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THE COMBINATORICS OF PLANE CURVE SINGULARITIES

HOW NEWTON POLYGONS BLOSSOM INTO LOTUSES

EVELIA R. GARCÍA BARROSO, PEDRO D. GONZÁLEZ PÉREZ, AND PATRICK POPESCU-PAMPU

Abstract. This survey may be seen as an introduction to the use of toric and tropical geometry in

the analysis of plane curve singularities, which are germs pC, oq of complex analytic curves contained

in a smooth complex analytic surface S. The embedded topological type of such a pair pS,Cq is usually
defined to be that of the oriented link obtained by intersecting C with a sufficiently small oriented

Euclidean sphere centered at the point o, defined once a system of local coordinates px, yq was chosen on
the germ pS, oq. If one works more generally over an arbitrary algebraically closed field of characteristic

zero, one speaks instead of the combinatorial type of pS,Cq. One may define it by looking either at the

Newton-Puiseux series associated to C relative to a generic local coordinate system px, yq, or at the set
of infinitely near points which have to be blown up in order to get the minimal embedded resolution of

the germ pC, oq or, thirdly, at the preimage of this germ by the resolution. Each point of view leads to

a different encoding of the combinatorial type by a decorated tree: an Eggers-Wall tree, an Enriques
diagram, or a weighted dual graph. The three trees contain the same information, which in the complex

setting is equivalent to the knowledge of the embedded topological type. There are known algorithms

for transforming one tree into another. In this paper we explain how a special type of two-dimensional
simplicial complex called a lotus allows to think geometrically about the relations between the three

types of trees. Namely, all of them embed in a natural lotus, their numerical decorations appearing as

invariants of it. This lotus is constructed from the finite set of Newton polygons created during any
process of resolution of pC, oq by successive toric modifications.
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4.5. Historical comments 49
5. Lotuses 54
5.1. The lotus of a Newton fan 55
5.2. Lotuses and continued fractions 60
5.3. The lotus of a toroidal pseudo-resolution 63
5.4. The dependence of the lotus on the choice of completion 67
5.5. Truncated lotuses 70
5.6. Historical comments 74
6. Relations of fan trees and lotuses with Eggers-Wall trees 77
6.1. Finite Eggers-Wall trees and the universal Eggers-Wall tree 77
6.2. From Eggers-Wall trees to Newton polygons 81
6.3. Renormalization of Eggers-Wall trees 83
6.4. Renormalization in terms of Newton-Puiseux series 88
6.5. From fan trees to Eggers-Wall trees 89
6.6. Historical comments 93
7. Overview and perspectives 96
7.1. Overview 96
7.2. Perspectives 98
7.3. List of notations 98
References 100

1. Introduction

The aim of this paper is to unify various combinatorial objects classically used to encode the equi-
singularity/combinatorial/embedded topological type of a plane curve singularity. Often, a plane curve
singularity means a germ pC, oq of algebraic or holomorphic curve defined by one equation in a smooth
complex algebraic surface. In this paper we will allow the ambient surface to be any germ pS, oq of
smooth complex algebraic or analytic surface, and C to be a formal germ of curve. Using a local formal
coordinate system px, yq on the germ pS, oq, the global structure of S disappears completely and one may
suppose that C is formally embedded in the affine plane C2. Usually one analyses in the following ways
the structure of this embedding:

‚ By considering the Newton-Puiseux series which express one of the variables px, yq in terms of the
other, whenever the equation fpx, yq “ 0 defining C is satisfied. Their combinatorics may be encoded in
two rooted trees, the Kuo-Lu tree and a Galois quotient of it, the Eggers-Wall tree.
‚ By blowing up points starting from o P S, until obtaining an embedded resolution of C, that is, a total
transform of C which is a divisor with normal crossings. This blow up process may be encoded in an
Enriques diagram, and the final total transform of C in a weighted dual graph.
‚ When the singularity C is holomorphic, by intersecting a representative of C with a small enough
Euclidean sphere centered at the origin, defined using an arbitrary holomorphic local coordinate system
px, yq on pS, oq. This leads to an oriented link in an oriented 3-dimensional sphere. This link is an iterated
torus link, whose structure may be encoded in terms of another tree, called a splice diagram.

Unlike the first two procedures, the third one cannot be applied if the formal germ C is not holomorphic
or if one works over an arbitrary algebraically closed field of characteristic zero. For this reason, we do
not develop it in this paper. Let us mention only that it was initiated in Brauner’s pioneering paper
[13], whose historical background was described by Epple in [36]. For its developments, one may consult
chronologically Reeve [107], Lê [80], A’Campo [5], Eisenbud & Neumann [34, Appendix to Chap. I],
Schrauwen [110], Lê [81], Wall [131, Chap. 9], Weber [132] and the present authors [46, Chap. 5].
Similarly, we will not consider the discrete invariants constructed usually using the topology of the
Milnor fibration of a holomorphic germ f , as Milnor numbers, Seifert forms, monodromy operators and
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their Zeta functions. The readers interested in such invariants may consult the textbooks [15] of Brieskorn
& Knörrer and [131] of Wall.

There are algorithms allowing to pass between the Eggers-Wall tree, the dual graph and the Enriques
diagram of C. However, they do not allow geometric representations of those passages. Our aim is to
represent all these relationships using a single geometric object, called a lotus, which is a special type of
simplicial complex of dimension at most two.

Our approach for associating lotuses to plane curve singularities is done in the spirit of the papers of
Lê & Oka [83], A’Campo & Oka [8], Oka [93], González Pérez [52, Section 3.4], and Cassou Noguès &
Libgober [21]. Namely, we use the fact that one may obtain an embedded resolution of C by composing a
sequence of toric modifications determined by the successive Newton polygons of C or of strict transforms
of it, relative to suitable local coordinate systems.

One may construct a lotus using the previous Newton polygons (see Definition 5.26). Its one dimen-
sional skeleton may be seen as a dual complex representing the space-time of the evolution of the dual
graph during the process of blow ups of points which leads to the embedded resolution. Besides the irre-
ducible components of C and the components of the exceptional divisor, one takes also into account the
curves defined by the chosen local coordinate systems. If A and B are two such exceptional or coordinate
curves, and them or their strict transforms intersect transversally at a point p which is blown up at some
moment of the process, then a two dimensional simplex with vertices labeled by A, B and the exceptional
divisor of the blow up of p belongs to the lotus. These simplices are called the petals of the lotus (see
an example of a lotus with 18 petals in Figure 1). The Eggers-Wall tree, the Enriques diagram and the
weighted dual graph embed simultaneously inside the lotus, and the geometry of the lotus also captures
the numerical decorations of the weighted dual graph and the Eggers-Wall tree (see Theorem 5.29). For
instance, the self-intersection number of a component of the final exceptional divisor is the opposite of the
number of petals containing the associated vertex of the lotus. The previous lotuses associated to C have
also valuative interpretations: they embed canonically in the space of semivaluations of the completed
local ring of the germ pS, oq (see Remark 5.34).

Figure 1. A lotus. It is part of Figure 36, which corresponds to Example 5.28.

Let us describe the structure of the paper.

In Section 2 we introduce basic notions about complex analytic varieties, plane curve singularities,
their multiplicities and intersection numbers, normalizations, Newton-Puiseux series, blow ups, embedded
resolutions of plane curve singularities and the associated weighted dual graphs. The notions of Newton
polygon, dual Newton fan and lotus are first presented here on a Newton non-degenerate example.

Section 3 begins with an explanation of basic notions of toric geometry : fans and their subdivisions,
the associated toric varieties and toric modifications (see Subsections 3.1, 3.2 and 3.3). In particular,
we describe the toric boundary of a toric variety – the reduced divisor obtained as the complement of its
dense torus – in terms of the associated fan. Then we pass to toroidal geometry : we introduce toroidal
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varieties, which are pairs pΣ, BΣq consisting of a normal complex analytic variety Σ and a reduced divisor
BΣ on it, which are locally analytically isomorphic to a germ of a pair formed by a toric variety and its
boundary divisor. A basic example of toroidal surface is that of a germ pS, oq of smooth surface, endowed
with the divisor L ` L1, where pL,L1q is a cross, that is, a pair of smooth transversal germs of curves.
A morphism φ : pΣ2, BΣ2q Ñ pΣ1, BΣ1q of toroidal varieties is a complex analytic morphism such that
φ´1pBΣ1q Ď BΣ2 (see Subsection 3.4).

In Section 4 we explain in which way one may associate various morphisms of toroidal surfaces to
the plane curve singularity C ãÑ S. First, choose a cross pL,L1q on pS, oq, defined by a local coordinate
system px, yq. The Newton polygon N pfq of a defining function f P Crrx, yss of the curve singularity
C depends only on C and on the cross pL,L1q. Its associated Newton fan is obtained by subdividing
the first quadrant along the rays orthogonal to the compact edges of the Newton polygon. This fan
defines a toric modification of S, the Newton modification of S defined by C relative to the cross pL,L1q
(see Subsection 4.1). The Newton modification becomes a toroidal morphism when we endow its target
S with the boundary divisor BS :“ L ` L1 and we define the boundary divisor of its source to be the
preimage of L`L1. We emphasize the fact that those notions depend only on the objects pS,C, pL,L1qq,
in order to insist on the underlying geometric structures. The strict transform of C by the previous
Newton modification intersects the boundary divisor only at smooth points of it, which belong to the
exceptional divisor and are smooth points of the ambient surface. If one completes the germ of exceptional
divisor into a cross at each such point oi, then one gets again a triple of the form (surface, curve, cross),
where this time the curve is the germ at oi of the strict transform of C. Therefore one may perform
again a Newton modification at each such point, and continue in this way until the strict transform of C
defines everywhere crosses with the exceptional divisor. The total transform of C and of all coordinate
curves introduced during previous steps define the toroidal boundary BΣ on the final surface Σ. This
non-deterministic algorithm produces morphisms π : pΣ, BΣq Ñ pS, BSq of toroidal surfaces, which are
toroidal pseudo-resolutions of the plane curve singularity C (see Subsection 4.2). The surface Σ has a
finite number of singular points, at which it is locally analytically isomorphic to normal toric surfaces.
In Subsection 4.3 we show how to pass from the toroidal pseudo-resolution π to a toroidal embedded
resolution by composing π with the minimal resolution of these toric singularities. Finally, we encode
the process of successive Newton modifications in a fan tree, in terms of the Newton fans produced by
the pseudo-resolution process (see Subsection 4.4).

In Section 5 we explain the notion of lotus. A Newton lotus associated to a fan encodes geometrically
the continued fraction expansions of the slopes of the rays of the fan, as well as their common parts
(see Subsection 5.2). It is composed of petals, and each petal corresponds to the blow up of the base
point of a cross. One may clarify the subtitle of the paper by saying that the collection of Newton
polygons appearing during the toroidal pseudo-resolution process blossomed into the associated lotus, each
petal corresponding to a blow up operation. We explain how to associate to the fan tree of the toroidal
pseudo-resolution a lotus, which is a 2-dimensional simplicial complex obtained by gluing the Newton
lotuses associated to the Newton fans of the process (see Subsections 5.1 and 5.3). The lotus of a toroidal
pseudo-resolution depends on the choices of crosses made during the process of pseudo-resolution (see
Subsection 5.4). We explain then how to embed in the lotus the Enriques diagram and the dual graph of
the embedded resolution. We conclude the section by defining a truncation operation on lotuses, and we
explain how it may be used to understand the part of the embedded resolution which does not depend
on the supplementary curves introduced during the pseudo-resolution process (see Subsection 5.5).

We begin Section 6 by introducing the notion of Eggers-Wall tree of the curve C relative to the smooth
germ L (see Subsection 6.1) and by expressing the Newton polygon of C relative to a cross pL,L1q in
terms of the Eggers-Wall tree of C ` L1 relative to L (see Subsection 6.2). Then we explain that the fan
tree of the previous toroidal pseudo-resolution process is canonically isomorphic to the Eggers-Wall tree
relative to L of the curve obtained by adding to C the projections to S of all the crosses built during
the process and how to pass from the numerical decorations of the fan tree to those of the Eggers-Wall
tree (see Subsection 6.5). As preliminary results, we prove renormalization formulae which describe the
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Eggers-Wall tree of the strict transform of C by a Newton modification, relative to the exceptional divisor,
in terms of the Eggers-Wall tree of C relative to L (see Subsections 6.3 and 6.4).

The final Section 7 begins by an overview of the construction of a fan tree and of the associated
lotus from the Newton fans of a toroidal pseudo-resolution process (see Subsection 7.1). Subsection 7.2
describes perspectives on possible applications of lotuses to problems of singularity theory. The final
Subsection 7.3 contains a list of the main notations used in the article.

Starting from Section 3, each section ends with a subsection of historical comments. We apologize for
any omission, which may result from our limited knowledge. One may also find historical information
about various tools used to study plane curve singularities in Enriques and Chisini’s book [35], in the
first chapter of Zariski’s book [134] and in the final sections of the chapters of Wall’s book [131].

We tried to make this paper understandable to PhD students who have only a basic knowledge about
singularities. Even if everything in this paper holds over an arbitrary algebraically closed field of charac-
teristic zero, we will stick to the complex setting, in order to make things more concrete for the beginner.
We accompany the definitions with examples and many figures. Indeed, one of our objectives is to show
that lotuses may be a great visual tool for relating the combinatorial objects used to study plane curve
singularities. There is a main example, developed throughout the paper starting from Section 4 (see
Examples 4.28, 4.34, 4.36, 5.28, 5.31, 5.36, 6.29 and the overview Figure 58). We recommend to study
it carefully in order to get a concrete feeling of the various objects manipulated in this paper. We also
recommend to those readers who are learning the subject to refer to the Section 7.1 from time to time,
in order to measure their understanding of the geometrical objects presented here.

2. Basic notions and examples

In this section we recall basic notions about complex varieties and plane curve singularities (see
Subsection 2.1), normalization morphisms (see Subsection 2.2), the relation between Newton-Puiseux
series and plane curve singularities (see Subsection 2.3) and resolution of such singularties by iteration
of blow ups of points (see Subsection 2.4). We describe such a resolution for the semi-cubical parabola
(see Subsection 2.5). We give a flavor of the main construction of this paper in Subsection 2.6. We show
there how to transform the Newton polygon of a certain Newton non-degenerate plane curve singularity
with two branches into a lotus, and how this lotus contains the dual graph of a resolution by blow ups of
points.

From now on, N denotes the set of non-negative integers and N˚ the set of positive integers.

2.1. Basic facts about plane curve singularities.

In this subsection we recall basic vocabulary about complex analytic spaces (see Definition 2.1) and
we explain the notions of plane curve singularity (see Definition 2.5), of multiplicity and of intersection
number (see Definition 2.7) for such singularities. Finally, we recall an important way of computing such
intersection numbers (see Proposition 2.8).

Briefly speaking, a complex analytic space X is obtained by gluing model spaces, which are zero-loci
of systems of analytic equations in some complex affine space Cn. One has to prescribe also the analytic
“functions” living on the underlying topological space. Those “functions” are elements of a so-called
“structure sheaf” OX , which may contain nilpotent elements. For this reason, they are not classical
functions, as they are not determined by their values. For instance, one may endow the origin of C with
the structure sheaves whose rings of sections are the various rings Crxs{pxmq, with m P N˚. They are
pairwise non-isomorphic and they contain nilpotent elements whenever m ě 2. Let us state now the
formal definitions of complex analytic spaces and of some special types of complex analytic spaces.

Definition 2.1.
‚ A model complex analytic space is a ringed space pX,OXq, where X is the zero locus of I and
OX “ OU{I. Here I is a finitely generated ideal of the ring of holomorphic functions on an open set U
of Cn, for some n P N˚, OU is the sheaf of holomorphic functions on U and I is the sheaf of ideals of OU

generated by I.
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‚ A complex analytic space is a ringed space locally isomorphic to a model complex analytic space.
‚ A complex analytic space is reduced if its structure sheaf OX is reduced, that is, without nilpotent
elements. In this case, one speaks also about a complex variety.
‚ A complex manifold is a complex variety X such that any point x P X has a neighborhood isomorphic
to an open set of Cn, for some n P N. If the non-negative integer n is independent of x, then the complex
manifold X is called equidimensional and n is its complex dimension.
‚ The smooth locus of a complex variety X is its open subspace whose points have neighborhoods which

are complex manifolds. Its singular locus SingpXq is the complement of its smooth locus.

‚ A smooth complex curve is an equidimensional complex manifold of complex dimension one and a
smooth complex surface is an equidimensional complex manifold of complex dimension two.
‚ A complex curve is a complex variety whose smooth locus is a smooth complex curve and a complex
surface is a complex variety whose smooth locus is a smooth complex surface.

By construction, the singular locus SingpXq of X is a closed subset of X. It is a deep theorem that
this subset is in fact a complex subvariety of X (see [66, Corollary 6.3.4]).

Let S be a smooth complex surface. If o is a point of S and φ : U Ñ V is an isomorphism from an
open neighborhood U of o in S to an open neighborhood V of the origin in C2

x,y, then the coordinate

holomorphic functions x, y : C2
x,y Ñ C may be lifted by φ to two holomorphic functions on U , vanishing

at o. They form a local coordinate system on the germ pS, oq of S at o. By abuse of notations,

we still denote this local coordinate system by px, yq, and we see it as a couple of elements of OS,o , the

local ring of S at o, equal by definition to the C-algebra of germs of holomorphic functions defined
on some neighborhood of o in S. The local coordinate system px, yq establishes an isomorphism OS,o »

Ctx, yu, where Ctx, yu denotes the C-algebra of convergent power series in the variables x, y. Denote

by Crrx, yss the C-algebra of formal power series in the same variables. It is the completion of Ctx, yu
relative to its maximal ideal px, yqCtx, yu. One has the following fundamental theorem, valid in fact for
any finite number of variables (see [66, Corollary 3.3.17]):

Theorem 2.2. The local rings Ctx, yu and Crrx, yss are factorial.

In addition to Definition 2.1, we use also the following meaning of the term curve:

Definition 2.3. A curve C on a smooth complex surface S is an effective Cartier divisor of S, that
is, a complex subspace of S locally definable by the vanishing of a non-zero holomorphic function.

This means that for every point o P C, there exists an open neighborhood U of o in S and a holomorphic

function f : U Ñ C such that C Ă U is the vanishing locus Zpfq of f and such that the structure sheaf

OC|U of C Ă U is the quotient sheaf OU{pfqOU . In this case, once U is fixed, the defining function f

is unique up to multiplication by a holomorphic function on U which vanishes nowhere.
The curve C is called reduced if it is a reduced complex analytic space in the sense of Definition 2.1.

This means that any defining function f : U Ñ C as above is square-free in all local rings OS,o, where
o P U . For instance, the union C of coordinate axes of C2 is a reduced curve, being definable by the
function xy, which is square-free in all the local rings OC2,o, where o P C. By contrast, the curve D
defined by the function xy2 is not reduced.

As results from Definition 2.3, a complex subspace C of S is a curve on S if and only if, for any
o P C, the ideal of OS,o consisting of the germs of holomorphic functions vanishing on the germ pC, oq
of C at o is principal. We would have obtained a more general notion of curve if we would have asked
C to be a 1-dimensional complex subspace of S in the neighborhood of any of its points. For instance,
if S “ C2

x,y, and C is defined by the ideal px2, xyq of Crx, ys, then set-theoretically C coincides with the

y-axis Zpxq. But the associated structure sheaf OC2{px2, xyqOC2 is not the structure sheaf of an effective
Cartier divisor. In fact the germ of C at the origin cannot be defined by only one holomorphic function
fpx, yq P Ctx, yu. Otherwise, we would get that both x2 and xy are divisible by fpx, yq in the local ring
Ctx, yu. As this ring is factorial by Theorem 2.2, we see that f divides x inside this ring, which implies



THE COMBINATORICS OF PLANE CURVE SINGULARITIES 7

that pfqCtx, yu “ pxqCtx, yu. Therefore, px2, xyqCtx, yu “ pxqCtx, yu which is a contradiction, as x is of
order 1 and each element of the ideal px2, xyqCtx, yu is of order at least 2. The notion of order used in
the previous sentence is defined by:

Definition 2.4. Let f P Crrx, yss. Its order is the smallest degree of its terms.

For instance, the maximal ideal of Crrx, yss consists precisely of the power series of order at least 1.
It is a basic exercise to show that the order is invariant by the automorphisms of the C-algebra Crrx, yss
and by multiplication by the elements of order 0, which are the units of this algebra. Therefore, one gets
a well-defined notion of multiplicity of a germ of formal curve on S:

Definition 2.5. A plane curve singularity is a germ C of formal curve on a germ of smooth complex

surface pS, oq, that is, a principal ideal in the completion ÔS,o of the local ring OS,o. It is called a

branch if it is irreducible, that is, if its defining functions are irreducible elements of the factorial local

ring ÔS,o. The multiplicity mopCq of C at o is the order of a defining function f P ÔS,o of C, seen

as an element of Crrx, yss using any local coordinate system px, yq of the germ pS, oq.

