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Abstract. We are interested in the lower part of the spectrum of the Dirichlet Laplacian
Aε in a thin waveguide Πε obtained by repeating periodically a pattern, itself constructed by
scaling an inner field geometry Ω by a small factor ε > 0. The Floquet-Bloch theory ensures
that the spectrum of Aε has a band-gap structure. Due to the Dirichlet boundary conditions,
these bands all move to +∞ as O(ε−2) when ε → 0+. Concerning their widths, applying
techniques of dimension reduction, we show that the results depend on the dimension of the
so-called space of almost standing waves in Ω that we denote by X†. Generically, i.e. for most
Ω, there holds X† = {0} and the lower part of the spectrum of Aε is very sparse, made of
bands of length at most O(ε) as ε → 0+. For certain Ω however, we have dim X† = 1 and then
there are bands of length O(1) which allow for wave propagation in Πε. The main originality
of this work lies in the study of the behaviour of the spectral bands when perturbing Ω around
a particular Ω⋆ where dim X† = 1. We show a breathing phenomenon for the spectrum of
Aε: when inflating Ω around Ω⋆, the spectral bands rapidly expand before shrinking. In the
process, a band dives below the normalized threshold π2/ε2, stops breathing and becomes
extremely short as Ω continues to inflate.
Key words. Quantum waveguide, thin periodic lattice, threshold scattering matrix, thresh-
old resonance, spectral bands.

1 Introduction
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Figure 1: Geometries of Ω (top left), ωε (top right) and Πε (bottom).

Motivated in particular by the extraordinary properties of graphene, which could make it pos-
sible to design revolutionary devices [12, 11, 44], major efforts have been made to understand
wave propagation phenomena in quantum waveguides. Mathematically, this leads to study the
spectrum of the Laplace operator with Dirichlet boundary conditions in domains made of thin
ligaments forming unbounded periodic lattices. In the literature, different kind of geometries have
been considered and we refer the reader to [49, 21, 23, 15, 22, 10] for review studies. In the present
article, we work in a waveguide Πε ⊂ R2 obtained by repeating periodically a pattern ωε, itself
constructed by shrinking an inner field geometry Ω by a factor ε > 0 small (see Figure 1). We
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denote by Aε the corresponding Dirichlet Laplacian in Πε. From the Floquet-Bloch-Gelfand the-
ory [13, 25, 50, 26], we know that the spectrum of Aε has a band-gap structure, the bands being
generated by the eigenvalues of a spectral problem set on the periodicity cell ωε with quasi-periodic
boundary conditions involving the Floquet-Bloch parameter.

The first goal of this article is to recall how to study the features of the spectrum of Aε as
the ligaments become thinner and thinner, i.e. as ε → 0+. To proceed, following D. Grieser in
[14] (see also [47, 29, 5, 30]), we use techniques of dimension reduction to derive 1D models for
the spectral problem in ωε. Then by exploiting these 1D models depending on the Floquet-Bloch
parameter, for which explicit computations can be done, we get information on the spectral bands.
The results that we obtain can be summarized as follows.

First, due to the Dirichlet boundary conditions, all the bands move to +∞ as O(ε−2) when
ε → 0+. Concerning the width of the bands, the results directly depend on the properties of the
Dirichlet Laplacian AΩ in the near field geometry Ω. Note that Ω is an unbounded waveguide with
two infinite outlets of height one. The first spectral bands of Aε are extremely short, of length
O(e−δ/ε), δ > 0, and their number coincides with the number of eigenvalues of AΩ smaller or equal
to the lower bound of the continuous spectrum (π2 in our case).

The width of the next spectral bands depends on the geometry of Ω and more precisely on the
dimension of some space X† of almost standing waves in Ω. More precisely, X† is defined as the
space of bounded functions which are not exponentially decaying at infinity and which satisfy the
homogeneous Helmholtz equation in Ω with a spectral parameter equal to the lower bound of the
continuous spectrum of AΩ.

Generically, i.e. for most Ω, we have X† = {0} and in that situation, the length of the next
spectral bands of Aε is O(ε). As a consequence, for most spectral parameters, waves can not
propagate in Πε. For certain particular inner field geometries Ω however, there holds dim X† = 1.
In that case, the length of the next spectral bands of Aε in the corresponding periodic domains
Πε is O(1) and so they are much more possibilities for waves to propagate.

The second goal of this work, which makes the main originality of this article, is to study the be-
haviour of the spectral bands ofAε when perturbing Ω around a particular Ω⋆ where dim X† = 1. To
precise the problem, assume that Ω is defined via a geometrical parameter ρ such that dim X† = 1
for ρ = ρ⋆ and X† = {0} for ρ − ρ⋆ ̸= 0 small. From these near field geometries, we can define a
family of thin periodic waveguides that we denote by Πρ,ε. In Πρ⋆,ε, the bands of the spectrum of
Aε are rather large whereas in Πρ,ε for ρ ̸= ρ⋆, they are short. How to describe the transition? To
answer this question, we will propose a 1D model for the spectrum incorporating the dependence
with respect to the parameter ρ. It will allow us to highlight a phenomenon of breathing of the
spectrum: when inflating Ω around Ω⋆, the spectral bands of Aε suddenly expand and then shrink.
Additionally, in the process a band dives below the normalized threshold π2/ε2, stops breathing,
“dies” and becomes extremely extremely short as the near field geometry Ω continues to inflate.

Let us mention that the spectrum of the Dirichlet Laplacian was studied in different 3D peri-
odic waveguides in [1, 6] (see also [45]). More precisely, in [1] the authors deal with geometries
for which the near field domain Ω is a cruciform junction of two cylinders whose cross section
coincides with the unit disc. In [6], Ω is the union of three bars which have a square cross section.
In these works, it is shown that the corresponding Ω are such that X† = {0}. However by varying
some parameters like the angle between the cylinders or the width of certain bars, or adding a
resonator, one could find situations where dim X† = 1. Then perturbing Ω around these particular
configurations, one would observe the same phenomenon of breathing of the spectrum as described
in the present article. Indeed what we describe below in Section 6 is generic and not specific to
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dimension two.

Finally, let us indicate that these phenomena do not appear when considering the spectrum of
the Laplace operator with Neumann boundary conditions (BCs). The reason is that for this prob-
lem, the bottom of the continuous spectrum of the near field operator AΩ is zero and we always
have dim X† = 1 because the constants solve the homogeneous Laplace equation with Neumann
BCs. As a consequence, independently of the geometry of Ω, the good limit model is a system of
ordinary differential equations on the 1D ligaments obtained when taking ε → 0+ supplemented
by Kirchoff transmission conditions at the nodes of the graph (continuity of the field and zero
outgoing flux, i.e. the sum of the derivatives of the field along the outgoing directions at the
node vanishes). This is the so-called L. Pauling’s model [46] which is used in [23] and justified in
[24, 14, 48].

The outline is as follows. In Section 2 we start by defining the geometry and introduce the
notation. Section 3 is dedicated to the presentation of the properties of the near field operator AΩ

which plays a key role in the analysis. There we also state the first important result of this work,
namely Theorem 3.5, which describes the features of the spectrum of Aε as ε tends to zero. In
Sections 4, 5 we prove the different items of Theorem 3.5. Then in Section 6 we establish Theo-
rem 6.1, the second important result of this article, where we show the breathing phenomenon of
the spectral bands of Aε when perturbing the inner field geometry around a particular Ω⋆ where
dim X† = 1. In Section 7, we explain how to construct examples of Ω⋆ where dim X† = 1. In
Section 8, we consider the particular case where Ω⋆ is such that dim X† = 1 and classical Kirchhoff
transmissions conditions must be imposed in the first model describing the bands above π2/ε2.
Due to this latter property, we find that the spectrum of this model coincides with [π2/ε2; +∞).
By taking into account terms of higher order in ε, we show however that in general the spectrum
of the exact operator Aε has some short gaps. Finally in Section 9, we give numerical illustrations
of the different results.

2 Setting

Let Ω ⊂ R2 be a waveguide which coincides with the strip R × (−1/2; 1/2) outside of a bounded
region (Figure 1 top left). For ε > 0, we consider the unit cell

ωε := {z := (x, y) ∈ R2 | z/ε ∈ Ω and |x| < 1/2} (1)

and set ∂ωε
± := {±1/2}×(−1/2; 1/2) (Figure 1 top right). Finally we define the periodic waveguide

Πε := {z ∈ R2 | (x−m, y) ∈ ωε ∪ ∂ωε
+ for some m ∈ Z := {0,±1,±2, . . . }} (2)

(Figure 1 bottom). We assume that Ω, ωε and Πε are connected with Lipschitz boundaries. In
Πε, we consider the spectral problem for the Dirichlet Laplacian

−∆uε = λε uε in Πε

uε = 0 on ∂Πε.
(3)

Note that since we work with Dirichlet boundary conditions, the assumption of Lipschitz regularity
of the boundary could be relaxed. The variational form associated with this problem writes∫

Πε
∇uε · ∇vε dz = λε

∫
Πε
uεvε dz, ∀vε ∈ H1

0(Πε). (4)

Here H1
0(Πε) stands for the Sobolev space of functions of H1(Πε) which vanish on the boundary

∂Πε. Classically (see e.g [3, §10.1]), the variational problem (4) gives rise to an unbounded, positive
definite, selfadjoint operator Aε in the Hilbert space L2(Πε), with domain D(Aε) ⊂ H1

0(Πε). Note
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that this operator is sometimes called the quantum graph Laplacian [2, 48]. Since Πε is unbounded,
the embedding H1

0(Πε) ⊂ L2(Πε) is not compact and Aε has a non empty continuous component
σc(Aε) ([3, Thm. 10.1.5]). Actually, due to the periodicity, we have σc(Aε) = σ(Aε). The Gelfand
transform (see the surveys [25, 31] and books [26, 42])

uε(z) 7→ U ε(z, η) =
1

(2π)1/2

∑
j∈Z

eiηjuε(x+ j, y), η ∈ R,

converts Problem (3) into a spectral problem set in the periodicity cell ωε (see Figure 1 top right).
This problem, which involves quasi-periodicity boundary conditions at ∂ωε

±, writes

−∆U ε(z, η) = Λε U ε(z, η) z ∈ ωε

U ε(z, η) = 0 z ∈ ∂ωε ∩ ∂Πε

U ε(−1/2, y, η) = eiηU ε(+1/2, y, η) y ∈ (−ε/2; ε/2)
∂xU

ε(−1/2, y, η) = eiη∂xU
ε(+1/2, y, η) y ∈ (−ε/2; ε/2).

(5)

Problem (5) is formally selfadjoint for any value of the Floquet parameter η ∈ R. Additionally
the transformation η 7→ η + 2π leaves invariant the quasiperiodicity conditions. Therefore it is
sufficient to study (5) for η ∈ [0; 2π). For any η ∈ [0; 2π), the spectrum of (5) is discrete, made of
the unbounded sequence of normal eigenvalues

0 < Λε
1(η) ≤ Λε

2(η) ≤ · · · ≤ Λε
p(η) ≤ . . .

where the Λε
p(η) are counted according to their multiplicity. The functions

η 7→ Λε
p(η)

are continuous ([19, Chap. 9]) so that the sets

Υε
p = {Λε

p(η), η ∈ [0; 2π)}, (6)

the so-called spectral bands, are connected compact in [0; +∞). Finally, according to the theory
(see again [25, 31, 26, 42]), the spectrum of the operator Aε has the form

σ(Aε) =
⋃

p∈N∗
Υε

p

where N∗ := {1, 2, . . . }. Thus, we see that to study the behaviour of the spectrum of Aε with
respect to ε → 0+, we have to clarify the dependence of the Υε

p in ε.

