with disconnected support as the pushforward of a Gaussian ρ by the
gradient of a convex function [35].

1.3.2. Negative results. Whenever ϕ has singularities, it is very easy to build measures
ρ, ρ̃ and couplings γ, γ̃ in Problem 1.1 that are such that it is not possible to control
W2((p2)#γ, (p2)#γ̃) in terms of W2(ρ, ρ̃). Consider for instance in dimension d = 1
the case where ϕ = |·| is the absolute value. Then ϕ has a singularity at 0:

∂ϕ(0) = [−1, 1].

A first negative result is available when both ρ and ρ̃ are allowed to be discrete:

Example 1.2. Let ϕ = |·| on R. Let ρ = ρ̃ = δ0 be the the Dirac mass at zero
and let γ = δ(0,1) and γ̃ = δ(0,−1). Then (p1)#γ = ρ, (p1)#γ̃ = ρ̃, spt(γ) ⊂ ∂ϕ and
spt(γ̃) ⊂ ∂ϕ. However W2((p2)#γ, (p2)#γ̃) = 2 while W2(ρ, ρ̃) = 0.

This example relies on placing both ρ and ρ̃ at singularities of the convex function ϕ.
The set of singular points (i.e. points of non-differentiability) of a convex function
defined on R being at most countable, one can wonder what happens if we constraint
one of the source measures in Problem 1.1 to be absolutely continuous with respect
to the Lebesgue measure. Under such a constraint, it is still possible to build source
measures that are arbitrarily close from each other but with pushforwards that are
at a fixed non-zero distance from each other:

Example 1.3. Let ϕ = |·| on R and let ε > 0. Let ρ = δ0 and let ρε = 1
ελ|[− ε

2 ,
ε
2 ]

be the rescaled Lebesgue measure restricted to [− ε
2 ,

ε
2 ]. Let γ = δ(0,1) and γε =

(id,∇ϕ)#ρε. Then (p1)#γ = ρ, (p1)#γ
ε = ρε, spt(γ) ⊂ ∂ϕ and spt(γε) ⊂ ∂ϕ.

However W2((p2)#γ, (p2)#γ
ε) =

√
2 while W2(ρ, ρ

ε) = ε/2
√
3.

Example 1.3 relies on an absolutely continuous source measure ρε whose density
is allowed to explode so as to recover in the limit ε → 0 the pathological case of
Example 1.2 with only discrete sources. In order to avoid this problem, we will
make from now on the following minimal assumption in Problem 1.1: one of the
probability measures, say ρ, is absolutely continuous with respect to the Lebesgue
measure and its density is upper bounded by some finite constant Mρ > 0. Under
this assumption, it is still possible to build an example (not as bad as Examples
1.2 and 1.3) showing that one cannot expect better than a Hölder-behavior for the
pushforward operation:

Example 1.4. (See Figure 2 for an illustration.) Let ϕ = |·| on R and let ε ∈ (0, 12 ).
Let ρ = λ[− 1

2 ,
1
2 ]

and let ρε = λ|[− 1
2 ,−

ε
2 ]∪[ ε2 ,

1
2 ]

+ εδ0. Let γ = (id,∇ϕ)#ρ and
let γε =

∫
[− 1

2 ,−
ε
2 ]∪[ ε2 ,

1
2 ]
δx ⊗ δ∇ϕ(x)dx + εδ(0,1). Then (p1)#γ = ρ, (p1)#γε = ρε,

spt(γ) ⊂ ∂ϕ and spt(γε) ⊂ ∂ϕ. Moreover, W2((p2)#γ, (p2)#γ
ε) = (2ε)1/2 while

W2(ρ, ρ
ε) = (ε3/12)1/2, so that W2((p2)#γ, (p2)#γ

ε) ∼ W2(ρ, ρ
ε)1/3.

1.4. Contributions and outline. In this article, we limit ourselves to a compact
setting and work with probability measures supported in a ball Ω = B(0, R) ⊂ Rd
centered at zero and of radius R > 0. In this context, we assume that the convex
function ϕ of Problem 1.1 is an R-Lipschitz continuous convex function in order to
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−1
2

1
2

−ε
2

ε
2

ϕ

ρ = λ|[−1
2 ,

1
2 ]

−1 1

(p2)#γ = 1
2(δ−1 + δ1)

ρε = λ|[−1
2 ,−

ε
2 ]∪[

ε
2 ,

1
2 ]
+ εδ0

(p2)#γ
ε = 1−ε

2 δ−1 +
1+ε
2 δ1

Figure 2. Illustration of Example 1.4.

ensure that the pushforward measures (p2)#γ and (p2)#γ̃ of this problem also live
in Ω. We emphasize on the fact that we make no regularity assumption on ∇ϕ.

Our main result shows that, perhaps surprisingly, the situation described in
Example 1.4 is as bad as it could get, and the Hölder-behavior being observed in
this example is a general phenomenon:

Theorem (Theorem 3.2). Let R > 0 and let Ω = B(0, R) ⊂ Rd. Let ϕ : Ω → R be
an R-Lipschitz continuous convex function. Let ρ, ρ̃ ∈ P(Ω) and assume that ρ is
absolutely continuous with density upped bounded by a constant Mρ ∈ (0,∞). Then
for any γ̃ ∈ P(Ω× Ω) such that (p1)#γ̃ = ρ̃ and spt(γ̃) ⊂ ∂ϕ,

W2((∇ϕ)#ρ, (p2)#γ̃) ≲ W2(ρ, ρ̃)
1/3,

where ≲ hides an explicit multiplicative constant that depends on d, R and Mρ.

We refer to Theorem 3.2 in Section 3 for a more precise statement, with in
particular an explicit expression for the hidden constant. Note also that the statement
of Theorem 3.2 is not limited to the context of quadratic optimal transport (i.e.
optimal transport with respect to the cost c(x, y) = ∥x− y∥2) but deals with the
more general case of pushforwards by transport maps that are optimal with respect
to the p-cost c(x, y) = ∥x− y∥p for p ≥ 2 ; and that the bounds are expressed in
Wq and Wr distances (with q and r parameters to be chosen) in order to ensure the
highest generality.