Example 2.6. Let α, β P N˚ and f :“ xα´ yβ P Crx, ys. Denote by C the curve on C2 defined by f . Its
multiplicity at the origin O of C2 is the minimum of α and β. The curve singularity pC,Oq is a branch
if and only if α and β are coprime. One implication is easy: if α and β have a common factor ρ ą 1,
then xα ´ yβ “

ś

ω: ωρ“1

`

xα{ρ ´ ωyβ{ρ
˘

, the product being taken over all the complex ρ-th roots ω of 1,
which shows that pC,Oq is not a branch. The reverse implication results from the fact that, whenever
α and β are coprime, C is the image of the parametrization Nptq :“ ptβ , tαq. The inclusion NpCq Ď C
being obvious, let us prove the reverse inclusion. Let px, yq P C. As Np0q “ O, it is enough to consider
the case where xy ‰ 0. We want to show that there exists t P C˚ such that x “ tβ , y “ tα. Assume
the problem solved and consider also a pair pa, bq P Z2 such that aα ` bβ “ 1, which exists by Bezout’s
theorem. One gets t “ taα`bβ “ yaxb. Define therefore t :“ yaxb. Then:

tβ “ pyaxbqβ “ pyβqaxbβ “ pxαqaxbβ “ xaα`bβ “ x,

and similarly one shows that tα “ y. This proves that C is indeed included in the image of N .

Let C be a plane curve singularity on the germ of smooth surface pS, oq. If f P ÔS,o is a defining
function of C, it may be decomposed as a product:

(1) f “
ź

iPI

fpii ,

in which the functions fi are pairwise non-associated prime elements of the local ring ÔS,o and pi P N˚ for
every i P I. Such a decomposition is unique up to permutation of the factors fpii and up to a replacement
of each function fi by an associated one (recall that two such functions are associated if one is the product
of another one by a unit of the local ring). If Ci Ď S is the plane curve singularity defined by fi, then the
decomposition (1) gives a decomposition of C seen as a germ of effective divisor C “

ř

iPI piCi, where
each curve singularity Ci is a branch. The plane curve singularity C is reduced if and only if pi “ 1 for
every i P I.

The intersection number is the simplest measure of complexity of the way two plane curve singularities
interact at a given point:

Definition 2.7. Let C and D be two curve singularities on the germ of smooth surface pS, oq defined

by functions f and g P ÔS,o respectively. Their intersection number pC ¨Dqo , also denoted C ¨D

if the base point o of the germ is clear from the context, is defined by:

C ¨D :“ dimC
ÔS,o

pf, gq
P NY t8u,

where pf, gq denotes the ideal of ÔS,o generated by f and g.
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If C and D are two curve singularities, then one has that pC ¨ Dqo ě mopCqmopDq, with equality if
and only if the curves C and D are transversal (see [131, Lemma 4.4.1]), that is, the tangent plane of
pS, oq does not contain lines which are tangent to both C and D.

Seen as a function of two variables, the intersection number is symmetric. It is moreover bilinear, in
the sense that if C “

ř

iPI piCi, then C ¨D “
ř

iPI pipCi ¨Dq. Therefore, in order to compute C ¨D, it is
enough to find Ci ¨D for all the branches Ci of C.

One has the following useful property (see [66, Lemma 5.1.5]):

Proposition 2.8. Let C be a branch and D be an arbitrary curve singularity on the smooth germ of
smooth surface pS, oq. Denote by N : pCt, 0q Ñ pS, oq a formal parametrization of degree one of C and

g P ÔS,o be a defining function of D. Then

C ¨D “ νtpgpNptqqq,

where νtphq denotes the order of a power series h P Crrtss.

Example 2.9. Let us consider two curves C,D Ď C2
x,y, defined by polynomials f :“ xα ´ yβ and g :“

xγ ´ yδ of the type already considered in Example 2.6. Assume that α and β are coprime. This implies,
as shown in Example 2.6, that the plane curve singularity pC,Oq is a branch and that Nptq :“ ptβ , tαq is
a parametrization of degree one of it. By Proposition 2.8, if C is not a branch of D, we get:

C ¨D “ νt
`

ptβqγ ´ ptαqδ
˘

“ νt
`

tβγ ´ tαδ
˘

“ mintβγ, αδu.

For more details about intersection numbers of plane curve singularities, one may consult [15, Sect.
6], [113, Vol. 1, Chap. IV.1] and [39, Chap. 8].

The formal parametrizations N : pCt, 0q Ñ pS, oq of degree one of a branch appearing in the statement
of Proposition 2.8 are exactly the normalization morphisms of C whose sources are identified with pC, 0q.
Next subsection is dedicated to the general definition of normal complex variety and of normalization
morphism in arbitrary dimension, as we will need them later also for surfaces.

2.2. Basic facts about normalizations.

In this subsection we explain basic facts about normal rings (see Definition 2.10), normal complex
varieties (see Definition 2.11) and normalization morphisms (see Definition 2.16) of arbitrary complex
varieties. For more details and proofs one may consult [66, Sections 1.5, 4.4] and [58].

The following definition contains algebraic notions, concerning extensions of rings:

Definition 2.10. Let R be a commutative ring and let R Ď T be an extension of R.

(1) An element of T is called integral over R if it satisfies a monic polynomial relation with
coefficients in R.

(2) The extension R Ď T of R is called integral if each element of T is integral over R.
(3) The integral closure of R is the set of integral elements over R of the total ring of fractions of

R.
(4) R is called normal if it is reduced (without nonzero nilpotent elements) and integrally closed in

its total ring of fractions, that is, if it coincides with its integral closure.

The arithmetical notion of normal ring allows to define the geometrical notion of normal variety :

Definition 2.11. Let X be a complex variety in the sense of Definition 2.1.

(1) If x P X, then the germ pX,xq of X at x is called normal if its local ring OX,x is normal.
(2) The complex variety X is normal if all its germs are normal.

Normal varieties may be characterized from a more function-theoretical viewpoint as those complex
varieties on which holds the following “Riemann extension property”: every bounded holomorphic function
defined on the smooth part of an open set extends to a holomorphic function on the whole open set (see
[66, Theorem 4.4.15]).

Recall now the following algebraic regularity condition (see [66, Sect. 4.3]):

Definition 2.12. Let O be a Noetherian local ring, with maximal ideal m.
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(1) The Krull dimension of O is the maximal length of its chains of prime ideals.
(2) The embedding dimension of O is the dimension of the O{m-vector space m{m2.
(3) The local ring O is called regular if its Krull dimension is equal to its embedding dimension.

The Krull dimension of O is always less or equal to the embedding dimension. The name embedding
dimension may be understood by restricting to the case where O is the local ring of a complex space (see
[66, Lemma 4.3.5]):

Proposition 2.13. Let pX,xq be a germ of complex space. Then the embedding dimension of its local
ring OX,x is equal to the smallest n P N such that there exists an embedding of germs pX,xq ãÑ pCn, 0q.
In particular, OX,x is regular if and only if pX,xq is smooth, that is, a germ of complex manifold.

The normal varieties of dimension one are exactly the smooth complex curves because, more generally
(see [66, Thm. 4.4.9, Cor. 4.4.10]):

Theorem 2.14. A Noetherian local ring of Krull dimension one is normal if and only if it is regular.

There is a canonical way to construct a normal variety X̃ starting from any complex variety X (see
[66, Sect. 4.4]):

Theorem 2.15. Let X be a complex variety. Then there exists a finite and generically 1 to 1 morphism
N : X̃ Ñ X such that X̃ is normal. Moreover, such a morphism is unique up to a unique isomorphism
over X.

Recall that a morphism between complex varieties is finite if it is proper with finite fibers and that it
is generically 1 to 1 if it is an isomorphism above the complement of a nowhere dense closed subvariety of
its target space. The existence of a morphism with the properties stated in Theorem 2.15 may be proven
algebraically by considering the integral closures of the rings of holomorphic functions on the open sets
of X, and showing that they are again rings of holomorphic functions on complex varieties which admit
finite and generically 1 to 1 morphisms to the starting open sets. This algebraic proof extends to formal
germs, by showing that the integral closure in its total ring of fractions of a complete ring of the form
Crrx1, . . . , xnss{I, where n P N˚ and I is an ideal of Crrx1, . . . , xnss, is a direct sum of rings of the same
form.

The canonical morphisms characterized in Theorem 2.15 received a special name:

Definition 2.16. Let X be a complex variety. Then a morphism N : X̃ Ñ X is called a normalization
morphism of X if it is finite, generically 1 to 1 and X̃ is a normal complex variety.

Let now pC, oq be a germ of complex variety of Krull dimension one, that is, an abstract curve

singularity. Its normalization morphisms are of the form: N :
Ů

iPIpC̃i, oiq Ñ pC, oq, where pCi, oqiPI is

the finite collection of irreducible components of pC, oq, and the restriction Ni : pC̃i, oiq Ñ pC, oq of N to

C̃i is a normalization of pCi, oq. By Theorem 2.14 and Proposition 2.13, we see that each germ pC̃i, oiq is
smooth, that is, isomorphic to pC, 0q. After precomposing N with such isomorphisms, we see that pC, oq
admits a normalization morphism of the form

Ů

iPIpC, 0q Ñ pC, oq. In particular, if pC, oq is irreducible,
its normalization morphism is of the form N : pC, 0q Ñ pC, oq. The same construction yields a formal
parametrization when the starting germ pC, oq is formal. This is precisely a formal parametrization of
degree one as used in the statement of Proposition 2.8.

2.3. Newton-Puiseux series and the Newton-Puiseux theorem.

At the end of the previous subsection we explained that normalizations of irreducible germs of complex
analytic or formal curves C are holomorphic or formal parametrizations pC, 0q Ñ C of degree one. In
this subsection we introduce especially nice parametrizations in the case of plane branches, which lead to
the notion of Newton-Puiseux series (see Definition 2.18). The Newton-Puiseux theorem (see Theorem
2.20) implies that the field of Newton-Puiseux series is algebraically closed. Another consequence of it is
stated in Theorem 6.1 below.

Let C be a branch on the smooth germ of surface pS, oq. Choose an arbitrary system of local coordinates
on pS, oq. If the branch C is smooth, assume moreover that the germ at o of the y-axis Zpxq is different
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from C. This means that for any normalization morphism N : pCt, 0q Ñ pC, oq of C, described in this
coordinate system as t Ñ pξptq, ηptqq, where ξ, η P ptqCrrtss, the power series ξptq is not identically zero.
We have ξptq “ tn ¨ εptq, where n P N˚ is the order of the power series ξptq and εptq is a unit in the ring
Crrtss. The series εptq has exactly n different n-th roots in Crrtss, whose constant terms are the n-th
roots of εp0q. Pick one of them, denote it by ε1{nptq, and set λptq :“ tε1{nptq. Therefore ξptq “ λptqn and
νtpλptqq “ 1.

Remark 2.17. More generally, if K is an algebraically closed field of characteristic zero, then any unit
of Krrtss has all its n-th roots in Krrtss. This fact is no longer true if K has positive characteristic.
For instance, as a direct consequence of the binomial formula, there is no series εptq P Krrtss such that
εptqp “ 1`t when K is of characteristic p. For this reason, the Newton-Puiseux Theorem 2.20 below does
not always hold in positive characteristic. For more details about the situation in positive characteristic,
one may consult [97].

As νtpλptqq “ 1, we see that the morphism pCt, 0q Ñ pCu, 0q, which maps tÑ λptq is an isomorphism
of germs of smooth curves. By composing the morphism N : pCt, 0q Ñ pC, oq with its inverse, one gets a
new normalization morphism of the form:

pCu, 0q Ñ pC, oq
u Ñ pun, ζpuqq

where ζpuq P Crruss. Therefore, if fpx, yq P Crrx, yss is a defining function of C in the local coordinate
system px, yq, we have:

(2) fpun, ζpuqq “ 0.

From the equations x “ un, y “ ζpuq, one may deduce formally that u “ x1{n, y “ ζpx1{nq. Equation (2)
becomes:

(3) fpx, ζpx1{nqq “ 0.

The composition ζpx1{nq is a Newton-Puiseux series in the following sense:

Definition 2.18. The C-algebra Crrx1{Nss of Newton-Puiseux series consists of all the formal power

series of the form ηpx1{nq, where η P Crrtss and n P N˚, that is, Crrx1{Nss “
Ť

nPN˚ Crrx1{nss. Denote

by νx : Crrx1{Nss Ñ r0,8s the order function, which associates to every Newton-Puiseux series the

smallest exponent of its terms, where νxp0q :“ 8.

The function νx is a valuation of the C-algebra of Newton-Puiseux series, in the following sense:

Definition 2.19. A valuation on an integral C-algebra A is a function ν : AÑ R`Yt8u which satisfies
the following conditions:

(1) νpfgq “ νpfq ` νpgq, for all f, g P A.
(2) νpf ` gq ě mintνpfq, νpgqu, for all f, g P A.
(3) νpλq “ 0, for all λ P C˚.
(4) νpfq “ 8 if and only if f “ 0.

The basic importance of the ring of Newton-Puiseux series comes from the following Newton-Puiseux
theorem (see Fischer [39, Chapter 7], Teissier [121, Section 1], [123, Sections 3-4], de Jong & Pfister [66,
Section 5.1], Cutkosky [28, Section 2.1] or Greuel, Lossen & Shustin [59, Thm. I.3.3]):

Theorem 2.20. (Newton-Puiseux theorem) Any non-zero monic polynomial f P Crrxssrys such that
fp0, yq “ yd has d roots in the ring Crrx1{Nss. As a consequence, the quotient field of the ring Crrx1{Nss
is the algebraic closure of the quotient field of the ring Crrxss.

Proof. It is immediate to reduce the proof of the first sentence of the theorem to the case where f is
irreducible. Assume that this is the case. By equation (3), there exists a Newton-Puiseux series ζpx1{nq

which is a root of f . One has necessarily n “ d. Indeed, by the proof of equation (3), u Ñ pun, ζpuqq is
a normalization of the formal branch Zpfq. Therefore, Proposition 2.8 shows that:

n “ νupu
nq “ Zpfq ¨ Zpxq “ Zpxq ¨ Zpfq “ νy pfp0, yqq “ d.
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Consider now the product:

F px, yq :“
ź

ω:ωn“1

´

y ´ ζpωx1{nq

¯

P Crrx1{nssrys.

It is invariant by the changes of variables px1{n, yq Ñ pωx1{n, yq, where ω varies among the complex n-th
roots of 1, which shows that F px, yq P Crrxssrys. As ζpx1{nq is a root of both fpx, yq and F px, yq and
that fpx, yq is irreducible, we see that f divides F in the ring Crrxssrys. Both being monic and of the
same degree, we get the equality f “ F . Therefore, all the roots of f belong to Crrx1{nss.

The second statement of the theorem results from the first statement and from Hensel’s lemma (see
[66, Corollary 3.3.21]), which ensures that a factorisation of fp0, yq P Crys in pairwise coprime factors
lifts to an analogous decomposition of fpx, yq P Crrxssrys. �

The proof of Theorem 2.20 which we have sketched here also shows that the Galois group of the field
extension associated to the ring extension Crrxss Ă Crrx1{nss is isomorphic to the cyclic group of n-th
roots of 1, an element ω of this group acting on ζpx1{nq P Crrx1{nss replacing it by ζpωx1{nq.

Remark 2.21. The proof of Theorem 2.20 which we have sketched here also shows that the Galois group
of the field extension associated to the ring extension Crrxss Ă Crrx1{nss is isomorphic to the cyclic group
of n-th roots of 1, an element ω of this group acting on ζpx1{nq P Crrx1{nss replacing it by ζpωx1{nq.

Remark 2.22. Most proofs of Theorem 2.20 use the Newton polygon N pfq of f (see Definition 4.2
below). As explained in Subsection 2.5, the restrictions of f to the compact edges of N pfq allow to find
the possible initial terms of the candidate roots ηpxq of the equation fpx, yq “ 0 seen as an equation in
the single unknown y. Such proofs proceed then by showing that all those terms may be extended to
true roots inside Crrx1{Nss.

Example 2.23. Consider coprime integers α, β P N˚ and fpx, yq :“ xα ´ yβ P Crrxssrys, as in Example
2.6. Then the Newton-Puiseux roots of f are the β series ωxα{β , where ω varies among the complex β-th
roots of 1. If ω1 is another such root of 1, it acts on ω xα{β by sending it to pω1qα ω xα{β .

2.4. Blow ups and embedded resolutions of singularities.

In this subsection we explain the notion of blow up of C2 at the origin (see Definition 2.24) and more
generally of a smooth complex surface at an arbitrary point of it (see Definition 2.29), the notion of
embedded resolution of a curve in a smooth surface (see Definition 2.33) and the fact that an embedded
resolution may be achieved after a finite number of blow ups of points (see Theorem 2.35). We conclude
by recalling the notion of weighted dual graph of an embedded resolution (see Definition 2.36) and the
way to compute its weights when this resolution is constructed iteratively by blowing up points.

Look at the complex affine plane C2
x,y as a complex vector space. Denote by PpC2qru:vs its projec-

tivisation, consisting of its vector subspaces of dimension one, endowed with the projective coordinates
ru : vs associated to the cartesian coordinates px, yq on C2.

Definition 2.24. Consider the projectivisation map

λ : C2 99K PpC2q

px, yq 99K rx : ys.

associating to each point of C2ztOu the line joining it to the origin O of C2. Let Σ be the closure of

its graph in the product algebraic variety C2 ˆ PpC2q. Then the restriction π : Σ Ñ C2 of the first

projection C2 ˆ PpC2q Ñ C2 is called the blow up of C2 at the origin. By abuse of language, the
surface Σ is also called in this way. The preimage π´1pOq of O in Σ is called the exceptional divisor

of the blow up. The restriction λ̃ : Σ Ñ PpC2q to Σ of the second projection C2 ˆ PpC2q Ñ PpC2q is
called the Hopf morphism.

The name “Hopf morphism” is motivated by the fact that in restriction to the preimage π´1pS3q of the

unit 3-dimensional sphere S3 Ă C2, the morphism λ̃ becomes the “Hopf fibration” S3 Ñ S2, introduced
by Hopf in [64, Section 5] (see also [109] for historical details).
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The projectivisation map restricts to a morphism λ : C2ztOu Ñ PpC2q. This morphism cannot be
extended even by continuity to the origin O, because O belongs to the closures of all its level sets, which
are the complex lines of C2 passing through O. Taking the closure of the graph of λ replaces O by
the space PpC2q of lines passing through O. This allows the lift of λ to Σ to extend by continuity, and

even algebraically, to the whole surface Σ, becoming the Hopf morphism λ̃. This morphism is in fact
the projection morphism of the total space of a line bundle, as will be shown in Proposition 2.25 below.
Before proving it, let us explain how to describe using a simple atlas of two charts the blow up surface Σ.

The projective line PpC2qru:vs is covered by the two affine lines Cu1
and Cv2 , where:

u1 :“
u

v
, v2 :“

v

u
.

Therefore, the product C2 ˆ PpC2q is covered by the two affine 3-folds C3
x,y,u1

and C3
x,y,v2 .

The surface Σ contained in C2 ˆ PpC2q is the zero locus Zpxv ´ yuq of a homogeneous polynomial of
degree one in the variables u, v. Its intersections with the two previous 3-folds are therefore:

ΣX C3
x,y,u1

“ Zpx´ yu1q, and ΣX C3
x,y,v2 “ Zpxv2 ´ yq.

One recognizes in each case the equation of the graph of a function of two variables, those pairs of
variables being pu1, yq and px, v2q respectively. Therefore, by projecting on the planes of those two pairs
of variables, one gets isomorphisms:

ΣX C3
x,y,u1

» C2
u1,y, and ΣX C3

x,y,v2 » C2
x,v2 ,

which may be thought as the charts of an algebraic atlas of Σ. Let us replace y by u2 in the first chart

C2
u1,y and x by v1 in the second chart C2

x,v2 . The blow up morphism π : Σ Ñ C2 gets expressed in the

following way in the two charts:

(4)

"

x “ u1u2

y “ u2,
and

"

x “ v1

y “ v1v2.

The previous formulae show that the exceptional divisor π´1pOq becomes the u1-axis in the chart C2
u1,u2

and the v2-axis in the chart C2
v1,v2 .

By composing one such morphism with the inverse of the second one, we see that Σ may be obtained
from the two copies C2

u1,u2
and C2

v1,v2 of C2 by gluing their open subsets C˚u1
ˆ Cu2 and Cv1 ˆ C˚v2

respectively using the following inverse changes of variables:

(5)

"

v1 “ u1u2

v2 “ u´1
1

and

"

u1 “ v´1
2

u2 “ v1v2.

The Hopf morphism λ̃ : Σ Ñ PpC2q becomes the morphisms C2
u1,u2

Ñ C1
u1

and C2
v1,v2 Ñ C1

v2 if one

uses the charts C2
u1,u2

,C2
v1,v2 for Σ and C1

u1
,C1

v2 for PpC2q. The fibers of these two morphisms have
natural structures of complex lines if one identifies them with the standard complex line C using the
parameters u2 and v1 respectively. As the gluing maps (5) respect those structures, we get:

Proposition 2.25. The Hopf morphism λ̃ : Σ Ñ PpC2q is the projection morphism from the total space of
a line bundle to its base PpC2q. Its zero-section is the exceptional divisor π´1pOq of the blow up morphism
π : Σ Ñ C2.

