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A strictly Bayesian model consists of a set of possible data distributions and a prior distribution over that set. If there are other models available, how well they predicted the data may be compared using Bayes factors. If not, a model may be checked using a Bayesian p-value such as a prior predictive p-value or a posterior predictive p-value. However, recent criticisms of ordinary p-values apply with equal force against Bayesian p-values. Many of those criticisms are overcome by e-values, martingales interpreted as the amount of evidence discrediting a null hypothesis, measured as a payoff for betting against it.

This paper proposes the use of e-values to check Bayesian models by testing their prior predictive distributions as null hypotheses. Two generally applicable methods for checking strictly Bayesian models are provided. The first method calibrates Bayesian p-values by transforming them into Bayesian e-values. The second method uses Bayes factors or their approximations as Bayesian e-values. For example, a corrected Bayesian information criterion may be applicable even for small samples.

A robust Bayesian model, a set of strictly Bayesian models, may be checked using various functions that use the e-values of those strictly Bayesian models. Other functions measure how much the data support a Bayesian model. Relations to possibility theory are discussed.

Introduction

Imagine that before seeing the next data set, you may pay $1 in return for one of these payoffs that quantify the extent to which the null hypothesis is discredited:

1. Test at a chosen significance level α, and bet that the p-value will be less than α. The payoff is $1 p<α /α, that is, $1/α if in fact p < α and 0 otherwise.

2. Choose a calibration function cal that satisfies 1 0 cal (p) d p ≤ 1 to transform p into cal (p), called an "e-value" [START_REF] Vovk | E-values: Calibration, combination and applications[END_REF][START_REF] Ramdas | Game-Theoretic Statistics and Safe Anytime-Valid Inference[END_REF][START_REF] Grünwald | Safe testing[END_REF] or "betting score" (Shafer, 2021b). The payoff is $ cal (p).

In this betting framework, while p itself does not directly measure evidence against the null hypothesis, either of the above payoffs can do so. That is because martingale theory indicates that your expected payoff in either case is no more than the $1 you invested if the null hypothesis is true [START_REF] Shafer | Game-Theoretic Foundations for Probability and Finance[END_REF].

An important advantage of $ cal (p) is that it, unlike $1 p<α /α, does not require the specification of α [START_REF] Shafer | Game-Theoretic Foundations for Probability and Finance[END_REF]Shafer, 2021b). While p-values are sometimes interpreted as measures of the strength of evidence against the null hypothesis, they in fact only have a clear, uncontroversial interpretation when compared to a significance threshold that is specified before observing the data [START_REF] Schervish | P values: What they are and what they are not[END_REF][START_REF] Royall | Statistical Evidence: A Likelihood Paradigm[END_REF][START_REF] Mayo | Statistical significance and its critics: practicing damaging science, or damaging scientific practice?[END_REF]. By contrast, e-values have a clear interpretation in terms of likelihood ratios or other Bayes factors (Shafer, 2021b, §2). At the same time, e-values require neither a full likelihood function (Grünwald et al., 2023, §9) nor the prior distributions conditional on the null and alternative hypotheses, both of which would be needed in the classical Bayesian derivation of Bayes factors. In the above scenario, a calibration function cal and a p-value are enough to generate cal (p), a Bayes factor recording the evidential support for an alternative hypothesis over that for the null hypothesis in the way that is valid in the betting framework.

The purpose of this paper is to extend the e-value concept from a tool for testing null hypotheses to a diagnostic for checking (in the sense of criticizing or evaluating) Bayesian models. Model checking, long recognized in theory as desirable even from a subjective Bayesian viewpoint [START_REF] Lad | Operational Subjective Statistical Methods: A Mathematical, Philosophical, and Historical Introduction[END_REF][START_REF] Lindley | Understanding Uncertainty[END_REF], has become an established component of today's practice of Bayesian data analysis [START_REF] Conn | A guide to Bayesian model checking for ecologists[END_REF][START_REF] Nott | Checking for prior-data conflict using prior-to-posterior divergences[END_REF][START_REF] Gelman | The Development of Bayesian Statistics[END_REF][START_REF] Shamsudheen | Should we test the model assumptions before running a model-based test?[END_REF]. 2. The exact computation of a Bayes factor requires the specification of a prior distribution over all unknown parameters not only conditional on the model checked but also conditional on an alternative model for comparison. That requirement tends to make Bayes factors sensitive to arbitrary choices about prior distributions (Gelman and Yao, 2020, §6). Further, when Bayes factors are interpreted as constants of proportionality between posterior and prior odds, they require the presence of a Bayesian model with a nonzero prior probability that it is true, requiring the doubtful concept of a true model (Gelman and Yao, 2020, §8). Arguably, for coherent interpretation, such a prior probability must not only exist but also must be known [START_REF] Lavine | Bayes factors: What they are and what they are not[END_REF]. Then the posterior probability of the Bayesian model can be computed for use in Bayesian model selection or Bayesian model averaging [START_REF] Wasserman | Bayesian model selection and model averaging[END_REF][START_REF] Claeskens | Model Selection and Model Averaging[END_REF][START_REF] Ando | Bayesian Model Selection and Statistical Modeling[END_REF]. Unfortunately, the prior probability needed for that is often unavailable in practice [START_REF] Le | A Bayes Interpretation of Stacking for M-Complete and M-Open Settings[END_REF][START_REF] Yao | Using stacking to average Bayesian predictive distributions (with Discussion)[END_REF].

3. Other methods of Bayesian model checking do not have the ability of e-values to continue checking a model as new data sets become available and stopping at any time without the danger of sampling to a foregone conclusion (Shafer, 2021b, § §2.1.2,4.2). That feature of evalues, formally defined in terms of a stochastic process that is a valid e-value at every time in its history, is called "safe anytime-valid inference" [START_REF] Ramdas | Game-Theoretic Statistics and Safe Anytime-Valid Inference[END_REF]. In the archetypal case, the product of independent e-values is an e-value [START_REF] Vovk | E-values: Calibration, combination and applications[END_REF]. This lets researchers continue to check a Bayesian model every time it is used to analyze another data set while taking into account the results of previous model checks.