We are now in place of sketching the proof of our main result and the outline
of the rest of the article. In Examples 1.2, 1.3 and 1.4, we have seen that the
instabilities in the pushforward operation by the gradient of a convex Lipschitz
function arise from the singularities of this function. Our main technical result,
presented in Theorem 2.1 of Section 2 and which might be of independent interest,
shows that on a bounded domain the number of singularities of such a function can
be explicitly bounded. More precisely, for ϕ a convex Lipschitz function defined on
Rd, we present in Theorem 2.1 a tight upper bound on the covering numbers of the
singular sets

Ση,α = {x ∈ Ω | diam(∂ϕ(B(x, η))) ≥ α},
where α > 0 and η > 0. In Remark 2.1, we note that the bound of Theorem 2.1 may
be seen as a refinement of a well-known result of Alberti, Ambrosio and Cannarsa
[2], who derived upper bounds on the dimension of the singular sets of semi-convex
functions using measure-theoretic arguments, falling into the long line of works that
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studied the structure of the singularities of solutions to Hamilton-Jacobi equations
[51, 52, 26, 13, 14, 40, 3] – see [12] for a survey. As an immediate corollary to
Theorem 2.1 – presented in Corollary 2.2 of Section 2 – we deduce that the function
ϕ from this theorem satisfies the following integral estimate for any η > 0:∫

Ω

diam(∂ϕ(B(x, η)))2dx ≲ η. (4)

In Section 3, after recalling some facts on the optimal transport problem with a
general ground cost, we state and prove the main result Theorem 3.2 that brings
a tight answer to Problem 1.1. This result essentially relies on (4) and a Markov
bound. Let us sketch here the main idea: denote S : Ω → Ω the optimal transport
map from ρ to ρ̃ and for η > 0, introduce the set Ωη = {x ∈ Ω | ∥S(x)− x∥ ≤ η}.
Then, one has that W2(ρ, ρ̃) = ∥S − id∥L2(ρ,Rd), so that Markov’s inequality entails

ρ(Ω \ Ωη) ≲
W2

2(ρ, ρ̃)

η2
. (5)

Bounds (4) and (5) allow to conclude: assuming here for simplicity that ϕ is
differentiable ρ̃-almost-everywhere, we have for any η > 0

W2
2((∇ϕ)#ρ, (∇ϕ)#ρ̃) ≤

∫
Ωη

∥∇ϕ−∇ϕ ◦ S∥2 dρ+
∫
Ω\Ωη

∥∇ϕ−∇ϕ ◦ S∥2 dρ

≤Mρ

∫
Ωη

diam(∂ϕ(B(x, η)))2dx+

∫
Ω\Ωη

(2R)2dρ

≲ η +
W2

2(ρ, ρ̃)

η2
.

Setting η = W
2/3
2 (ρ, ρ̃) allows to reach the conclusion of Theorem 3.2.

2. Covering number of near-singularity sets of convex functions

The following result allows to quantify the size of the singular sets (i.e. points
of non-differentiability) of a convex Lipschitz function on a bounded domain. We
bound here the covering numbers of the sets of points x in the domain for which there
exist two nearby points x±, i.e. such that ∥x− x±∥ ≤ η, where the gradients of the
convex function ϕ are far from each other, i.e. such that ∥∇ϕ(x+)−∇ϕ(x−)∥ ≥ α.
In this statement, N (K, η) denotes the minimum number of balls of radius η > 0
that are needed to cover a compact set K ⊂ Rd.

Theorem 2.1. Let ϕ : Rd → R be a convex and Lipschitz continuous function.
Denote

Ση,α = {x ∈ Rd | diam(∂ϕ(B(x, η)) ≥ α},

Σα = {x ∈ Rd | diam(∂ϕ(x)) ≥ α}.
Then, for all R > 0, α and η > 0, we have

N (Ση,α ∩B(0, R), 8η) ≤ cd,R,η
Lip(ϕ)

αηd−1
,

with cd,R,η = 48d2(R+ 4η)d−1. In particular, there exists a dimensional constant cd
such that

Hd−1(Σα ∩B(0, R)) ≤ cd
Lip(ϕ)Rd−1

α
.
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As a corollary to this result, we get the following estimate that will prove useful
in Section 3 for the study of the stability of the pushforward operation by an optimal
transport map.

Corollary 2.2. Let ϕ : Rd → R be a convex and Lipschitz continuous function.
Then for any η,R > 0 and q > 1,∫

B(0,R)

diam(∂ϕ(B(x, η)))qdx ≤ cd,q,R,ηLip(ϕ)
qη,

with cd,q,R,η = 48d2βd2
3d+q−1 q

q−1 (R+ 4η)d−1, where βd denotes the volume of the
unit ball of Rd.

Proof. From Theorem 2.1, we directly get∫
B(0,R)

diam(∂ϕ(B(x, η)))qdx =

∫ ∞

0

|{x ∈ B(0, R) | diam(∂ϕ(B(x, η)))q ≥ t}|dt

≤
∫ (2Lip(ϕ))q

0

48d2(R+ 4η)d−1 Lip(ϕ)

t1/qηd−1
βd(8η)

ddt

= cd,q,R,ηLip(ϕ)
qη. □

Remark 2.1 (Singular sets of a convex Lipschitz function). For k ≥ 1, the k-singular
set Σk of ϕ : Rd → R corresponds to the set of points x in Rd such that the Hausdorff
dimension of ∂ϕ(x) is greater than or equal to k. The fact that the k-singular set of a
convex Lipschitz function ϕ : Rd → R is countably Hd−k-rectifiable was established
by Alberti, Ambrosio and Cannarsa in [2]. They also established the following
estimate on the size of Σk:∫

Σk∩B(0,R)

Hk(∂ϕ(x))dHd−k(x) ≤ cd (Lip(ϕ) + 2R)
d
,

where cd is a dimensional constant. With the notation of Theorem 2.1, taking k = 1
in this estimate and using Markov’s inequality allows to get the bound

Hd−1(Σα ∩B(0, R)) ≤ cd
(Lip(ϕ) + 2R)

d

α
,

that is similar in spirit to the bound we present in Theorem 2.1. However, the
approach in [2] does not give an estimate on the covering numbers of Ση,α, which
may prove necessary in specific contexts (see for instance the proof of Theorem 3.2
in the next section that relies on Corollary 2.2). In this sense, the quantitative
estimate of Theorem 2.1 can be seen as a refinement of the estimate from [2] on
the size of the set of non-differentiability points of a convex Lipschitz function on a
bounded domain.