3 Near field problem and first main result

As already mentioned in the introduction, the analysis developed for example in [14, 33] shows
that the asymptotic behaviour of the Υε

p with respect to ε depends on the features of the Dirichlet
Laplacian in Ω, the geometry obtained when zooming in the periodicity cell ωε (see Figure 1 top
left). This leads us to study the spectral problem

−∆u = λu in Ω
u = 0 on ∂Ω

(7)

which is now independent of ε. We denote by AΩ the unbounded, positive definite, selfadjoint
operator naturally associated with this problem defined in the Hilbert space L2(Ω), with domain
D(AΩ) ⊂ H1

0(Ω). Its continuous spectrum σc(AΩ) occupies the ray [π2; +∞) and the threshold
point λ† := π2 is the first eigenvalue of the Dirichlet Laplacian in the cross section of the unbounded

4



branches of Ω. According to the geometry of Ω, the operator AΩ may have or not discrete spectrum.
To set ideas, assume that AΩ has exactly N• ∈ N := {0, 1, 2, . . . } eigenvalues (counted with
multiplicity) in its discrete spectrum, that we denote by

0 < µ1 < µ2 ≤ µ3 ≤ · · · ≤ µN• < π2. (8)

The fact that µ1 is simple is a classical consequence of the Krein-Rutman theorem (see e.g. [17,
Thm. 1.2.5]). We will see below that the properties of (7) with λ coinciding with the threshold of
the continuous spectrum of AΩ plays an important role in the asymptotics of certain of the Υε

p as
ε → 0+. This leads us to study the problem

∆W + π2W = 0 in Ω
W = 0 on ∂Ω. (9)

Let us describe the features of Problem (9). To proceed, first define the waves w0, w1 and the
linear wave packets wout

± , win
± such that

w0(z) = φ(y), w1 = |x|φ(y),
wout(z) = w1(z) − iw0(z) = (|x| − i)φ(y)
win(z) = w1(z) + iw0(z) = (|x| + i)φ(y)

(10)

with
φ(y) =

√
2 cos(πy). (11)

Here the notation “in/out” stands for “incoming/outgoing”. Introduce some cut-off functions
ψ± ∈ C ∞(R) such that ψ±(x) = 1 for ±x > 1 and ψ±(x) = 0 for ±x ≤ 1/2. The theory presented
for example in [42, Chap. 5] guarantees that Problem (9) admits solutions of the form

v+ = ψ−s+−w
out + ψ+(win + s++w

out) + ṽ+

v− = ψ−(win + s−−w
out) + ψ+s−+w

out + ṽ−
(12)

where s±±, s±∓ are complex numbers and the ṽ± decay exponentially as |x| → +∞. The coeffi-
cients s±±, s±∓ form the so-called threshold scattering matrix

S :=
(
s++ s+−

s−+ s−−

)
. (13)

It is known that S is symmetric (S = S⊤) but not hermitian in general, and unitary (SS⊤ = Id).
Here and below Id is the identity matrix of C2×2. On the other hand, it may happen that (9) also
admits solutions which are exponentially decaying at infinity (trapped modes). In this situation,
v± are not uniquely defined. However these trapped modes do not modify the threshold scattering
matrix because of the decay and therefore S is always uniquely defined. Following [30, 34, 20, 38],
now we introduce some vocabulary. Define the vector spaces

X := {U =
∑
±
ψ±(C1

±w1 + C0
±w0) + Ũ satisfying (9) with C1

±, C
0
± ∈ C and Ũ ∈ H1

0(Ω)};

Xbo := {U =
∑
±
ψ±C

0
±w0 + Ũ satisfying (9) with C0

± ∈ C and Ũ ∈ H1
0(Ω)};

Xtr := {U ∈ H1
0(Ω) satisfying (9)}.

(14)

Here Xbo is the space of bounded solutions of (9) while Xtr stands for the space of trapped modes.

Definition 3.1. We say that AΩ has a Threshold Resonance (TR) if Xbo ̸= {0}, i.e. if (9) admits
a non zero bounded solution.

Definition 3.2. We say that AΩ has a proper TR if Xbo/Xtr ̸= {0}, i.e. if (9) admits a bounded
solution with does not decay at infinity. If Xbo = Xtr ̸= {0}, we say that the TR is improper.
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Definition 3.3. Set X† := Xbo/Xtr. This quotient space is sometimes called the space of almost
standing waves of (9).

In the following, the dimension of X† will play an important role. The following proposition gives
a characterization of this quantity. Its proof is similar to the one of [35, Thm. 7.1] (see also [33]).

Proposition 3.4. We have dim X† = dim(ker (S + Id)).

Let us describe the different situations that one can meet.
• The dimension of Xtr is independent of the other quantities. Moreover, the existence of trapped
modes for (9) (hence at the threshold of the continuous spectrum of AΩ) is a rare phenomenon
which appears only for specific geometries which are unstable with respect to small perturbations.

• From the definition of Xbo, clearly we have dim X† ≤ 2. On the other hand, since S is a
unitary matrix, its two eigenvalues are located on the unit circle. Proposition 3.4 ensures that
Problem (9) has a proper TR when one of these eigenvalues is located at −1. For this reason, the
existence of TR is not the common situation. In other words, in general there holds Xbo = {0}.
However let us mention that the reference strip Ω = R × (−1/2; 1/2) offers a very simple example
of geometry where Xbo ̸= {0}. More precisely, in that case there holds Xbo = span(w0), Xtr = {0},
and so dim X† = 1 (see Remark 5.3 for more details). It is an open question to prove the existence
of waveguides where dim X† = 2 but this does not seem impossible. For an example of geometry
in 2D where this happens for the Neumann Laplacian at a positive threshold, we refer the reader
to [39].

Once this notation has been introduced, we can give the first important result of this article.

Theorem 3.5. For p ∈ N∗, let Υε
p = [aε

p−; aε
p+], with aε

p− ≤ aε
p+, be the spectral band in (6). There

are some (real) constants cp− < cp+, Cp > 0, δp > 0 and εp > 0 such that we have

For p = 1, . . . , N• :∣∣∣aε
p± −

(
ε−2µp + ε−2e−

√
π2−µp/εcp±

)∣∣∣ ≤ Cp e
−(1+δp)

√
π2−µp/ε, ∀ε ∈ (0; εp]; (15)

For p = N• + 1, . . . , N• +N† :∣∣∣aε
p± −

(
ε−2π2 + ε−2e−π

√
3/εcp±

)∣∣∣ ≤ Cp e
−(1+δp)π

√
3/ε, ∀ε ∈ (0; εp]; (16)

For p = N• +N† +m, m ∈ N∗ :

i) if X† = {0},
∣∣∣aε

p± −
(
ε−2π2 +m2π2 + εcp±

)∣∣∣ ≤ Cp ε
1+δp , ∀ε ∈ (0; εp];

ii) if dim X† = 1,
∣∣∣aε

p± −
(
ε−2π2 + cp±

)∣∣∣ ≤ Cp ε
1+δp , ∀ε ∈ (0; εp];

iii) if dim X† = 2,
∣∣∣aε

p± −
(
ε−2π2 + (m− 1)2π2 + εcp±

)∣∣∣ ≤ Cp ε
1+δp , ∀ε ∈ (0; εp].

(17)

Here the µp are the ones introduced in (8).

Let us comment the different results provided by this theorem. First, when ε tends to zero, the
whole spectrum of Aε goes to +∞ as ε−2. This is due to the Dirichlet condition imposed on the
boundary combined with the fact that the elements of the lattice have diameter in O(ε). Besides,
the first N• +N† spectral bands of Aε become extremely short, in O(e−c/ε) for some c > 0 which
depends on the band. Concerning the next spectral bands Υε

p, p = N• + N† + m with m ∈ N∗,
the behaviour depends on the dimension of X†. When the latter is zero or two (cases i) and iii)),
the spectral bands are of length O(ε). Moreover, between Υε

p and Υε
p+1, there is a gap, that is,
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a segment of spectral parameters λε such that waves cannot propagate, whose length tends to
(2m + 1)π2 (resp. (2m − 1)π2) in case i) (resp. iii)). In other words, for these two cases, the
propagation of waves in the thin lattice Πε is hampered and occurs only for very narrow (closed)
intervals of frequencies. When the dimension of X† is one (case ii)), the situation is very different.
Indeed, asymptotically the spectral band Υε

p is of length cp+ − cp−, with in general cp+ > cp−. As
a consequence, waves can propagate in Πε for much larger intervals of frequencies than in cases i)
and iii).

4 Asymptotic behaviour of the first N• spectral bands
In this section, we recall how to obtain a model leading to an expansion for the spectral band Υε

p,
p ∈ {1, . . . , N•}, appearing in (6). By definition, we have

Υε
p = {Λε

p(η), η ∈ [0; 2π)} (18)

where Λε
p(η) is the first eigenvalue of (5). Therefore our goal is to obtain an asymptotic expansion

of Λε
p(η) with respect to ε as ε → 0+.

Pick η ∈ [0; 2π). Let uε(·, η) be an eigenfunction associated with Λε
p(η). As a first approximation

when ε → 0+, it is natural to consider the expansions

Λε
p(η) = ε−2µp + . . . , uε(z, η) = v(z/ε) + . . . (19)

where µp ∈ (0;π2) stands for an eigenvalue of the discrete spectrum of the operator AΩ introduced
in (8) and v ∈ H1

0(Ω) is a corresponding eigenfunction normalized in L2(Ω). Indeed, inserting the
pair (ε−2µp, v(·/ε)) in Problem (5) only leaves a small discrepancy on the faces ∂ωε

± defined after
(1) because v is exponentially decaying at infinity. Let us write more precisely the decomposition
of v at infinity for further usage. Using Fourier decomposition, we get

v(z) = K± e
−βp

1 |x| φ(y) +O(e−βp
2 |x|) as ± x → +∞. (20)

Here K± ∈ R, βp
1 :=

√
π2 − µp, βp

2 :=
√

4π2 − µp and φ appears in (11). The first model (19)
is simple but does not comprise the dependence in η. To improve it, consider the more refined
ansätze

Λε
p(η) = ε−2µp + ε−2e−βp

1 /εM(η) + . . . , uε(z, η) = v(z/ε) + e−βp
1 /εV (z/ε, η) + . . . (21)

where the quantities M(η) and V (·, η), which are complex valued, are to determine. Inserting (21)
into (5), first we obtain that V (·, η) must satisfy

−∆V (·, η) − µpV (·, η) = M(η)v in Ω
V (·, η) = 0 on ∂Ω.

(22)

Below, to simplify and because this is not the heart of the article, we shall assume that µp is a
simple eigenvalue and the constants K± are non zero. When this is not the case, the analysis can
be easily adapted (see Remark 4.1 below). In order to have a solution to (22), we must look for a
V (·, η) which is growing at infinity. Due to (22), the simplest growth that we can allow is

V (z, η) = B± e
βp

1 |x| φ(y) +O(e−βp
1 |x|) as ± x → +∞

where the B± are some constants. Then the quasi-periodic conditions satisfied by uε(·, η) at ∂ωε
±

(see (5)) lead us to choose the Bj such that

K− +B− = eiη(K+ +B+)
K− −B− = eiη(−K+ +B+)
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Solving this algebraic system, we obtain B+ = K− e
−iη and B− = K+ e

+iη. Now since µp is a
simple eigenvalue of AΩ, multiplying (22) by v, integrating by parts in

ΩR := {(x, y) ∈ Ω | |x| < R}

and taking the limit R → +∞, we find that there is a solution if and only if the following
compatibility condition

M(η)∥v∥2
L2(Ω) = −2βp

1K+K−(eiη + e−iη) ⇔ M(η) = −4βp
1K+K− cos η

is satisfied. This defines the value of M(η) in the expansion (21). From (18), we deduce that as ε
tends to zero, the bounds of Υε

p = [aε
p−; aε

p+] admit the asymptotics

aε
p± = ε−2µp ± ε−2e−

√
π2−µp/εcp + . . .

with cp = 4βp
1K+K−. This shows the result (15) of Theorem 3.5. Note that we decided to focus

on a rather formal presentation above for the sake of conciseness. We emphasize that all these
results can be completely justified by proving rigorous error. This has been realized in detail in
[36, 37, 40] for similar problems and can be repeated here with obvious modifications.