Two special cases of the Bayesian e-value are considered in the rest of the paper, with each section corresponding to a broad class of potential applications. The first case is the most general: just as a p-value can be transformed into an e-value for hypothesis testing using a calibration function cal, a Bayesian p-value can be transformed into a Bayesian e-value for model checking (Section 3).

The second case requires Bayesian models, in addition to the model being checked, to be specified enough to compute their likelihoods, the probability densities they assign to the data. If there is more than one such alternative model to be compared to the checked model, then this case also needs either a prior distribution over those alternative models or a method of approximating a marginal likelihood from averaging them with respect to an approximate prior. The resulting Bayes factor or approximate Bayes factor may serve as a Bayesian e-value without requiring presence of a Bayesian model with nonzero prior probability of its truth (Section 4).

Sections 3-4 provide methods for checking a strictly Bayesian model, one corresponding to a single prior distribution. Section 5 extends those methods in order to check and/or support a robust Bayesian model, one equivalent to a set of multiple strictly Bayesian models.

Workflows emerging from the two methods and their extensions are provided as guidelines in Section 6. Appendix A has conditional versions of some of the possibilistic functions introduced.

A framework of model checking as hypothesis testing

2.1 (Non-Bayesian) p-values and e-values for hypothesis testing Unless indicated otherwise, all sets are non-empty. Without loss of generality, terms will be defined in the special case of data and parameter probability distributions that are absolutely continuous with respect to Lebesgue measures. Accordingly, all probability density functions are Radon-Nikodym derivatives relative to Lebesgue measures. Obvious generalizations are left implicit. For example, in the case of discrete data, counting measures may be used in place of Lebesgue measures, resulting in probability density functions that are probability mass functions, and the integrals may be replaced with sums. A distribution is a probability measure or its probability density function, as is clear from the context. Let F be a set of probability density functions on a sample space X , and let F 0 denote a subset of F. The observed sample x ∈ X is considered as a realization of a random sample X drawn from an unknown distribution f data ∈ F. The null hypothesis H 0 : f data ∈ F 0 , is a composite null hypothesis if F 0 contains more than one distribution but is a simple null hypothesis if F 0 has only one member.

A random variable P on X with values in [0, 1] is a p-value that tests H 0 if f H 0 ∈ F 0 and 0 < α < 1 imply that Pr f H 0 (P ≤ α) ≤ α, where Pr f H 0 (P ≤ α) = x :P(x )≤α f H 0 (x ) d x , the probability that P ≤ α according to f H 0 . That generalizes the ideal case in which P is uniformly distributed between 0 and 1 under H 0 , for then Pr f H 0 (P ≤ α) = α. Analogously, a random variable The brute force approach would be to assign F 0 = f 0,σ : σ > 0 , in which case H 0 : µ = 0 would be a composite null hypothesis due to the nuisance parameter σ. Let p denote the p-value from a single-sample t-test with unknown variance. Since the distribution of P is uniform between 0 and 1 for X ∼ f 0,σ for any σ, P meets the condition of a p-value for F 0 = f 0,σ : σ > 0 .

E on X with values in [0, ∞] is an e-value that tests H 0 if ⟨E ⟩ f H 0 ≤ 1 for every f H 0 ∈ F 0 , where ⟨E ⟩ f H 0 = E (x ) f H 0 (x ) d x ,
An equivalent approach is to instead eliminate σ. Let f H 0 denote the Student t distribution with n -1 degrees of freedom. Then, since P is uniformly distributed between 0 and 1 if the t-statistic's probability density is f H 0 , P meets the condition of a p-value for F 0 = f H 0 . As f H 0 is the only member of F 0 , H 0 : µ = 0 is a simple null hypothesis.

Regardless of whether the null hypothesis is simple or composite, the p-value can be transformed into an e-value testing the same null hypothesis using e = p -1/2 -1 or another calibration function, as seen in Section 3. Another method of constructing an e-value to test H 0 : µ = 0 is explained by Ramdas et al. (2023, §4.1.2). ▲ Remark 1. Some applications require approximate p-values or approximate e-values that do not quite satisfy the above definitions. With n as the sample size, an asymptotic e-value is required to and Ramdas, 2022, §5.2). By analogy, an Although a family-prior pair is commonly called a "Bayesian model" (e.g., [START_REF] Hill | A general framework for model-based statistics[END_REF][START_REF] Held | Approximate Bayesian model selection with the deviance statistic[END_REF][START_REF] Dawid | Bayesian Model Selection Based on Proper Scoring Rules[END_REF], that term is generalized here in analogy with simple and composite null hypotheses. A Bayesian model is a set of family-prior pairs. A Bayesian model is composite if it contains more than one pair but is simple if it contains only a single pair. Whereas the use of a simple Bayesian model is often considered "strictly Bayesian" or "fully Bayesian," the use of a composite Bayesian model corresponds to "robust Bayesian" analyses, traditionally with sensitivity considerations (e.g., [START_REF] Jozani | Bayesian and Robust Bayesian analysis under a general class of balanced loss function[END_REF][START_REF] Corani | Robust Bayesian model averaging for the analysis of presenceabsence data[END_REF][START_REF] Walter | Bayesian nonparametric system reliability using sets of priors[END_REF].

satisfy lim n→∞ ⟨E ⟩ f H 0 ≤ 1 instead of ⟨E ⟩ f H 0 ≤ 1 (Wang
asymptotic p-value is required to satisfy lim n→∞ Pr f H 0 (P ≤ α) ≤ α instead of Pr f H 0 (P ≤ α) ≤ α.

Bayesian p-values and Bayesian e-values for model checking

Let F M denote the set of the prior predictive distributions of the family-prior pairs in a Bayesian 

model M . Since F M ⊂ F, it induces the null hypothesis H M : f data ∈ F M .
cal (p) = p -1/2 -1 (1) 
for its agreement with traditional grades of evidence, and [START_REF] Greenland | Divergence versus decision p-values: A distinction worth making in theory and keeping in practice: Or, how divergence p-values measure evidence even when decision p-values do not[END_REF] favors the "natural S -value" or "surprisal"

cal (p) = -ln p (2)
for its connection to information theory; Bickel (2023a) provides a comparison.