The fundamental numerical invariant of a complex line bundle over a projective curve, which char-
acterises it up to topological isomorphims in general and up to algebraic isomorphisms if the curve is
rational, is its degree, defined by:

Definition 2.26. The degree of a line bundle over a smooth connected projective curve C is the degree
of the divisor on C defined by any meromorphic section of the line bundle which is neither constantly 0
nor constantly 8.

In our case, we have:

Proposition 2.27. The degree of the Hopf line bundle λ̃ : Σ Ñ PpC2q is equal to ´1.
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Proof. Let us consider the meromorphic section s of λ̃ which appears as the constant function 1 in the
charts C2

u1,u2
Ñ C1

u1
. The equation of its graph is u2 “ 1. The change of variables (5) transform it into

v1v2 “ 1. Therefore, s appears as the rational function v´1
2 in the charts C2

v1,v2 Ñ C1
v2 . This shows that

the section s has no zeros and a unique pole of multiplicity one. As a consequence, the degree of the
divisor defined by s is equal to ´1. �

On any smooth complex algebraic or analytic surface S, one may define a notion of intersection number
of two divisors whenever at least one of them has compact support. This may be done algebraically, by
considering first the case when one divisor is a reduced compact curve C on S, the intersection number
being then the degree of the pullback of the line bundle defined by the second divisor to the normalization
of C. Then, one extends this definition by linearity to arbitrary not necessarily reduced or effective
divisors. There is also a topological definition, obtained by associating a homology class to one divisor,
a cohomology class to the second one and then evaluating the cohomology class on the homology class.
One may consult [61, Sect. V.1] for the case of algebraic surfaces and [76, Pages 15–20] for the case of
analytic surfaces. It turns out that, either by definition or as a theorem, the self-intersection number of
the zero-section of a line bundle over a smooth compact complex curve is equal to the degree of the line
bundle. Therefore, Proposition 2.27 may be also stated as:

Corollary 2.28. The self-intersection number of the zero-section of the Hopf line bundle λ̃ : Σ Ñ PpC2q

is equal to ´1.

Till now, we have discussed in this subsection only the blow up of the origin O of C2. This operation
may be extended to any point o of a smooth complex surface S, by choosing first local coordinates px, yq
in a neighborhood U of that point. This allows to identify U with an open neighborhood of O in C2.
Denote by πU : ΣU Ñ U the restriction to U of the blow up morphism of O in C2. This complex analytic
morphism is an isomorphism over UztOu. Therefore, it allows to glue ΣU and S along UztOu, getting a

surface S̃ endowed with a morphism π̃ : S̃ Ñ S.

Definition 2.29. The morphism π̃ : S̃ Ñ S constructed above is called a blow up morphism of S at
the point o.

It may be shown by a direct computation that the blow up morphism of S at o is independent of the
choices of local coordinates and open set U . More precisely, given any two morphisms constructed in this
way, there exists a unique isomorphism between their sources above S (see [131, Lemma 3.2.1]). Another
way to prove this uniqueness is to characterize such morphisms by a universal property (see [61, Chap.
II, Prop. 7.14]):

Proposition 2.30. Let S be a smooth complex surface and π̃ : S̃ Ñ S a blow up morphism of S at its
point o. Then for any morphism f : Y Ñ S such that the ideal sheaf defining o on S lifts to a principal
ideal sheaf on Y , there exists a unique morphism g : Y Ñ S̃ such that f “ π̃ ˝ g.

One may define more generally the blow up of any complex space along a closed subspace, and again
this morphism may be characterized using an analogous universal property (see [61, Pages 163–169] for
a similar study in the case of schemes).

Returning to the model case of the blow up of C2 at the origin O, relations (4) show that the lift by π
to Σ of the maximal ideal px, yq of Crx, ys defining O is the principal ideal sheaf defining the exceptional
divisor of π. This fact is an algebraic manifestation of the fact that on Σ all the lines of C2 passing
through O get separated: they are simply the fibers of the Hopf morphism λ̃. Note that in order to
separate them indeed, one does not have to lift them by taking their full preimages by π (called their
total transforms by π), but only by taking their strict transforms. Let us define these notions in greater
generality:

Definition 2.31. Let π : Y Ñ X be a morphism of complex varieties and Z Ď X a closed complex
subvariety of X.

(1) The morphism π is a modification of X if it is proper and bimeromorphic, that is, if it is proper
and if there exists a closed nowhere dense subvariety X 1 of X such that π´1pX 1q is a nowhere
dense subvariety of Y and the restriction π : Y zπ´1pX 1q Ñ XzX 1 is an isomorphism.
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(2) If X 1 is minimal with the previous properties, then X 1 is called the indeterminacy locus of
π´1 and π´1pX 1q is called the exceptional locus of π.

(3) The total transform π˚pZq of Z by π is the complex subspace of Y defined by the preimage

by π of the ideal sheaf defining Z in X.
(4) Assume that no irreducible component of Z is included in the indeterminacy locus X 1 of π´1.

Then the strict transform of Z by π is the closure inside Y of π´1pZzX 1q.

The blow up morphisms of surfaces at smooth points are examples of modifications. In the case of
the blow up π : Σ Ñ C2

x,y at the origin, the equations (4) show that the total transform of a line

Zpy ´ axq Ď C2
x,y, for a P C˚, may be described as Zpu2p1´ au1qq Ď C2

u1,u2
and Zpv1pv2 ´ aqq Ď C2

u1,u2

in the two charts covering Σ. As Zpu2q and Zpv1q describe the exceptional divisor π´1pOq in those two

charts, we see that the strict transform of Zpy ´ axq is the fiber of λ̃ whose equations are u1 “ a´1 and
v2 “ a in those two charts.

Assume now that C is a finite sum
ř

iPI Li of such lines Li passing through the origin in C2. The strict

transform of C by π is the sum of the strict transforms L̃i of those lines and the total transform π˚pCq

is the sum π´1pOq `
ř

iPI L̃i of the exceptional divisor of π and of the strict transform of C. Therefore,
π˚pCq is a normal crossings divisor in the following sense:

Definition 2.32. Let S be a smooth complex surface and D a divisor on it. This divisor is said to have
normal crossings or to be a normal crossings divisor if its support is locally either a smooth curve
or the union of two transversal smooth curves.

Coming back to the curve C “
ř

iPI Li in C2, the fact that its total transform π˚pCq is a normal
crossings divisor shows that the blow up morphism π : Σ Ñ C2 is an embedded resolution of C, in the
following sense:

Definition 2.33. Let C be a curve on the smooth complex surface S, in the sense of Definition 2.3. An
embedded resolution of C is a modification π̃ : S̃ Ñ S such that:

(1) S̃ is smooth;
(2) the total transform π̃˚pCq is a normal crossings divisor;

(3) the strict transform C̃ of C by π̃ is smooth.

The restriction π̃C : C̃ Ñ C of an embedded resolution π̃ of C to the strict transform C̃ of C is a
resolution of C in the following sense:

Definition 2.34. Let X be a complex variety. A resolution of X is a modification π : X̃ Ñ X such
that X̃ is smooth and the indeterminacy locus of π´1 is equal to the singular locus of X.

If X is a complex curve, then a resolution of it is the same as a normalization morphism. This is no
longer true in higher dimensions, as in each dimension at least 2, there are normal non-smooth complex
varieties. For instance, a hypersurface X of Cn whose singular locus has codimension at least 2 in X is
normal (see [92], [1]).

Note that the second condition in Definition 2.33 does not imply the third one. For instance, if one
takes the folium of Descartes C Ă C2

x,y defined by the equation x3 ` y3 “ 3xy, then C is a normal

crossings divisor in C2 (with a single singular point at the origin), therefore the identity morphism from
C2 to itself satisfies the first two conditions of Definition 2.33 but not the last one, because the strict
transform of C by it is not smooth, being the curve C itself.

In order to get an embedded resolution of the folium of Descartes, it is enough to blow up C2 at the
origin O. More generally, if C is a curve in a smooth complex surface S such that at each point o of C,
the branches of C at o are smooth and pairwise transversal, then the morphism obtained by blowing up
S at all the singular points of C is an embedded resolution of C. Conversely, as may be seen by working
with the description (4) of the blow up morphism at a point in terms of local coordinates, this property
of achieving an embedded resolution by blowing up distinct points of S characterizes the previous kind
of curves. What about curves with more complicated singularities? It turns out that they also have
embedded resolutions, which may be obtained by blowing up points iteratively (see [61, Thm. 3.9], [15,
Pages 496-497], [66, Thm. 5.4.2], [19, Section 3.7] and [131, Thm. 3.4.4]):
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Theorem 2.35. Let C be a curve on the smooth complex surface S. Define S0 :“ S and π0 : S0 Ñ S
to be the identity. Assume that for some k ě 0 one has defined a modification πk : Sk Ñ S which is not
an embedded resolution of C. Denote by Bk Ă Sk the set of points at which either the strict transform
of C is not smooth or π˚k pCq is not a normal crossings divisor. Define ψk : Sk`1 Ñ Sk to be the blow up
of Sk at the points of Bk and πk`1 :“ πk ˝ ψk : Sk`1 Ñ S. Then there exists k P N such that πk is an
embedded resolution of C.

If k is chosen minimal such that πk is an embedded resolution of C, then πk is called the minimal
embedded resolution of C. It may be shown that any other embedded resolution of C factors through
it.

The combinatorial structure of the total transform of C on a given embedded resolution π̃ : S̃ Ñ S of
C is encoded usually by drawing its weighted dual graph:

Definition 2.36. Let C be a curve on the smooth complex surface S and π̃ : S̃ Ñ S be an embedded
resolution of C. Its weighted dual graph is a finite connected graph whose vertices are labeled by the
irreducible components of the total transform π̃˚pCq, two vertices being connected by an edge whenever
their associated curves intersect on Σ. The vertices corresponding to the components of the strict trans-
form of C are drawn arrowheaded. The remaining vertices are weighted by the self-intersection numbers
on Σ of the associated irreducible components of the exceptional locus of π.

How to compute the weights of the dual graph of the embedded resolution π̃ : S̃ Ñ S? If this resolution
is obtained iteratively by the process described in Theorem 2.35, then one may compute recursively the
self-intersection numbers of the components of the exceptional loci of the modifications πk using Corollary
2.28 and (see [131, Lemma 8.1.6]):

Proposition 2.37. Let C be a compact curve in the smooth complex surface S. Let o be a point of C of
multiplicity m P N. If π : Σ Ñ S is the blow up of S at o, then the self-intersection C̃2 in Σ of the strict
transform C̃ of C by π is related to the self-intersection C2 of C in S by the formula C̃2 “ C2 ´m.

2.5. The minimal embedded resolution of the semicubical parabola.

In this subsection we show how to achieve the minimal embedded resolution of the semicubical parabola
using the algorithm described in Theorem 2.35 and how to compute its weighted dual graph using
Proposition 2.37. It is an expansion of [61, Example V.3.9.1].

The semicubical parabola is the curve P ãÑ C2
x,y defined as the vanishing locus of the polynomial

ppx, yq :“ y2´x3. The germ of P at the origin O is a branch called sometimes the standard cusp. Due
to the following Jacobian criterion (see [66, Theorem 4.3.6] for a generalization in arbitrary dimension
and codimension), the origin is the only singular point of P .

Theorem 2.38. (Jacobian criterion) Let C be a reduced curve in an open set of C2
x,y, defined by a

holomorphic function f : U Ñ C. Then the singular locus SingpCq is the zero locus Zpf, Bxf, Byfq.

We want to construct a sequence of blow ups which leads to an embedded resolution of P by following
the algorithm described in Theorem 2.35, whose notations we use. Therefore, denote by π1 : S1 Ñ C2

the blow up of the origin O0 :“ O of C2
x,y, instead of π : Σ Ñ C2 as in Definition 2.24. We use the

standard charts C2
u1,u2

and C2
v1,v2 for computations on S1, the blow up morphism π1 being then described

by the changes of variables (4). The total transform π˚1 pP q of P by π1 is defined by the composition
p ˝ π1, which is expressed as follows in the two charts:

(6) ppu1u2, u2q “ u2
2p1´ u

3
1u2q, ppv1, v1v2q “ v2

1pv
2
2 ´ v1q.

As the curve P is smooth outside the origin, its strict transform P1 by π1 is also smooth outside the

exceptional divisor. This strict transform intersects the exceptional divisor π´1
1 pOq only in the chart

C2
v1,v2 , because its equations in the two charts are 1 ´ u3

1u2 “ 0 and v2
2 ´ v1 “ 0. The second equation

is that of a parabola, therefore it defines a smooth curve. This shows that the strict transform P1 is
everywhere smooth. Therefore, the restriction of the morphism π1 to the curve P1 is a resolution of P , in
the sense of Definition 2.34. But it is not an embedded resolution in the sense of Definition 2.33, because
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the total transform π˚1 pP q is not a normal crossings divisor at the origin O1 of the chart C2
v1,v2 . Indeed,

the strict transform P1 X C2
v1,v2 “ Zpv2

2 ´ v1q and the exceptional divisor π´1
1 pOq X C2

v1,v2 “ Zpv1q are
tangent at O1.

Blow up now the point O1, getting a new surface S2 . Let ψ1 : S2 Ñ S1 be this blow up morphism.

The preimage ψ´1
1 pC2

v1,v2q of the chart C2
v1,v2 of S1 may be covered by two charts C2

w1,w2
and C2

z1,z2 , in
which the morphism ψ1 is described by the following analogs of equations (4):

(7)

"

v1 “ w1w2

v2 “ w2,
and

"

v1 “ z1

v2 “ z1z2.

In order to cover completely the surface S2, one needs also the chart C2
u1,u2

of S1, which is left unchanged
by the blow up morphism ψ1 because O1 does not appear in it.

Denote π2 :“ π1 ˝ ψ1 : S2 Ñ C2. Using equations (6) we see that:

(8) p ˝ π2pw1, w2q “ w2
1w

3
2pw2 ´ w1q, and p ˝ π2pz1, z2q “ z3

1pz1z
2
2 ´ 1q.

Therefore, the strict transform P2 of P1 by π2 intersects again the exceptional divisor only in one of

those charts, namely C2
w1,w2

. The total transform π˚2 pP q ãÑ S2 is still not a normal crossings divisor,

because its germ at the origin O2 of C2
w1,w2

has three branches: Zpw1q, Zpw2q, Zpw2 ´ w1q, as shown

by equation (8). One needs to blow up also this point, getting the morphisms ψ2 : S3 Ñ S2 and

π3 :“ π2 ˝ψ2 : S3 Ñ C2. The blow up ψ2 may be described using the following analogs of equations (4)

above the chart C2
w1,w2

:

(9)

"

w1 “ s1s2

w2 “ s2,
and

"

w1 “ t1
w2 “ t1t2.

Composing these changes of variables with the second equation (8), we get:

p ˝ π3ps1, s2q “ s2
1s

6
2p1´ s1q, p ˝ π3pt1, t2q “ t61t

3
2pt2 ´ 1q.

In both charts of S3 the total transform π˚3 pP q is a normal crossings divisor. This being the case also in
the remaining charts C2

u1,u2
and C2

z1,z2 , we see that π3 is an embedded resolution of singularities of the
semicubical parabola P . By Theorem 2.35, it is the minimal such resolution.

We illustrated the previous sequence of blow ups in Figure 2. We drew whenever possible the support
of the total transform of P in the chart whose origin is contained in the strict transform of P . In the
four charts the strict transforms of P are drawn in orange and the defining polynomial is written near it.
We have used systematically the same color for a point Oi which is blown up by a morphism ψi, for the
exceptional divisor Ei created by this blow up and for its strict transforms Ei,j by the next blow ups.
Notice that the component E0,2 appears on the chart C2

t1,t2 , but it does not appear on the chart C2
s1,s2 ,

represented on the right of Figure 2.

x

y Zpy2 ´ x3q

O0
v1

v2
Zpv2

2 ´ v1q

O1

E0 E0,1

E1

w1

w2
Zpw2 ´ w1q

O2

E2

E1,2

s1

s2
Zp1´ s1q

π1 ψ1 ψ2

Figure 2. Building iteratively the minimal embedded resolution of the semicubical parabola

Let us compute now the weighted dual graph of π3. For every i P t0, 1, 2u, denote by Ei ãÑ Si`1

the exceptional divisor of the blow up of the point Oi P Si. If 0 ď i ă j ď 2, denote by Ei,j the strict

transform of Ei on the surface Sj`1 by the modification ψj ˝ ¨ ¨ ¨ ˝ ψi : Sj`1 Ñ Si. By Corollary 2.28,
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one has E2
0 “ E2

1 “ E2
2 “ ´1. Equations (6) and (8) imply that O1 P E0 and O2 P E1 X E0,1, because

in the chart C2
v1,v2 one has E0,1 “ Zpv1q, O1 “ p0, 0q and in the chart C2

w1,w2
one has E1 “ Zpw2q,

E0,1 “ Zpw1q, O2 “ p0, 0q. Using Theorem 2.37, we get E2
0,2 “ E2

0 ´ 2 “ ´3 and E2
1,2 “ E2

1 ´ 1 “ ´2.

Therefore, the weighted dual graph of the minimal embedded resolution π3 : S3 Ñ C2 of the semicubical
parabola P is as shown in Figure 3. Near the arrowhead vertex corresponding to the strict transform of
P , we have written the defining function of the semicubical parabola.

´3 ´1 ´2

E0,2 E2 E1,2

Zpy2 ´ x3q

Figure 3. The weighted dual graph of the minimal embedded resolution of the semicu-
bical parabola

The previous computations involve many charts, therefore many variables and changes of variables.
It is easy to get lost in them. One feels the need of being able to arrive at the final result, the weighted
dual graph, without such manipulations. In the next subsection we show how to achieve this goal by
a simpler method, without working with charts. We will explain the method using an apparently more
complicated example, with two branches. After reading it, we suggest the reader to verify that in the
case of the semicubical parabola, the method leads again to the weighted tree of Figure 3.

2.6. A Newton non-degenerate reducible example.

In this subsection we present on a simple example of Newton non-degenerate plane curve singularity
the notions of Newton polygon and Newton fan of a non-zero function fpx, yq P Crrx, yss. Then we
introduce the associated lotus and we show how to construct from it the weighted dual graph of the
minimal embedded resolution of the given singularity. These notions are briefly introduced in this section
to illustrate our second elementary example and will be revisited formally in Sections 4 and 5.

Let pC,Oq ãÑ pC2
x,y, Oq be the plane curve singularity defined by the function:

(10) fpx, yq :“ py2 ´ 4x3qpy3 ´ x7q.

It is the sum of two branches, defined by the equations y2 ´ 4x3 “ 0 and y3 ´ x7 “ 0 respectively.
Thinking of them as polynomial equations in the unknown y, as explained in Subsection 2.3, they have
degrees 2 and 3. Their respective sets of roots are t˘2x3{2u and tωx7{3u, where ω varies among the
complex cubic roots of 1. We could express readily in terms of x the roots of the equation fpx, yq “ 0
seen as a quintic polynomial equation in the variable y, because we knew a factorization of fpx, yq into
binomial factors. Is it possible to reach the same objective if one starts instead from the following
expanded expression of f?

(11) fpx, yq “ y5 ´ 4x3y3 ´ x7y2 ` 4x10.

By the Newton-Puiseux Theorem 2.20, we know a priori that the roots of fpx, yq may be expressed
as Newton-Puiseux series. Newton’s fundamental insight was that one may always compute the leading
terms of such series only by looking at special terms of f (see the beginning of Subsection 4.5). Let us
explain this insight in the case of the polynomial (11), forgetting its factorization (10). Denote by cxν

the leading term (that is, the term of least degree) of such a series, where c P C˚ and ν ą 0. We have
the equality:

(12) fpx, cxν ` opxνqq “ 0.

Using formula (11), this equality may be rewritten as:

pcxν ` opxνqq5 ´ 4x3pcxν ` opxνqq3 ´ x7pcxν ` opxνqq2 ` 4x10 “ 0,
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that is, as:

(13)
`

c5x5ν ` opx5νq
˘

`
`

´4c3x3`3ν ` opx3`3νq
˘

`
`

´c2x7`2ν ` opx7`2νq
˘

` 4x10 “ 0.

The left-hand side of this equation is a sum of four series, whose leading exponents are 5ν, 3`3ν, 7`2ν,
10, since c ‰ 0. The fundamental observation of Newton was that if the sum (13) vanishes, then the
minimal value of those four exponents is reached at least twice.