Remark 4.1. When µp is a multiple eigenvalue of AΩ, one can always construct a basis of the
corresponding eigenspace for which at most one vector admits the expansion (20) with K+K− ̸= 0.
Let us mention that the spectral bands generated by the other vectors of the basis will be shorter
than the one studied above when ε → 0+.

5 Asymptotic behaviour of the higher spectral bands
We turn our attention to the asymptotics of the spectral bands

Υε
p = {Λε

p(η), η ∈ [0; 2π)} (23)

for p ≥ N• when ε → 0+. First, if in Ω, there holds dim Xtr = N† ≥ 1, then not only the first N•
spectral bands of Aε become extremely tight as ε → 0+ but also the next N† ones. More precisely,
working as in Section 4 above, one can show that for p ∈ {N• + 1, . . . , N• + N†}, the bounds of
Υε

p = [aε
p−; aε

p+] admit the asymptotics

aε
p± = ε−2π2 ± ε−2e−

√
3π/εcp + . . .

for some real constant cp. We do not detail more that case, which gives the result (16) of Theorem
3.5, and now consider the asymptotics of the band Υε

p with p ∈ N, p > N• +N†.

Pick η ∈ [0; 2π) and introduce uε(·, η) an eigenfunction associated with Λε
p(η). In the sequel,

to simplify, we remove the subscript p and do not indicate the dependence on η. As a first approx-
imation when ε → 0+, we consider the expansion

Λε = ε−2π2 + ν + . . . , uε(z) = vε(z) + . . . (24)

with vε of the form
vε(z) = γ±(x)φ(y/ε) for ± x > 0. (25)

Here the functions γ± are to determine and φ is defined in (11). Inserting (24) into Problem (5),
we obtain

∂2
xγ

+ + νγ+ = 0 in (0; 1/2)
∂2

xγ
− + νγ− = 0 in (−1/2; 0)
γ−(−1/2) = eiηγ+(+1/2)

∂xγ
−(−1/2) = eiη∂xγ

+(+1/2).

(26)
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To define the γ± uniquely, we need to complement (26) with some conditions at the origin. To
obtain them, we match the behaviour of the γ± with the one of some inner field expansion of uε.
More precisely, in a neighbourhood of the origin we look for an expansion of uε of the form

uε(z) = W (z/ε) + . . . (27)

with W to determine. Inserting (27) and (24) in (5), we find that W must satisfy (9), i.e. the near
field problem at the threshold value of the continuous spectrum of AΩ. Let us look for W of the
form

W = a+v+ + a−v−

where a± ∈ C are constants to be set and v± are the functions introduced in (12). For the γ± in
(25), we have the Taylor series, as x → 0

γ±(x) = γ±(0) + x∂xγ±(0) +O(x2).

Matching the constant behaviour of the far field expansion (24)–(25) with the one of the inner field
expansion (27) at order ε0, we find that we must impose

γ+(0) = a+i(1 − s++) − a−is−+

γ−(0) = −a+is+− + a−i(1 − s−−)
(28)

Introduce the notation γ(0) := (γ+(0), γ−(0))⊤, a := (a+, a−)⊤. Then (28) rewrites as

γ(0) = i(Id − S)a. (29)

Now let us match the z-behaviour of (24)–(25) with the one of (27) at order ε0. We get

ε∂xγ
+(0) = a+(1 + s++) + a−s−+

−ε∂xγ
−(0) = a+s+− + a−(1 + s−−)

(30)

which can be rewritten as
ε∂xγ(0) = (Id + S)a (31)

where ∂xγ(0) := (∂xγ
+(0),−∂xγ

−(0))⊤. At this stage, we have to divide the analysis according to
the situation.

5.1 Asymptotics of the spectral bands when X† = {0}

In this section, we assume that Ω is such that X† = {0}. Again we emphasize that this is the
generic situation. Then according to Proposition 3.4, Id +S is invertible and relation (31) leads us
to set a = 0 and so W ≡ 0. Then, from (29), we find that we must impose γ(0) = 0, which gives
the Dirichlet conditions

γ±(0) = 0. (32)

to complement (26). Solving the spectral problem (26), (32), we obtain

ν = m2π2 for m ∈ N∗,
γ+(x) = sin(mπx)
γ−(x) = −eiη sin(mπx).

(33)

Note that ν is independent of η ∈ [0; 2π). This latter fact is not satisfactory because this does not
allow us to assess the width of the spectral bands. In the sequel we wish to improve the model
obtained above. Let us refine the expansion proposed in (24) and work with

Λε =
π2

ε2 +m2π2 + εν̃ + . . . , uε(z) = (γ±(x) + εγ̃±(x))φ(y/ε) + . . . for ± x > 0. (34)
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Here ν̃ as well as the γ̃± are to determine. Inserting (34) into Problem (5) and extracting the
terms of order ε, we get

∂2
xγ̃

+ +m2π2γ̃+ = −ν̃γ+ in (0; 1/2)
∂2

xγ̃
− +m2π2γ̃− = −ν̃γ− in (−1/2; 0)
γ̃−(−1/2) = eiηγ̃+(+1/2)

∂xγ̃
−(−1/2) = eiη∂xγ̃

+(+1/2).

(35)

To define properly the γ̃±, we need to add to (35) conditions at the origin. To identify them, again
we match the far field expansion of uε with some inner field representation. In a neighbourhood
of the origin, we look for an expansion of uε of the form

uε(x) = εW̃ (x/ε) + . . . . (36)

Inserting (36) and (34) in (5), we find that W̃ must satisfy (9). We could look for W̃ as a
combination of the linear waves v± appearing in (12). However, it will be more convenient to work
with the functions W̃± which satisfy (9) and admit the expansions

W̃+(z) =
(x+M++)φ(y) + . . . in Ω as x → +∞

M+− φ(y) + . . . in Ω as x → −∞
(37)

W̃−(z) =
M−+ φ(y) + . . . in Ω as x → +∞

(|x| +M−−)φ(y) + . . . in Ω as x → −∞
(38)

where M±±, M±∓ are some constants. These W̃± can be constructed by combining the v±. To
proceed, one needs to use the fact that Id + S is invertible, which is a consequence of Proposition
3.4 and of the assumption X† = {0}. In the calculus, we find, see e.g. relation (7.9) in [35], that
the polarization matrix

M :=
(
M++ M+−

M−+ M−−

)
, (39)

coincides with the Cayley transform of S, i.e. we have

M = i(Id + S)−1(Id − S). (40)

This shows in particular that M is real and symmetric even in non symmetric geometries (see [42,
Chap. 5, Prop. 4.13] and [36, 37, 40]).

For the functions γ± in (56), we have the Taylor expansion, as x → 0,

γ+(x) = 0 +mπx+ · · · = εmπ
x

ε
+ . . . ,

γ−(x) = 0 − eiηmπx+ · · · = −εeiηmπ
x

ε
+ . . . .

(41)

Comparing (41) with (37) leads us to choose W̃ in the expansion uε(x) = εW̃ (x/ε)+ . . . (see (36))
such that

W̃ = mπ (W̃+ + eiηW̃−).

This sets the constant behaviour of W̃ at infinity and we now match the later with the behaviour
of the γ̃± at the origin to close system (35). This step leads us to impose

γ̃+(0) = mπ(M++ + eiηM+−); γ̃−(0) = mπ(M−+ + eiηM−−). (42)

Equations (35), (42) form a boundary value problem for a system of ordinary differential equations.
For this problem, there is a kernel and a co-cokernel. In order to have a solution, some compatibility
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conditions must be satisfied. Multiplying (35) by γ± and integrating by parts, we find that they
are verified if

∂xγ+(0) γ̃+(0) − ∂xγ−(0) γ̃−(0) = −ν̃
(∫ 0

−1/2
|γ−|2 dx+

∫ 1/2

0
|γ+|2 dx

)

(note that we used that γ±(0) = 0 according to (32)). Since ∂xγ+(0) = mπ and ∂xγ−(0) =
−mπe−iη, this gives

2m2π2
(
(M++ + eiηM+−) + e−iη(M−+ + eiηM−−)

)
= −ν̃.

By exploiting that the polarization matrix M defined in (40) is real and symmetric, we get

2m2π2(M++ + 2 cos ηM+− +M−−) = −ν̃(η)

(above we reintroduce the dependence with respect to η for ν̃). Finally, one can compute the
solution to the system (35), (42) to obtain the expressions of the γ̃±(η). This ends the definition
of the terms appearing in the expansions (34). Let us comment and exploit these results.

⋆ First, observe that the ν̃(η) are real because the coefficients of M are real.

⋆ We have obtained
Λε(η) = ε−2π2 +m2π2 + εν̃(η) + . . . . (43)

Note that in this expansion, the third term, contrary to the first two ones, depends on η when
M+− ̸= 0. Since Υε

p = [aε
p−; aε

p+] = {Λε
p(η), η ∈ [0; 2π)}, this analysis shows that we have the

asymptotics
aε

p± = ε−2π2 +m2π2 + εm2c± + . . .

with
c− = 2π2 min(−(M++ − 2|M+−| +M−−),−(M++ + 2|M+−| +M−−))
c+ = 2π2 max(−(M++ − 2|M+−| +M−−),−(M++ + 2|M+−| +M−−)).

⋆ Observe that we have c+ ̸= c− if and only if the geometry of Ω is such that M+− = M−+ ̸= 0.

This proves the item i) of (17). Finally, let us mention again that all the formal presentation
above can be justified rigorously by a direct adaptation of the proofs of error estimates presented
in [36, 37, 40].

5.2 Asymptotics of the spectral bands when dim X† = 1
In this section, we assume that the space of almost standing waves is of dimension one (in partic-
ular AΩ has a proper TR). From Proposition 3.4, this is equivalent to have dim(ker (S + Id)) = 1.
In accordance with the work of D. Grieser [14], we will show that the conditions at zero to com-
plement the system of ODEs (26) are different from the Dirichlet ones found in the previous section.

Denote by τ1 = −1, τ2 ̸= −1 the two eigenvalues of S and introduce b1, b2 two correspond-
ing normalized eigenvector. Since S is unitary, there holds (b1, b2) = 0 where (·, ·) denotes the
standard inner product of C2.
Lemma 5.1. Since S is unitary and symmetric, we can choose real valued b1, b2.
Proof. Let us work for example with b1. Exploiting that S is unitary and symmetric, we can write
b1 = SS⊤

b1 = SS b1. Inserting the identity Sb1 = τ1 b1 in this relation, we obtain

b1 = τ1 S b1.