Remark 2.2 (Tightness). The bounds presented in Theorem 2.1 are tight. Indeed,
in dimension d = 1, let N ∈ N∗ and L,R > 0 and define on R the function

ξ : x 7→ max
i=0,...,N

(
2i

N
− 1

)
Lx+

2LR

N(N + 1)
i(N − i).

Then ξ is convex and L-Lipschitz continuous (see Figure 3 for an illustration of
the graph of ξ when N = 4). Moreover, denoting xi =

(
2i
N+1 − 1

)
R for all i in
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ξ

x1

|∂ξ(x1)| = 2L
N

x2−R Rx3 x4

Figure 3. Graph of ξ for N = 4.

{1, . . . , N}, this function satisfies for all such i

∂ξ(xi) =

[(
2i

N
− 1

)
L,

(
2(i+ 1)

N
− 1

)
L

]
,

and ξ is differentiable everywhere else in R \ {xi}{1≤i≤N}. In particular, setting
α = 2L

N , one can observe that for η > 0,

Ση,α = {x ∈ R | diam(∂ξ(B(x, η)) ≥ α} =
⋃

1≤i≤N

[xi − η;xi + η],

and Σα = {x ∈ R | diam(∂ξ(x)) ≥ α} = {xi | 1 ≤ i ≤ N},

so that for η ∈ (0, R
8(N+1) ),

H0(Σα ∩ [−R,R]) = N (Ση,α ∩ [−R,R], 8η) = N =
2L

α
,

which shows the tightness of the bounds of Theorem 2.1 in dimension d = 1. In
dimension d ≥ 1, one may generalize this example by defining

ϕ : x 7→ ξ(x1),

where x1 is the projection of x ∈ Rd on its first coordinate. Then, with the notations
of Theorem 2.1, there are dimensional constants cd, c̃d such that the convex and
L-Lipschitz continuous function ϕ verifies for α = 2L

N and η ∈ (0, R
8(N+1) ):

N (Ση,α ∩B(0, R), 8η) ≥ cd
Rd−1

ηd−1

2L

α

Hd−1(Σα ∩B(0, R)) ≥ c̃dR
d−1 2L

α
.

These last inequalities also show the tightness of the bounds of Theorem 2.1 with
respect to R and Lip(ϕ). In comparison to the estimate obtained on the (d − 1)-
Hausdorff measure of Σα ∩B(0, R) deduced from [2] in Remark 2.1, this tightness
corresponds to yet another refinement of the estimates from [2].

The proof of Theorem 2.1 uses the following lemma, similar to [15, Lemma 3.2],
and whose proof is postponed after the proof of Theorem 2.1.

Lemma 2.3. Let ϕ be a convex function over Rd. Then for any x ∈ Rd and η > 0,

diam(∂ϕ(B(x, η))) ≤ 12

βdηd
∥∇ϕ∥L1(B(x,4η)) ,

where βd denotes the volume of the unit ball of Rd.

With Lemma 2.3 in hand, we are now ready to prove Theorem 2.1.
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Proof of Theorem 2.1. Let Σ = Ση,α, and let Z ⊆ Σ be a maximal ε-packing of Σ
with ε = 4η, i.e. a finite subset of Σ satisfying ∀y ̸= z ∈ Z, B(y, ε) ∩ B(z, ε) = ∅
and which is maximal with respect to the inclusion in the class of subsets of Σ
satisfying this assumption. We denote by N the cardinal number of Z. For any
x ∈ Z, Lemma 2.3 gives us for any c ∈ Rd

α ≤ diam (∂ϕ(B(x, η))) ≤ 12

βdηd
∥∇ϕ− c∥L1(B(x,4η)) . (6)

Choosing c = 1
|B(x,4η)|

∫
B(x,4η)

∇ϕ(u)du, the Poincaré-Wirtinger inequality then
ensures

∥∇ϕ− c∥L1(B(x,4η)) ≤ 4η

∫
B(x,4η)

∥∥D2ϕ(u)
∥∥
1,1

du.

Using that for any positive semi-definite d × d matrix M , ∥M∥1,1 ≤ dtr(M), we
then have

∥∇ϕ− c∥L1(B(x,4η)) ≤ 4ηd

∫
B(x,4η)

∆ϕ(u)du,

where ∆ stands for the Laplace operator. Injecting this last bound into (6) yields

α ≤ 48d

βd

1

ηd−1

∫
B(x,4η)

∆ϕ(u)du,

Summing the last bound over x ∈ Z and using that the balls of radius 4η ≤ ε
centered at points of Z do not intersect, we get

αN ≤ 48d

βd

1

ηd−1

∑
x∈Z

∫
B(x,4η)

∆ϕ(u)du

≤ 48d

βd

1

ηd−1

∫
B(0,R+4η)

∆ϕ(u)du

≤ 48d

βd
ωd−1(R+ 4η)d−1Lip(ϕ)

ηd−1

where we used an integration by part to get the last inequality and where ωd−1 = dβd
denotes the surface area of the (d− 1)-unit sphere. Finally, we can easily check that
Z is a 2ε-covering of Σα,η, implying the first bound of the statement.

To prove the second inequality, first note that Σα ⊆ Σα,η, so that for any η ≤ R
one has

N (Σα ∩B(0, R), η) ≤ cd
Lip(ϕ)Rd−1

αηd−1
.

We conclude using Hd−1(X) ≤ cd lim infη→0 η
d−1N (X, η), where cd is a dimensional

constant. □

We finally prove Lemma 2.3.