Now, these four exponents may be expressed as the products p1, νq ¨ pa, bq :“ a` bν, where pa, bq varies
among the exponents pa, bq P N2 of the monomials xayb appearing in the expanded form (11) of fpx, yq,
that is, as the evaluations of the linear form lνpa, bq :“ a` bν on the support Spfq of the series fpx, yq. In
our example the support is finite, but it may be infinite if one allows f to be a power series in the variables
x, y. It is at this point that convex geometry enters into the game, through the following property (which
is a consequence of [94, Assertion III.1.5.2]):

Proposition 2.39. Let S be a subset of N2. If l is a linear form with non-negative coefficients on R2,
then its restriction to S achieves its minimum precisely on the subset of S lying on a face of the convex
hull ConvpS ` R2

`q.

Coming back to equation (13), we see that the linear form lνpa, bq “ a ` bν, which computes the
leading exponents of the terms appearing in the left-hand side of (13), indeed has non-negative coeffi-
cients. Therefore, the hypotheses of Proposition 2.39 are satisfied. This shows that the minimal value
min t5ν, 3` 3ν, 7` 2ν, 10u is achieved on a face of the convex hull ConvpSpfq ` R2

`q. This convex hull,
called the Newton polygon N pfq of f P Crrx, yss (see Definition 4.2 below), is represented in Figure 4. It
has three vertices, which are p0, 5q, p3, 3q, p10, 0q, corresponding to the terms y5,´4x3y3 and 4x10 of the
expansion (11). It has two compact edges K1 :“ rp0, 5q, p3, 3qs and K2 :“ rp3, 3q, p10, 0qs. If the minimum
is to be achieved at least twice on Spfq, then it must be achieved on one of those two compact edges,
because ν ą 0. This means that the linear form lν must be orthogonal to one of those compact edges.
There are therefore two possibilities:
‚ Either lν achieves its minimum on K1, which means that p1, νq is orthogonal to it. In other words
p1, νq ¨ p3 ´ 0, 3 ´ 5q “ 0, that is, ν “ 3{2. Writing that the sum of the terms of the left-hand side of
Equation (13) whose leading exponents achieve the minimum vanishes, one gets the equation c5´4c3 “ 0.
As c ‰ 0, this is equivalent to the equation c2 “ 4, hence c “ ˘2.

‚ Or lν achieves its minimum on K2. In other words p1, νq ¨ p10´ 3, 0´ 3q “ 0, that is, ν “ 7{3. One gets
then the equation ´4c3 ` 4 “ 0. That is, c varies now among the cubic roots of 1.

x

y

(10,0)

(0,5)

(3,3)

(7,2)

x10

y5

x3y3

x7y2
K1

K2

Figure 4. The Newton polygon of the series fpx, yq “ py2 ´ 2x3qpy3 ´ x7q

It follows that the possible leading terms of a Newton-Puiseux series η in the variable x such that
fpx, ηq “ 0 belong to the union t˘2x3{2u Y tωx7{3 : ω3 “ 1u. One recognizes the roots from the
factorization (10). Newton’s method shows that those are the leading terms of the roots ypxq of the
equation gpx, yq “ 0, for any g P Crrx, yss whose Newton polygon is the same as N pfq, and whose
restrictions to the compact sides of the polygon coincide with the analogous restrictions for f . Any
such function g defines a Newton non-degenerate singularity (see Definition 4.21 below), because both
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equations c2 “ 4 and ´4c3` 4 “ 0 obtained by restricting g to the compact edges of its Newton polygon
have simple roots. Variants of Newton’s previous line of thought will be followed again in the proofs of
Propositions 4.11 and 4.18 below.

In general, for any series fpx, yq, once a first term cxν of a potential root of fpx, yq “ 0 is computed, one
may perform a formal change of variables and compute a second term. Newton explained that one could
compute as many terms as needed, but it was Puiseux who proved carefully that by pushing this iterative
process to its limit, one gets true roots of the equation, which are Newton-Puiseux series. Moreover, he
proved that whenever one starts from a convergent function f , one gets only roots of the form ξpx1{pq,
where ξptq P Crrtss is convergent and p P N˚. This approach leads to a proof of the Newton-Puiseux
Theorem 2.20, different from the one given above (see Remark 2.22).

Let us come back to our example. It turns out that in this Newton non-degenerate case, the weighted
dual graph of the minimal embedded resolution is determined by the Newton polygon N pfq. In fact, one
needs only the inclinations of its compact edges. This information is encoded in the associated Newton
fan, obtained by subdividing the first quadrant along the rays orthogonal to the compact edges of N pfq
(see the left side of Figure 5 and Definition 4.9 below). Consider now inside the first quadrant all the
triangles with vertices f1, f2, f1 ` f2, where pf1, f2q is a basis of the ambient lattice Z2. The edges of
those triangles may be drawn recursively by starting from the segment re1, e2s which joins the elements of
the canonical basis pe1, e2q and, each time a new segment rf1, f2s is drawn, by drawing also the segments
rf1, f1` f2s and rf2, f1` f2s. If one performs this construction only whenever the interior of the segment
rf1, f2s intersects one of the rays of the Newton fan, one gets its associated lotus, represented on the right
side of Figure 5.

pp 7
3
q

pp 3
2
q

e1

e2

Figure 5. The Newton fan of fpx, yq “ py2 ´ 4x3qpy3 ´ x7q and its associated lotus

In fact, one needs to attach to it new arrowhead vertices corresponding to the branches of C, as shown
in Figure 6. In this figure the lotus was redrawn as an abstract simplicial complex, without representing
its precise embedding in the plane R2. This abstract simplicial structure is sufficient for seeing how it
contains the weighted dual graph of the minimal embedded resolution of Zpxypy2 ´ 4x3qpy3 ´ x7qq as
part of its boundary. The self-intersection number of an exceptional divisor is simply the opposite of the
number of triangles containing the vertex representing this divisor (compare Figures 6 and 7).

In the sequel we will associate lotuses to any plane curve singularity C (see Definition 5.26). The data
needed to construct them will be a finite sequence of Newton polygons generated by a toroidal pseudo-
resolution algorithm (see Algorithm 4.22). We will embed analogously inside them the weighted dual
graphs of associated embedded resolutions of completions of the curve (see Definition 4.15 and Theorem
5.29). We will also explain the notions of fan tree (see Definition 4.33), Enriques diagram (see Definition
4.31) and Eggers-Wall tree (see Definition 6.3) of C or of an associated toroidal pseudo-resolution process
and we will show that they embed similarly in the corresponding lotus (see Theorem 5.29).
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Zpyq Zpxq

Zpy3 ´ x7q

Zpy2 ´ 4x3q
´1

´2

´2

´5
´1

´3

Figure 6. The lotus of fpx, yq “ py2 ´ 4x3qpy3 ´ x7q

´2 ´2 ´1 ´5 ´1 ´3

Zpy3 ´ x7q Zpy2 ´ 4x3qZpyq Zpxq

Figure 7. The weighted dual graph of the minimal embedded resolution of Zpxyfpx, yqq

3. Toric and toroidal surfaces and their morphisms

In this section we explain basic definitions and intuitions about toric and toroidal varieties and their
modifications, which will be used in the subsequent sections in the study of plane curve singularities.
Namely, fans are introduced in Definition 3.3, affine toric varieties in Definition 3.14, their boundaries
in Definition 3.18, toric morphisms in Subsection 3.3, in particular the toric description of 2-dimensional
blow ups in Example 3.27 and the category of toroidal varieties in Subsection 3.4. Subsection 3.5 contains
historical information about the development of toric and toroidal geometry and about its applications
to the study of singularities.

3.1. Two-dimensional fans and their regularizations.

In this subsection we explain the basic notions of two-dimensional convex geometry needed to define
toric varieties in Subsection 3.2 and toric morphisms in Subsection 3.3: lattices, rational cones and fans.
For more details about toric geometry one may consult the standard textbooks [91], [41], [37] and [26].

A lattice is a free Z-module of finite rank. A pair pa, bq P Z2 may be seen as an instruction to build
two kinds of objects: the Laurent monomial xayb and the parametrized monomial curve t Ñ pta, tbq.
The fact that monomials and curves are distinct geometrical objects indicates that it would be good to
think also in two ways about the pairs pa, bq, that is, as coordinates of vectors relative to bases in two
different lattices. Those two lattices are not to be chosen independently of each other. Indeed, given a
monomial xayb and a parametrized monomial curve tÑ ptc, tdq, one may substitute the parametrization
in the monomial, getting a new monomial, this time in the variable t alone:

(14) pxaybq ˝ ptc, tdq “ tac`bd.

This indicates that those two lattices should be seen as factors of the domain of definition of the unimod-
ular Z-valued bilinear form pa, bq ¨ pc, dq :“ ac` bd, that is, that they should be dual lattices.

In order to distinguish clearly the roles of these two lattices, one denotes them usually by distinct
letters, instead of simply writing for instance Z2 and pZ2q_. It became traditional after the appearance

of Fulton’s book [41] to denote by M the lattice whose elements are exponents of monomials in several

variables, and by N the dual lattice, whose elements are thought as exponents of parametrized monomial
curves in the space of the same variables. It is important to allow for changes of bases of those Z-modules,
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corresponding to monomial changes of variables of the form x “ uαvγ , y “ uβvδ, for which the matrix of
exponents is unimodular:

(15)

ˇ

ˇ

ˇ

ˇ

α γ
β δ

ˇ

ˇ

ˇ

ˇ

“ ˘1.

This means that one does not have to fix identifications M “ Z2, N “ Z2, but instead to allow those
identifications to depend on the context. Note also that the elements of N may be seen as weights for
the variables x, y. That is, if pc, dq P N , one gives the weight c to x and the weight d to y, which endows
the monomial xayb with the weight ac ` bd appearing in the equality (14). For this reason, N is called
sometimes the weight lattice associated to the monomial lattice M .

We will call vectors the elements of a lattice. Those non-zero vectors which cannot be written as
non-trivial integral multiples of other lattice vectors are called primitive. Any non-zero lattice vector w
may be written uniquely in the form lZpwq w

1, with lZpwq P N˚ and w1 a primitive lattice vector.

Definition 3.1. Let N be a lattice and w P N z t0u. The positive integer lZpwq is the integral length

of w. We extend this definition to the whole lattice N by setting lZp0q :“ 0. For w1, w2 P N , the integral

length lZrw1, w2s P N of the segment rw1, w2s is equal to lZpw2 ´ w1q “ lZpw1 ´ w2q.

If N is a lattice, denote by NR :“ N bZ R the real vector space generated by N . We will say that

the elements of N are the integral points of the real vector space NR. By a cone of N we will mean a
convex rational polyhedral cone, that is, a subset of NR of the form:

R`xw1, . . . , wky :“ R`w1 ` ¨ ¨ ¨ ` R`wk,

where w1, . . . , wk P N . If the cone does not contain a positive dimensional vector subspace of NR, it is
called strictly convex.

If the lattice N is of rank two, then the strictly convex cones are of three sorts, according to their
dimensions:
‚ The 2-dimensional cones are of the form R`xw1, w2y, where w1, w2 P N are non-proportional. In
classical geometric terminology, they are strictly convex angles with apex at the origin of NR.
‚ The 1-dimensional cones are the closed half-lines emanating from the origin; we will call them rays.
‚ There is only one 0-dimensional cone: the origin of N .

As a particular case of a terminology used in any dimension, one speaks about the faces of a given
cone σ Ď NR: those are the subsets of σ on which the restriction to σ of a linear form l P N_R “ MR
reaches its minimum. The faces of a strictly convex 2-dimensional cone R`xw1, w2y are the cone itself,
its edges R`w1, R`w2 and the origin. The faces of a ray are the ray itself and the origin. Finally, the
origin has only one face, which is the origin itself.

Endowing the 2-dimensional lattice N with a basis pe1, e2q allows to speak of the slope d{c P RYt8u
relative to pe1, e2q of any vector w “ c e1 ` d e2 P NRzt0u or of the associated ray R`w. In terms of the
coordinates pc, dq, the integral length lZpwq of w is equal to the greatest common divisor gcdpc, dq.

Notations 3.2. If the basis pe1, e2q of N is fixed and clear from the context, we denote by:

σ0 :“ R`xe1, e2y Ď NR

the cone generated by it. If λ P Q`Yt8u, we denote by ppλq the unique primitive element of the lattice

N contained in the cone σ0, and which has slope λ.

In the sequel it will be important to work with the following special sets of cones, which are fundamental
in toric geometry:

Definition 3.3. A fan of the lattice N is a finite set of strictly convex cones of N which is closed under
the operation of taking faces of its cones and such that the intersection of any two of its cones is a face
of each of them. The support |F | of a fan F is the union of its cones. A fan F refines (or subdivides)
another fan F 1 if they have the same support and if each cone of F is contained in some cone of F 1. A
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fan subdivides a cone σ if it subdivides the fan formed by its faces. We often denote again by σ the
fan formed by the faces of a cone σ, by a slight abuse of notation.

Let us complete the previous definition, valid in arbitrary rank, with terminology and notations specific
to rank two:

Definition 3.4. Let pe1, e2q be a basis of the lattice N of rank two and σ0 be the associated cone
R`xe1, e2y. Any fan F subdividing σ0 is determined by the finite set of slopes E Ă Q˚` of its rays

contained in the interior of σ0. In this case we denote the fan by FpEq and we call it the fan of the

set E . We extend the definition of FpEq to the case where E contains 0 or 8, by setting in this case

FpEq :“ FpE z t0,8uq. If E “ tλ1, . . . , λpu, we write also Fpλ1, . . . , λpq instead of FpEq.

Note that FpHq is simply the fan consisting of the cone σ0 and its faces.

Definition 3.5. A cone of a lattice N is called regular if it can be generated by elements which form a
subset of a basis of N . A fan all of whose cones are regular is called regular.

It is convenient to set R`xHy :“ t0u. This implies that t0u is also a regular cone.
Assume that a basis pe1, e2q of the lattice N is fixed. If f1 “ αe1 ` βe2 and f2 “ γe1 ` δe2 are two

primitive vectors of N , then the cone R`xf1, f2y generated by them is regular if and only if the matrix
of the pair pf1, f2q in the basis pe1, e2q is unimodular, that is, the equality (15) holds.

Example 3.6. If E “ t3{5, 2{1, 5{2u, then the rays of the fan FpEq are represented in Figure 8. On
each ray of the fan which is distinct from the edges of the cone σ0, we indicated by a small red disc
the unique primitive element of the lattice N lying on it. That is, on the ray of slope λ P E is indi-
cated the point ppλq. The fan FpEq contains also 4 cones of dimension 2, which are R`xe1, p p3{5qy,
R`xp p3{5q , p p2{1qy, R`xp p2{1q , p p5{2qy, R`xp p5{2q , e2y. Using the unimodularity criterion above, we
see that R`xp p2{1q , p p5{2qy is the only 2-dimensional cone of the fan FpEq which is regular.

pp 5
2 q

pp 2
1 q

pp 3
5 q

e1

e2

Figure 8. The fan F p3{5, 2{1, 5{2q and the points p p3{5q, p p2{1q, p p5{2q

The following result is specific for lattices of rank two (see [91, Prop. 1.19]):

Proposition 3.7. If the lattice N is of rank two, any fan relative to N has a minimal regular subdivision,
in the sense that any other regular subdivision refines it.

Proposition 3.7 motivates the following definition:

Definition 3.8. If F is a 2-dimensional fan, we denote by Freg its minimal regular subdivision, and
we call it the regularization of F .

The importance of the regularization operation in our context stems from the fact that it allows to
describe combinatorially the minimal resolution of a toric surface (see Proposition 3.28 below). The
regularization of a 2-dimensional cone may be described in the following way (see [91, Proposition 1.19]):
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Proposition 3.9. Let N be a lattice of rank two and let σ be a 2-dimensional strictly convex cone of N .
Then the regularization σreg of the fan of its faces is obtained by subdividing σ using the rays directed by
the integral points lying on the boundary of the convex hull of the set of non-zero integral points of σ. If
F is a fan of a lattice of rank two, then its regularization is the union of the regularizations of its cones.

An alternative recursive description of σreg was given by Mutsuo Oka in [94, Chap. II.2].

Example 3.10. Let us consider again the fan F p3{5, 2{1, 5{2q of Example 3.6. The rays of its regular-
ization Freg p3{5, 2{1, 5{2q “ F p1{2, 3{5, 2{3, 1{1, 2{1, 5{2, 3{1q are drawn in green in Figure 9. The thick
orange polygonal line, on the right side of this figure, is the union of compact edges of the boundaries of
the convex hulls of the sets of non-zero integral points of its 2-dimensional cones.

e1

e2

e1

e2

Figure 9. The regularization Freg p3{5, 2{1, 5{2q of the fan of Figure 8

3.2. Toric varieties and their orbits.

In this subsection we explain in which way fans determine special kinds of complex algebraic varieties,
called toric varieties. Namely, every rational polyhedral cone relative to a lattice determines a monoid
algebra (see Definition 3.11), whose maximal spectrum is an affine toric variety (see Definition 3.14).
More generally, every fan determines a toric variety by gluing the affine toric varieties associated to its
cones (see Definition 3.15).

One associates with a lattice N of rank n the following complex algebraic torus of dimension n
(that is, an algebraic group isomorphic to ppC˚qn, ¨q):

(16) TN :“ N bZ C˚.

Here the factors are considered as abelian groups pN,`q and pC˚, ¨q, therefore they are endowed with
canonical structures of Z-modules, relative to which is taken the previous tensor product. This algebraic
torus may be also described in terms of the dual lattice M of N , defined by:

M :“ Hom pN,Zq.
Namely, one has:

(17) TN “ HompM,C˚q.
Equations (16) and (17) allow in turn to give the following interpretations of the lattices N and M in
terms of morphisms of algebraic groups:

(18)

N “ HompC˚, TN q “
“ the group of one parameter subgroups of TN ;

M “ HompTN ,C˚q “
“ the group of characters of TN .

If w P N is seen as an element of the lattice N , we denote by tw the same element seen as a morphism
of abelian groups from C˚ to TN .
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Let us explain this notation in the case when N has rank 2. If t is viewed as the parameter on the
source C˚ and one identifies TN with pC˚q2 using the basis pe1, e2q of N , then the morphism becomes
the following map from C˚ to pC˚q2:

tÑ ptc, tdq.

Here pc, dq denote as before the coordinates of w in the chosen basis pe1, e2q of N . One gets therefore a
parametrized monomial curve as at the beginning of Subsection 3.1. The advantage of seeing it as an
element of HompC˚, TN q is that one gets a viewpoint independent of the choice of coordinates for TN ,
that is, of bases for M or for N .

It is customary to say that a morphism tw P Hom pC˚, TN q is a one parameter subgroup of TN , even
when this morphism is not injective. Note that tw is injective if and only if w is a primitive element of N .
In general, when w P Nzt0u, the map tw is a cyclic covering of its image, of degree lZpwq (see Definition
3.1). Note also that t0 is the constant map with image the unit element 1 of the group TN .

We introduced the notation tw in order to be able to distinguish between N seen as an abstract group,
and seen as the lattice of one parameter subgroups of TN . In an analogous way, if m P M , one uses

the notation χm : TN Ñ C˚ for its associated character, in order to distinguish between M seen as an

abstract group and seen as the lattice of characters of TN . If one denotes by w ¨m P Z the result of
applying the canonical duality pairing N ˆM Ñ Z to pw,mq P N ˆM , then the composite morphism
χm ˝ tw : C˚ Ñ C˚ is simply given by t Ñ tw¨m. This is the intrinsic description of the composition
performed in formula (14).

Let us see more precisely how the choice of basis pe1, e2q of N determines an isomorphism TN » pC˚q2.
To have such an isomorphism amounts to choosing a special pair px, yq of regular functions on TN ,
which are the pull-backs of the coordinate functions on pC˚q2. This isomorphism should be not only an
isomorphism of algebraic surfaces, but also of groups. As the coordinate functions on pC˚q2 are characters
of

`

pC˚q2, ¨
˘

, that is, elements of HomppC˚q2,C˚q, we deduce that x, y are also characters, this time of
pTN , ¨q. It means that they are elements of the lattice M (see the equalities (18)). In which way does the

basis pe1, e2q of N determine a pair of elements of M? Well, this pair is simply the dual basis pε1, ε2q

of pe1, e2q! Therefore, one has px, yq “ pχε1 , χε2q in terms of the dual basis pε1, ε2q PM
2 of pe1, e2q P N

2.

The choice of coordinates px, yq allows to embed the torus TN into the affine plane C2 with the same
coordinates. The coordinate ring of this affine plane is of course Crx, ys. In our context it is important
to interpret this ring as the C-algebra of the commutative monoid of monomials with non-negative
exponents in the variables x and y. This monoid is isomorphic (using the map mÑ χm) to the monoid
R`xε1, ε2y XM . In turn, the cone R`xε1, ε2y is in the following sense the dual cone of σ0 :“ R`xe1, e2y:

Definition 3.11. Let σ be a cone of N . Its dual is the cone σ_ of M defined by:

σ_ :“ tm PMR, w ¨m ě 0 for all w P σu,

and its associated monoid algebra is the C-algebra of the abelian monoid pσ_ XM,`q:

Crσ_ XM s :“

#

ÿ

finite

cmχ
m , m P σ_ XM and cm P C

+

.