Using that τ1 = τ1
−1, because the eigenvalues of S are located on the unit circle in the complex

plane, we infer that b1 is also an eigenvector associated with τ1. This ensures that b1 can be chosen
in R2.
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Remark 5.2. If S has an eigenvalue of multiplicity two, which is not the case considered in this
section, one can also show that the corresponding eigenvectors can be chosen in R2. Note that
since S is unitary, it is diagonalizable, and therefore cannot have a Jordan block of size two.

Exploiting Lemma 5.1, and changing b1 in −b1 if necessary, we can introduce θ ∈ [0;π) such that

b1 = (cos θ, sin θ)⊤. (44)

Then, due to the relation (b1, b2) = 0, we deduce that we can take b2 = (− sin θ, cos θ)⊤.

This said, let us exploit the identities (29), (31). Taking the inner product of (31) against b1,
we find

ε(∂xγ(0), b1) = ((Id + S)a, b1) = (a, (Id + S⊤)b1) = (a, (Id + S)b1) = 0. (45)
Therefore we obtain

cos θ ∂xγ
+(0) = sin θ ∂xγ

−(0). (46)
This is a first transmission condition to complement (26). On the other hand, (31) also implies
that (Id + S)a = 0 ⇔ Sa = −a and so a ∈ ker(Id + S), i.e. a = c b1 for some c ∈ C. From (29),
this gives γ(0) = 2ia = 2ic b1, which implies (γ(0), b2) = 0. This provides the second transmission
condition at the origin

sin θ γ+(0) = cos θ γ−(0). (47)
Let us summarize the results that we have obtained. Set I := (−1/2; 1/2), I+ := (0; 1/2) and
I− := (−1/2; 0). Gathering (26), (46), (47), finally we have found that ν, γ± satisfy the problem
with weighted Kirchhoff transmissions conditions at the origin

∂2
xγ

± + νγ± = 0 in I±

γ−(−1/2) = eiηγ+(+1/2) sin θ γ+(0) = cos θ γ−(0)
∂xγ

−(−1/2) = eiη∂xγ
+(+1/2) cos θ ∂xγ

+(0) = sin θ ∂xγ
−(0).

(48)

If ψ is a function defined on I, we note by ψ± its restriction to I±. Let us define the Hilbert space

H1
η(I) := {ψ |ψ± ∈ H1(I±), sin θ ψ+(0) = cos θ ψ−(0) and ψ−(−1/2) = eiηψ+(1/2)}. (49)

Classically, one shows that (ν, γ) ∈ C×H1
η(I)\{0} is an eigenpair of (48) if and only if there holds∫

I−∪I+
∂xγ∂xψ dx = ν

∫
I−∪I+

γψ dx, ψ ∈ H1
η(I). (50)

Therefore, for all η ∈ [0; 2π), the spectrum of (26), (46), (47) is real, made of non negative
eigenvalues

0 ≤ ν1(η) ≤ ν2(η) ≤ . . . .

Let us compute them explicitly. First, we consider the case where ν is a non zero eigenvalue.
Exploiting (26), we find

γ+(x) = Aei
√

ν(x−1/2) +B e−i
√

ν(x−1/2)

γ−(x) = eiη
(
Aei

√
ν(x+1/2) +B e−i

√
ν(x+1/2)).

Writing the transmission conditions (46), (47) at the origin, we obtain that ν ̸= 0 is an eigenvalue
if and only if the matrix(

sin θ e−i
√

ν/2 − cos θ ei
√

ν/2eiη sin θ ei
√

ν/2 − cos θ e−i
√

ν/2eiη

i
√
ν(cos θ e−i

√
ν/2 − sin θ ei

√
ν/2eiη) i

√
ν(− cos θ ei

√
ν/2 + sin θ e−i

√
ν/2eiη)

)

has a non zero kernel. Computing its determinant, we obtain that this is equivalent to have

sin(2θ) cos η = cos
√
ν. (51)
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A similar calculus shows that ν = 0 is an eigenvalue if and only if there holds

sin(2θ) cos η = 1. (52)

For p = N• +N† +m, m ∈ N∗, we have obtained

Λε
p(η) = ε−2π2 + νm(η) + . . . (53)

where νm(η) satisfies (51) or (52). Since Υε
p = [aε

p−; aε
p+] = {Λε

p(η), η ∈ [0; 2π)}, this analysis
shows that we have the asymptotics

aε
p± = ε−2π2 + cp± + . . .

with
cp− = inf

η∈[0;2π)
νm(η), cp+ = sup

η∈[0;2π)
νm(η).

This establishes the item ii) of (17).

Let us describe the different possibilities that one can meet according to the value of θ (which
depends only on the geometry of Ω). Define the sets

Ξm(θ) := {νm(η), η ∈ [0; 2π)}, ℵ(θ) :=
+∞⋃
m=1

Ξm(θ). (54)

From (51), (52), we see that there holds Ξm(θ) = Ξm(π − θ). Therefore it is sufficient to study
Ξm(θ) for θ ∈ [0;π/2]. Moreover, we observe that we also have Ξm(θ) = Ξm(π/2 − θ). As a
consequence, it is enough to compute Ξm(θ) for θ ∈ [0;π/4]. Solving (51), (52), we find that for
θ = 0, the dispersion curves are flat so that ℵ(θ) is simply an unbounded sequence of points (see
Figure 2 left). This is a degenerate situation. For θ ∈ (0;π/4), ℵ(θ) coincides with a union of bands
separated by some gaps (Figure 2 center). Finally, for θ = π/4, the conditions (46), (47) become
classical Kirchhoff transmission conditions (continuity of the value and continuity of the flux), so
that ℵ(θ) = [0; +∞) (Figure 2 right). This is a second degenerate situation. Let us emphasize
that though there holds ℵ(θ) = [0; +∞) in this latter case, one may still have some gaps in the
spectrum of Aε above π2/ε2. To study them, and possibly show their existence, it is necessary to
work with higher order models. This will be done in Section 8.

η

ν

π2/4

π2/4 + 2π2

π2/4 + 5π2

π2/4 + 10π2

η

ν

η

ν

Figure 2: Dispersion curves (51) for θ = 0 (left), θ = π/8 (center), θ = π/4 (right).
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Remark 5.3. Let us discuss here the simple case where Ω is the reference strip R × (−1/2; 1/2).
In that situation, one observes that the functions v± introduced in (12) are given by

v+(z) = (x+ i)φ(y), v−(z) = (−x+ i)φ(y).

As a consequence, we have s++ = s−− = 0, s±∓ = −1 and so

S :=
(

0 −1
−1 0

)
.

The eigenvalues of S are ±1 and we can take b1 = (1/
√

2, 1/
√

2)⊤, b2 = (−1/
√

2, 1/
√

2)⊤. We
deduce that the transmission conditions (46) and (47) write

γ+(0) = γ−(0)
∂xγ

+(0) = ∂xγ
−(0).

This was expected because in this simple geometry, the origin plays no particular role for the
spectral problem (5). We find that the angle θ in (44) is equal to π/4. Therefore, the quantity ℵ(θ)
in (54) is equal to [0; +∞), which was also expected. Indeed, in this situation, the periodic domain
Πε coincides with the thin strip R × (−ε/2; ε/2) and we know that the spectrum of the Dirichlet
Laplacian in this geometry is [π2/ε2; +∞) (observe that there is no gap).

5.3 Asymptotics of the spectral bands when dim X† = 2
Finally, we consider the hypothetical case where the geometry Ω is such that dim X† = 2 (again,
this is an open question to show the existence of such a geometry). According to Proposition
3.4, this is equivalent to assume that dim(ker(Id + S)) = 2. In that situation, in accordance with
[14], we find that the system of ODEs (26) must be complemented with homogeneous Neumann
boundary conditions at the origin. Indeed, working as in (45), we obtain that we must impose
(∂xγ(0),d) = 0 for all d ∈ C2, i.e.

∂xγ
+(0) = ∂xγ

−(0) = 0. (55)

Solving (26), (55), we obtain

ν = m2π2 for m ∈ N,
γ+(x) = cos(mπx)
γ−(x) = −eiη cos(mπx).

(56)

Note that ν is independent of η ∈ [0; 2π). As in §5.1, this first model is not enough for our needs
because it does not provide estimates for the lengths of the spectral bands. But working as in §5.1,
we can improve it to establish the item iii) of (17).

6 A model problem for the breathing of spectral bands
In this section, our goal is to propose a model which describes the change of the spectrum of Aε

when perturbing the near field geometry around a particular Ω = Ω⋆ where dim X† = 1. Let us
emphasize that this leads to make a periodic perturbation of Πε.

6.1 Setting and main result

Let us start from a geometry Ω⋆ such that dim X† = 1 (we will explain in Section 7 how to construct
particular examples). To simplify the presentation, we assume that we also have Xbo = {0}. As
in (8), we denote by N• the number of eigenvalues of AΩ⋆ below the continuous spectrum. Now
we perturb this waveguide. To proceed, consider Γ a smooth bounded and connected part of ∂Ω⋆.
Denote by s the arc length on Γ so that Γ = {P (s) ∈ R2 | s ∈ J} where J is a given interval of
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R. Let h ∈ C ∞
0 (J) be a smooth profile function such that h ≥ 0 and h ̸≡ 0. For some given

parameter ρ ∈ R that we can choose as we wish, we define the geometry Ωρ,ε such that outside of
V , ∂Ωρ,ε = ∂Ω and inside V , ∂Ωρ,ε coincides with

Γρ,ε := {P (s) + ερh(s)n(s) | s ∈ J}. (57)

Here n(s) is the outward unit normal vector to Γ at point P (s). Note that here the inner field
geometry also depends on ε. By (1), this defines a family of unit cells and periodic waveguides
that we denote respectively ωρ,ε and Πρ,ε to stress the dependence in ρ. Observe that with this
notation, we have in particular ω0,ε = ωε, Π0,ε = Πε. Our goal is to compute, for a fixed ρ ∈ R, the
asymptotics of the spectral bands Υρ,ε

p := {Λρ,ε
p (η), η ∈ [0; 2π)} of the Dirichlet Laplacian in Πρ,ε.

The study of the first N• spectral bands has no particular interest compared to what has been
done in Section 4 and so we focus our attention on the case p > N•. The next theorem constitutes
the second important result of this article.

Theorem 6.1. Fix ρ ∈ R. For m ∈ N∗ and p = N• +m, let Υρ,ε
p = [aρ,ε

m−; aρ,ε
m+], with aρ,ε

m− ≤ aρ,ε
m+,

be the spectral band as defined above. There are some (real) constants cρ
m− < cρ

m+, Cm > 0, δm > 0
and εm > 0 such that we have

∣∣∣aρ,ε
m± −

(
ε−2π2 + cρ

m±

)∣∣∣ ≤ Cm ε1+δm , ∀ε ∈ (0; εm]. (58)

Here the constants Cm, εm can be chosen independently of ρ if we impose to ρ to belong to a
compact set of R. Moreover, we have

lim
ρ→−∞

cρ
m± = m2π2, cρ

1± ∼
ρ→+∞

−
T 2

4 ρ2, lim
ρ→+∞

cρ
(m+1)± = m2π2 (59)

with

cρ
m+ − cρ

m− =
ρ→−∞

O(1/ρ), cρ
1+ − cρ

1− =
ρ→+∞

O(e−δρ), cρ
(m+1)+ − cρ

(m+1)− =
ρ→+∞

O(1/ρ).

Here T > 0 which depends on h is defined in (66) and δ > 0 is a constant.