It follows that any p-to-e calibrator cal transforms a Bayesian p-value into a Bayesian e-value, whether or not they are asymptotic in the sense of Remark 1. In terms of the definitions of Section 2, that means that if P is a Bayesian p-value checking model M , then cal (P ) is a Bayesian e-value checking model M .

Prior predictive p-values and prior predictive e-values

A special case of a Bayesian p-value has roots at least as far back as [START_REF] Box | Sampling and Bayes' inference in scientific modelling and robustness[END_REF]. Let τ denote a real-valued function on X × Θ. Then, with f (x |θ) π (θ) dθ as the prior predictive distribution from the family-prior pair ({f (x |θ) : θ ∈ Θ} , π),

p = Pr f (x |θ)π(θ)dθ (τ (X , θ) ≥ τ (x , θ)) = τ (y,θ)≥τ (x ,θ) f (y |θ) d y π (θ) dθ (3)
is a prior predictive p-value that checks the family-prior pair ({f (x |θ) : θ ∈ Θ} , π). Under general continuity conditions, the corresponding P would be uniform between 0 and 1 if the data were sampled from f (x |θ) after sampling θ from π. Therefore,

Pr f (x |θ)π(θ)dθ (P ≤ α) = α ≤ α,
qualifying p as a p-value testing H M as a null hypothesis, where

M = {({f (x |θ) : θ ∈ Θ} , π)} .
That in turn qualifies p as a Bayesian p-value checking the simple model M .

Consequently, given any calibrator cal, the calibrated Bayesian p-value cal (p) is a Bayesian e-value checking {({f (x |θ) : θ ∈ Θ} , π)}. Since p is a prior predictive p-value, cal (p) is called a

prior predictive e-value.

Example 2. Let Φ σ be the cumulative distribution function of a zero-mean normal variate with standard deviation σ, and let z be the observed value of statistic Z that would have a standard normal distribution under the null hypothesis. Then the usual (non-Bayesian) two-sided p-value is

p H 0 :σ=1 = Pr Z 2 ≥ z 2 |σ = 1 = 2 (1 -Φ 1 (|z |)) .
Let Bern (π (0)) denote the Bernoulli distribution with prior probability π (0) of the null hypothesis (σ = 1) and prior probability 1 -π (0) of the alternative hypothesis (σ = 2). With ϕ σ as probability 

p π(0) = Pr ({ϕ1,ϕ2},Bern(π(0))) Z 2 ≥ z 2 = Pr (σ = 1) Pr Z 2 ≥ z 2 |σ = 1 + Pr (σ = 2) Pr Z 2 ≥ z 2 |σ = 2 = 2 (π (0) (1 -Φ 1 (|z |)) + (1 -π (0)) (1 -Φ 2 (|z |))) = 2 π (0) p H 0:σ=1 + (1 -π (0)) 1 -Φ 2 Φ -1 1 1 -p H 0 :σ=1 /2 . ( 4 
)
For a generalization to other Bayesian models, see [START_REF] Bickel | Null hypothesis significance testing defended and calibrated by Bayesian model checking[END_REF].That prior predictive p-value may be transformed into a prior predictive e-value cal p π(0) by applying a p-to-e calibrator cal. The prior predictive e-values resulting from applying the calibrations of equations ( 1) and ( 2) are plotted in Figure 1 with the π (0) = 10 /11 suggested by [START_REF] Benjamin | Redefine statistical significance[END_REF]. Higher prior predictive evalues indicate more evidence against the simple Bayesian model {({ϕ 1 , ϕ 2 } , Bern ( 10 /11))}. ▲

Posterior predictive p-values and posterior predictive e-values

Given a real-valued function ∆ (x , θ) on X × Θ, the posterior predictive p-value [START_REF] Meng | Posterior predictive p-values[END_REF] that [START_REF] Hjort | Post-processing posterior predictive p values[END_REF], which is the same as equation (3) except with ∆ in place of τ and the posterior density π (θ| x ) in place of the prior density π (θ). Because p | X does not have a uniform distribution between 0 and 1, it can be "post-processed" or transformed into a quantity that does by using

checks ({f (x |θ) : θ ∈ Θ} , π) is p | x = Pr f (x |θ)π(θ)dθ (∆ (X , θ) ≥ ∆ (x , θ) | x ) = ∆(y,θ)≥∆(x ,θ) f (y |θ) d y π (θ| x ) dθ ( 
p post-process | x = Pr f (x |θ)π(θ)dθ p | X ≤ p | x , (5) 
which is called the post-processed posterior predictive p-value [START_REF] Hjort | Post-processing posterior predictive p values[END_REF]. Letting τ (x , θ) = -p | x , we have

p post-process | x = Pr f (x |θ)π(θ)dθ (-τ (X , θ) ≤ -τ (x , θ)) = p,
where p is the prior predictive p-value defined by equation (3) [START_REF] Bickel | A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models[END_REF]. 4 From a Bayes factor to the e-value that checks a simple

Bayesian model

A non-frequentist way to check M 0 = {({f 0 (x |θ 0 ) : θ 0 ∈ Θ 0 } , π 0 )}, a Bayesian model containing a single family-prior pair, is carried out by comparing it to

M 1 = {({f 1 (x |θ 1 ) : θ 1 ∈ Θ 1 } , π 1 )} ,
a model containing a wider, less informative, or more complex family-prior pair, using a Bayes factor [START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF][START_REF] Hsieh | A nonparametric assessment of model adequacy based on Kullback-Leibler divergence[END_REF][START_REF] Morey | The humble Bayesian: Model checking from a fully Bayesian perspective[END_REF][START_REF] Al-Labadi | Prior-based model checking[END_REF][START_REF] Barrientos | A Bayesian goodness-of-fit test for regression[END_REF][START_REF] Tokdar | Bayesian test of normality versus a dirichlet process mixture alternative[END_REF], defined as