Note that σ is strictly convex if and only if the dimension of σ_ is equal to the rank of the lattice M .
The C-algebra Crσ_ XM s is finitely generated, since the monoid pσ_ XM,`q is finitely generated by
Gordan’s Lemma (see [41, Section 1.1, Proposition 1]).

The set C2 with coordinates px, yq may now be interpreted in the two following ways:

(19)
C2
x,y “ the maximal spectrum of the ring Crσ_0 XM s “

“ Hompσ_0 XM,Cq.

The last set of homomorphisms is taken in the category of abelian monoids, where C is considered as a
monoid with respect to multiplication. This interpretation is obtained by looking at the evaluation of
the monomials χm, with m P σ_0 XM , at the points of C2.
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The equalities (19) may be turned into a general way to associate a complex affine variety to a cone
σ of N , in arbitrary dimension:

(20)
Xσ :“ the maximal spectrum of Crσ_ XM s “

“ Hompσ_ XM,Cq.

The equalities (19) show that Xσ0
“ C2

x,y, if x “ χε1 and y “ χε2 . Therefore, the affine variety Xσ0

is smooth. The following proposition characterizes the cones for which the associated variety is smooth
(see [41, Section 2.1, Proposition 1]):

Proposition 3.12. Let σ be a strictly convex cone of the lattice N . Then the affine variety Xσ is smooth
if and only if σ is regular in the sense of Definition 3.5.

In the sequel, by a stratification of an algebraic variety we mean a finite partition of it into locally
closed connected smooth subvarieties, called the strata of the stratification, such that the closure of each
stratum is a union of strata.

Consider the following stratification of Xσ0
“ C2

x,y:

(21) C2
x,y “ t0u \ pC˚x ˆ t0uq \

`

t0u ˆ C˚y
˘

\ pC˚q2x,y.

One may interpret in the following way its strata in terms of vanishing of monomials whose exponents
belong to σ_0 XM “ Nxε1, ε2y:

‚ 0 is the only point of C2
x,y at which vanish exactly the monomials with exponents in pσ_0 z t0uqXM .

‚ C˚x ˆ t0u is the set of points of C2
x,y at which vanish exactly the monomials with exponents in

pσ_0 z R`ε1q XM .
‚ t0u ˆ C˚y is the set of points of C2

x,y at which vanish exactly the monomials with exponents in
pσ_0 z R`ε2q XM .

‚ pC˚q2x,y “ TN is the set of points of C2
x,y at which vanish no monomials, that is, at which vanish

exactly the monomials with exponents in pσ_0 z σ
_
0 q XM .

Note that the sets of exponents of monomials appearing in the previous list are precisely those of the
form pσ_0 z τq XM , where τ varies among the faces of the cone σ_0 . It is customary in toric geometry to
express them in a dual way, using the following bijection between the faces of σ and of σ_, valid in all
dimensions for (not necessarily rational) convex polyhedral cones σ (see [26, Proposition 1.2.10]):

Proposition 3.13. Let σ be a cone of NR. Then the map ρ Ñ ρK X σ_ is an order-reversing bijection
from the set of faces of σ to the set of faces of σ_ (see Figure 10).

Here ρK :“ tm PMR, w ¨m “ 0 for all w P ρu denotes the orthogonal of the cone ρ of N . It is a real

vector subspace of MR, which may be characterized as the maximal vector subspace of the convex cone
ρ_.

O ρ

σ

NR

ÐÑ O σ_

ρK X σ_

ρ_

MR

Figure 10. The bijection between the faces of σ and σ_

The stratification (21) of C2 is a particular case of a stratification of any affine variety of the form Xσ.
In order to define it, one associates with each point p of Xσ the subset of σ_XM formed by the exponents
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of the monomials vanishing at p. This defines a function from Xσ to the power set of σ_ XM , whose
levels are precisely the strata of the stratification of Xσ. The set of strata is in bijective correspondence
with the set of faces of σ, the stratum Oρ corresponding to the face ρ of σ being:

(22) Oρ :“
 

p P Hompσ_ XM,Cq, p´1p0q “ pσ_z ρKq XM
(

.

In particular, Ot0u “ TN is the only stratum whose dimension is the same as the dimension of Xσ. This
shows that the torus TN embeds naturally as an affine open set in the affine surface Xσ. For this reason,
the following vocabulary was introduced:

Definition 3.14. If N is a lattice and σ is a strictly convex cone of N , then the variety Xσ defined by
the equalities (20) is called an affine toric variety.

Note that for Xσ0
“ C2

x,y, the strata are:

‚ Oσ0 “ t0u;
‚ OR`e2 “ C˚x ˆ t0u;
‚ OR`e1 “ t0u ˆ C˚y ;

‚ Ot0u “ pC˚q2x,y “ TN .

One may feel difficult to remember the second and third equalities, a common error at the time of doing
computations being to permute them. A way to remember them is the following: the orbit corresponding
to an edge of a 2-dimensional regular cone is the complement of the origin in the axis of coordinates of C2

defined by the vanishing of the dual variable. In our case, the dual variable of the edge R`e1 is x “ χε1 ,
whose 0-locus is the axis of the variable y, and conversely.

The notation Oρ is motivated by the fact that this subset of Xσ is an orbit of a natural action of the
algebraic torus TN on Xσ. For Xσ0

“ C2
x,y, case in which one may also identify TN with pC˚q2u,v, this

action is given by pu, vq ¨ px, yq :“ pux, vyq. In general, the action of TN on Xσ may be described in
intrinsic terms by:

pM
τ
Ñ C˚q ¨ pσ_ XM p

Ñ Cq :“ pσ_ XM
τ ¨p
ÝÑ Cq.

In the previous equation we used again the interpretations of the points of TN and Xσ as morphisms of
monoids (see equations (17) and (20)).

Assume now that F is a fan of N , in the sense of Definition 3.3. Each affine toric variety Xσ, where
σ P F , contains the torus TN as an affine open set. If σ and τ are two cones of F , then one has a
natural identification of their respective tori, and also of their larger Zariski open subsets XσXτ Ă Xσ

and XσXτ Ă Xτ . If one glues the various affine toric varieties pXσqσPF using the previous identifications,
one gets an abstract separated complex algebraic variety XF which still contains the torus TN as an affine
open subset (see [91, Theorem 1.4 and 1.5]).

Definition 3.15. The toric variety associated with a fan F of a latticeN is the variety XF constructed

above.

Remark 3.16. All toric varieties constructed from fans are normal in the sense of Definition 2.11 (see
[26, Theorem 1.3.5]). One has a more general notion of toric variety, which includes some non-normal
varieties as well (see the paper [56] of Teissier and the second author). Those varieties can be described
as before by gluing maximal spectra of algebras of not necessarily saturated finite type submonoids of
lattices, the normal ones being precisely the toric varieties associated with a fan of Definition 3.15.

As a consequence of Proposition 3.12, one has a smoothness criterion for toric varieties:

Proposition 3.17. Let F be a fan of the lattice N . Then the toric variety XF is smooth if and only if
F is regular in the sense of Definition 3.5.

Let us come back to a fan F of a weight lattice N . When ρ varies among the cones of F , the actions
of the torus TN on the affine toric varieties Xρ glue into an action on XF , whose orbits are still denoted
by Oρ. The conservation of the notation (22) is motivated by the fact that in the gluing of Xσ and Xτ ,
the orbits denoted Oρ on both sides get identified, for every face ρ of σ X τ . If ρ is a cone of the fan F ,
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we denote by Oρ the closure in XF of the orbit Oρ. The orbit closure Oρ has also a natural structure

of normal toric variety (see [41, Chapter 3]).
The torus TN is identified canonically with the orbit O0 corresponding to the origin of NR, seen as

a cone of dimension 0. Its complement is the union of all the orbits of codimension at least 1. Let us
introduce a special name and notation for this complement:

Definition 3.18. Let XF be a toric variety defined by a fan F . Its boundary BXF is the complement

of the algebraic torus TN inside XF .

The boundary BXF is a reduced Weil divisor inside XF , whose irreducible components are the orbit
closures Oρ corresponding to the cones ρ of F which have dimension 1, that is, to the rays of the fan F .

3.3. Toric morphisms and toric modifications.

In this subsection we define the notion of toric morphism between toric varieties (see Definition 3.19)
and we explain in which way refining a fan defines a special kind of toric morphism, called a toric modi-
fication (see Proposition 3.21). In Examples 3.26 and 3.27 we explain how to do concrete computations
of toric modifications in dimension two, the second one giving a toric presentation of the blow ups of the
origin. Finally, Proposition 3.28 explains the combinatorics of the minimal resolution of a normal affine
toric surface.

Assume that N1 and N2 are two weight lattices, endowed with cones σ1 and σ2. Let φ : N1 Ñ N2 be
a morphism of lattices which sends the cone σ1 into the cone σ2. Using the second interpretation in the
equalities (20) of the points of affine toric varieties, we see that φ induces an algebraic morphism between
the associated toric varieties:

(23)
ψσ1

σ2,φ
: Xσ1

Ñ Xσ2

p1 Ñ p1 ˝ φ
_
.

One sees immediately from the definitions that the adjoint φ_ : M2 Ñ M1 of φ maps σ_2 into σ_1 ,
which shows that the composition p1 ˝ φ

_ belongs indeed to Xσ2 “ Hompσ_2 XM2,Cq whenever p1 P

Xσ1 “ Hompσ_1 XM1,Cq. The morphism ψσ1

σ2,φ
may be also described using the first interpretation in the

equalities (20), as the morphism of affine schemes induced by the morphism of C-algebras Crσ_2 XM2s Ñ

Crσ_1 XM1s which sends each monomial χm2 P σ_2 XM2 to the monomial χφ
_
pm2q P σ_1 XM1.

Assume now that N1 and N2 are endowed with fans F1 and F2 respectively, such that φ sends each
cone of F1 into some cone of F2. We say that φ is compatible with the two fans. It may be checked
formally that the previous morphisms ψσ1

σ2,φ
: Xσ1 Ñ Xσ2 , for all the pairs pσ1, σ2q P F1ˆF2 which verify

that φpσ1q Ď σ2, glue into an algebraic morphism: ψF1

F2,φ
: XF1 Ñ XF2 . This morphism is moreover

equivariant with respect to the actions of TN1
and TN2

on XF1
and XF2

respectively. For this reason,
one uses the following terminology:

Definition 3.19. If the morphism of lattices φ : N1 Ñ N2 sends every cone of F1 into some cone of
F2, then the morphism of algebraic varieties ψF1

F2,φ
: XF1

Ñ XF2
described above is called the toric

morphism associated with φ and the fans F1, F2 .

The toric morphism ψF1

F2,φ
sends the torus TN1 “ XF1 zBXF1 into TN2 “ XF2 zBXF2 . This fact implies

the following property of toric morphisms relative to the boundaries of their sources and targets, in the
sense of Definition 3.18:

Proposition 3.20. Let ψ : XF1
Ñ XF2

be the toric morphism associated with φ and the fans F1 and
F2. Then ψ´1pB XF2

q Ď B XF1
.

Toric morphisms have the following properties (see [91, Theorems 1.13, 1.15]):

Proposition 3.21. Let N1, N2 be two lattices and F1,F2 be fans of N1 and N2 respectively. Let φ :
N1 Ñ N2 be a lattice morphism compatible with the two fans. Then:

(1) The morphism ψF1

F2,φ
is birational if and only if φ is an isomorphism of lattices.
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(2) The morphism ψF1

F2,φ
is proper if and only if the R-linear map φR : pN1qR Ñ pN2qR sends the

support of F1 onto the support of F2.

In particular, ψF1

F2,φ
is a modification in the sense of Definition 2.31 if and only if φ is an isomorphism

and, after identifying N1 and N2 using it, the fan F1 refines the fan F2 in the sense of Definition 3.3.

We will consider most of the time the particular case in which N1 “ N2 “ N is a lattice of rank 2 and
φ is the identity. Then, if σ Ă σ0 is a subcone of σ0, we denote by ψσσ0

the birational toric morphism
induced by the identity:

(24) ψσσ0
: Xσ Ñ Xσ0

“ C2
x,y.

When σ varies among all the cones of a fan F which subdivides the cone σ0, the morphisms ψσσ0
glue

into a single equivariant birational morphism:

(25) ψF
σ0

: XF Ñ Xσ0
“ C2

x,y.

By Proposition 3.21, this morphism is also proper, because F and σ0 have the same support. Therefore,
ψF
σ0

is a modification of C2
x,y.

The strict transform of L :“ Zpxq (resp. of L1 :“ Zpyq) by the modification ψF
σ0

is the orbit closure

OR`e1 (resp. OR`e2) in XF . The preimage of 0 P C2
x,y, called the exceptional divisor of ψF

σ0
, and the

preimage of the sum L` L1 of the coordinate axes, which is the total transform of L` L1 are:

(26) pψF
σ0
q´1p0q “ Oρ1 ` ¨ ¨ ¨ `Oρk , and pψF

σ0
q´1pL` L1q “ OR`e1 `Oρ1 ` ¨ ¨ ¨ `Oρk `OR`e2 ,

where ρ1, . . . , ρk denote the rays of F contained in the interior of σ0, labeled as in Figure 11. Note that
L` L1 “ BXσ0 and pψF

σ0
q´1pL` L1q “ BXF , which is a particular case of Proposition 3.21.

Recall now the following classical notion of (unweighted) dual graph, which extends that of Definition
2.36 and whose historical evolution was sketched by the third author in [104]:

Definition 3.22. A simple normal crossings curve is a reduced abstract complex curve whose
irreducible components are smooth and whose singularities are normal crossings, that is, analytically
isomorphic to the germ at the origin of the union of coordinate axes of C2. The dual graph of a simple
normal crossings curve D is the abstract graph whose set of vertices is associated bijectively with the
set of irreducible components of D, the edges between two vertices corresponding bijectively with the
intersection points of the associated components of D. Each vertex or edge is labeled by the corresponding
irreducible component or point of D.

Remark 3.23. Let σ “ R`xf1, f2y Ă NR be a strictly convex cone of dimension two, not necessarily
regular. One may check that the boundary BXσ “ OR`f1 ` OR`f2 of the affine toric surface Xσ is an
abstract simple normal crossings curve, according to Definition 3.22.

The dual graph of the total transform pψF
σ0
q´1pL` L1q may be embedded in the cone σ0 Ď NR:

Proposition 3.24. Let F be a fan which subdivides the regular cone σ0. Then the dual graph of the
divisor pψF

σ0
q´1pL`L1q is a segment with extremities L and L1 and with k intermediate points labeled in

order by Oρ1 , . . . , Oρk from L to L1. That is, it is isomorphic to the segment re1, e2s Ă NR, marked with

its intersection points with the rays of F , the point re1, e2s X ρi being labeled by the orbit closure Oρi .

Therefore, the rays of the fan F correspond bijectively to the irreducible components of the total
transform pψF

σ0
q´1pL`L1q of L`L1. The 2-dimensional cones of F correspond to the fixed points of the

torus action, which are the only possible singular points of the surface XF . The orbit closures Oρ and

Oρ1 intersect at a point q P XF if and only if the cone ρ` ρ1 is a 2-dimensional cone of F and then q is
the unique orbit Oρ`ρ1 of dimension 0 of the affine toric surface Xρ`ρ1 Ă XF . The point q is singular on
the surface XF if and only if the cone ρ` ρ1 is not regular.

Example 3.25. For the fan F p3{5, 2{1, 5{2q of Figure 8 discussed in Example 3.6, the total transform
pψF
σ0
q´1pL ` L1q and its dual graph are represented in Figure 11. The 4 singular points of the total
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transform are also singular on the surface XF , with the exception of Oρ2 XOρ3 . Indeed, the cone ρ2` ρ3

is the only regular 2-dimensional cone of the fan F , as may be seen in Figure 9.

e2

e1

ρ3

ρ2

ρ1

ÝÑ

L1 Oρ3 Oρ2 Oρ1 L

L1 “ OR`e2

Oρ3 Oρ1
Oρ2

L “ OR`e1

Figure 11. The dual graph of the total transform pψF
σ0
q´1pL` L1q

Example 3.26. Let us explain how to describe in coordinates the morphism ψσσ0
of (24), when σ is a

regular subcone of σ0. Denote by f1, f2 the primitive generators of the edges of σ, ordered in such a way
that the bases pe1, e2q and pf1, f2q define the same orientation of NR (see Figure 12). Decompose pf1, f2q

in the basis pe1, e2q, writing f1 “ αe1` βe2 and f2 “ γe1` δe2. This means that the unimodular matrix
of change of bases from pf1, f2q to pe1, e2q is:

(27)

ˆ

α γ
β δ

˙

.

Denote by pϕ1, ϕ2q PM
2 the dual basis of pf1, f2q and by

(28)

"

u :“ χϕ1 “ xδy´γ

v :“ χϕ2 “ x´βyα,

the associated coordinates. Then, in terms of the identificationsXσ “ C2
u,v andXσ0 “ C2

x,y, the morphism
ψσσ0

is given by the following monomial change of coordinates (compare the disposal of exponents with
the matrix (27)):

(29)

"

x “ uαvγ

y “ uβvδ.

Note that the system (28) implies that the expression of v “ χϕ2 as a monomial in x and y is
determined only by f1, being independent of the choice of f2. This may be explained geometrically.
Indeed, as f1 ¨ ϕ2 “ 0, we see that ϕ2 belongs to the line fK1 orthogonal to f1. As ϕ2 may be completed
into a basis of M , it is primitive, which determines it up to sign. This sign ambiguity is lifted by the
constraint that the basis pf1, f2q determines the open half-plane bounded by the line Rf1 on which ϕ2

has to be positive. Note also that v is a coordinate on the orbit OR`f1 determined by the edge R`f1 of
σ. This coordinate determines an isomorphism OR`f1 » C˚v of complex tori, and depends only on R`f1,
since the orbit OR`f1 can be realized as a subspace of the surface XR`f1 by formula (22) above.

Example 3.27. In this example we use the explanations given in Example 3.26. Let F be the fan
obtained by subdividing σ0 “ R`xe1, e2y using the half-line ρ generated by e1 ` e2. It has two cones of
dimension 2, denoted σ1 :“ R`xe1, e1 ` e2y and σ2 :“ R`xe1 ` e2, e2y (see Figure 13). Then the toric
morphism ψF

σ0
may be described by its two restrictions ψσ1

σ0
and ψσ2

σ0
. The matrices of change of bases

from pe1, e1 ` e2q and pe1 ` e2, e2q to pe1, e2q respectively are

ˆ

1 1
0 1

˙

and

ˆ

1 0
1 1

˙

. Denoting by

pu1, u2q and pv1, v2q the coordinates corresponding to the dual bases of pe1, e1` e2q and pe1` e2, e2q, the
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e1

e2

f1 “ α e1 ` β e2

f2 “ γe1 ` δe2

NR

"

σ0 “ R`xe1, e2y

σ “ R`xf1, f2y

ε1

ε2

ϕ1 “ δε1 ´ γ ε2

ϕ2 “ ´β ε1 ` α ε2

MR

v “ x´βyα

OR`f1

u “ xδy´γOR`f2

y

OR`e1

xOR`e2

ψσσ0

Figure 12. The toric morphism defined by the two regular cones of Example 3.26

pp 1
1 q “ e1 ` e2

ρ

σ1

σ2

e1

e2

Figure 13. The subdivision of Example 3.27, defining the toric blow up of the origin of C2

general formulas (27) and (29) show that the morphisms ψσ1
σ0

and ψσ2
σ0

are given by the following changes
of variables:

(30)

"

x “ u1u2

y “ u2,
and

"

x “ v1

y “ v1v2.

We get the same expressions as in equations (4). This shows that ψF
σ0

is a toric representative of the blow

up morphism of C2
x,y at the origin!

Let σ be a non-regular cone of the weight lattice N of rank two. By Proposition 3.12, the affine
toric surface Xσ is not smooth. In fact, it has only one singular point, the orbit Oσ of dimension 0.
Being of dimension 2, Xσ admits a minimal resolution, that is, a resolution through which factors any
other resolution (recall that this notion was explained in Definition 2.34). It turns out that this minimal
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resolution may be given by a toric morphism, defined by the regularization of σ in the sense of Definition
3.8 (see [91, Proposition 1.19]):

Proposition 3.28. Let σ be a non-regular cone of the weight lattice N of rank two. Denote by σreg the
regularization of the fan formed by the faces of σ. Then the toric modification ψσ

reg

σ : Xσreg Ñ Xσ is the
minimal resolution of Xσ. As a consequence, for any fan F of N , the toric modification ψFreg

F : XFreg Ñ

XF is the minimal resolution of XF .

3.4. Toroidal varieties and modifications in the toroidal category.

In this subsection we explain analytic generalizations of toric varieties and toric morphisms: the
notions of toroidal variety and morphism of toroidal varieties (see Definition 3.29). Then we introduce
the notion of cross on a smooth germ of surface (see Definition 3.31), and we explain how to attach to
a cross a canonical oriented regular cone in a two-dimensional lattice (see Definition 3.32) and how each
subdivision of this cone determines a canonical modification in the toroidal category (see Definition 3.33).
The toroidal pseudo-resolutions of plane curve singularities introduced in Subsection 4.2 below will be
constructed as compositions of such toroidal modifications.