Proof of Lemma 2.3. Let x ∈ Rd and η > 0. One has by definition:

diam(∂ϕ(B(x, η))) = sup
y,y′∈B(x,η)

sup
g∈∂ϕ(y),g′∈∂ϕ(y′)

∥g − g′∥

≤ sup
y,y′∈B(x,η)

sup
g∈∂ϕ(y),g′∈∂ϕ(y′)

∥g∥+ ∥g′∥

= 2 sup
y∈B(x,η)

sup
g∈∂ϕ(y)

∥g∥

= 2 ∥∂ϕ∥L∞(B(x,η)) .
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But for any y, y′ ∈ Rd and g ∈ ∂ϕ(y), the convexity of ϕ entails

⟨g|y′ − y⟩ ≤ |ϕ(y′)− ϕ(y)| .

Therefore, choosing y ∈ B(x, η) and g ∈ ∂ϕ(y) such that ∥∂ϕ∥L∞(B(x,η)) = ∥g∥, one
has for y′ = y + η g

∥g∥ ∈ B(y, η) ⊂ B(x, 2η) the following bound:

η ∥g∥ ≤ |ϕ(y′)− ϕ(y)| ≤ oscB(x,2η)(ϕ),

where oscK(f) = supu,v∈K |f(u)− f(v)|. We thus have shown

diam(∂ϕ(B(x, η))) ≤ 2

η
oscB(x,2η)(ϕ). (7)

We conclude exactly as in the proof of Lemma 3.2 of [15], that we report here
only for completeness: let y0 ∈ argminB(x,2η) ϕ, y1 ∈ argmaxB(x,2η) ϕ, g1 ∈ ∂ϕ(y1).
Then by convexity of ϕ, for any y ∈ Rd and g ∈ ∂ϕ(y) one has

ϕ(y1) + ⟨g1|y − y1⟩ ≤ ϕ(y) ≤ ϕ(y0) + ⟨g|y − y0⟩.

It follows that

∥g∥ ≥
oscB(x,2η)(ϕ) + ⟨g1|y − y1⟩

∥y − y0∥
.

Introducing Wη(y1, g1) = {y ∈ B(y1, 2η)|⟨g1|y − y1⟩ ≥ 0} ⊂ B(x, 4η), one then has

∥∇ϕ∥L1(B(x,4η)) ≥
∫
Wη(y1,g1)

∥∇ϕ∥ dy

≥
∫
Wη(y1,g1)

oscB(x,2η)(ϕ)

∥y − y0∥
dy

≥ oscB(x,2η)(ϕ)

∫
Wη(y1,g1)

1

∥y − y1∥+ ∥y1 − y0∥
dy

≥
oscB(x,2η)(ϕ)

6η

∫
B(y1+η

g1
∥g1∥ ,r)

dy

= βd
ηd−1

6
oscB(x,2η)(ϕ),

where βd denotes the volume of the unit ball of Rd and where we used the fact that
B(y1 + η g1

∥g1∥ , η) ⊂Wη(y1, g1). Plugging this last bound into (7) finally yields

diam(∂ϕ(B(x, η))) ≤ 12

ωdηd
∥∇ϕ∥L1(B(x,4η)) . □

3. Stability of the pushforward by an optimal transport map

3.1. Optimal transportation problem. We start this section by recalling some
facts about the optimal transport problem with a general ground cost and discuss
the existence and properties of optimal transport maps.
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3.1.1. Primal and dual formulations. Let Ω = B(0, R) be the open ball of Rd
centered at zero and of radius R > 0. For ρ, µ ∈ P(Ω) two probability measures
supported over Ω, Kantorovich’s formulation of the optimal transport problem
between ρ and µ with respect to a continuous cost function c : Rd × Rd → R
corresponds to the following minimization problem:

inf
Γ(ρ,µ)

∫
Ω×Ω

c(x, y)dγ(x, y). (8)

In this problem, the optimization is over the set Γ(ρ, µ) of couplings (or transport
plans) between ρ and µ, i.e. the set of probability measures over Ω× Ω with first
marginal ρ and second marginal µ. It is well-known (see e.g. Chapter 1 of [47]) that
problem (8) always admits a minimizer (possibly non-unique) and that it enjoys the
following dual formulation, holding with strong-duality:

sup
φ:Ω→R

∫
Ω

φdρ+

∫
Ω

φcdµ, (9)

where φc(·) = infx∈Ω c(x, ·) − φ(x) corresponds to the c-transform of φ. In turn,
problem (9) always admits a maximizer φ (non-unique), which is referred to
as a Kantorovich potential and which must verify (φc)c̄ = φ, where ψc̄(·) =
infy∈Rd c(·, y)− ψ(y) is a c̄-transform.

3.1.2. Wasserstein distances. Whenever the cost function corresponds to the p-cost
c(x, y) = ξp(x− y) where ξp(z) = ∥z∥p for some p ≥ 1, the p-th root of the value of
problem (8) defines the p-Wasserstein distance between the probability measures
ρ and µ, denoted Wp(ρ, µ). Wasserstein distances come with strong geometrical
and physical interpretations that have made their success in many theoretical and
applied contexts, see e.g. [53, 47, 45] for references.

When p ≥ 2, the p-cost satisfies some immediate but strong regularity properties
that we will exploit. In the following statement (whose proof can be found in the
appendix), f is said λ-concave with λ ∈ R if f + λ

2 ∥·∥2 is a concave function.

Lemma 3.1 (Properties of p-cost). Let p ≥ 2. On Ω = B(0, R), the mapping
z 7→ ξp(z) = ∥z∥p is strictly convex, of class C2, (pRp−1)-Lipschitz continuous and
(−p(p − 1)Rp−2)-concave. The mapping z 7→ (∇ξp)−1(z) is well-defined: for any
z ∈ Rd \ {0},

(∇ξp)−1(z) =
1

p
1

p−1 ∥z∥
p−2
p−1

z,

and (∇ξp)−1(0) = 0. In particular, (∇ξp)−1 is 1
p−1 -Hölder continuous:

∀x, y ∈ Ω,
∥∥(∇ξp)−1(y)− (∇ξp)−1(x)

∥∥ ≤ 3

p
1

p−1

∥y − x∥
1

p−1 .