B (x ) = f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 f 0 (x |θ 0 ) π 0 (θ 0 ) dθ 0 , (6) 
which is the ratio of the integrated or marginal likelihoods, the prior predictive densities evaluated at the observed sample x . In a conventional Bayesian interpretation, the Bayes factor is the constant of proportionality between the prior odds between the two models and their posterior odds, and yet the concept of prior probabilities of models is not needed in the framework of Section 2. From 

⟨B (X )⟩ f 0 (x |θ0)π0(θ0)dθ0 = B (x ) f 0 (x |θ 0 ) π 0 (θ 0 ) dθ 0 d x = f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 f 0 (x |θ 0 ) π 0 (θ 0 ) dθ 0 f 0 (x |θ 0 ) π 0 (θ 0 ) dθ 0 d x = f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 d x = 1, (7) 
B (z ) = ϕ 3 (z ) Pr (σ = 1) ϕ 1 (z ) + Pr (σ = 2) ϕ 2 (z ) = ϕ 3 (z ) π (0) ϕ 1 (z ) + (1 -π (0)) ϕ 2 (z )
. π(0) -1 than to -ln p π(0) . ▲ Example 4. For i = 0, 1, let θ i denote the maximum likelihood estimate of the vector parameter θ i , where f i (x |θ i ) is maximized over D i real numbers in θ i given a sample x of n observations. In

B BIC (x ) = exp (-BIC 1 (x ) /2) exp (-BIC 0 (x ) /2) , (8) 
where BIC i (x ) is the Bayesian information criterion (BIC) for model M i ,

BIC i (x ) = -2 ln f i x | θ i + D i ln n . (9) 
While B BIC (x ) is not a Bayesian e-value (Bickel, 2023a), B BIC (X ) under general conditions is asymptotically equivalent to a Bayes factor B (X ) [START_REF] Mcquarrie | A small-sample correction for the Schwarz SIC model selection criterion[END_REF][START_REF] Berger | Objective Bayesian Methods for Model Selection: Introduction and Comparison[END_REF][START_REF] Claeskens | Model Selection and Model Averaging[END_REF], which is a Bayesian e-value according the result (7) that ⟨B (X )⟩ f 0 (x |θ0)π0(θ0)dθ0 = 1. Under those conditions, B BIC (x ) is an asymptotic e-value in the sense of Remark 1. The BIC may be replaced in equation ( 8) with a version corrected for smaller samples [START_REF] Mcquarrie | A small-sample correction for the Schwarz SIC model selection criterion[END_REF]Bickel, 2023a). ▲

If M 1 is a composite Bayesian model with a prior over its family-prior pairs, then f 1 (x |θ 1 ) in equation ( 6 Tools are also provided for quantifying the degree to which null hypotheses or Bayesian models are supported by the data. While the emphasis here is on composite Bayesian models, those tools also apply to simple Bayesian models.

Testing composite null hypotheses

The p-possibility and e-possibility of a null hypothesis

The p-possibility of a null hypothesis H 0 is

Π p (F 0 ) = sup f H 0 ∈F 0 p f H 0 , ( 10 
)
where p f H 0 is a p-value that tests the simple null hypothesis that f data = f H 0 (Vovk and Wang, 2023, §5). For example, Π p f H 0 = Π p f H 0 , the p-possibility of a simple null hypothesis, is equal to p f H 0 , its p-value. In terms of the random variable P , the random variable

Π P (F 0 )
is defined by equation ( 10) with P in place of the observed p. In the case that each p f H 0 is an asymptotic p-value in the sense of Remark 1, Π p (F 0 ) is called the asymptotic p-possibility of H 0 .

The intuition behind the definition is that a low p-value indicates a discredited null hypothesis.

More formally, every p-possibility of H 0 is a p-value that tests H 0 .

Theorem 1.

If Π P (F 0 ) is a p-possibility of a null hypothesis H 0 , then Π P (F 0 ) is a p-value that tests H 0 . If Π P (F 0
) is an asymptotic p-possibility of a null hypothesis H 0 , then Π P (F 0 ) is an asymptotic p-value that tests H 0 .

Proof. By the definition of a p-value given in Section 2.1, the first claim is that Π P (F 0 ) has values in [0, 1] and that, less obviously, f H 0 ∈ F 0 and 0 < α < 1 imply that Pr f H 0 (Π P (F 0 ) ≤ α) ≤ α.

By substitution,

Pr f H 0 (Π P (F 0 ) ≤ α) = Pr f H 0 sup f ′ H 0 ∈F 0 P f ′ H 0 ≤ α = Pr f H 0   max   P f H 0 , sup f ′ H 0 ∈F 0 \{f H 0 } P f ′ H 0   ≤ α   ≤ Pr f H 0 P f H 0 ≤ α ≤ α
for all α and f H 0 ∈ F 0 . The latter inequality holds for every P f H 0 meeting the definition of a p-value.

That proves the first claim. The second claim is proven by analogous reasoning using the definition of an asymptotic p-value (Remark 1).

Π e (F 0 ) = inf f H 0 ∈F 0 e f H 0 , (11) 
where e f H 0 is an e-value that tests the simple null hypothesis that f data = f H 0 (Vovk and Wang, 2023, §5). For example, Π e f H 0 = Π e f H 0 , the e-possibility of a simple null hypothesis, is equal to e f H 0 , its e-value. In terms of the random variable E , the random variable

Π E (F 0 )
is defined by equation ( 11) with E in place of the observed e. In the case that each e f H 0 is an asymptotic e-value in the sense of Remark 1, Π e (F 0 ) is called the asymptotic e-possibility of H 0 .

The intuition behind the definition is that a high e-value indicates a discredited null hypothesis.

In analogy with Theorem 1, every e-possibility of H 0 is an e-value that tests H 0 .