Let us comment this statement. Note first that all the asymptotic intervals [cρ
m−; cρ

m+] reduce to a
singleton when ±ρ → +∞. This describes the transition between cases i) and ii) in Theorem 3.5.
Some illustrations of the dependence of the [cρ

m−; cρ
m+], that we denote by Ξρ

m(θ) in the sequel,
with respect to ρ are given in Figures 3, 4 below. We can see that when ρ runs from −∞ to +∞,
which boils down to inflating the near field geometry around Ω⋆, the [cρ

m−; cρ
m+] expand and then

shrink. This is what we call the breathing phenomenon of the spectrum of Aε. In the process, in
σ(Aε) a band dives below π2/ε2 and then stops breathing. It is approximated when ε → 0+ by the
interval [ε−2π2 + cρ

1−; ε−2π2 + cρ
1+] which becomes extremely short when ρ → +∞. We emphasize

that in order these results to be valid for ±ρ large, ε must be chosen small enough so that Ωρ,ε

remains a small perturbation of Ω⋆. Typically, for a given ε > 0, we can take ρ ∈ (−ε−1/2; ε−1/2).

6.2 Proof of Theorem 6.1

Fix ρ ∈ R and pick p = N• + m with m ∈ N∗. We wish to compute an asymptotic expansion of
Λρ,ε

p (η) as ε → 0+. To simplify the presentation of the computations below, we remove the indices
ρ, η and p. Reproducing what has been done in Section 5, as an approximation when ε → 0+, we
consider the expansions

Λε = ε−2π2 + ν + . . . , uε(z) = vε(z) + . . . (60)

with vε of the form
vε(z) = γ±(x)φ(y/ε) for ± x > 0. (61)
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We find that γ± must satisfy the equations (26) that it remains to complement with conditions at
the origin. As in (27), we look for an expansion of uε in a neighbourhood of the origin of the form

uε(z) = W (z/ε) + . . . with W = a+v+ + a−v−.

Here a± ∈ C are constants to determine and v± are the functions introduced in (12). Then the
conditions (29), (31) write

γ(0) = i(Id − Sρ,ε)a (62)

ε∂xγ(0) = (Id + Sρ,ε)a (63)

where a = (a+, a−)⊤. Above, to facilitate the understanding, we indicate the dependence of the
scattering matrix with respect to the geometry. Denote by τ ε

1 , τ ε
2 the two eigenvalues of Sρ,ε and

introduce bε
1, bε

2 two corresponding normalized eigenvectors. As we have seen, bε
1, bε

2 are orthogonal
to each other and can be chosen to be real valued (Lemma 5.1). For a, we have the decomposition

a = (a, bε
1) bε

1 + (a, bε
2) bε

2.

We deduce that there holds

Sρ,εa = τ ε
1 (a, bε

1) bε
1 + τ ε

2 (a, bε
2) bε

2. (64)

For the eigenvalues τ ε
1 , τ ε

2 , we will show in Proposition 6.2 below the asymptotics

τ ε
1 = −1 − iTερ+O(ε2), τ ε

2 = τ2 +O(ε). (65)

Here
T =

1
2

∫
Γ
h|∂nv|2 ds > 0 (66)

(v ̸≡ 0 on Γ is defined in (88)) and τ2 is the eigenvalue of S, the threshold scattering matrix in
Ω⋆, which is different from −1. Taking the inner product of (63) against bε

1 and using (64), we get
(a, bε

1) = ε(∂xγ(0), bε
1) − τ ε

1 (a, bε
1) and so (a, bε

1) = (1 + τ ε
1 )−1ε(∂xγ(0), bε

1). Exploiting (65) and
identifying the terms of order ε0 in the expansions

(a, bε
1) = (a, b1) +O(ε), (1 + τ ε

1 )−1ε(∂xγ(0), bε
1) =

i

Tρ
(∂xγ(0), b1) +O(ε),

we obtain
(a, b1) =

i

Tρ
(∂xγ(0), b1).

Similarly, we find (a, b2) = 0. Therefore, we get

a =
i

Tρ
(∂xγ(0), b1) b1. (67)

Finally, inserting (67) into (62), we find that this leads us to complement (26) with the conditions

γ(0) = −
2
Tρ

(∂xγ(0), b1) b1. (68)

Using as in (44) the notation b1 = (cos θ, sin θ)⊤ with θ ∈ [0;π), this writes componentwise

γ+(0) = −
2
Tρ

(
(cos θ)2 ∂xγ

+(0) − sin θ cos θ ∂xγ
−(0)

)
γ−(0) = −

2
Tρ

(
sin θ cos θ ∂xγ

+(0) − (sin θ)2 ∂xγ
−(0)

)
.

(69)
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Recombining (69), one finds that it is equivalent to the weighted Kirchhoff transmission conditions

sin θ γ+(0) − cos θ γ−(0) = 0

cos θ ∂xγ
+(0) − sin θ ∂xγ

−(0) = −
Tρ

2 (cos θ γ+(0) + sin θ γ−(0)).
(70)

From (70), when ρ → ±∞, asymptotically, we find back the homogeneous Dirichlet conditions

γ±(0) = 0.

On the other hand, from (70), when ρ → 0, we get

sin θ γ+(0) = cos θ γ−(0)
cos θ ∂xγ

+(0) = sin θ ∂xγ
−(0)

(71)

as in (46), (47). Let us study in more details the spectrum of (26), (70) with respect to ρ ∈ R.
Classically, one finds that (ν, γ) ∈ C × H1

η(I) \ {0} (see (49) for the definition of the Hilbert space
H1

η(I) which incorporates the first transmission condition of (71)) is an eigenpair of (26), (70) if
and only if there holds∫

I−∪I+
∂xγ∂xψ dx−

Tρ

2

(
cos θ γ+(0) + sin θ γ−(0)

)(
cos θψ+(0) + sin θψ−(0)

)
= ν

∫
I−∪I+

γψ dx, ψ ∈ H1
η(I).

(72)

Therefore, we see that the spectrum of (26), (70) is made of a sequence of real eigenvalues

νρ
1 (η) ≤ νρ

2 (η) ≤ · · · ≤ νρ
m(η) ≤ . . . (73)

which is bounded from below and which accumulates only at +∞. Note that we indicate again
the dependence with respect to ρ ∈ R. For ρ ≤ 0, from (72), we see that νρ

1 (η) ≥ 0. However when
ρ ≥ 0, one can have νρ

1 (η) ≤ 0 as we will see below. Working as in (51), we can characterize more
explicitly the νρ

p(η). First we find that ν is a non-zero eigenvalue of (26), (70) if and only if there
holds

sin(2θ) cos η = cos
√
ν −

Tρ

2
sin

√
ν

√
ν

. (74)

On the other hand, we obtain that zero is an eigenvalue if and only if we have

sin(2θ) cos η = 1 −
Tρ

2 . (75)

Remark that for ρ = 0, these relations coincide with (51), (52), which was expected. For p =
N• +m, m ∈ N∗, we have obtained

Λρ,ε
p (η) = ε−2π2 + νρ

m(η) + . . . (76)

where νρ
m(η) solves (74) or (75). This analysis shows that for the spectral bands Υρ,ε

p = [aρ,ε
m−; aρ,ε

m+] =
{Λρ,ε

p (η), η ∈ [0; 2π)}, we have the asymptotics

aρ,ε
m± = ε−2π2 + cρ

m± + . . .

with
cρ

m− = inf
η∈[0;2π)

νρ
m(η), cρ

m+ = sup
η∈[0;2π)

νρ
m(η).
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This gives (58). Finally, we establish (59). Let us detail how to proceed to obtain the asymptotics
for cρ

1±. Let γ ∈ H1
η(I) \ {0} be an eigenfunction of (72) associated with νρ

1 (η). Consider the
ansatz, for ρ > 0 large,

νρ
1 (η) = −α2 ρ2 + . . . ,

γ+(x) = A cos θ e−αρx + . . . , x > 0
γ−(x) = A sin θ e+αρx + . . . , x < 0,

where α, A are constants and the dots correspond to small remainders. Note that with this choice,
the first two equations of (26) and the first one of (70) are satisfied. Imposing the second condition
of (70) yields

−((cos θ)2 + (sin θ)2)Aαρ = −
Tρ

2 ((cos θ)2 + (sin θ)2)A.

This leads us to take α = T/2. Besides, since the quantities γ±(±1/2), ∂xγ
±(±1/2) decay ex-

ponentially as ρ → +∞, the discrepancy in the quasi-periodic conditions of (26) is O(e−δρ) with
δ > 0. This proves the formula cρ

1± ∼
ρ→+∞

−T 2ρ2/4 of (59). Additionally, this guarantees that the
segment [cρ

1−; cρ
1+] becomes exponentially short as ρ → +∞. The justification of these calculus is

classical. Now in (59) we turn our attention to the asymptotics of the cρ
m±, m ∈ N∗, as ρ → −∞.

For (νρ
m(η), γ) an eigenpair of (72), one can show the expansions

νρ
m(η) = m2π2 + . . . ,

γ+(x) = A sin(mπx) + . . . , x > 0
γ−(x) = −Aeiη sin(mπx) + . . . , x < 0,

where A is a constant and the dots stand for terms in O(1/ρ). Observe that this implies that the
length of the segment [cρ

m−; cρ
m+] behaves as O(1/ρ) when ρ → −∞. As a consequence, it is larger

than [cρ
1−; cρ

1+]. One works similarly on the asymptotics of cρ
(m+1)± as ρ → +∞, m ∈ N∗.

Note that for the particular Floquet-Bloch parameter η = π/2, from the the explicit dispersion
relations (74), (75), wee that the νρ

m(π/2) coincide with the real numbers t such that

ρ
√
t

tan
√
t =

2
T

when ρ ̸= 0. This clearly implies

lim
ρ→−∞

νρ
m(π/2) = m2π2, and lim

ρ→+∞
νρ

m+1(π/2) = m2π2.

6.3 Illustration of the results

As in (54), we introduce the sets

Ξρ
m(θ) := [cρ

m−; cρ
m+] = {νρ

m(η), η ∈ [0; 2π)}, ℵρ(θ) :=
+∞⋃
m=1

Ξρ
m(θ).

In Figures 3, 4, we display the Ξρ
m(θ) with respect to ρ. In Figure 3, we take sin(2θ) = 0.7 while

we impose sin(2θ) = 1 in Figure 4. On the other hand, T is arbitrarily chosen equal to 2. To
obtain these pictures, we exploit (74) in a simple way: for a given range of values of ν, we check
whether or not there holds ∣∣∣∣ cos

√
ν −

Tρ

2
sin

√
ν

√
ν

∣∣∣∣ ≤ | sin(2θ)| .

In accordance with Theorem 6.1, we observe that the Ξρ
m(θ) tend to singletons when ±ρ → +∞.

More precisely, when ρ increases, i.e. when the near field geometry is enlarged, the Ξρ
m(θ) expand

up to ρ = 0. Then the band Ξρ
1(θ) emerges in (−∞; 0) while the other spectral bands shrink as

ρ continues to grow. Note also that the whole spectrum comes down, which is expected because
with Dirichlet boundary conditions, the eigenvalues decrease when the domain inflates.
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Figure 3: Sets Ξρ
m(θ) (in magenta and blue) with respect to ρ. We use the magenta colour to stress

the situations where Ξρ
m(θ) take negative values. The vertical red dashed lines correspond to the

m2π2, m ∈ N∗. Here we take T = 2 (arbitrarily) and sin(2θ) = 0.7.