3.1.3. Optimal transport maps. By duality, one can observe that any γ ∈ Γ(ρ, µ)
and φ : Ω → R are respective solutions of problems (8) and (9) if and only if

spt(γ) ⊂ ∂cφ := {(x, y) | φ(x) + φc(y) = c(x, y)}, (10)

where spt(γ) denotes the support of γ. Incidentally, this observation allows to
characterize cases of uniqueness of the solutions to problem (8) depending on the
choice of cost function c and the assumptions made on the involved measures ρ and
µ. Choose for instance the p-cost c = ξp with p ≥ 2 (see Section 1.3 of [47] for more
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general costs). Lemma 3.1 ensures that ξp is Lipschitz continuous and λ-concave
with some explicit constants. These regularity properties are transmitted, with
the same constants, to any Kantorovich potential φ : Ω → R solution to (9). This
follows from the fact that any such φ corresponds to the c̄-transform of the function
φc. In turn, the Lipschitz behavior of ξp and φ allows to ensure their differentiability
almost-everywhere using Rademacher’s theorem. Consider now an optimal transport
plan γ minimizer of (8) and a Kantorovich potential φ maximizer of (9). The
primal-dual relationship (10) ensures that for any (x0, y0) ∈ spt(γ), the function
x 7→ ξp(x − y0) − φ(x) is minimized in x0. Thus, almost-every (x0, y0) ∈ spt(γ)
satisfies the optimality condition ∇ξp(x0 − y0)−∇φ(x0) = 0, which leads to

y0 = T (x0) := x0 − (∇ξp)−1(∇φ(x0)). (11)

The mapping T : Ω → Ω is well defined almost-everywhere. These considerations
show that if ρ is absolutely continuous with respect to the Lebesgue measure, γ is
induced by the map T defined in (11), i.e. γ = (id, T )#ρ. Because the choices of γ
and φ were not made depending on each other, these ideas also show the uniqueness
of γ and of ∇φ. The map T is referred to as the optimal transport map with respect
to the ground cost c = ξp in the transport between ρ and µ.

3.2. Stability estimate for the pushforward operation. We now state our
main result, that brings a tight answer to Problem 1.1:

Theorem 3.2. Let p ≥ 2 and consider the p-cost c(x, y) = ξp(x− y) = ∥x− y∥p.
Let ρ, ρ̃ ∈ P(Ω) where Ω = B(0, R) with R > 0. Assume that ρ is absolutely
continuous with density bounded from above by Mρ ∈ (0,+∞). Let φ ∈ C(Ω)
satisfying φ = (φc)c̄. Let γ̃ ∈ P(Ω× Ω) be such that (p1)#γ̃ = ρ̃ and assume that
spt(γ̃) ⊂ ∂cφ. Introduce the optimal transport map Tφ : Ω → Ω which satisfies for
almost-every x ∈ Ω,

Tφ(x) = x− (∇ξp)−1(∇φ(x)).
Then, for any q ∈ (p− 1,∞) and r ∈ (1,∞),

Wq((Tφ)#ρ, (p2)#γ̃) ≤ cd,q,p,R,MρWr(ρ, ρ̃)
r

q(r+1) ,

where cd,q,p,R,Mρ
= 28(d+1)p3

(
q

q−p+1

)1/q
d2(1 + βd)(1 +Mρ)(1 +R)2+p+d, with βd

denoting the volume of the unit ball of Rd. It also holds, with the same constant,

Wq((Tφ)#ρ, (p2)#γ̃) ≤ cd,q,p,R,Mρ
W∞(ρ, ρ̃)

1
q .

Remark 3.1 (Case of φ ∈ C1). Whenever φ is differentiable ρ̃-almost-everywhere,
Theorem 3.2 ensures for all q > p− 1 and r > 1 the following stability result for the
pushforward operation by Tφ:

Wq((Tφ)#ρ, (Tφ)#ρ̃) ≤ cd,q,p,R,Mρ
Wr(ρ, ρ̃)

r
q(r+1) .

Remark 3.2 (Case of φ ∈ C1,α). If the potential φ was regular in the previous
proposition, e.g. φ ∈ C1,α(Ω), one would trivially get an estimate of the form

Wq((Tφ)#ρ, (Tφ)#ρ̃) ≤ CWr(ρ, ρ̃)
α

p−1 ,

relying on Lemma 3.1 and for any q, r ≥ 1 that are such that r ≥ αq
p−1 . However, as

noticed in the introduction, even for p = 2, getting regularity estimates for optimal
transport potentials requires to make strong regularity assumptions on the involved
measures which are rarely satisfied in applications. When p ̸= 2, the situation is
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even worse since the cost fails to satisfy the so-called Ma-Trudinger-Wang condition
which, as shown in Theorem 3.1 in [33], is in fact necessary for the C1 regularity of
optimal potentials .

Remark 3.3 (Tightness of exponents). The estimate of Theorem 3.2 is tight in terms
of exponents. This follows from the following generalization of Example 1.4 (Figure 2).
In dimension d = 1, consider on Ω = [−1, 1] the probability measures ρ = λ[− 1

2 ,
1
2 ]

and ρε = λ[− 1
2 ,−

ε
2 ]∪[ ε2 ,

1
2 ]
+εδ0 where ε ∈ (0, 12 ) and λI denotes the Lebesgue measure

restricted to a set I. For a given p ≥ 2, define on Ω the potential φ : x 7→ (1− |x|)p.
This potential satisfies φ = (φc)c̄ where c is the p-cost. Introduce Tφ the associated
optimal transport map, which satisfies Tφ(x) = sign(x), and γε ∈ P(Ω× Ω) defined
with γε =

∫
[− 1

2 ,−
ε
2 ]∪[ ε2 ,

1
2 ]
δx ⊗ δTφ(x)dx+ εδ(0,1). Then (p1)#γ

ε = ρε, spt(γε) ⊂ ∂cφ.
One then has (Tφ)#ρ = 1

2 (δ−1 + δ+1) and (p2)#γ
ε = 1−ε

2 δ−1 + 1+ε
2 δ+1. Thus

for any q ≥ 1, Wq((Tφ)#ρ, (p2)#γ
ε) ∼ ε1/q, while for any r ≥ 1 one easily has

Wr(ρ, ρ
ε) ∼ ε

r+1
r , that is

Wq((Tφ)#ρ, (p2)#γ
ε) ∼ Wr(ρ, ρ

ε)
r

q(r+1) .