Theorem 2. If Π E (F 0 ) is an e-possibility of a null hypothesis H 0 , then Π E (F 0 ) is an e-value that tests H 0 . If Π E (F 0 ) is an asymptotic e-possibility of a null hypothesis H 0 , then Π E (F 0 ) is
an asymptotic e-value that tests H 0 .

Proof. By the definition of an e-value given in Section 2.1, the first claim is that

Π E (F 0 ) has values in [0, ∞] and that, less obviously, f H 0 ∈ F 0 implies that ⟨Π E (F 0 )⟩ f H 0 ≤ 1. By substitution, ⟨Π E (F 0 )⟩ f H 0 = inf f ′ H 0 ∈F 0 E f ′ H 0 f H 0 = min E f H 0 , inf f ′ H 0 ∈F 0 \{f H 0 } E f ′ H 0 f H 0 ≤ E f H 0 f H 0 ≤ 1
for all f H 0 ∈ F 0 . The latter inequality holds for every E f H 0 meeting the definition of an e-value.

That proves the first claim. The second claim is proven by analogous reasoning using the definition of an asymptotic e-value (Remark 1).

Theorem 2 restates the validity of universal inference [START_REF] Wasserman | Universal inference[END_REF] as summarized by Ramdas et al. (2023, §3.3.1).

The data compatibility and e-gain of a null hypothesis

In many applications, it is not always practical to reject all distributions in F, leaving no distribution to put in their place (cf. Jeffreys, 1948, §7.22). For example, in a bounded parameter problem or other restricted parameter problem in which F is highly constrained, it is not unusual for p f H 0 to be low enough to reject f data = f H 0 for all f H 0 ∈ F [START_REF] Ball | Empty confidence sets for epidemics, branching processes and Brownian motion[END_REF]. In such situations, the possibility of a simple null hypothesis is relative to the possibility of the other simple null hypotheses corresponding to H 0 .

Relative p-possibility and e-possibility possibility will be called "data compatibility" or "gain,"

respectively, to summarize their interpretations. The fact that a null hypothesis is not discredited

does not indicate that it should be accepted, for there may be other null hypotheses that have not been discredited.

The degree to which a null hypothesis warrants acceptance because it is less discredited by the data than its all of its alternatives will be called its "corroboration." That formalizes the idea of critical rationalism that a theory is highly corroborated only if it passes severe tests [START_REF] Popper | Conjectures and Refutations: the Growth of Scientific Knowledge[END_REF][START_REF] Popper | Logic of Scientific Discovery[END_REF]. The idea is modified by taking a test to be severe to the extent that there are enough data to discredit all competing hypotheses. While the emphasis of this section is on composite null hypotheses, the following corroboration functions also apply to simple null hypotheses.

The degree to which the data are compatible with a composite null hypothesis is compatibility of the data with at least one distribution represented by that hypothesis. Technically, the data compatibility of a null hypothesis H 0 is

C (F 0 ) = Π p (F 0 ) Π p (F) ,
capturing the p-possibility of the null hypothesis relative to the p-possibility of the set of all distributions in F [START_REF] Bickel | Self-consistent confidence sets and tests of composite hypotheses applicable to restricted parameters[END_REF]Bickel, 2023b). If Π p (F 0 ) is an asymptotic p-possibility of H 0 , then C (F 0 ) is called the asymptotic data compatibility of H 0 .

Since C (F 0 ) ≥ Π P (F 0 ), Theorem 1 has the following consequence.

Corollary 1. If C (F 0 ) is a data compatibility of a null hypothesis H 0 , then C (F 0 ) is a p-value that tests H 0 . If C (F 0 ) is an asymptotic data compatibility of a null hypothesis H 0 , then C (F 0 )
is an asymptotic p-value that tests H 0 .

The (asymptotic) p-corroboration for a null hypothesis H 0 is

C (F 0 ) = 1 -C F 0 ,
where F 0 = F \ F 0 , the complement of F 0 . Since C (F) = 1, it follows that C (F 0 ) < 1 implies that C (F 0 ) = 1. Thus, C (F 0 ) is high to the degree that distributions outside F 0 are discredited, in the sense of having low p-values compared to those in F 0 .

Similarly, the e-gain of a null hypothesis H 0 is

G (F 0 ) = Π e (F 0 ) -Π e (F) , (12) 
capturing the net amount of capital gained from betting against F 0 in addition to the payoff from betting against F. If Π e (F 0 ) is an asymptotic e-possibility of H 0 , then G (F 0 ) is called the asymptotic e-gain of H 0 .

Since G (F 0 ) ≤ Π E (F 0 ), Theorem 2 has the following consequence.

Corollary 2. If G (F 0 ) is an e-gain of a null hypothesis H 0 , then G (F 0 ) is an e-value that tests

H 0 . If G (F 0
) is an asymptotic e-gain of a null hypothesis H 0 , then G (F 0 ) is an asymptotic e-value that tests H 0 .

The (asymptotic) e-corroboration for a null hypothesis H 0 is

G (F 0 ) = G F 0 . (13) 
Since G (F) = 0, it follows that C (F 0 ) > 0 implies that C (F 0 ) = 0. The interpretation is that G (F 0 ) is high to the degree that distributions outside F 0 are discredited, in the sense of having high e-values compared to those in F 0 .

Checking composite Bayesian models

Recall that a Bayesian p-value or Bayesian e-value checking a composite Bayesian model M comp is defined as a p-value or e-value testing the null hypothesis that corresponds to the prior predictive distributions of that model induced by the family-prior pairs in M comp (Section 2.2). The set of the corresponding prior predictive distributions is F 0 in the equations of Section 2.2. Likewise, F

is the set of all prior predictive distributions corresponding to all family-prior pairs in a set M * such that M comp ⊂ M * . Then F 0 ⊂ F, as in Section 2.1.