Figure 4: Same quantities as in Figure 3 but this time with sin(2θ) = 1.
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6.4 Behaviour of the eigenvalues of S under small perturbation of the geometry

In this section, we show a result concerning the asymptotics of the eigenvalues of the threshold
scattering matrix S (see (13) for its definition) which has been used in the proof of Theorem 6.1 (for
a close study, see also [43]). Let Ω be a waveguide which coincides with the strip R × (−1/2; 1/2)
outside of a bounded region as described in Section 2. Note that our result below is general and we
do not assume here that dim X† = 1. Consider τ a simple eigenvalue of S. We want to understand
how this eigenvalue evolves when the geometry is slightly perturbed.

Define Ωε from Ω as Ωρ,ε was constructed from Ω⋆ in (77) with ρ = 1. In particular, outside
of V , we have ∂Ωε = ∂Ω and inside V , ∂Ωε coincides with

Γε := {P (s) + εh(s)n(s) | s ∈ J}. (77)

We denote by Sε the threshold scattering matrix in Ωε and by τ ε its eigenvalue corresponding to
the perturbation of τ .

Proposition 6.2. There are ε0 > 0, C > 0 such that we have∣∣∣τ ε −
(
τ +

iτε

2

∫
Γ
h|∂nv|2 ds

)∣∣∣ ≤ C ε2, ∀ε ∈ (0; ε0]. (78)

Here v ̸≡ 0 on Γ is a function defined in (88).

Remark 6.3. This result also holds without sign assumption for h. However, we see that when
we take h ≥ 0 with h ̸≡ 0, i.e. when the geometry inflates, the eigenvalues of the threshold
scattering matrix rotates counter-clockwise on the unit circle. On the contrary, when Ω deflates,
the eigenvalues of S rotate clockwise.

Proof. To obtain an asymptotic expansion of τ ε when ε → 0+, we have to compute an expansion
of the functions vε

± defined as v± in (12) but in the geometry Ωε. Let us focus our attention on
vε

+. We consider the simplest ansatz

vε
+ = v+ + εv′

+ + . . . (79)

where v′
+ is to determine and the dots stand for higher-order terms. Inserting (79) in the problem

(9) posed in Ωε, taking the limit ε → 0+ and identifying the powers in ε, we find that v+ coincides
with the function introduced in (12). Moreover, exploiting in particular the Taylor expansion, for
s ∈ J ,

0 = vε
+(P (s) + εh(s)n(s)) = vε

+(P (s)) + εh(s)n(s) · ∇vε
+(P (s)) +O(ε2)

= v+(P (s)) + ε (v′
+(P (s)) + h(s)n(s) · ∇v+(P (s))) +O(ε2),

we obtain that v′
+ satisfies the problem

∆v′
+ + π2v′

+ = 0 in Ω
v′

+ = 0 on ∂Ω \ Γ
v′

+ = −hn · ∇v+ on Γ.

Note that above and below, we naturally define h(z), n(z) for z ∈ Γ by taking the values of h(s),
n(s) for s such that z = P (s). On the other hand, since the incident field in the problem defining
vε

+ is independent of ε, we find that v′
+ must admit the expansion

v′
+ = ψ−s

′
+−w

out + ψ+s
′
++w

out + ṽ′
+ (80)

where s′
+± are complex numbers and ṽ′

+ decays exponentially as |x| → +∞. Now we wish to
obtain expressions for the s′

+±. To proceed, we start from the identity

0 =
∫

Ωκ

(∆v′
+ + π2v′

+)v± − v′
+(∆v± + π2v±) dz (81)
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where for κ > 0, Ωκ := {z ∈ Ω | |x| ≤ κ}. Integrating by parts in (81), we obtain for large κ

0 =
∫

x=κ
∂xv

′
+v± − v′

+∂xv± dy −
∫

x=−κ
∂xv

′
+v± − v′

+∂xv± dy +
∫

Γ
h∂nv+∂nv± ds. (82)

Taking the limit κ → +∞ in (82) and working with the decompositions (12), (80), we find

0 = 2is′
+± +

∫
Γ
h∂nv+∂nv± ds and so s′

+± =
i

2

∫
Γ
h∂nv+∂nv± ds.

We get similar results when working with vε
−. Finally, this analysis shows that

Sε = S + εS′ +O(ε2)
where S is the threshold scattering matrix appearing in (13) and

S′ =
(
s′

++ s′
+−

s′
−+ s′

−−

)
with

s′
±± =

i

2

∫
Γ
h∂nv±∂nv± ds

s′
±∓ =

i

2

∫
Γ
h∂nv±∂nv∓ ds.

(83)

Now we come to the asymptotics of τ ε (which is by assumption a simple eigenvalue of Sε). Introduce
bε ∈ R2 \ {0} a corresponding eigenvector. For τ ε, bε, we work with the simplest ansatz

τ ε = τ + ετ ′ + . . . , bε = b + εb′ + . . . , (84)
where again the dots denote unessential higher order terms. Inserting the expansions (84) in the
relation Sεbε = τ εbε and identifying the powers in ε, we get

Sb = τb, Sb′ − τb′ = −(S′b − τ ′b). (85)
We deduce first that (τ, b) is an eigenpair of S. Besides, taking the inner product of the second
equality of (85) with b (which is real), we find

(Sb′ − τb′, b) = (b′,S⊤
b − τb) = (b′,Sb − τb) = 0

= −(S′b − τ ′b, b),
which gives

τ ′ =
(S′b, b)
(b, b) . (86)

Note that as expected, τ ′ is independent of the choice of the normalization made for bε. Since τ
belongs to the unit circle in the complex plane, there is ς ∈ [0; 2π) such that τ = eiς . Introduce
b+, b− ∈ R such that b = (b+, b−)⊤. Additionally, we assume that we have (b, b) = 1. Combining
(83) and (86), we obtain

τ ′ =
i

2

∫
Γ
h(∂nv)2 ds with v := b+ v+ + b− v−. (87)

But the function v admits the expansion
v = ψ−(b−w

in + (b+s+− + b−s−−)wout) + ψ+(b+w
in + (b+s++ + b−s−+)wout) + ṽ

= b−ψ−(win + eiςwout) + b+ψ+(win + eiςwout) + ṽ
(88)

with ṽ which decays exponentially as |x| → +∞. From (88), we infer that e−iς/2v is valued in R
because e−iς/2v − e−iς/2v is exponentially decaying at infinity. Therefore we have

τ ′ =
iτ

2

∫
Γ
h|∂nv|2 ds.

On the other hand, the unique continuation principle ensures that ∂nv can not vanish identically
on Γ. With these two properties, together with (87), finally we find the desired result (78). Our
approach above is rather formal but rigorous justification can be obtained classically by converting
the perturbation of the geometry into a perturbation in an equation set in a fixed domain. For
these techniques, we refer the reader for example to [9, 18] and [19, Chap. 7, §6.5].
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7 Simple examples of near field geometries where dim X† = 1

H

ℓ

1ΩH

H

ΣH

ℓ/2

ΩH
1/2

Figure 5: Geometries of ΩH (left) and ΩH
1/2 (right).

In this section, we explain how to exhibit simple geometries for which dim X† = 1. To proceed, we
adapt ideas used in [7, 8]. For ℓ fixed in (1; 2) and H > 1, we assume that Ω, that we denote now
ΩH , coincides with

S ∪ RH , where S = R × (−1/2; 1/2), RH := (−ℓ/2; ℓ/2) × (0;H),

outside of B(O, r0), the ball centred at O and of radius r0 > ℓ. Moreover, we assume that ΩH is
symmetric with respect to the (Oy) axis, i.e. that there holds

ΩH = {(−x, y) | (x, y) ∈ ΩH}

(see an example of such ΩH in Figure 5 left). Below, we use the objects introduced in Section 3.
We add a superscript H to indicate the dependence in H. As seen in (12), Problem (9) admits the
solutions

vH
+ = ψ−s

H
+−w

out + ψ+(win + sH
++w

out) + ṽH
+

vH
− = ψ−(win + sH

−−w
out) + ψ+s

H
−+w

out + ṽH
−

(89)

where sH
±±, sH

∓± ∈ C and where ṽH
± decay exponentially as |x| → +∞. By observing that the func-

tion (x, y) 7→ vH
− (−x, y) has the same expansion as vH

+ at infinity, by uniqueness of the definition
of the scattering matrix, we deduce that SH has the simple form

SH =
(

RH TH

TH RH

)
with RH = sH

++ = sH
−− and TH = sH

+− = sH
−+. (90)

Let us continue to exploit the property of symmetry of ΩH . Classically, define the half-waveguide

ΩH
1/2 := {(x, y) ∈ ΩH |x < 0}

and consider the problem with Dirichlet boundary conditions

∆U + π2U = 0 in ΩH
1/2

U = 0 on ∂ΩH
1/2

(91)

as well as the one with mixed boundary conditions

∆u+ π2u = 0 in ΩH
1/2

∂nu = 0 on ΣH := ∂ΩH
1/2 ∩

(
{0} × (0;H)

)
u = 0 on ∂ΩH

1/2 \ ΣH .

(92)

Here ∂n = ∂x on ΣH . Problems (91) and (92) admit respectively the solutions

UH = win + rH
Dw

out + ŨH

uH = win + rH
Nw

out + ũH
(93)
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where rH
D , rH

N ∈ C are uniquely defined and ŨH , ũH ∈ H1(ΩH
1/2). Due to conservation of energy,

one has
|rH

D | = |rH
N | = 1.

Direct inspection shows that if W is a solution of Problem (9) in ΩH , then we have W (x, y) =
(uH(x, y) + UH(x, y))/2 in ΩH

1/2 and W (x, y) = (uH(−x, y) − UH(−x, y))/2 in ΩH \ ΩH
1/2 (up

possibly to a term which is exponentially decaying at ±∞ if there are trapped modes). We deduce
that the scattering coefficients RH , TH appearing in (90) are such that

RH =
rH

N + rH
D

2 and TH =
rH

N − rH
D

2 . (94)

Computing the characteristic polynomial of SH and using the above relations, we find

det(SH − λ Id) = (λ− RH)2 − (TH)2 = (λ− (RH − TH))(λ− (RH + TH)) = (λ− rH
D )(λ− rH

N ).

We deduce that the eigenvalues of SH are exactly rH
D and rH

N . Let us study their behaviour with
respect to H → +∞.

We start with rH
D . When H → +∞, we are led to study the problem

∆U + π2U = 0 in Ω∞
1/2

U = 0 on ∂Ω∞
1/2

(95)

where Ω∞
1/2 := ⋃

H≥r0 ΩH
1/2 (Ω∞

1/2 is unbounded in the y direction). Due to the fact that ℓ ∈ (1; 2),
in the vertical branch of Ω∞

1/2, which is of width ℓ/2, no mode of (95) can propagate. For this
reason, Problem (95) admits a solution with the expansion

U∞ = ζl (win + r∞
Dw

out) + Ũ∞ (96)

where r∞
D ∈ C, Ũ∞ ∈ H1(Ω∞

1/2). Here ζl is a smooth cut-off function such that ζl = 1 for x < −2r0
and ζl = 0 for x > −r0. Note that by conservation of energy, we have |r∞

D | = 1. Then working
as in [42, Chap. 5, §5.6] (see also [7, Prop. 8.1]), one can show that the function UH introduced in
(93) is well-approximated by U∞ when H tends to +∞. More precisely, we can prove the estimate

∥UH − U∞∥H1(ΩH
1/2) ≤ C e−π

√
4/ℓ2−1H

where C > 0 is independent of H. From this, we infer that limH→+∞ rH
D = r∞

D . As a consequence,
if r∞

D ̸= −1, which is the case in general, we deduce that we have rH
D ̸= −1 for H large enough.