Remark 3.4 (Comparison with stochastic approximations). The tight estimates
of Theorem 3.2 tend to indicate that, in dimension d ≥ 2, the stochastic approxi-
mations of the measure (Tφ)#ρ from this theorem converge more rapidly than the
deterministic approximations built from ρ. Indeed, given a budget of N ≥ 1 points,
one can build an approximation ρ̃N ∈ P(Ω) of ρ ∈ P(Ω) supported on a grid of N
points and that satisfies

W∞(ρ, ρ̃N ) ≲ N−1/d.

The bound in Theorem 3.2 then ensures formally for any q ≥ p− 1:

Wq
q((Tφ)#ρ, (Tφ)#ρ̃N ) ≲ N−1/d.

Meanwhile, if one samples N points (xi)1≤i≤N from ρ and denotes ρ̂N = 1
N

∑N
i=1 δxi

the corresponding empirical measure, Theorem 1 of [23] ensures:

EWq
q((Tφ)#ρ, (Tφ)#ρ̂N ) ≲


N−1/2 if d < 2q,
N−1/2 log(1 +N) if d = 2q,
N−q/d else.

In particular, except in dimension one, the stochastic approximation (Tφ)#ρ̂N
converges faster (in expectation) towards (Tφ)#ρ than its deterministic counterpart
(Tφ)#ρ̃N .

The proof of Theorem 3.2 relies on the following lemma, that is a direct conse-
quence of Lemma 3.1 and whose proof is deferred after the proof of Theorem 3.2.

Lemma 3.3. With the notations of Theorem 3.2, the function ϕ : x 7→ p(p −
1)Rp−2 ∥x∥2

2 − φ(x) is convex and p2Rp−1-Lipschitz continuous on Ω. This function
can be extended to a convex and p2Rp−1-Lipschitz continuous function defined on
Rd. Moreover, for any x ∈ Ω and η > 0,

diam(∂cφ(B(x, η) ∩ Ω)) ≤ 8p(1 +R
p−2
p−1 )

(
η

1
p−1 + diam(∂ϕ(B(x, η)))

1
p−1

)
.

We are now ready to prove Theorem 3.2.
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Proof of Theorem 3.2. In this proof, we omit for clarity the multiplicative constants
that depend on d, q, p, R or Mρ and use ≲ instead of ≤ for inequalities involving such
constants. A close look at this proof allows to recover the multiplicative constant of
the statement. Let us assume for now that r ∈ (1,∞) ∪ {∞}. We will deal with
each of the distinct cases r = ∞ and r <∞ afterwards.

We first disintegrate γ̃ with respect to ρ̃, i.e. we let γ̃ =
∫
δx ⊗ γ̃xdρ̃, where

x 7→ γ̃x is a measurable map from Ω to P(Ω). By assumption, the support of γ̃ is
included in ∂cφ. This implies that for any x in Ω, the support of γ̃x is included
in ∂cφ(x) = {y ∈ Ω | φ(x) + φc(y) = c(x, y)}. We introduce S : Rd → Rd an
optimal transport map from ρ to ρ̃ for the r-cost1 and we consider the measure
γ =

∫
δx ⊗ γ̃S(x)dρ(x). This measure γ is a coupling between ρ and (p2)#γ̃,

which implies that (Tφ, id)#γ is a coupling between (Tφ)#ρ and (p2)#γ̃. These
constructions may be summarized by the following diagram.

ρ ρ̃

(Tφ)#ρ p2#γ̃

S

Tφ

γ
γ̃

(Tφ,id)#γ

We therefore have the bound:

Wq
q((Tφ)#ρ, (p2)#γ̃) ≤

∫
Ω×Ω

∥Tφ(x)− y∥q dγ(x, y)

=

∫
Ω×Ω

∥Tφ(x)− y∥q dγ̃S(x)(y)dρ(x)

=

∫
x∈Ω

∫
y∈∂cφ(S(x))

∥Tφ(x)− y∥q dγ̃S(x)(y)dρ(x), (12)

where we used that spt(γ̃S(x)) ⊆ ∂cφ(S(x)) to get the last line. For a given
η ∈ (0, 2R+ 1], we will upper bound the right-hand side by splitting the integral on
Ωη and Ωcη, where

Ωη = {x ∈ spt(ρ)| ∥S(x)− x∥ ≤ η} , Ωcη = spt(ρ) \ Ωη.

Upper bound on Ωη. By definition, any point x in Ωη satisfies ∥S(x)− x∥ ≤ η,
so that S(x) belongs to the ball B(x, η) intersected with Ω. Then for any such x,
∂cφ(S(x)) ⊂ ∂cφ(B(x, η) ∩ Ω). Therefore for any g ∈ ∂cφ(x) and y ∈ ∂cφ(S(x)),
one has

∥g − y∥ ≤ diam (∂cφ(B(x, η) ∩ Ω)) ,

so that, recalling that Tφ(x) ∈ ∂cφ(x), the quantity∫
x∈Ωη

∫
y∈∂cφ(S(x))

∥Tφ(x)− y∥q dγ̃S(x)(y)dρ(x)

is dominated by ∫
x∈Ωη

diam (∂cφ(B(x, η) ∩ Ω))
q
dρ(x).