It follows that all the terms defined in Section 5.1 for testing composite null hypotheses apply without modification to the prior predictive distributions of a composite Bayesian model. For clarity in this context, each term is preceded by "Bayesian," and each such test is considered as a check of the model ( Example 5. Example 2, continued. Suppose the prior probability is unknown but considered to satisfy π min (0) ≤ π (0) ≤ π max (0) for known limits such that 0 < π min (0) < π max (0) < 1. Then the composite Bayesian model is

M [πmin(0),πmax(0)] = {({ϕ 1 , ϕ 2 } , Bern (π (0))) : π (0) ∈ [π min (0) , π max (0)]} .
The results for checking that model using the suggested methods are listed in Table 2. ▲ A Bayesian model, whether simple or composite, is highly supported by the data if its Bayesian p-corroboration or Bayesian e-corroboration is sufficiently high. The use of a highly supported model for data analysis is a case of using a Bayesian model corresponding to a set of prior predictive distributions of sufficiently high adequacy as defined by [START_REF] Bickel | Inference after checking multiple Bayesian models for data conflict and applications to mitigating the influence of rejected priors[END_REF], with adequacy equal to a Bayesian data compatibility or the reciprocal of a Bayesian e-gain.

Other ways to apply e-values to robust Bayesian settings are possible; for example, reverse information projection (Grünwald et al., 2023, §4.3;Ramdas et al., 2023, §3.3.2) could be used to transform Bayesian e-values that check simple hypotheses to a Bayesian e-value that checks a composite Bayesian model.

Context of possibility theory

Π p and 1/Π e are generalized possibility measures as defined by Wang and Klir (2008, Definition 4.11). C is a possibility measure (Wang and Klir, 2008, Definition 4.13), whereas C is a necessity measure (Wang and Klir, 2008, Definition 4.15).

Checking a Bayesian model

Checking

M [πmin(0),πmax(0)] Bayesian p-value p π(0) : π (0) ∈ [π min (0) , π max (0)] Bayesian e-value cal p π(0) : π (0) ∈ [π min (0) , π max (0)] Bayesian p-possibility Π p (F 0 ) = sup π(0)∈[πmin(0),πmax(0)] p π(0) Bayesian e-possibility Π e (F 0 ) = inf π(0)∈[πmin(0),πmax(0)] cal p π(0) = cal (Π p (F 0 )) Bayesian data compatibility C (F 0 ) = sup π(0)∈[πmin(0),πmax(0)] p π(0) sup π(0)∈[0,1] p π(0) Bayesian p-corroboration C (F 0 ) = 1 - sup π(0) / ∈[πmin(0),πmax(0)] p π(0) sup π(0)∈[0,1] p π(0) Bayesian e-gain G (F 0 ) = cal (Π p (F 0 )) -inf π(0)∈[0,1] cal p π(0) = cal (Π p (F 0 )) -cal sup π(0)∈[0,1] p π(0) Bayesian e-corroboration G (F 0 ) = inf π(0) / ∈[πmin(0),πmax(0)] cal p π(0) -inf π(0)∈[0,1] cal p π(0) = cal sup π(0) / ∈[πmin(0),πmax(0)] p π(0) -cal sup π(0)∈[0,1] p π(0)
Table 2: The Bayesian quantities used to check the M [πmin(0),πmax(0)] , the composite model of Example 5, with p π(0) given by equation ( 4). Here, cal p π(0) is a prior predictive e-value such as the p

-1/2 π(0) -1 or -ln p π(0) of Figure 1.
While G is a negative ranking function, G is a positive ranking function (Spohn, 2012, chapter 5). Negative ranking functions are isomorphic to possibility measures (Spohn, 2012, chapter 11). ii. Compute equation ( 13) to obtain G (F 0 ), the e-corroboration of M comp . Interpret G (F 0 ) as the degree to which x supports M comp .

4. Interpret the Bayesian e-value e M comp as a graded measure of the strength of evidence against M comp . That gradation is operationally defined by the betting protocol of Section 1.

  After reviewing definitions of p-values and e-values for hypothesis testing and Bayesian pvalues for checking Bayesian models, Section 2 proposes the concept of Bayesian e-values for model 1 checking. That connects Bayesian p-values to Bayes factors and overcomes these shortcomings of previous methods of model checking: 1. Bayesian p-values suffer from the threshold and interpretation problems of p-values mentioned above.

  Given a parameter space Θ, the family of sampling distributions is a subset {f (x |θ) : θ ∈ Θ} of F, where f (x |θ) denotes a probability density function in F that is indexed by θ. The context will make clear when f (x |θ) is a function of x , as here, or a probability density for the observed sample x . The family-prior pair ({f (x |θ) : θ ∈ Θ} , π) is an ordered pair consisting of the family of sampling distributions and a prior probability density function π defined on Θ. The prior predictive distribution of ({f (x |θ) : θ ∈ Θ} , π) is the mixture probability density function f (x |θ) π (θ) dθ as a function of x , implying that f (x |θ) π (θ) dθ ∈ F.

Figure 1 :

 1 Figure 1: The prior predictive e-values p -1/2 π(0) -1 and -ln p π(0) as functions of p H 0:σ=1 , where p π(0) is the prior predictive p-value expressed, with π (0) fixed, as a function of the non-Bayesian p-value p H 0 :σ=1 in equation (4).

  If, as intended by the post-processing, p post-process | X has a uniform distribution between 0 and 1 given draws from f (x |θ) and π, then p post-process | x is a Bayesian p-value that checks model {({f (x |θ) : θ ∈ Θ} , π)} . Thus, given any calibrator cal, the calibrated Bayesian p-value cal p post-process | x is a Bayesian e-value that checks {({f (x |θ) : θ ∈ Θ} , π)}. Since p post-process | x is a (post-processed) posterior predictive p-value, cal p post-process | x is called a posterior predictive e-value.