Now let us study the behaviour of rH
N as H → +∞. When H → +∞, we are led to study

the problem
∆u+ π2u = 0 in Ω∞

1/2
∂nu = 0 on Σ∞ := ∂Ω∞

1/2 ∩
(
{0} × (0;H)

)
u = 0 on ∂Ω∞

1/2 \ Σ∞.

(97)

It admits solutions of the form

u∞
l = ζl (win + r∞

N wout) + ζt t
∞
N wout + ũ∞

l

u∞
t = ζl t

∞
N wout + ζt (win

t + r̃∞
N wout

t ) + ũ∞
t

(98)

where r∞
N , r̃∞

N , t∞N ∈ C and ũ∞
l , ũ∞

t ∈ H1(Ω∞
1/2). Here

wout
t (x, y) = β

−1/2
ℓ eiβℓy

√
2/ℓ cos(πx/ℓ), win

t (x, y) = β
−1/2
ℓ e−iβℓy

√
2/ℓ cos(πx/ℓ)

23



with βℓ := π
√

1 − 1/ℓ2 > 0. Additionally, ζl is the one introduced in (96) while ζt is a smooth
cut-off function such that ζt = 1 for y ≥ 2r0 and ζt = 0 for y ≤ r0. Let us look for an expansion
of uH of the form

uH = u∞
l + a(H)u∞

t + . . . (99)

where a(H) is an unknown function and the dots correspond to a small remainder. Exploiting the
condition uH = 0 at y = H, we deduce that we must impose

t∞N e
iβℓH + a(H)(e−iβℓH + r̃∞

N e
iβℓH) = 0.

Assuming that |r̃∞
N | ≠ 1 ⇔ t∞N ̸= 0, this gives

a(H) =
− t∞N

r̃∞
N + e−2iβℓH

.

Inserting the expression of a(H) in (99) and looking at the behaviour as x → −∞, we get

rH
N = rasy

N (H) with rasy
N (H) := r∞

N −
(t∞N )2

r̃∞
N + e−2iβℓH

+ . . . .

More precisely, one can establish the estimate |rH
N − rasy

N (H)| ≤ C e−c H for some constants c,
C > 0 independent of H. Exploiting that the scattering matrix associated with the solutions (98)
is unitary and working with the Möbius transform as in [7, §3.2], one can show that H 7→ rasy

N (H)
runs periodically on the unit circle as H → +∞. Since on the other hand one can prove that
H 7→ rH

N runs continuously on the unit circle1, we deduce that for certain H, rH
N passes (exactly)

through the point of affix −1.

We summarize the above results in the following statement.

Proposition 7.1. Assume that Ω∞
1/2 is such that r∞

D ̸= −1, t∞N ̸= 0. Then there exists a sequence
(Hn)n satisfying

lim
n→+∞

Hn = +∞ and lim
n→+∞

Hn+1 −Hn =
π

βℓ
=

1√
1 − 1/ℓ2

(the sequence is unbounded and almost periodic) such that the scattering matrix SHn in the geometry
ΩHn has an eigenvalue equal to −1.

Remark 7.2. Note that by adapting the above procedure, we could consider cases where ℓ > 2. It
would also provide geometries where −1 is an eigenvalue of SH .

8 Gaps in the particular case of classical Kirchhoff and anti-
Kirchhoff transmission conditions

In this section, we wish to come back to the possible situation where Ω is such dim X† = 1 and
where we must impose classical Kirchhoff or anti-Kirchhoff transmission conditions in the model
problem (48) of order ε0. With the notation of (44), this happens when θ = π/4 or θ = 3π/4. Note
that showing the existence of such geometries is not obvious but might be possible. As explained
after (54), in this case, after a shift of π2/ε2, the bands of the model problem cover the interval
[π2/ε2; +∞). Our goal is to show that in general however, there are (short) gaps in the spectrum
of the exact operator Aε above π2/ε2. In other words, we want to prove that in general lungs, that
is, spectral bands, do not touch in the breathing process when perturbing the near field geometry

1Observe that this is not directly a consequence of Proposition 6.2 because ∂ΩH
1/2 has some corner points. However

this can be shown by using the tools presented in [28, Chap. 2, 4, 5].
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around such a Ω. To establish this result, we need to construct a refined model involving terms of
order ε. This will be done by adapting some techniques presented in [32, 4] (see also [41] for an
application to a problem involving the Neumann Laplacian).

To present the analysis, we first introduce a few particular functions defined in Ω. To make
things simple, we assume that Ω is symmetric with respect to the (Oy) axis, i.e. such that
Ω = {(−x, y) | (x, y) ∈ Ω}, and that there holds Xtr = {0}. First we focus our attention on the
case dim X† = 1 and θ = π/4 (Kirchhoff transmission conditions). By definition of these two pa-
rameters, then the vector (1, 1)⊤ is an eigenvector of the threshold scattering matrix S associated
with the eigenvalue −1. Exploiting this property, we find that the functions v+, v− introduced in
(12) satisfy

v+ + v− = ψ−(win + (s+− + s−−)wout) + ψ+(win + (s++ + s−+)wout) + ṽ+ + ṽ−

= ψ−(win − wout) + ψ+(win − wout) + ṽ+ + ṽ−

= ψ−w0 + ψ+w0 + ṽ+ + ṽ−.

This shows that Xbo contains a function admitting the expansion

U0 =
∑
±
ψ±w0 + Ũ0

with Ũ0 ∈ H1
0(Ω). Observing that (x, y) 7→ U0(x, y) − U0(−x, y) belongs to Xtr, since Xtr = {0},

we infer that U0 is even with respect to (Oy). Besides, the general results presented for example
in [42, Chap. 5] guarantee that the space X introduced in (14) of solutions of (9) which are at most
affine at infinity is of dimension two. Let

U =
∑
±
ψ±(C1

±w1 + C0
±w0) + Ũ ,

with C1
±, C0

± ∈ C and Ũ ∈ H1
0(Ω), be an element of this space. Integrating by parts in the identity

0 =
∫

ΩR
(∆U + π2U)U0 − U(∆U0 + π2U0) dz,

where ΩR = {(x, y) ∈ Ω | |x| < R}, and taking the limit R → +∞, we get C1
+ = −C1

−. Since
Xbo ⊂ X is of dimension one, we deduce that X contains exactly one function with the expansion

U1 =
∑
±

±ψ±(w1 +mΩw0) + Ũ1 (100)

where mΩ ∈ R and Ũ1 ∈ H1
0(Ω). Classically mΩ is called the polarization coefficient. Observing

that (x, y) 7→ U1(x, y) + U1(−x, y) belongs to Xtr, since Xtr = {0}, we infer that U1 is odd with
respect to (Oy). Finally, simple manipulations allow one to show that there is a function U2
satisfying

−∆U2 − π2U2 = U0 in Ω
U2 = 0 on ∂Ω

and admitting the expansion

U2 =
∑
±
ψ±(−w2

1
2 +MΩw1 + CΩw0) + Ũ2 (101)

with MΩ, CΩ ∈ R and Ũ2 ∈ H1
0(Ω). Note that (x, y) 7→ U2(x, y)−U2(−x, y) belongs to Xtr because

U0 is even with respect to the (Oy) axis. Therefore U2 is also even with respect to the (Oy) axis.
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Now pick η ∈ [0; 2π) and introduce uε(·, η) an eigenfunction of (5) associated with some eigen-
value Λε(η). In the sequel, to simplify, we do not indicate the dependence on η. As a refined
approximation of (24) when ε → 0+, we consider the expansion

Λε = ε−2π2 + ν+ εΛ′ + . . . , uε(z) = (γ(x) + εγ′(x) + ε2(γ′′(x) +V (x, y/ε)))φ(y/ε) + . . . . (102)

From what has been obtained in §5.2, we know that (ν, γ) must be an eigenpair of (48). Let us
observe that for θ = π/4, Problem (48) simplifies into

∂2
xγ + νγ = 0 in I = (−1/2; 1/2)
γ(−1/2) = eiηγ(+1/2)

∂xγ(−1/2) = eiη∂xγ(+1/2).
(103)

Solving it, we get

ν = (η + 2πk)2 for some k ∈ Z and γ(x) = ei(−η−2πk)x. (104)

Next we have to identify the terms of order ε in (102). First we find that we must have

∂2
xγ

′ + νγ′ = −Λ′γ in I− ∪ I+

γ′(−1/2) = eiηγ′(+1/2)
∂xγ

′(−1/2) = eiη∂xγ
′(+1/2).

(105)

We still have to impose transmission conditions at the origin. Let us find them. In a neighbourhood
of O, we look for an expansion of uε of the form

uε(z) = U0(z/ε) + ε(a1U1(z/ε)) + ε2(a2U2(z/ε)) + . . . (106)

where a1, a2 are some constants to determine. As x → 0±, we have the Taylor expansions

γ(x) = 1 + x∂xγ(0) +
x2

2 ∂2
xγ(0) +O(x3), γ′(x) = γ′(0±) + x∂xγ

′(0±) +O(x2)

so that we can write, as x → 0±,

γ(x) + εγ′(x) + ε2γ′′(x) = 1 + ε (γ′(0±) +
x

ε
∂xγ(0)) + ε2 (γ′′(0±) +

x

ε
∂xγ

′(0±) +
x2

ε2 ∂
2
xγ(0)) + . . . .

By matching this far field expansion with the inner field expansion (106), from the definition of
U1 and U2 (see (100), (101)), we see that we must take a1 = ∂xγ(0) and a2 = −∂2

xγ(0) in (106).
Using in particular that −∂2

xγ(0) = νγ(0), we deduce that we must complement (105) with the
conditions

γ′(0+) − γ′(0−) = 2mΩ∂xγ(0)
∂xγ

′(0+) − ∂xγ
′(0−) = −2MΩ∂

2
xγ(0) = 2νMΩγ(0).

(107)

If ν = ν(η) is a simple eigenvalue of (103), which happens if and only if η /∈ {0, π} then Λ′ in
(105) is computed through the compatibility condition. More precisely, multiplying (105) by γ,
integrating twice by parts and exploiting (107), we obtain

Λ′ = 2mΩ|∂γ(0)|2 − 2νMΩ|γ(0)|2 = 2ν(mΩ −MΩ). (108)

Thus we see that by taking into account the terms of order ε, compared to the model of order
ε0, the dispersion curves move up or down depending on the value of mΩ − MΩ (note that this
quantity depends only on the inner field geometry Ω).

Now we turn our attention to the case where ν = ν(η) is a double eigenvalue of (103). To set
ideas, we assume that η = π so that according to (104), there holds ν(η) = (2k + 1)2π2 for some
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η
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η
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Figure 6: Schematic picture of the dispersion curves of the models of orders ε0 (left) and ε (right).
On the right picture, the projection of the white rectangles on the vertical axis corresponds to the
gaps of the model of order ε.

q ∈ N (see the circles in Figure 6 left). Our study above (see in particular formula (108)) does not
allow us to understand precisely enough the behaviour of the exact dispersion curves at the point
(π, ν(π)). Actually here we expect that they present a rapid variation. To capture it, following
[32]2, let us impose some dependence of the Floquet parameter with respect to ε. More precisely,
for t ∈ R, let us work with η = ηε = π + εt. Denote by Λε

±(ηε), with Λε
−(ηε) ≤ Λε

+(ηε), the two
eigenvalues of (5) closest to Λ0 := (2k + 1)2π2 and uε

±(z, ηε) corresponding eigenfunctions. Our
goal is to obtain an expansion of Λε

±(ηε), uε
±(z, ηε) as ε tends to zero (note that both the geometry

and the Floquet parameter depend on ε). We consider the ansatz

Λε
±(ηε) = Λ0 + εΛ′

±(t) + . . .

uε
±(z, ηε) = (γ±(x, t) + εγ′

±(x, t))φ(y/ε) + . . .

with γ±(x, t) = a± e
−i

√
Λ0x + b± e

i
√

Λ0x, the constants a±, b± being to determine. As in (105),
(107), first we find that Λ′

±(t), γ′
±(x, t) must satisfy

∂2
xγ

′
± + Λ0γ′

± = −Λ′
±(t)γ± in I− ∪ I+

γ′
±(0+) − γ′

±(0−) = 2mΩ∂xγ±(0)
∂xγ

′
±(0+) − ∂xγ

′
±(0−) = 2Λ0MΩγ±(0).