Toric surfaces and morphisms are not sufficient for the study of plane curve singularities for the
following reasons. One starts often from a germ of curve on a smooth complex surface which does not
have a preferred coordinate system. It may be impossible to choose a coordinate system such that the
germ of curve gets resolved by only one toric modification relative to the chosen coordinates (if the curve
singularity is reduced and such a resolution is possible, then one says that the singularity is Newton non-
degenerate, see Definition 4.21 below). Instead, what may be always achieved is a morphism of toroidal
surfaces, in the following sense:

Definition 3.29. A toroidal variety is a pair pΣ, BΣq consisting of a normal complex variety Σ and
a reduced divisor BΣ on Σ such that the germ of pΣ, BΣq at any point p P Σ is analytically isomorphic
to the germ of a pair pXσ, BXσq at a point of Xσ, where BXσ denotes the boundary of the affine toric
variety Xσ in the sense of Definition 3.18. Such an isomorphism is called a toric chart centered at p
of the toroidal variety pΣ, BΣq. The divisor BΣ is the boundary of the toroidal variety.

A morphism ψ : pΣ2, BΣ2q Ñ pΣ1, BΣ1q between toroidal varieties is a complex analytic morphism
ψ : Σ2 Ñ Σ1 such that ψ´1pBΣ1q Ď BΣ2. The morphism ψ is a modification if the underlying morphism
of complex varieties is a modification in the sense of Definition 2.31.

Toroidal varieties with their morphisms define a category, called the toroidal category.
The previous definition implies that if pΣ, BΣq is toroidal, then the complement Σ z BΣ is smooth.

Indeed, the point p is allowed to be taken outside the boundary BΣ, and the definition shows then that
the germ of Σ at p is analytically isomorphic to the germ of a toric variety at a point of the associated
torus, which is smooth.

If Σ is of dimension two and if p is a smooth point of BΣ, then p is a smooth point of Σ, since the
germ of Σ at p is analytically isomorphic to the germ of a normal toric surface at a point belonging to a
1-dimensional orbit, which is necessarily smooth.

Proposition 3.20 implies that a toric morphism ψF1

F2,φ
: XF1 Ñ XF2 becomes an element of the

toroidal category if one looks at it as a complex analytic morphism from the pair pXF1
, BXF1

q to the pair
pXF2 , BXF2q, the boundaries being taken in the sense of Definition 3.18.

Remark 3.30. There exists also a more restrictive notion of toroidal morphism ψ : pΣ2, BΣ2q Ñ pΣ1, BΣ1q

between toroidal varieties. By definition, such a morphism becomes monomial in the neighborhood
of any point p of Σ2, after some choice of toric charts at the source and the target, centered at p
and ψppq respectively. Toroidal morphisms belong to the toroidal category, but the converse is not
true. For instance, take two copies C2

u,v and C2
x,y of the complex affine plane and the affine morphism

ψ : C2
u,v Ñ C2

x,y defined by x “ u, y “ up1 ` vq. Consider the plane C2
u,v as a toroidal surface with

boundary equal to the union of its coordinate axes, and C2
x,y as a toroidal surface with boundary equal

to the y-axis. As ψ´1pBC2
x,yq Ď BC2

u,v, ψ is a morphism of toroidal varieties. But it is not a toroidal
morphism. Otherwise, it would become the morphism pu, vq Ñ pu, uq after analytic changes of coordinates



32 EVELIA R. GARCÍA BARROSO, PEDRO D. GONZÁLEZ PÉREZ, AND PATRICK POPESCU-PAMPU

in the neighborhoods of the origins of the two planes, which is impossible, because ψ is birational, therefore
dominant.

Let us come back to the case of a smooth germ of surface pS, oq.

Definition 3.31. A cross on the smooth germ of surface pS, oq is a pair pL,L1q of transversal smooth
branches on pS, oq. A local coordinate system px, yq on pS, oq is said to define the cross pL,L1q if
L “ Zpxq and L1 “ Zpyq.

We chose the name cross by analogy with the denomination normal crossings divisor (see Definition
2.32). Note the subtle difference between the two notions: the pair pL,L1q is a cross if and only if L`L1

is a normal crossings divisor, but the knowledge of the divisor does not allow to remember the order of
its branches.

Definition 3.32. Let pL,L1q be a cross on pS, oq. We associate with it the two-dimensional lattice

ML,L1 of integral divisors supported by LYL1, called the monomial lattice of the cross pL,L1q. The

weight lattice of the cross pL,L1q is the dual lattice NL,L1 of ML,L1 . Denote by pεL, εL1q the basis

εL :“ L, εL1 :“ L1 of ML,L1 , by peL, eL1q the dual basis of NL,L1 , and by σL,L
1

0 the cone R`xeL, eL1y.

When the cross pL,L1q is clear from the context, we often write simply pε1, ε2q , pe1, e2q and σ0 instead

of pεL, εL1q, peL, eL1q and σL,L
1

0 respectively.

Each time we choose local coordinates px, yq defining the cross pL,L1q, we identify ML,L1 with the
lattice of exponents of monomials in those coordinates. That is, aε1 ` bε2 corresponds to xayb. Such a
choice of coordinates also identifies holomorphically a neighborhood of o in S with a neighborhood of the
origin in C2 and the cross pL,L1q with the coordinate cross in C2 at the origin. Therefore, any subdivision
F of σ0 defines an analytic modification ψF

L,L1 : SF Ñ S of S. As these modifications are isomorphisms

over S z tou, it is easy to see that they are independent of the chosen coordinate system px, yq defining
pL,L1q, up to canonical analytical isomorphisms above S. Moreover, if we define BS :“ L ` L1 and
BSF :“ pψF

L,L1q
´1pL`L1q, the morphism ψF

L,L1 becomes a morphism from the toroidal surface pSF , BSF q

to the toroidal surface pS, BSq.

Definition 3.33. If F is a fan subdividing the cone σ0 Ă NL,L1 , then the morphism of the toroidal
category

ψF
L,L1 : pSF , BSF q Ñ pS,L` L1q

associated with F is the modification of S associated with F relative to the cross pL,L1q.

When the fan F is regular, the morphism ψF
L,L1 between the underlying complex surfaces (forgetting

the toroidal structures) is a composition of blow ups of points (see Definition 2.29). We will explain the
structure of this decomposition of ψF

L,L1 in Section 5 (see Propositions 5.10, 5.11).

3.5. Historical comments.

Toric varieties were called torus embeddings at the beginning of the development of toric geometry in
the 1970s, following the terminology of Kempf, Knudsen, Mumford and Saint-Donat’s 1973 book [71], as
these are varieties into which an algebraic torus embeds as an affine Zariski open subset. The introduction
of the book [71] contains information about sources of toric geometry in papers by Demazure, Hochster,
Bergman, Sumihiro and Miyake & Oda. Details about the development of toric geometry may be found
in Cox, Little and Schenck’s 2011 book [26, Appendix A].

The first applications of toric geometry to the study of singularities were done by Kouchnirenko,
Varchenko and Khovanskii in their 1976-77 papers [74], [128] and [73] respectively. But one may see
in retrospect toric techniques in Puiseux’s 1850 paper [106, Sections 20, 23], in Jung’s 1908 paper [68],
in Dumas’ 1911-12 papers [31], [32], in Hodge’s 1930 paper [63], in Hirzebruch’s 1953 paper [62] and
in Teissier’s 1973 paper [119]. Indeed, in all those papers, monomial changes of variables more general
than those describing blow ups are used in an essential way. For instance, in his paper [62], Hirzebruch
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described the minimal resolution of an affine toric surface by gluing the toric charts of the resolved surface
by explicit monomial birational maps. Toric surfaces appeared in Hirzebruch’s paper as normalizations
of the affine surfaces in C3 defined by equations of the form zm “ xpyq, with pm, p, qq P pN˚q3 globally
coprime. Interesting details about Hirzebruch’s work [62] are contained in Brieskorn’s paper [14].

The notion of toroidal variety of arbitrary dimension was introduced in a slightly different form in the
same book [71] of Kempf, Knudson, Mumford and Saint-Donat. The emphasis was put there on a given
complex manifold V , and one looked for partial compactifications of it which were locally analytically
isomorphic to embeddings of an algebraic torus into a toric variety. Such partial compactifications V were
called toroidal embeddings of V . Therefore, a toroidal embedding was a pair pV , V q such that pV , V z V q
is a toroidal variety in our sense. For more remarks about the toroidal category see [4, Section 1.5].

4. Toroidal pseudo-resolutions of plane curve singularities

In Subsection 4.1 we introduce the notions of Newton polygon NL,L1pCq, tropical function tropCL,L1 ,

Newton fan FC
L,L1 and Newton modification ψCL,L1 (see Definition 4.14) determined by a curve singularity

C on the smooth germ of surface pS, oq, relative to a cross pL,L1q. The strict transform of C by its Newton
modification is a finite set of germs. If one completes for each one of them the corresponding germ of
exceptional divisor into a cross, one gets again a Newton polygon, a fan and a modification. This produces
an algorithm of toroidal pseudo-resolution of C (see Algorithm 4.22). It leads only to a pseudo-resolution
morphism, because its source is a possibly singular surface (with toric singularities). In Subsection 4.3
we explain how to modify Algorithm 4.22 in order to get an algorithm of embedded resolution of C.
In Subsection 4.4 we encode the combinatorics of this algorithm into a fan tree (see Definition 4.33),
which is a rooted tree endowed with a slope function, constructed by gluing trunks associated with the
Newton fans generated by the process. The final Subsection 4.5 contains historical information about
Newton’s and Puiseux’s work on plane curve singularities, the resolution of such singularities by iteration
of morphisms which are toric in suitable coordinates, and the relations with tropical geometry.

4.1. Newton polygons, their tropicalizations, fans and modifications.

This subsection begins with the definitions of the Newton polygon N pfq (see Definition 4.2), the
tropicalization (see Definition 4.4) and the Newton fan Fpfq (see Definition 4.9) associated with a non-
zero germ f P Crrx, yss. It turns out that they only depend on the germs L,L1, C defined by x, y and
f respectively (see Proposition 4.13). Therefore, given a cross pL,L1q and a plane curve singularity C
on the smooth germ pS, oq, one has associated Newton polygon, tropicalization and fan. This fan allows
to introduce the Newton modification of the toroidal germ pS,L ` L1q determined by C (see Definition
4.14).

Assume that a cross pL,L1q is fixed on pS, oq (see Definition 3.31) and that px, yq is a local coordinate

system defining it. This system allows to see any f P ÔS,o as a series in the variables px, yq, that is, in

toric terms, as a possibly infinite sum of terms of the form cmpfq χ
m , for cmpfq P C and m P σ_0 XM ,

where M :“ML,L1 and σ0 :“ σL,L
1

0 (see Definition 3.32). Denote also N :“ NL,L1 . One has canonical

identifications M » Z2, N » Z2, σ0 » pR`q2, and σ_0 » pR`q2.

Definition 4.1. Let f P Crrx, yss be a nonzero series. The support Spfq Ď σ_0 XM » N2 of f is the
set of exponents of monomials with non-zero coefficients in f . That is, if

(31) f “
ÿ

mPσ_0 XM

cmpfqχ
m,

then Spfq :“ tm P σ_0 XM, cmpfq ‰ 0u.

If Y is a subset of a real affine space, then ConvpY q denotes its convex hull.
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Definition 4.2. Let f P Crrx, yss. Its Newton polygon N pfq is the following convex subset of σ_0 »
pR`q2:

N pfq :“ ConvpSpfq ` pσ_0 XMqq.
Its faces are its vertices, its edges and the whole polygon itself. If K is a compact edge of the boundary

BN pfq of N pfq, then the restriction fK of f to K is the sum of the terms of f whose exponents

belong to K.

Remark 4.3. In general, the Newton polygon of an element of ÔS,o depends on the choice of local
coordinates. For instance, let us consider the change of coordinates px, yq “ pu, u ` vq. The function
fpx, yq :“ y2 ´ x3 becomes gpu, vq :“ fpu, u ` vq “ pu ` vq2 ´ u3. The corresponding Newton polygons
are represented in Figure 14. In contrast, if the local coordinate change preserves the coordinate curves,
then the Newton polygon remains unchanged (see Proposition 4.13 below).

p3, 0q

p0, 2q

p2, 0q

p0, 2q

p3, 0q

p1, 1q

N py2 ´ x3q N ppu` vq2 ´ u3q

Figure 14. Illustration of Remark 4.3

Suppose now that the variables x and y are weighted by non-negative real numbers. Denote by c P R`
the weight of x and by d P R` the weight of y. Therefore the pair w :“ pc, dq may be seen as an element
of the weight vector space NR “ pNL,L1qR. More precisely, one has w P pR`q2 » σ0. Assuming that the
non-zero complex constants have weight 0, we see that the weight wpcmpfqχ

mq of a non-zero term of f
is simply w ¨m P R`. Define then the w-weight of the series f P Crrx, yss as the minimal weight of its
terms. One gets the function:

(32)
νw : Crrx, yss Ñ R` Y t8u

f Ñ mintw ¨m, m P Spfqu .

It is an exercise to show that νw is a valuation on the C-algebra Crrx, yss, in the sense of Definition 2.19.
Instead of fixing w and letting f vary, let us fix now a non-zero series f P Crrx, yss. Considering the

w-weight of f for every w P σ0 leads to the following function:

Definition 4.4. The tropicalization tropf of f P Crrx, yss z t0u is the function:

(33) tropf : σ0 Ñ R`
w Ñ mintw ¨m, m P Spfqu

.

Remark 4.5. Let us explain the name of tropicalization used in the previous definition (see also Subsec-
tion 4.5). Consider the set R :“ RY t`8u, endowed with the operations ‘ :“ min and d :“ `. Under
both operations, R is a commutative monoid, the product d is distributive with respect to addition and
the addition ‘ is idempotent, that is, a‘ a “ a, for all a P R. One says then that pR, ‘, dq is a tropical
semiring. Consider now the expression defining tropf , and compare it with the expansion (31) of f as
a power series. One sees that one gets formally tropf from (31) by replacing each constant or variable
x, y by its weight, and by replacing the usual operations of sum and product by their tropical analogs.
For further references see the textbook [84] on tropical geometry. Foundations for the tropical study of
singularities were written by Stepanov and the third author in the paper [105].

Remark 4.6. If A is a subset of a real vector space V , then its support function is the function defined
on the dual vector space V _ and taking values in R Y t´8u, which associates to every element of V _

seen as a linear form on V , the infimum of its restriction to A. The tropicalization tropf is the restriction
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of the support function of the subset Spfq of the real vector space MR to the subset of M_
R » NR on

which it does not take the value ´8. The notion of support function is an essential tool in the study of
convex polyhedra (see for instance Ewald’s book [37]).

For every ray ρ “ R`w included in the cone σ0, consider the following closed half-plane of MR:

(34) Hf,ρ :“ tm PMR, w ¨m ě tropf pwqu.

This definition is independent of the choice a generator w of the ray ρ.
The basic reason of the importance of the Newton polygon N pfq of f in our context is the following

strengthening of Proposition 2.39:

Proposition 4.7. Let the ray ρ Ă σ0 be fixed. Then the closed half-plane Hf,ρ of MR is a supporting
half-plane of N pfq, in the sense that it contains N pfq and its boundary tm P MR, w ¨m “ tropf pwqu
has a non-empty intersection with the boundary BN pfq of N pfq.

Proof. Let w be a generating vector of the ray ρ. The inclusion N pfq Ď Hf,ρ is equivalent to the property
w ¨ n ě tropf pwq, for all n P N pfq. These inequalities result from Definition 4.4 of the tropicalization
function tropf pwq and from the following basic equality, implied by the hypothesis that w P σ0 (see
Proposition 2.39):

mintw ¨m, m P Spfqu “ mintw ¨m, m P N pfqu.
The boundary of the half-planeHf,ρ intersects N pfq at its points at which the restriction of the linear form
w : MR Ñ R to N pfq achieves its minimum, that is, along its face N pfqXtm PMR, w¨m “ tropf pwqu. �

As every closed convex subset of a real plane is the intersection of its supporting half-planes, one
deduces that the tropicalization tropf determines the Newton polygon N pfq in the following way:

(35) N pfq “ tm PMR, w ¨m ě tropf pwq, for all w P σ0u.

Formula (35) presents N pfq as the intersection of an infinite set of closed half-planes. In fact, as a
consequence of the previous discussion, a finite number of them suffices:

Proposition 4.8. Let Fpfq be the fan of N obtained by subdividing the cone σ0 using the rays orthogonal
to the compact edges of N pfq. Then:

(1) The tropicalization tropf is continuous and its restriction to any cone in Fpfq is linear.
(2) The relative interiors of the cones of Fpfq may be characterized as the levels of the following map

from σ0 to the set of faces of N pfq, in the sense of Definition 4.2:

w Ñ N pfq X tm PMR, w ¨m “ tropf pwqu.

(3) This map realizes an inclusion-reversing bijection between Fpfq and the set of faces of N pfq. If
Kσ is the face of N pfq corresponding to the cone σ of Fpfq, then:

tropf pwq “ w ¨m, for all w P σ, and for allm P Kσ.

(4) The Newton polygon N pfq is the intersection of the closed half-planes Hf,ρ defined by relation
(34), where ρ varies among the rays of the fan Fpfq.

The fans Fpfq appearing in the previous proposition are particularly important for the sequel, that is
why they deserve a name:

Definition 4.9. The Newton fan Fpfq of f P Crrx, yss z t0u is the fan of N obtained by subdividing

the cone σ0 using the rays orthogonal to the compact edges of the Newton polygon N pfq Ď σ_0 of f ,
that is, by the interior normals of the compact edges of N pfq. A Newton fan in a weight lattice N and
relative to a basis pe1, e2q is any fan subdividing the regular cone σ0 “ R`xe1, e2y.

Example 4.10. Consider the series f P Crrx, yss defined by:

fpx, yq :“ ´x12 ` x14 ` x7y2 ` 2x5y3 ´ x10y3 ` x3y4 ` 3x7y4 ` y9.
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K1

K2

K3

ε2

ε1

x12

x7y2

x3y4

y9

b

a

N pfq ĎMR

9d

3c` 4d

7c` 2d
12c

c

d

tropfand Fpfq

e2

e1

Figure 15. The Newton polygon, the tropicalization and the Newton fan of Example 4.10

On the left side of Figure 15 is represented its Newton polygon N pfq, and on the right side are
represented its tropicalization tropf and its Newton fan Fpfq. The support of the series f is:

Spfq “ tp12, 0q, p14, 0q, p7, 2q, p5, 3q, p10, 3q, p3, 4q, p7, 4q, p0, 9qu.

Among its elements, the vertices of N pfq are p12, 0q, p7, 2q, p3, 4q, p0, 9q. The corresponding monomials
are marked on the left of the figure, near the associated vertices. The other elements of Spfq are marked
as green dots. Now, each vertex pa, bq of N pfq may be seen as the linear function w “ pc, dq Ñ ac ` bd
on NR. The tropicalization tropf computes the minimal value of those 4 linear functions at the points of
σ0. The regular cone σ0 gets decomposed into 4 smaller 2-dimensional subcones, according to the vertex
which gives this minimum. On the right side of Figure 15 those subcones are represented in different
colors. Each such subcone has the same color as the expression of the associated linear function and the
vertex of N pfq defining it. Each ray separating two successive subcones is orthogonal to a compact edge
of N pfq and both are drawn with the same color. Denoting the compact edges by K1 :“ rp0, 9q, p3, 4qs,
K2 :“ rp3, 4q, p7, 2qs, K3 :“ rp7, 2q, p12, 0qs, the associated restrictions of f (see Definition 4.2) are:

fK1 “ x3y4 ` y9, fK2 “ x7y2 ` 2x5y3 ` x3y4, and fK3 “ ´x
12 ` x7y2.

The Newton fan of f is Fpfq “ F p3{5, 2{1, 5{2q (see Definition 3.4 for this last notation).

If α P Crrtsszt0u, we denote by cνtpαqpαq the coefficient of tνtpαq in the series α, and we call it the
leading coefficient of α.

The following proposition shows why it is important to introduce tropf when studying the germ C
defined by f :

Proposition 4.11. Let f P Crrx, yss be a non-zero series. Let t Ñ pαptq, βptqq be a germ of formal
morphism from pC, 0q to pC2, 0q, whose image is not contained in the union LYL1 of the coordinate axes.
Then one has the inequality:

νtpfpαptq, βptqqq ě tropf pνtpαq, νtpβqq,

with equality if and only if fKpcνtpαqpαq, cνtpβqpβqq ‰ 0, where K is the compact face of N pfq orthogonal
to pνtpαq, νtpβqq P N , in the sense that its restriction to N pfq achieves its minimum on this face.