Figure 2 :

 2 Figure 2: The Bayes factor as an e-value that checks the Bayesian model {({ϕ 1 , ϕ 2 } , Bern ( 10 /11))}, as a function of the p-value p H 0:σ=1 that tests the null hypothesis H 0 : σ = 1.

  it follows that B (x ) is an e-value that tests H M 0 and thus that B (x ) is also a Bayesian e-value that checks M 0 . Other relationships between Bayes factors and e-values are reported in Vovk and Wang (2021), Ramdas et al. (2023), and Grünwald et al. (2023). Example 3. With the data reduced to a z -statistic, the model checked in Example 2 is M 0 = {({ϕ 1 , ϕ 2 } , Bern ( 10 /11))}. The prior predictive e-value is not needed for the model check in the presence of an alternative model such as M 1 = {({ϕ 3 } , π 1 )}, where π 1 concentrates 100% of the prior probability at ϕ 3 , the probability density function of the normal distribution with mean 0 and σ = 3. Then the Bayes factor is

Figure 2

 2 Figure 2 displays that Bayesian e-value using the substitution z = Φ -1 1 1 -p H 0:σ=1 /2 . A com-

  ) is the resulting marginal likelihood or "mixture" inRamdas et al. (2023, §3.2), which also presents other methods of computing e-values from composite alternative hypotheses. Those methods, applied to prior predictive distributions as null hypotheses, yield Bayesian e-values. The derivation of Bayesian e-values that check a composite M 0 requires e-values that test a composite null hypothesis, such as those of Ramdas et al. (2023, §3.3) and Section 5. 5 From the e-values that check simple Bayesian models to the e-value that checks a composite Bayesian model This section develops the framework of Section 2 by describing tools to transform e-values of simple null hypotheses and simple Bayesian models into an e-value of a composite null hypothesis or a composite Bayesian model, respectively.

  According to Theorem 1 and Corollary 1, Bayesian p-possibility and Bayesian data compatibility are Bayesian p-values. By Theorem 2 and Corollary 2, Bayesian e-possibility and Bayesian e-gain are Bayesian e-values.

  Vovk and Wang (2023, Remark 5.1) conceived of p-possibility and p-necessity Π p F 0 as expressions of nested confidence regions (set estimates based on p-values) and of e-possibility and e-necessity Π e F 0 as expressions of the analogous set estimates based on e-values.[START_REF] Bickel | Self-consistent confidence sets and tests of composite hypotheses applicable to restricted parameters[END_REF] called p-corroboration the "warrant" for accepting a null hypothesis.6 Discussion: Workflows for safe model checkingThe Bayesian e-value defined in Section 2 brings the practical advantages of the hypothesis-testing e-value to the problem of checking Bayesian models, as seen in Section 1. A running example across two special cases indicates different ways to compute Bayesian evalues, depending on what information is available as input (Examples 2 and 3). Guidance on how to decide between them in practice is provided by the workflow of Algorithm 1. The workflow directly generates an e-value that checks a simple Bayesian model. It may be used indirectly to check a composite Bayesian model, as guided by another workflow (Algorithm 2). Example 5 illustrates that for the running example. Together, two very different procedures illustrate the flexibility and general applicability of the Bayesian e-value to check a simple Bayesian model (Sections 3-4). Applying either procedure to all the simple Bayesian models corresponding to a composite Bayesian model is enough to determine the Bayesian e-value to check that model, and, in some cases, to quantify how much the data support it (Section 5). Algorithm 2 A workflow for checking a composite Bayesian model, one consisting of multiple family-prior pairs 1. Let M * be the set of all available family-prior pairs. Let M comp denote a Bayesian model consisting of multiple family-prior pairs in M * . The set F is the set of prior predictive distributions induced by M * , and F 0 is the subset of F induced by M comp (Section 5.2). • If no family-prior pairs are available outside of M comp , then set M * = M comp and F = F 0 . 2. For each family-prior pair ({f (x |θ) : θ ∈ Θ} , π) ∈ M * , let e {({f (x |θ):θ∈Θ},π)} denote the evalue resulting from the workflow of Algorithm 1 withM simp = {({f (x |θ) : θ ∈ Θ} , π)}as the simple Bayesian model.3. If M * = M comp , then proceed to step 3a. But if M * ̸ = M comp , then complete either step 3a or step 3b, whichever applies to the domain of application:(a) To maximize the potential degree to which M comp is discredited, at the risk of discrediting all available Bayesian models (subsets of M * ), follow these steps: i. Set e M comp = Π e (F 0 ) by computing equation (11). That is justified by Theorem 2. ii. Go to step 4. (b) To quantify the strength of evidence in favor of M comp , potentially at the expense of some ability to discredit M comp , instead follow these steps: i. Set e M comp = G (F 0 ) by computing equation (12). That is justified by Corollary 2.

  the expectation value of E with respect to f H 0 . Observed values of

	Those definitions follow Ramdas et al. (2023) but in notation closer to that of Vovk and Wang
	(2021). The physics literature's angular brackets for expectation values guards against confusing
	them with e-values.
	Example 1. Consider Student's problem of testing the null hypothesis that the mean of a sample
	X of n independent random variables is zero, assuming each random variable follows a normal
	distribution of unknown mean µ and unknown standard deviation σ. Let f µ,σ denote the probability
	density function of X .

  payoff of e to Skeptic (cf. Section 1). That resembles Forecaster's announcement of an upper expectation isomorphic to a subjective lower expectation(Shafer and Vovk, 2019, § §6.7, 9.5), given the close relation between imprecise probabilities and sets of probability distributions[START_REF] Walley | Statistical Reasoning with Imprecise Probabilities[END_REF][START_REF] Troffaes | Lower Previsions[END_REF], which are prior predictive distributions in this context. The approaches are equivalent if the upper expectation is an expectation, for in that case it corresponds to a single prior predictive distribution, which in turn is determined by the family-prior pair in a simple Bayesian model.

	3 From a Bayesian p-value to the e-value that checks a simple
	Bayesian model
	3.1 General calibration

Any test of that null hypothesis may be considered a check of its underlying Bayesian model, as follows. A p-value P that tests H M is called a Bayesian p-value that checks M . Similarly, an e-value E that tests H M is called a Bayesian e-value that checks M . In that way, each check of a composite model M is defined by the test of its composite hypothesis H M , and each check of a simple model M is defined by the test of its simple hypothesis H M .