1For r = ∞, the existence of an optimal transport map was first established in [16].
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Let ϕ be the convex and p2Rp−1-Lipschitz function on Ω defined from φ in Lemma 3.3.
This lemma ensures that:

diam(∂cφ(B(x, η) ∩ Ω)) ≲ η
1

p−1 + diam(∂ϕ(B(x, η)))
1

p−1 .

We thus have the estimate:∫
x∈Ωη

diam (∂cφ(B(x, η) ∩ Ω))
q
dρ(x) ≲ η

q
p−1 +

∫
Ω

diam(∂ϕ(B(x, η)))
q

p−1 dρ(x).

Using that q
p−1 > 1 and that η ≤ 2R+ 1, one has

η
q

p−1 = (2R+ 1)
q

p−1

(
η

2R+ 1

) q
p−1

≲ η.

Using again that q
p−1 > 1, Corollary 2.2 ensures the bound:∫

Ω

diam(∂ϕ(B(x, η)))
q

p−1 dρ(x) ≲ η,

The last two bounds thus entail∫
x∈Ωη

diam (∂cφ(B(x, η) ∩ Ω))
q
dρ(x) ≲ η.

We therefore have the bound:∫
x∈Ωη

∫
y∈∂cφ(S(x))

∥Tφ(x)− y∥q dγ̃S(x)(y)dρ(x) ≲ η. (13)

This last bound allows to deal with the case r = ∞. Indeed, assuming that r = ∞,
we get by setting η = W∞(ρ, ρ̃) that Ωη = Ω, Ωcη = ∅, and the previous inequality
combined with (12) allows to reach the conclusion that

Wq
q((Tφ)#ρ, (p2)#γ̃) ≲ W∞(ρ, ρ̃).

We now assume that r ∈ (1,+∞). There remains to bound the value of the integrand
in (12) on the domain Ωcη.
Upper bound on Ωcη. The optimal transport map S from ρ to ρ̃ satisfies

∥S − id∥Lr(ρ) = Wr(ρ, ρ̃).

Then using Markov’s inequality, ηrρ(Ωcη) ≤ Wr
r(ρ, ρ̃). The fact that Tφ is valued in

Ω then implies∫
x∈Ωc

η

∫
y∈∂cφ(S(x))

∥Tφ(x)− y∥q dγ̃S(x)(y)dρ(x) ≤
∫
x∈Ωc

η

(2R)qdρ(x)

≲
Wr
r(ρ, ρ̃)

ηr
.

(14)

Conclusion. Using bounds (13) and (14) in (12) we have for any η ∈ (0, 2R]:

Wq
q((Tφ)#ρ, (p2)#γ̃) ≲

Wr
r(ρ, ρ̃)

ηr
+ η.

Setting η = Wr(ρ, ρ̃)
r

r+1 then allows us to conclude:

Wq
q((Tφ)#ρ, (p2)#γ̃) ≲ Wr(ρ, ρ̃)

r
r+1 . □

We conclude this section with the proof of Lemma 3.3.
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Proof of Lemma 3.3. From Lemma 3.1, we know that the p-cost ξp is a −Cp,R-
concave function with Cp,R = p(p− 1)Rp−2. Since φ verifies φ = (φc)c̄, it is also a
−Cp,R-concave function as an infimum of −Cp,R-concave functions. In particular,
the function ϕ is a convex function. Similarly, Lemma 3.1 ensures that ξp is
pRp−1-Lipschitz continuous on Ω and so is φ = (φc)c̄. An immediate computation
then ensures that ϕ is p2Rp−1-Lipschitz continuous on Ω. The p2Rp−1-Lipschitz
continuous convex function ϕ defined on Ω can be extended, by mean of double
convex conjugate, as a p2Rp−1-Lipschitz continuous convex function defined on the
whole Rd and coinciding with ϕ on Ω:

∀x ∈ Rd, ϕ(x) := sup
xΩ∈Ω,g∈∂ϕ(xΩ)

ϕ(xΩ) + ⟨g|x− xΩ⟩.

Now consider x ∈ Ω and η > 0. Let x−, x+ ∈ B(x, η) ∩ Ω. Let y− ∈ ∂cφ(x−) and
y+ ∈ ∂cφ(x+). We want to bound ∥y+ − y−∥ in terms of η and diam(∂ϕ(B(x, η))).
Let’s refer for now to x−, y− and x+, y− indistinctly with x±, y±. Recall that

∂cφ(x±) = {y ∈ Ω | φ(x±) + φc(y) = ξp(x
± − y)}.

Therefore, y± ∈ ∂cφ(x±) if and only if z 7→ ξp(z − y±)− φ(z) is minimized in x±,
that is if and only if

z 7→ ξp(z − y±)− Cp,R
∥z∥2

2
+ ϕ(z)

is minimized in x±. This is possible only if there exists g± ∈ ∂ϕ(x±) such that

0 = ∇ξp(x± − y±)− Cp,Rx
± + g±.

Hence there exists g± ∈ ∂ϕ(x±) such that

y± = x± − (∇ξp)−1(Cp,Rx
± − g±).

Considering such subgradients g± ∈ ∂ϕ(x±), we thus have:∥∥y+ − y−
∥∥ ≤

∥∥x+ − x−
∥∥+ ∥∥(∇ξp)−1(Cp,Rx

+ − g+)− (∇ξp)−1(Cp,Rx
− − g−)

∥∥ .
The Hölder behavior of (∇ξp)−1 described in Lemma 3.1 then allows us to write:∥∥y+ − y−

∥∥ ≤
∥∥x+ − x−

∥∥+ 3

p
1

p−1

∥∥Cp,R(x+ − x−)− g+ + g−
∥∥ 1

p−1 .

Therefore, using that x± ∈ B(x, η), we have that ∥g+ − g−∥ ≤ diam(∂ϕ(B(x, η)))
so that we have the bound∥∥y+ − y−

∥∥ ≤ 2η +
3

p
1

p−1

(Cp,Rη)
1

p−1 +
3

p
1

p−1

diam(∂ϕ(B(x, η)))
1

p−1 .