Proof. The basic idea of the proof goes back to Newton’s method of computing the leading term of a
Newton-Puiseux series ηpxq such that fpx, ηpxqq “ 0, which we explained on the example of Subsection
2.5, starting from equation (12).

The hypothesis that the image of t Ñ pαptq, βptqq is not contained in the union of coordinate axes
means that both α and β are non-zero series. Therefore, they admit non-vanishing leading coefficients
cνtpαqpαq and cνtpβqpβq (see Definition 2.18).
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Using the expansion (31), we get that fpαptq, βptqq is equal to:

(36)

ÿ

pa,bqPSpfq

cpa,bqpfq
´

cνtpαqpαqt
νtpαq ` optνtpαqq

¯a ´

cνtpβqpβqt
νtpβq ` optνtpβqq

¯b

“

“
ÿ

pa,bqPSpfq

cpa,bqpfq
`

cνtpαqpαq
˘a `

cνtpβqpβq
˘b

´

taνtpαq`bνtpβq ` optaνtpαq`bνtpβqq
¯

.

As a consequence:

νt pfpαptq, βptqqq ě min
pa,bqPSpfq

taνtpαq ` bνtpβqu “ tropf pνtpαq, νtpβqq,

where the last equality follows from Definition 4.4. This proves the inequality stated in the proposition.
The case of equality follows from the fact, implied by the computation (36), that the coefficient of the

term with exponent tropf pνtpαq, νtpβqq of the series fpαptq, βptqq is fKpcνtpαqpαq, cνtpβqpβqq. �

In Proposition 4.11, K may be either an edge or a vertex of N pfq. Note that this statement plays with
the two dual ways of defining a curve singularity on pC2, 0q, either as the vanishing locus of a function or
by a parametrization.

Consider now the reduced image of the morphism t Ñ pαptq, βptqq. The hypothesis that it is not
contained in L Y L1 shows that it is a branch on pS, oq, different from L and L1. Endow it with a
multiplicity equal to the degree of the morphism onto its image, seeing it therefore as a divisor A on pS, oq.
By Proposition 2.8, the orders νtpαptqq, νtpβptqq which appear in Proposition 4.11 may be interpreted as
νtpαptqq “ L ¨A, and νtpβptqq “ L1 ¨A. We get the following corollary of Proposition 4.11:

Proposition 4.12. Let pL,L1q be a cross on pS, oq and C be a curve singularity on pS, oq. Assume that

the local coordinate system px, yq defines the cross pL,L1q and that f P ÔS,o defines C. Then, for every
effective divisor A on pS, oq supported on a branch distinct from L and L1, one has the inequality:

C ¨A ě tropf ppL ¨Aqe1 ` pL
1 ¨Aqe2q.

Moreover, one has equality when A is generic for fixed values of L ¨A and L1 ¨A.

One may describe the genericity condition involved in the last sentence of Proposition 4.12 as follows.
As a consequence of the proof of Proposition 4.18 below, one has fKpcνtpαqpαq, cνtpβqpβqq ‰ 0 (which is

equivalent to the equality C ¨A “ tropf ppL ¨Aqe1 ` pL
1 ¨Aqe2q) if and only if the strict transforms of A

and C by the Newton modification ψCL,L1 of S defined by C (see Definition 4.14 below) are disjoint.

As a consequence of Propositions 4.8 (3) and 4.12 we have:

Proposition 4.13. Let pL,L1q be a cross on pS, oq and C be a curve singularity on pS, oq. Assume that

the local coordinate system px, yq defines the cross pL,L1q and that f P ÔS,o defines C. Then the Newton
polygon N pfq, the tropicalization tropf and the Newton fan Fpfq do not depend on the choice of the
defining functions x, y, f of the curve germs L,L1, C.

By contrast, the support of f depends on the choice of the local coordinate system px, yq defining a

fixed cross, even if f P ÔS,o is fixed. For instance, the monomial xy becomes a series with infinite support
if one replaces simply x by xp1` x` x2 ` ¨ ¨ ¨ q.

Proposition 4.13 implies that the following notions are well-defined:

Definition 4.14. Let pL,L1q be a cross on pS, oq, and let px, yq be a local coordinate system defining it.

Let C be a curve singularity on pS, oq, defined by a function f P ÔS,o, seen as a series in Crrx, yss using
the coordinate system px, yq. Then:

‚ The Newton polygon NL,L1pCq ĎML,L1 of C relative to the cross pL,L1q is the Newton polygon

N pfq.
‚ The tropical function tropCL,L1 : σ0 Ñ R` of C relative to the cross pL,L1q is the tropicalization

tropf of the series f .

‚ The Newton fan FL,L1pCq of C relative to the cross pL,L1q is the fan Fpfq.
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‚ The Newton modification ψCL,L1 : pSFL,L1 pCq, BSFL,L1 pCqq Ñ pS,L`L1q of S defined by C relative

to the cross pL,L1q is the modification of S associated with FL,L1pCq relative to the cross pL,L1q, that

is, ψCL,L1 :“ ψ
FL,L1 pCq
L,L1 (see Definition 3.33). The strict transform of C by ψCL,L1 is denoted CL,L1 .

Note that we consider the Newton modification ψCL,L1 as a morphism in the toroidal category, by

endowing S with the boundary L` L1 and the modified surface SFL,L1 pCq with a boundary equal to the

reduced total transform of L` L1.

4.2. An algorithm of toroidal pseudo-resolution.

In this subsection we assume for simplicity that the plane curve singularity C is reduced (see Remark
4.27). We explain that, once a smooth branch L is fixed on the germ of smooth surface pS, oq, one may
obtain a so-called toroidal pseudo-resolution of C on pS, oq (see Definition 4.15) by completing the smooth
branch into a cross pL,L1q, by performing the associated Newton modification, and by iterating these
steps at every point at which the strict transform of C intersects the exceptional divisor of the Newton
modification (see Theorem 4.23). The algorithm stops after the first step if and only if C is Newton
non-degenerate relative to the cross pL,L1q (see Definition 4.21).

The following definition formulates two notions of possibly partial resolution of C in the toroidal
category, relative to the ambient smooth germ of surface S:

Definition 4.15. Let pL,L1q be a cross in the sense of Definition 3.31 on the smooth germ of surface
pS, oq and let C be a curve singularity on S. Consider a modification π : pΣ, BΣq Ñ pS,L ` L1q of
pS,L` L1q in the toroidal category, in the sense of Definition 3.29. It is called, in decreasing generality:
‚ A toroidal pseudo-resolution of C if the following conditions are satisfied:

(1) the boundary BΣ of Σ contains the reduction of the total transform π˚pCq of C by π;
(2) the strict transform of C by π (see Definition 2.31) does not contain singular points of Σ.

‚ A toroidal embedded resolution of C if, moreover, the surface Σ is smooth.
If π : pΣ, BΣq Ñ pS,L`L1q is a toroidal pseudo-resolution of C, then the reduction of the image πpBΣq

of BΣ in S is called the completion Ĉπ of C relative to π.

Remark 4.16. Note that if π : pΣ, BΣq Ñ pS,L ` L1q is a toroidal pseudo-resolution of C, then the

strict transform of C by π is smooth and Ĉπ Ě C ` L ` L1. If moreover π is an embedded resolution,
then the total transform π˚pCq is a normal crossings divisor in Σ (see Definition 2.32). Note also that
if π : pΣ, BΣq Ñ pS,L ` L1q is a toroidal embedded resolution of C, then π : Σ Ñ S is an embedded
resolution of C according to Definition 2.33. From now on, we will keep track carefully of the toroidal
structures, considering only toroidal embedded resolutions in the sense of Definition 4.15.

Remark 4.17. If π : pΣ, BΣq Ñ pS,L`L1q is a toroidal pseudo-resolution of C, then the strict transform
of C is transversal to the critical locus of π. Our choice of terminology in Definition 4.15 is inspired by
Goldin and Teissier’s paper [51], where an analogous notion of (embedded) toric pseudo-resolution of a
subvariety of the affine space is considered.

Let us look now at the strict transform CL,L1 of C by the Newton modification ψCL,L1 defined by C

relative to the cross pL,L1q (see Definition 4.14). The following proposition describes its intersection with
the boundary BSFL,L1 pCq:

Proposition 4.18. Assume that neither L nor L1 is a branch of C. Then the strict transform CL,L1 of C
by the Newton modification ψCL,L1 intersects the boundary BSFL,L1 pCq of the toroidal surface

pSFL,L1 pCq, BSFL,L1 pCqq only at smooth points of it. Moreover, if ρ is a ray of the Newton fan FL,L1pCq
different from the edges of σ0, then CL,L1 intersects the corresponding component Oρ of the exceptional
divisor of ψCL,L1 only inside the orbit Oρ. The number of intersection points counted with multiplicities is

equal to the integral length of the edge of the Newton polygon NL,L1pCq which is orthogonal to the ray ρ.
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Proof. We give a detailed proof of this proposition in geometric language, in order to emphasize the roles
played by the fundamental combinatorial objects NL,L1pCq, tropCL,L1 and FL,L1pCq associated with C

relative to the cross pL,L1q (see Definition 4.14).
The orbit Oρ is independent of the toric surface containing it, because any two such surfaces contain

the affine toric surface Xρ Ą Oρ as Zariski open sets. Therefore, in order to compute the intersection of
the strict transform of C with Oρ, we may choose another surface than XFL,L1 pCq.

Choose local coordinates px, yq defining the cross pL,L1q. In this way ML,L1 gets identified with the
lattice of exponents of Laurent monomials in px, yq. Assume that f1 :“ αe1`βe2 is the unique primitive
generator of the ray ρ. Let us complete it in a basis pf1, f2q of the lattice NL,L1 , such that the cone
σ :“ R`xf1, f2y is contained in one of the two cones of dimension 2 of FL,L1pCq adjacent to ρ. We are
now in the setting of Example 3.26. As explained there, if pϕ1, ϕ2q is the basis of ML,L1 dual to the basis
pf1, f2q of NL,L1 and u :“ χϕ1 , v :“ χϕ2 , then v “ x´βyα is a coordinate of the orbit Oρ. Moreover, it
realises an isomorphism of its closure in the affine toric surface Xσ “ C2

u,v with the affine line Cv.
Let Kρ be the edge of the Newton polygon NL,L1pCq which is orthogonal to the ray ρ. It is parallel to

the line Rϕ2, because by definition f1 ¨ ϕ2 “ 0. Orient Kρ by the vector ϕ2 and denote then its vertices
by m0 and m1, such that Kρ is oriented from m0 to m1. This means that m1 ´m0 “ Lρ ϕ2, where Lρ
denotes the integral length of the segment Kρ, in the sense of Definition 3.1. Moreover, the points of
Kρ XM are precisely those of the form:

(37) m :“ m0 ` k ϕ2, for k P t0, 1, . . . , Lρu.

Consider the smooth toric surface Xσ “ C2
u,v. The orbit Oρ is its pointed v-axis C˚v . Therefore, one

may compute the intersection of the strict transform of C with this orbit by taking the lift pψσσ0
q˚f of a

defining function f of C to C2
u,v, by simplifying by the greatest monomial in σ_ XM which divides it,

and then by setting u “ 0. Let therefore

f :“
ÿ

mPSpfq

cmpfqχ
m P Crrx, yss

be a defining function of C. As the bases pf1, f2q and pϕ1, ϕ2q are dual of each other, we have the relation
m “ pf1 ¨mqϕ1 ` pf2 ¨mqϕ2. This implies that χm “ uf1¨m vf2¨m. As the ray ρ “ R` f1 is orthogonal to
the edge Kρ of the Newton polygon NL,L1pCq “ N pfq, we know that:

f1 ¨m ě hρ for all m P Spfq,

where hρ :“ tropf pf1q, with equality if and only if m P Kρ. Therefore, the highest power of u which
divides

pψσσ0
q˚f “

ÿ

mPSpfq

cmpfq u
f1¨m vf2¨m

is uhρ , and it is achieved only on the edge Kρ of N pfq. Moreover, the linear form m Ñ f2 ¨m achieves
its minimum (at least) at the vertex m0 of N pfq, by the hypothesis that σ is contained in one of the
two 2-dimensional cones of Fpfq “ FL,L1pCq which are adjacent to ρ. This shows that the maximal
monomial in pu, vq which divides pψσσ0

q˚f is uhρvf2¨m0 . After simplifying by it and setting u “ 0, one gets
the following polynomial equation in the variable v, describing the intersection of the strict transform of
C with the v-axis:

(38)
ÿ

mPKρXM

cmpfq v
f2¨pm´m0q “ 0.

We recognize here the equation obtained from fKρ “ 0 after the change of variables from px, yq to pu, vq
and the simplification of the highest dividing monomial. This illustrates the importance in our context
of the operation of restriction of f to a compact edge of its Newton polygon, introduced in Definition
4.2. Using Equation (37), we see that Equation (38) becomes:

(39)

Lρ
ÿ

k“0

cm0`k ϕ2pfq v
k “ 0.
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The two extreme coefficients cm0
pfq and cm1

pfq of the previous polynomial equation being non-zero,
we see that the strict transform of C does not pass through the origin of C2

u,v and that it intersects
the orbit Oρ in Lρ “ lZKρ points, counted with multiplicities. The solutions of Equation (39) are the
v-coordinates of the intersection points of the strict transform of C with the orbit Oρ.

By using the same kind of argument for all the cones of the regularization of FL,L1pCq, we may show
also that the strict transform of C misses all the singular points of the boundary divisor of XFL,L1 pCq. �

Example 4.19. Let us give an example of the objects manipulated in the proof of Proposition 4.18.
Consider the function f P Crrx, yss of Example 4.10. Let ρ be the ray of slope 2{1 of Fpfq. Then Kρ is
the side K2 :“ rp3, 4q, p7, 2qs of BN pfq (see Figure 15). One has f1 “ e1 ` 2e2. A possible choice of the
vector ϕ2 is ϕ2 “ ´2ε1 ` ε2. Therefore v “ x´2y. Orienting Kρ by this vector ϕ2 one gets m0 “ p7, 2q
and m1 “ p3, 4q. We saw in Example 4.10 that fKρ “ x7y2 ` 2x5y3 ` x3y4 “ x3y2px4 ` 2x2y ` y2q. As

v “ x´2y, Equation (39) is in this case 1`2v`v2 “ 0. We see that its degree is indeed the integral length
Lρ of the side Kρ. As it has a double root, the series f is not Newton non-degenerate (see Definition 4.21
below). The strict transform of C intersects Oρ at the single point v “ ´1.

The proof of Proposition 4.18 yields easily also a proof of the following proposition :

Proposition 4.20. Let pL,L1q be a cross and C a curve singularity on S. Let f P Crrx, yss be a defining
function of C relative to any coordinate system px, yq defining the chosen cross. Then the following
conditions are equivalent:

(1) the curve C is reduced and the Newton modification ψCL,L1 becomes a toroidal pseudo-resolution of

C if one replaces the boundary BSFL,L1 pCq by the total transform of the divisor pψCL,L1q
˚pC`L`L1q;

(2) for any ray ρ of the Newton fan FL,L1pCq which is orthogonal to a compact edge of NL,L1pCq, the
polynomial equation (39) has only simple roots;

(3) the defining function f of C has the property that all the restrictions fK of f to the compact edges
K of the Newton polygon N pfq “ NL,L1pCq define smooth curves in the torus pC˚q2x,y.

The plane curve singularities which satisfy the equivalent conditions of Proposition 4.20 received a
special name:

Definition 4.21. Let pL,L1q be a cross and C a curve singularity on S. Let f P Crrx, yss be a defining
function of C relative to any coordinate system associated to the chosen cross. The function f is called
Newton non-degenerate and the curve C is called Newton non-degenerate relative to the cross
pL,L1q if the equivalent conditions listed in Proposition 4.20 are satisfied.

Usually one speaks about Newton non-degenerate germs of holomorphic functions of several variables.
We introduce here the notion of Newton non-degenerate plane curve singularity relative to a cross in
order to emphasize the underlying geometric phenomena.

Let us come back to Proposition 4.18. At each point of intersection oi of the strict transform CL,L1

with the exceptional divisor of ψCL,L1 , one has the following dichotomy:
‚ Either only one branch of CL,L1 passes through oi, where it is moreover smooth and transversal to the
exceptional divisor. The germ Ai at oi of the exceptional divisor and this branch form a canonical cross
on SFL,L1 pCq. Then, one reaches locally a toroidal pseudo-resolution of C in the neighborhood of that
point.
‚ Or one does not have a canonical cross, but only a canonical smooth branch: the germ Ai at oi of the
exceptional divisor pψCL,L1q

´1poq itself.

In the second case, one may complete Ai into a cross pAi, Liq by the choice of a germ Li of smooth
branch transversal to it. Then one is again in the presence of a germ of effective divisor (the germ of
the strict transform CL,L1 of C by ψCL,L1) on a germ of smooth surface endowed with a cross (the surface

SFL,L1 pCq endowed with the cross pAi, Liq). One gets again a Newton polygon, a tropical function, a

Newton fan and a Newton modification, and the previous construction may be iterated. This iterative
process may be formulated as the following algorithm of toroidal pseudo-resolution of the germ C:
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Algorithm 4.22. Let pS, oq be a smooth germ of surface, L a smooth branch on pS, oq and C a reduced
germ of curve on pS, oq, which does not contain the branch L in its support.

STEP 1. If pL,Cq is a cross, then STOP.
STEP 2. Choose a smooth branch L1 on pS, oq, possibly included in C, such that pL,L1q is a cross.
STEP 3. Let FL,L1pCq be the Newton fan of C relative to the cross pL,L1q. Consider the associated
Newton modification ψCL,L1 : pSFL,L1 pCq, BSFL,L1 pCqq Ñ pS,L` L1q and the strict transform CL,L1 of C by

ψCL,L1 (see Definition 4.14).
STEP 4. For each point õ belonging to CL,L1 X BSFL,L1 pCq, denote:

‚ L :“ the germ of BSFL,L1 pCq at õ;

‚ C :“ the germ of CL,L1 at õ;
‚ o :“ õ;
‚ S :“ SFL,L1 pCq.

STEP 5. GO TO STEP 1.

Note that one considers that only the smooth branch L is given at the beginning, and that the second
branch L1 of the cross pL,L1q is chosen when one executes STEP 2 for the first time. Note also that the
algorithm is non-deterministic, as it involves choices of supplementary branches.

A variant of this algorithm, obtained by replacing Step 3 by a Step 3reg, will be studied in Subsection
4.3. It produces a toroidal embedded resolution of C instead of a pseudo-resolution (see Definition 4.15).

Proposition 4.20 means that if C is Newton non-degenerate relative to the cross pL,L1q chosen at Step
2 of Algorithm 4.22, then this algorithm stops after performing only one Newton modification. More
generally, a fundamental property of Algorithm 4.22 is:

Theorem 4.23. Algorithm 4.22 stops after a finite number of iterations.

Proof. Assume that A is a curve singularity on the smooth germ of surface pS, oq, obtained after a finite
number of steps of the algorithm, and that pL ¨Aqo “ 1. Then pL,Aq is a cross and the algorithm stops.
Therefore, in order to show that the algorithm stops, it is enough to show that after a finite number of
steps all the local intersection numbers of the strict transform CL,L1 of C with the exceptional divisor
are equal to 1.

By the end statement of Proposition 4.18, a sequence of such intersection numbers at infinitely near
points of o (see Definition 4.31) which dominate each other is necessarily decreasing:

(40) pC ¨ Lqo ě pC1 ¨ E1qo1 ě ¨ ¨ ¨ ě pCk ¨ Ekqok ě ¨ ¨ ¨ .

At the k-th iteration of the algorithm we are considering the strict transform Ck of C at a point ok, which
belongs to the component Ek of the exceptional divisor.

The sequence (40) being composed of positive integers, it necessarily stabilizes. If the stable value is
1 for all choices of sequence o, o1, o2, . . . , then the algorithm stops after a finite number of steps.

Let us reason by contradiction, assuming the contrary. Therefore, one may find a sequence as before
for which the stable intersection number is n ą 1. Let us assume without loss of generality, by starting
our analysis after the stabilization took place, that:

(41) pC ¨ Lqo “ pC1 ¨ E1qo1 “ ¨ ¨ ¨ “ pCk ¨ Ekqok “ ¨ ¨ ¨ “ n ą 1.

Therefore, for every k ě 1, pEk, Ckq is not a cross at ok. By STEP 2 of the algorithm, a smooth germ
Lk was chosen at ok such that pEk, Lkq is a cross at ok.