Remark 2. Since π is only used in the above distributions to generate the prior predictive distribution, it is not needed if another predictive distribution that does not depend on x is available. In many cases, a predictive distribution can be constructed from previous data (observed before x ) or from a training set consisting of data from a split data set, holding out x as a test set. For example, such a predictive distribution may be a posterior predictive distribution

[START_REF] Zondervan-Zwijnenburg | Testing ANOVA replications by means of the prior predictive p-value[END_REF] 

or a predictive distribution from a neural network or other machine learning algorithm that does not use any prior distribution

[START_REF] Eklund | Forecast combination and model averaging using predictive measures[END_REF][START_REF] Bickel | Testing prediction algorithms as null hypotheses: Application to assessing the performance of deep neural networks[END_REF]

. In such cases, the Bayesian p-value and Bayesian e-value are better called the algorithmic p-value and the algorithmic e-value, respectively.

Remark 3. Bayesian e-values check Bayesian models irrespective of the philosophical interpretation of probability behind those models. For example, if the prior probabilities represented by a model are subjective levels of belief, they can be understood in terms of three players in

[START_REF] Shafer | Game-Theoretic Foundations for Probability and Finance[END_REF]

: a Forecaster player announcing a Bayesian model, a Skeptic player then announcing the purchase of a Bayesian e-value E for $1, and a Reality player finally announcing the sample x , resulting in a A simple way to generate e-values is to calibrate p-values. A p-to-e calibrator is a function cal that transforms a p-value into an e-value in the sense that if P is a p-value testing H 0 , then cal (P ) is an e-value testing H 0

[START_REF] Vovk | E-values: Calibration, combination and applications[END_REF]

. For a function cal on [0, 1] with values in [0, ∞] to be a p-to-e calibrator, it is necessary and sufficient that 1 0 cal (p) d p ≤ 1, with equality in the case that an admissibility condition is satisfied

(Vovk and Wang, 2021, Proposition 2.1)

. For example,

Shafer (2021b,a) 

recommends the "betting score"

Table 1 :

 1 Table1). In short, Bayesian eggs (Bayesian p-values and Bayesian e-values of simple models) make Bayesian omelettes (Bayesian p-possibility, Bayesian e-possibility, . . ., Bayesian e-gain, Bayesian e-corroboration of composite models). Terms for testing simple or composite null hypotheses and checking simple or composite Bayesian models.

	p	p-value	Bayesian p-value
	e	e-value	Bayesian e-value
	Π p (F 0 )	p-possibility	Bayesian p-possibility
	Π e (F 0 )	e-possibility	Bayesian e-possibility
	C (F 0 )	data compatibility	Bayesian data compatibility
	C (F 0 )	p-corroboration	Bayesian p-corroboration
	G (F 0 )	e-gain	Bayesian e-gain
	G (F 0 )	e-corroboration	Bayesian e-corroboration

Algorithm 1 A workflow for checking a simple Bayesian model, one consisting of a single familyprior pair 1. Let M simp denote a Bayesian model consisting of a single family-prior pair, and let x denote the data set.

2. Follow the steps under the first of these conditions that applies:

(a) Can an alternative Bayesian model M 1 be specified in enough detail to estimate or approximate its marginal likelihood f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 ? That will be the case without specifying prior distributions if the Bayesian information criterion or a small-sample correction applies (Example 4). If not, then skip to step 2b, but if so, then follow these steps to implement the case of Section 4: i. Let f 1 (x ) be an estimate or approximation of f 1 (x |θ 1 ) π 1 (θ 1 ) dθ 1 , the marginal likelihood under model M 1 . ii. Let f 0 (x ) be an estimate or approximation of f 0 (x |θ 0 ) π 0 (θ 0 ) dθ 0 , the marginal likelihood under model M simp .

iii. Let B (x ) = f 1 (x ) / f 0 (x ). That B (x ) is an estimated or approximate Bayes factor at the level of models (6). . That is a posterior predictive e-value. Proceed to step 3.

ii. Compute p M simp , a prior predictive p-value. Set e M simp = cal p M simp . That is a

prior predictive e-value. Proceed to step 3.

3. Interpret the Bayesian e-value e M simp as a graded measure of the strength of evidence against M simp . That gradation is operationally defined by the betting protocol of Section 1.

A Conditional e-gain and conditional e-corroboration

Conditional data compatibility and conditional p-corroboration ("warrant") are defined by Bickel and Patriota (2019) on the basis of p-values. This appendix defines the analogous functions for e-values.

Let F restrict denote a non-empty subset of F. The conditional e-gain of F 0 given F restrict is

The conditional e-corroboration of F 0 given F restrict is

In other words, conditional on restricting the data distribution to F restrict :

• If there is any evidence (in x ) against the null hypothesis H 0 , then there is no evidence supporting it.

• Conversely, if there is any evidence supporting H 0 , then there is no evidence against it.

Remark 4. As a function of F 0 , G (F 0 | F restrict ) is mathematically a case of a conditional negative ranking function [START_REF] Spohn | The Laws of Belief: Ranking Theory and Its Philosophical Applications[END_REF] and a conditional idempotent probability distribution [START_REF] Puhalskii | Large Deviations and Idempotent Probability[END_REF], specifically, a conditional min-plus probability distribution [START_REF] Akian | Max-plus algebra and applications to system theory and optimal control[END_REF][START_REF] Quadrat | Min-plus probability calculus[END_REF]. It follows that G (F 0 | F restrict ) is isomorphic to conditional max-plus probability [START_REF] Akian | Max-plus algebra and applications to system theory and optimal control[END_REF][START_REF] Quadrat | Max-plus algebra and applications to system theory and optimal control[END_REF][START_REF] Fleming | Max-plus stochastic control and risk-sensitivity[END_REF][START_REF] Fitzpatrick | Max plus decision processes in planning problems for unmanned air vehicle teams[END_REF] and a conditional possibility measure with the Product t-norm (Bickel, 2023c, §2.2).