Maximizing over y− and y+ and using that η ≤ R leads to the bound:

diam(∂cφ(B(x, η) ∩ Ω)) ≤ 8p(1 +R
p−2
p−1 )

(
η

1
p−1 + diam(∂ϕ(B(x, η)))

1
p−1

)
. □
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Appendix A. Omitted proofs

A.1. Proof of Lemma 3.1.

Proof of Lemma 3.1. The strict convexity of ξp results from the triangle inequality
and the strict convexity of u 7→ up on R∗

+ for p ≥ 2.
Denoting zi the i-th coordinate of z ∈ Ω in the canonical basis of Rd, one has

ξp(z) = (
∑d
i=1 z

2
i )
p/2. From this expression we deduce immediately that ξp is of

class C2 and that its gradient and hessian read respectively

∇ξp(z) = pz ∥z∥p−2 and ∇2ξp(z) = p ∥z∥p−2
id + p(p− 2) ∥z∥p−4

zz⊤.

Thus for all z ∈ Ω, ∥∇ξp(z)∥ ≤ pRp−1 and ξp is pRp−1-Lipschitz continuous.
For any v ∈ Rd, one has

v⊤∇2ξp(z)v = p ∥z∥p−2 ∥v∥2 + p(p− 2) ∥z∥p−4 ⟨v|z⟩2.

Cauchy-Schwartz inequality entails ⟨v|z⟩2 ≤ ∥v∥2 ∥z∥2, so that

v⊤∇2ξp(z)v ≤ p(p− 1) ∥z∥p−2 ∥v∥2 .

For any z ∈ Ω we thus have the bound

0 ⪯ ∇2ξp(z) ⪯ p(p− 1)Rp−2,

from which we deduce that z 7→ ξp(z)− p(p− 1)R
p−2

2 ∥z∥2 is a concave function.



22 GUILLAUME CARLIER, ALEX DELALANDE, AND QUENTIN MÉRIGOT

Finally, the mapping z 7→ ∇ξp(z) = pz ∥z∥p−2 is obviously bijective on Rd. For
any y, z ∈ Rd \ {0} such that ∇ξp(y) = z, one has

z = py ∥y∥p−2
,

so that ∥z∥ = p ∥y∥p−1. From this fact one deduces

y = (∇ξp)−1(z) =
1

p1/(p−1)

z

∥z∥
p−2
p−1

=
1

pβ(p) ∥z∥1−β(p)
z,

where β(p) = 1
p−1 ∈ (0, 1] for p ≥ 2.

Let’s finally show the Hölder behavior of (∇ξp)−1. Let x, y ∈ Rd. If x = 0 and
y ̸= 0, then

∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ =

∥∥(∇ξp)−1(y)
∥∥ =

1

pβ(p)
∥y∥β(p) ,

which corresponds to a β(p)-Hölder behavior of ξp near 0. Assume now that x ̸= 0
and y ̸= 0. Assume for now that x and y are positively linearly dependent, i.e. there
exists λ ≥ 1 such that y = λx. Then:

∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ =

1

pβ(p)
(λβ(p) − 1) ∥x∥β(p) .

Using that for any u > 0 and β ∈ (0, 1], (1 + u)β − 1 ≤ uβ , we have λβ(p) − 1 ≤
(λ− 1)β(p). Hence we deduce:

∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ ≤ 1

pβ(p)
(λ− 1)β(p) ∥x∥β(p) = 1

pβ(p)
∥y − x∥β(p) . (15)

Assume now that ∥x∥ = ∥y∥. Then:

∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ =

1

pβ(p) ∥x∥1−β(p)
∥y − x∥

=
∥y − x∥1−β(p)

pβ(p) ∥x∥1−β(p)
∥y − x∥β(p)

≤ (∥x∥+ ∥y∥)1−β(p)

pβ(p) ∥x∥1−β(p)
∥y − x∥β(p)

=
21−β(p)

pβ(p)
∥y − x∥β(p) . (16)

Finally, without making any assumption on x and y, we have:

∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ ≤

∥∥∥∥(∇ξp)−1(y)− (∇ξp)−1(
∥x∥
∥y∥

y)

∥∥∥∥
+

∥∥∥∥(∇ξp)−1(
∥x∥
∥y∥

y)− (∇ξp)−1(x)

∥∥∥∥ .
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Bound (15) ensures:∥∥∥∥(∇ξp)−1(y)− (∇ξp)−1(
∥x∥
∥y∥

y)

∥∥∥∥ ≤ 1

pβ(p)

∥∥∥∥y − ∥x∥
∥y∥

y

∥∥∥∥β(p)
=

1

pβ(p)
|∥y∥ − ∥x∥|β(p)

≤ 1

pβ(p)
∥y − x∥β(p) .

On the other hand, bound (16) ensures:∥∥∥∥(∇ξp)−1(
∥x∥
∥y∥

y)− (∇ξp)−1(x)

∥∥∥∥ ≤ 21−β(p)

pβ(p)

∥∥∥∥∥x∥∥y∥
y − x

∥∥∥∥β(p)
≤ 21−β(p)

pβ(p)

(∥∥∥∥∥x∥∥y∥
y − y

∥∥∥∥+ ∥y − x∥
)β(p)

=
21−β(p)

pβ(p)
(|∥x∥ − ∥y∥|+ ∥y − x∥)β(p)

≤ 2

pβ(p)
∥y − x∥β(p) .

We thus get eventually:∥∥(∇ξp)−1(y)− (∇ξp)−1(x)
∥∥ ≤ 3

pβ(p)
∥y − x∥β(p) . □

Ceremade, Univ. Paris-Dauphine PSL, 75775 Paris and Mokaplan, Inria Paris
Email address: carlier@ceremade.dauphine.fr

Lagrange Mathematics and Computing Research Center, 75007, Paris, France
Email address: delalande.alex@gmail.com

Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405,
Orsay, France and Institut universitaire de France

Email address: quentin.merigot@universite-paris-saclay.fr


	1. Introduction
	2. Covering number of near-singularity sets of convex functions
	3. Stability of the pushforward by an optimal transport map
	References
	Appendix A. Omitted proofs