(109)

Concerning the quasi-periodic boundary conditions, exploiting that ηε = π + εt and writing a
Taylor expansion (εt is small), identifying the terms of order ε, we obtain

γ′
±(1/2, t) + γ′

±(−1/2, t) = −itγ±(1/2, t)
∂xγ

′
±(1/2, t) + ∂xγ

′
±(−1/2, t) = −it∂xγ±(1/2, t).

(110)

In order the problem (109)–(110) for γ′
+ to have a solution, two compatibility conditions must be

satisfied. They are obtained by multiplying (109) by e±i
√

Λ0x and integrating by parts. At the
end, we find that the quantities Λ′

+(t), u+ := (a+, b+)⊤ solve

M (t)u+ = Λ′
+(t)u+ with M (t) := 2

(
t
√

Λ0 + Λ0(MΩ −mΩ) Λ0(MΩ +mΩ)
Λ0(MΩ +mΩ) −t

√
Λ0 + Λ0(MΩ −mΩ)

)
.

2For another approach, one may consult the proof of [27, Theorem 2] where the authors follows a Lyapunov-
Schmidt reduction strategy.
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Similarly, in order the problem (109)–(110) for γ′
− to have a solution, we get that Λ′

−(t), u− :=
(a−, b−)⊤ must satisfy

M (t)u− = Λ′
−(t)u−.

Here, implicitly we have defined Λ′
+(t) (resp. Λ′

−(t)) as the largest (resp. smallest) eigenvalue of
M (t). A direct calculus yields

Λ′
±(t) = 2Λ0(MΩ −mΩ) ± 2Λ0

√
t2/Λ0 + (MΩ +mΩ)2.

Therefore we have
Λ′

+(t) − Λ′
−(t) = 4Λ0

√
t2/Λ0 + (MΩ +mΩ)2.

Thus if MΩ +mΩ ̸= 0, we see that there holds Λ′
+(t) − Λ′

−(t) > 0 for all t ∈ R. We infer that the
two dispersion curves of the model of order ε0 which form a “cross” at the point (π,Λ0) (see the
circles on Figure 6 left) move away when considering the model of order ε. As a consequence a gap
of width O(ε) opens as in Figure 6 right. We summarize this result in the following statement.

Proposition 8.1. Assume that the domain Ω is symmetric with respect to the (Oy) axis. Assume
also that dim X† = 1 and θ = π/4 in (44). If additionally the constants mΩ, MΩ introduced in
(100), (101) are such that MΩ +mΩ ̸= 0, then for ε small enough the operator Aε has some gaps
above π2/ε2.

If MΩ +mΩ = 0, we can not conclude from this study and it is necessary to compute higher order
terms in the asymptotics. Roughly speaking, there is no gap above π2/ε2 in the spectrum of the
exact operator Aε if for any order of the model, the corresponding dispersion curves cross. This
happens when Ω is the straight strip (see the discussion of Remark 5.3) but seems very rare.

Above we focused our attention on the case of classical Kirchhoff transmission conditions at the
origin (θ = π/4 in (48)). The situation θ = 3π/4, which corresponds to anti-Kirchhoff transmission
conditions, is also interesting. Then (48) writes

∂2
xγ

± + νγ± = 0 in I±

γ−(−1/2) = eiηγ+(+1/2) γ+(0) = −γ−(0)
∂xγ

−(−1/2) = eiη∂xγ
+(+1/2) ∂xγ

+(0) = −∂xγ
−(0).

Solving this problem, we get ν = (η + π(2k + 1))2 for some k ∈ Z with γ±(x) = ±ei(−η−π(2k+1))x.
As a consequence, the spectral bands of the model of order ε0 cover the interval [π2/ε2; +∞) (after
the usual shift by π2/ε2). However again one can show that in general there are some gaps in the
spectrum of the exact operator Aε. To proceed, one works as above when θ = π/4. The first step
consists in showing the existence of functions V0, V1 solving (9) and admitting the expansions

V0 =
∑
±

±ψ±w0 + Ṽ0 V1 =
∑
±
ψ±(w1 +mΩw0) + Ṽ1

with a new mΩ ∈ R and Ṽ0, Ṽ1 ∈ H1
0(Ω). Then we establish that there is V2 satisfying

−∆V2 − π2V2 = V0 in Ω
V2 = 0 on ∂Ω

which decomposes as

V2 =
∑
±

±ψ±(−w2
1

2 +MΩw1 + CΩw0) + Ṽ2,

with some new MΩ, CΩ ∈ R and Ṽ2 ∈ H1
0(Ω). With these three functions, then we can adapt the

analysis which led to Proposition 8.1.
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9 Numerics
In this section, we give numerical illustrations of some of the results above. First, we use what
has been done in Section 7 to provide examples of geometries where X† ̸= {0}. We work in the
waveguide

ΩH = S ∪ RH with S = R × (−1/2; 1/2) and RH = (−ℓ/2; ℓ/2) × (0;H). (111)

Numerically, we approximate the functions vH
± introduced in (89). To proceed, we truncate the

domain ΩH at x = ±L with L = 2 and impose the complex Robin conditions

±
∂v

∂x
=

1
L− i

v at x = ±L. (112)

We emphasize that (112) is an approximated transparent condition. Indeed the function wout

defined in (10) satisfies it exactly but the vH
± only up to an error which decays when L increases.

For more details concerning this approach, we refer the reader to [6, §6.2]. Then we work with a
standard P2 finite element method by using the library FreeFem++ [16]. This allows us to get an
approximation of the matrix SH introduced in (90).

In Figure 7 left, we take ℓ = 1.6 and make H vary in [1.5; 6]. Since SH is unitary, its two
eigenvalues are located on the unit circle. Therefore, we only display the phase of the two eigen-
values. In accordance with what has been obtained in Section 7 and in particular the result of
Proposition 7.1, we observe that one eigenvalue tends to a constant on the unit circle while the
other rotates continuously and counter-clockwise (which is coherent with Proposition 6.2) when H
increases. Additionally, we indeed find that one eigenvalue passes through −1 almost periodically,
the period being equal to

π

βℓ
=

1√
1 − 1/ℓ2

≈ 1.281. (113)

Numerically, we obtain that −1 is an eigenvalue of SH for

H ∈ {1.764, 3.047, 4.329, 5.612}. (114)

Note that the period (113) is well respected. In Figure 7 right, we display the same quantities but
this time we work in the geometry ΩH defined in (111) with ℓ = 1.9. As expected, we observe that
the rotating eigenvalue passes more frequently through −1.
In the next series of numerical experiments, we compute the spectrum of Problem (5) set in the
thin periodicity cell ωε. The ωε we consider is constructed from ΩH as in (111) with ℓ = 1.6 and
for different values of H. We remind the reader that the way ωε is defined from ΩH appears in
(1). To solve (5), classically we rewrite it as a problem with periodic boundary conditions at ∂ωε

±.
Again we work with a P2 finite element method. The matrices are constructed with FreeFem++
while the resolution of the eigenvalue problem is made with Matlab3. Since the spectrum of (5) is
2π-periodic in η, we compute it for η ∈ [0; 2π].

In Figure 8, we represent the first six eigenvalues of (5) with respect to η ∈ [0; 2π] for H = 2.5
and ε = 0.1. In other words, we display the dispersion curves η 7→ Λε

p(η), for p = 1, . . . , 6. The
red dashed lines indicate the value of the normalized threshold π2/ε2. In Figure 9, we compute
the same quantities but this time with ε = 0.02. In accordance with the result of Theorem 3.5,
we observe that the dispersion curves below π2/ε2 (in magenta) are extremely flat, generating
extreminly short spectral bands Υε

p. Concerning, the bands located above π2/ε2 (in blue), also in
agreement with Theorem 3.5, we note that they get shorter when ε gets smaller. As a consequence,
the size of the gaps between the bands increases as ε tends to zero. If one looks closely at the size
of the gap between Υε

N•+m and Υε
N•+m+1 (here N• = 2), one finds a value which corroborates the

(2m+ 1)π2 predicted by the theory (see the discussion after Theorem 3.5).
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Figure 7: Phase of the two eigenvalues of the threshold scattering matrix SH defined in (90) with
respect to H ∈ [1.5; 6]. The vertical dashed lines correspond to the values of H for which the phase
of one eigenvalue is equal to π (then the corresponding eigenvalue is equal to −1). Left and right
results are obtained respectively for ℓ = 1.6 and ℓ = 1.9.

Figure 8: Left: first six eigenvalues of (5) with respect to η ∈ [0; 2π]. Right: zoom on the first
eigenvalues larger than π2/ε2. The red dashed lines indicate the value of the normalized threshold
π2/ε2. Here H = 2.5 and ε = 0.1.

Figure 9: Same quantities as in Figure 8 but with ε = 0.02.

In Figure 10, we represent the same quantities as in Figure 9 but this time with H = 3.05, i.e.
3https://mathworks.com
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with some H slightly larger than one of the particular H⋆ appearing in (114) such that SH⋆ has
an eigenvalue equal to −1. In agreement with the result of Theorem 6.1, we note that the spectral
bands above π2/ε2 are larger than in the case H = 2.5. Moreover, we observe that one thin spectral
band (in magenta) has appeared below π2/ε2. By further increasing H, this spectral band will
dive below π2/ε2, stops breathing and so dies to become extremely thin.

Figure 10: Same quantities as in Figure 9 but with H = 3.05.

Finally in Figures 11, 12, we display the spectrum of Aε with respect to H ∈ [1.5; 3.5]. Practically,
we select fifty values of H ∈ [1.5; 3.5] and for each of them, compute numerically the spectrum
of (5) with respect to η ∈ [0; 2π]. This gives us the spectral bands Υε

p introduced in (6) that we
display on the vertical line corresponding to H. On these figures, the vertical dashed lines marks
the H⋆ appearing in (114) such that SH⋆ has an eigenvalue equal to −1. In Figure 11, we clearly
see the extremely thin spectral bands (the ones in magenta) appearing at the H⋆. Figure 12 on
the other hand illustrates the phenomenon of breathing of the spectrum when inflating the near
field geometry: when increasing H around H⋆, the spectral bands above π2/ε2 expand and then
shrink. Note that the results we get are in agreement with the model obtained in Section 6 (see
in particular the numerics of Figure 3). We observe some small differences between the results of
Figures 3 and 12 around the H⋆ however. We do not really know if they are due to the fact that ε
is not small enough (numerically, it is difficult to work with tiny ε because computations become
heavy) or are the consequences of numerical errors (we already work at relatively high frequency).
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Figure 11: Spectrum of Aε with respect to H ∈ [1.5; 3.5]. The horizontal red dashed line cor-
responds to the normalized threshold π2/ε2. The vertical dashed lines marks the values of H⋆

appearing in (114) such that SH⋆ has an eigenvalue equal to −1.

Figure 12: Same quantities as in Figure 11 with a zoom on the spectral bands closed to π2/ε2.
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