Let us reformulate the first equality

(42) pC1 ¨ E1qo1 “ pC ¨ Lqo

of the sequence (41) in terms of Newton polygons. By applying again the end statement of Proposition
4.18, we see that pC1 ¨E1qo1 is less or equal to the integral length lZK of the compact edge K of NL,L1pCq
whose orthogonal ray corresponds to the prime exceptional curve E1. One has equality if and only if the
strict transform of C intersects E1 at a single point. In turn, the integral length lZK is less or equal to
the height pC ¨ Lqo “ n of NL,L1pCq (the ordinate of its lowest point on the vertical axis), with equality
if and only if K is the only compact edge of NL,L1pCq and K “ rp0, nq, pm1n, 0qs, with m1 P N˚.
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As a consequence, one has the equality (42) if and only if NL,L1pCq has a single compact edge, of the
form rp0, nq, pm1n, 0qs, with m1 P N˚, and the associated polynomial in one variable has only one root
in C˚. In terms of local coordinates px, yq on pS, oq defining the cross pL,L1q and a defining unitary
polynomial f P Crrxssrys of the plane curve singularity C (see Theorem 6.1 below), equality holds in (42)
if and only if f is of the form f “ py´ c1x

m1qn`¨ ¨ ¨ , with c1 P C˚, m1 P N˚ and where we wrote only the
restriction fK of f to the compact edge K of the Newton polygon NL,L1pCq, in the sense of Definition
4.2. Then, STEP 3 is performed simply by considering the morphism:

(43)

"

x “ x1,
y “ xm1

1 pw1 ` c1q,

where px1, w1q are local coordinates at o1 and Zpx1q “ pE1, o1q. The hypothesis (41) implies that pE1, C1q

is not a cross. Denote by L11 the smooth branch at o1 obtained by applying again STEP 2. Therefore,
pE1, L

1
1q is a cross at o1. By the formal version of the implicit function theorem, we can choose local

coordinates px1, u1q defining the cross pE1, L
1
1q in such a way that u1 “ w1´φ1px1q, for some φ1 P Crrtss

with φ1p0q “ 0.
Let us define y1 :“ y ´ xm1pc1 ` φ1pxqq and denote L1 :“ Zpy1q. Notice that the strict transform of

L1 by the modification (43) is equal to L11 and that (43) can be rewritten

(44)

"

x “ x1,
y1 “ xm1

1 u1

with respect to the local coordinates px, y1q and px1, u1q. Let us denote by f1 P Crrx1ssru1s the monic
polynomial defining C1 relative to the coordinates px1, u1q (see again Theorem 6.1). Reasoning as before,
the hypothesis (41) implies that the polynomial f1 is of the form f1 “ pu1´c2x

m2
1 qn`¨ ¨ ¨ , where c2 P C˚,

m2 P N˚ and the exponents of the monomials xi1u
j
1 which were omitted verify that i `m2j ą m2n and

0 ď j ă n. Notice that the order of vanishing of f along E1 is equal to nm1. We recover a defining
function of C with respect to the coordinates px, y1q by expressing, using the relation (44), the monomials
appearing in the product xm1n

1 ¨f1px1, u1q as monomials in px, y1q. We get a defining function of C of the

form py1 ´ c2x
m1`m2
1 qn ` ¨ ¨ ¨ , where the exponents of the monomials xi1y

j
1 which are not written above

verify that i` pm1 `m2qj ą pm1 `m2qn and 0 ď j ă n.

By induction on k ě 1, one may show similarly that:

‚ The branch L1k “ Zpukq is the strict transform of a smooth branch Lk “ Zpykq at S, where px, ykq is a
local coordinate system defining a cross at o and

(45) yk “ yk´1 ´ x
m1`¨¨¨`mkpck ` φkpxqq,

where φk P Crrtss satisfies φkp0q “ 0.
‚ The composition of the maps in the algorithm expresses as

(46)

"

x “ x1,
yk “ xm1`¨¨¨`mk

1 uk,

with respect to the local coordinates pxk, ukq at ok and the coordinates px, ykq at o.
‚ There exists a defining function of C of the form:

pyk ´ ckx
m1`¨¨¨`mkqn ` ¨ ¨ ¨

where the exponents of monomials xiyjk which are not written above verify that i` pm1 ` ¨ ¨ ¨ `mkqj ą
pm1 ` ¨ ¨ ¨ `mkqn and 0 ď j ă n.

In particular, we have shown that the Newton polygon NL,LkpCq has only one compact edge with
vertices p0, nq and pm1 ` ¨ ¨ ¨ `mk, 0q, where Lk ¨ C “ m1 ` ¨ ¨ ¨ `mk. When we look at the polygons
NL,LkpCq as subsets of R2, we get a nested sequence:

(47) NL,L1pCq Ą NL,L1
pCq Ą ¨ ¨ ¨ Ą NL,Lk´1

pCq Ą NL,LkpCq.

By (45), one has that yk “ y ´ ξkpxq with ξkpxq P Crrxss. One may check, using the shape of relation
(45), that the sequence pξkpxqqkě1 converges to a series ξ8pxq in the complete ring Crrxss. Set y8 :“
y´ξ8pxq and L8 :“ Zpy8q. Then pL,L8q is a cross at o. We deduce that L8 ¨C “ νxfpx, ξ8pxqq “ `8
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and by (47) one gets the inclusion NL,L8pCq Ă NL,LkpCq, for every k ě 1. These two facts together
imply that the Newton polygon NL,L8pCq has only one vertex p0, nq. Therefore, a local defining series
for C is of the form py8q

n. Since n ą 1, C would not be a reduced germ, contrary to the hypothesis. �

Remark 4.24. The argument used in the proof of Theorem 4.23 coincides basically with one step of the
proof of the Newton-Puiseux theorem (see Theorems 2.20 and 6.1), as presented in Teissier’s survey [123].
Unlike the rest of the proof of this theorem, this particular step holds without making any assumption
on the characteristic of the base field.

Algorithm 4.22 involves a finite number of choices, those of the smooth branches introduced in order
to get crosses each time one executes STEP 2. Let us introduce the following notations:

Notations 4.25. Assume that one executes Algorithm 4.22 on pS, oq, starting from the curve singularity
C and the smooth branch L. Then:

(1) t oi , i P I u is the set of points at which one applies STEP 1 or STEP 2. One assumes that

t1u Ď I and that o1 :“ o.

(2) t pAi, Biq , i P Iu is the set of crosses considered each time one applies STEP 1 or STEP 2.

Therefore A1 “ L and for i P I z t1u, the branch Ai is included in the exceptional divisor of the
Newton modification performed at the previous iteration.

(3) J Ď I consists of those j P I for which one performs STEP 2 at oj . Denote by Lj the

projection on S of the branch Bj , for every j P J . Therefore, Bi is a strict transform of a branch
of C whenever i P I z J and Bj is the strict transform of Lj whenever j P J .

(4) Sp1q :“ S. For k ě 1, the surface Spk`1q is obtained from Spkq by performing simultaneously

the Newton modification of STEP 3 at all the points oj of Spkq at which one executes STEP 2.

At such a point, denote by FAj ,Bj pCq the corresponding fan. It is the Newton fan of the germ

of strict transform of C at oj , relative to the cross pAj , Bjq.

(5) The previous simultaneous Newton modification is denoted πpkq : Spk`1q Ñ Spkq. We call it the
k-th level of Newton modifications.

(6) The toroidal boundary BSpkq is by definition the total transform on Spkq of all the crosses which

appeared in the algorithm until performing STEP 2 at all the points of Spkq. In particular,
BS “ L ` L1. Each morphism πpkq : pSpk`1q, BSpk`1qq Ñ pSpkq, BSpkqq belongs to the toroidal
category, as pπpkqq´1pBSpkqq Ď BSpk`1q.

(7) π :“ πp1q ˝ ¨ ¨ ¨ ˝ πphq, where h is the number of modifications πpkq produced by the algorithm.

We denote by Σ the source of π. Therefore, π : Σ Ñ S is a modification of the initial germ S.

(8) BΣ denotes BSphq. It is the underlying reduced divisor of the total transform π˚pĈπq of the

completion Ĉπ “ C `
ř

jPJ Lj , in the sense of Definition 4.15.

There are a lot of notations here! The only way to get used to them, to understand how those objects
are related, and why they are important, is to look at examples. That is why we made a detailed one
below (see Example 4.28). In fact, all the works which deal in a detailed way with processes of resolution
of singularities introduce analogously plenty of notations (see for instance Zariski [136], Zariski [137],
Lejeune-Jalabert [78], A’Campo and Oka [8], Casas [19], Wall [131] or Greuel, Lossen and Shustin [59]).
This is one of the main advantages we see for the notion of lotus attached below to such a resolution
process (see Definition 5.26): it allows to get a simultaneous global view of the previous objects.

We can state in the following way the output of Algorithm 4.22 in terms of Definition 4.15:

Proposition 4.26. The morphism π : pΣ, BΣq Ñ pS,L` L1q is a toroidal pseudo-resolution of C.

Remark 4.27. We formulated Algorithm 4.22 only for reduced curve singularities C. It extends readily
to an algorithm applicable to any C, by agreeing that one runs it on the reduction of C. One may agree
also to define the fan tree of an arbitrary curve singularity C as the fan tree of its reduction (see Definition
4.33), each leaf being decorated with the multiplicity of the corresponding branch inside the divisor C.
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Similar conventions may be chosen in order to associate a lotus to an arbitrary curve singularity C. As
we do not use those more general notions in this text, we will not introduce them formally.

Let us give now an example of application of Algorithm 4.22. Instead of starting from a particular
equation, we will assume that the algorithm involves three levels of toroidal modifications with prescribed
Newton fans and we will describe from them the toroidal boundary of the final surface. We will see in
Example 6.29 below how to write concrete equations for branches Ci and Lj appearing in a toroidal
resolution process structured as in Example 4.28. The idea is to associate to the Newton polygons of
the process a fan tree (see Definition 4.33), which may be transformed into an Eggers-Wall tree (see
Definition 6.28), which in turn allows to write Newton-Puiseux series defining the branches Ci and Lj .
One may take as their defining functions in Crrx, yss the minimal polynomials of those Newton-Puiseux
series.

L

L1

o1 :“ o

πp1q

eL1

eL

eE3

5
2

eE2

2
1

eE1

3
5

FL,L1
pCq
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E2
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C3

E3

C1L1

o3

o2

L

Figure 16. First level of Newton modifications in Example 4.28

Example 4.28. We will use Notations 4.25, but we will denote in the same way a branch and its various
strict transforms by the modifications produced by the algorithm. In particular, we will write Lj instead
of Bj , for any j P J .

Assume that, relative to the first cross pL,L1q, which lives on Sp1q “ S, the Newton fan FL,L1
pCq of the

curve singularity C is as represented on the top of Figure 16. Therefore it is the same fan F p3{5, 2{1, 5{2q
as in Figure 8. The associated Newton modification πp1q is represented on the bottom of Figure 16. We
have drawn schematically the two boundaries BSp1q “ L ` L1 and BSp2q “ L ` E1 ` E2 ` E3 ` L1 `

C1`C2`C3. The components Ei of the exceptional divisor of πp1q correspond to the rays R` eEi of the
Newton fan FL,L1

pCq. We assume that there are three intersection points of the strict transform CL,L1

of C by πp1q at which the algorithm stops at STEP 1. The corresponding components of C are denoted
C1, C2, C3. By contrast, at the points o2 and o3, one has to apply STEP 2 of Algorithm 4.22 (which
implies that t2, 3u Ď J).

One introduces two new smooth branches L2 and L3 passing through o2 and o3 respectively, transver-
sally to the exceptional divisor E1`E2`E3 of πp1q. Both points o2 and o3 belong to the component E1.
Now one may get the second level of Newton modifications, by looking at the Newton fans FE1,L2

pCq
and FE1,L3pCq (note that we have written pE1, Ljq instead of pAj , Ljq, because for j P t2, 3u, Aj is the
germ of E1 at oj). We assume that those Newton fans are as represented on the top of Figure 17. The

corresponding composition πp2q of Newton modifications at o2 and o3 is represented on the bottom of the
figure, through a schematic drawing of BSp2q ` L2 ` L3 and of BSp3q “ BΣ. We assume that the process
stops at STEP 1 at three more points, through which pass the strict transforms of the branches C4, C5, C6
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Figure 17. Second level of Newton modifications in Example 4.28

of C (see the right bottom part of Figure 17). There remains one point o4, lying on the component E6

of the exceptional divisor E4 ` E5 ` E6 ` E7 of πp2q, at which one has to perform STEP 2.
One completes then the germ A4 of E6 at o4 into a cross pE6, L4q, represented on the left bottom

part of Figure 18. We assume now that the Newton fan FE6,L4pCq is as drawn on the top of the figure.
It has only one ray distinct from the edges of the cone R`xeE6 , eL4y. Therefore, the corresponding
Newton modification, which alone gives the third level of Newton modifications πp3q, introduces only
one more irreducible component of exceptional divisor, denoted E8. It is cut by the strict transform
of one more branch of C, denoted C7 and represented on the bottom right part of Figure 18. The
whole curve schematically represented here is the boundary BΣ. On the bottom left is represented the
divisor BSp3q ` L4. The toroidal pseudo-resolution of C produced by the algorithm is the composition
πp1q ˝ πp2q ˝ πp3q : pΣ, BΣq Ñ pS,L ` L1q. The singular points of the total surface Σ :“ Sp3q correspond
bijectively to the non-regular 2-dimensional cones of the Newton fans FL,L1

pCq, FE1,L2
pCq, FE1,L3

pCq
and FE6,L4pCq produced by the algorithm. We represented them as small blue discs on the bottom right
of Figure 18.

4.3. From toroidal pseudo-resolutions to embedded resolutions.

In this subsection, we explain how to get an embedded resolution of C ãÑ S from one of the toroidal
pseudo-resolutions produced by Algorithm 4.22. Recall first from Definition 4.15 the difference between
toroidal pseudo-resolutions and embedded ones: in the first ones the source of the modification may have
toric singularities, while in the second ones the source is required to be smooth.
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Figure 18. Third level of Newton modifications in Example 4.28

Consider a toroidal pseudo-resolution morphism π : pΣ, BΣq Ñ pS,L`L1q of C produced by Algorithm
4.22 (we speak about “a morphism” instead of “the morphism”, because of the choices of smooth branches
pLjqjPJ involved in its construction, see Definition 4.25). The surface Σ has a finite number of singular
points. As explained in Example 4.36, they correspond to the 2-dimensional non-regular cones of the
Newton fans which appeared during the process. Proposition 3.28 shows that one may resolve minimally
those singular points by taking the regularization of each such cone. In fact, those regularizations glue
into the regularizations of the Newton fans.

A way to regularize all the Newton fans produced by Algorithm 4.22 is to run a variant of it, obtained
by always replacing STEP 3 with the following “regularized” version of it:

STEP 3reg. Let Freg
L,L1pCq be the regularized Newton fan of C relative to the cross pL,L1q and let ψC,regL,L1 :

pSFreg
L,L1

pCq, BSFreg
L,L1

pCqq Ñ pS,L`L1q be the associated Newton modification. Consider the strict transform

CL,L1 of C by ψC,regL,L1 .

We did not change the notations for the successive strict transforms of C from STEP 3 to STEP 3reg,
because this variant of the algorithm does never modify the surfaces produced by the first algorithm in
the neighborhood of those strict transforms. Indeed, the strict transforms never pass through the singular
points of the modified surfaces Spkq (see Proposition 4.18 and Notations 4.25).

One has the following description of the result of running the “regularized” algorithm:

Proposition 4.29. Let π : pΣ, BΣq Ñ pS,L ` L1q be a toroidal pseudo-resolution obtained by running
Algorithm 4.22. Assume that one replaces always STEP 3 with STEP 3reg above, choosing the same
smooth germs pLjqjPJ as in the construction of π. Then one gets a morphism in the toroidal category

πreg : pΣreg, BΣregq Ñ pS,L`L1q, which is moreover an embedded resolution of C and which factors as
πreg “ π˝η, where η : pΣreg, BΣregq Ñ pΣ, BΣq is a modification in the toroidal category whose underlying
modification of complex surfaces is the minimal resolution of the complex surface Σ.
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Let us look at the underlying morphism of complex surfaces πreg : Σreg Ñ S. Both surfaces are
smooth, therefore this morphism is a composition of blow ups of points, by the following theorem of
Zariski (see [61, Corollary 5.4] or [113, Vol.1, Ch. IV.3.4, Thm.5]):

Theorem 4.30. Let ψ : S2 Ñ S1 be a modification of a smooth complex surface S1, with S2 also smooth.
Then ψ may be written as a composition of blow ups of points.

In Section 5 we will describe explicitly the combinatorics of the decomposition of πreg : Σreg Ñ S into
blow ups of points.

Let us recall the following classical terminology about objects associated to a process of blow ups of
points, starting from o P S (see [78], [19, Chap. 3], [102] and [96]):

Definition 4.31. Let pS, oq be a smooth germ of surface.
‚ An infinitely near point of o is either o or a point of the exceptional divisor of a smooth modification
of pS, oq. Two such points, on two modifications, are considered to be the same, if the associated
bimeromorphic map between the two modifications is an isomorphism in their neighborhoods.
‚ If o1 and o2 are two infinitely near points of o, then one says that o2 is proximate to o1, written
o2 Ñ o1 , if o2 belongs to the strict transform of the irreducible rational curve created by blowing up o1.

If moreover there is no point o3 such that o2 Ñ o3 Ñ o1, one says that o1 is the parent of o2.
‚ A finite constellation (above o) is a finite set C of infinitely near points of o, closed under the
operation of taking the parent.

‚ The Enriques diagram ΓpCq of the finite constellation C is the rooted tree with vertex set C, rooted

at o, and such that there is an edge joining each point of C with its parent.

Note that the proximity binary relation on the set of all the infinitely near points of o is not a partial
order, as it is neither reflexive, nor transitive. For instance, if o1 belongs to the exceptional divisor E0

of the blow up of o and o2 belongs to the exceptional divisor of the blow up of o1 but not to the srict
transform of E0 by this blow up, then o2 Ñ o1 Ñ o, but o2 Û o. Therefore, the Enriques diagram of
a finite constellation encodes only part of the proximity binary relation on it. For this reason, Enriques
introduced in [35] supplementary rules for the drawing of his diagrams, allowing to reconstruct completely
the proximity relation. Namely, the edges of the Enriques diagram are moreover either straight or curved
and there are breaking points between some pairs of successive straight edges. As we do not insist on
those aspects, we do not give the precise definitions, sending the interested reader to the literature cited
above.

4.4. The fan tree of a toroidal pseudo-resolution process.

In this subsection we explain how to associate a fan tree to each process of toroidal pseudo-resolution
of a curve singularity C on the smooth germ of surface pS, oq (see Definition 4.33). It is a couple formed
by a rooted tree and a r0,8s-valued function constructed from the Newton fans created by the process.
It turns out that it is isomorphic to the dual graph of the boundary BΣ of the source surface Σ of the
toroidal pseudo-resolution morphism π : pΣ, BΣq Ñ pS, BSq (see Proposition 4.35).

Fan trees are constructed from trunks associated with Newton fans. Let us define first those trunks:

Definition 4.32. Let N be a 2-dimensional lattice endowed with a basis pe1, e2q and let F be a Newton

fan of N relative to this basis, in the sense of Definition 4.9. Its trunk θpFq is the segment re1, e2s Ď σ0

endowed with the slope function SF : re1, e2s Ñ r0,8s which associates with each point w P re1, e2s

the slope in the basis pe1, e2q of the ray R`w generated by it. Its marked points are the points of

intersection of re1, e2s with the rays of F . If E Ď Q` Y t8u, we denote by θpEq the trunk of the fan

FpEq introduced in Definition 3.4.

Note that the slope function of a trunk is a homeomorphism. Several examples of trunks are represented
in Figure 19.

Assume now that we apply Algorithm 4.22 to the curve singularity C living on the smooth germ of
surface pS, oq. Consider the set tpAi, Biq, i P Iu of crosses produced by the algorithm, as explained in
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Notations 4.25. Note that we consider also the crosses at which the algorithm stops at an iteration of

STEP 1. Denote by peAi , eBiq the basis pe1, e2q of the weight lattice NAi,Bi . The segment reAi , eBis is

the trunk θpFAi,BipCqq. The following definition uses Notations 4.25:

Definition 4.33. The fan tree pθπpCq,Sπq of the toroidal pseudo-resolution π : pΣ, BΣq Ñ

pS,L ` L1q of C is a pair formed by a rooted tree θπpCq and a slope function Sπ : θπpCq Ñ r0,8s
obtained by gluing the disjoint union of the trunks pθpFAi,BipCqq,SFAi,Bi pCqqiPI in the following way:

(1) Label each marked point with the corresponding irreducible component Ek, Lj or Cl of the
boundary BΣ of the toroidal surface pΣ, BΣq.

(2) Identify all the points of
Ů

iPI θpFAi,BipCqq which have the same label. The result of this identi-
fication is the fan tree θπpCq and the images inside it of the marked points of

Ů

iPI θpFAi,BipCqq
are its marked points. We keep for each one of them the same label as in the initial trunks.

(3) The root of θπpCq is the point labeled by the initial smooth branch L.
(4) For every i P I, the restriction of Sπ to every half-open trunk θpFAi,BipCqqzteAiu “ peAi , eBis ãÑ

θπpCq is equal to SFAi,Bi pCq.

(5) At the root, SπpLq “ SFL,L1
pCqpLq “ 0.

As in any rooted tree, the root L defines a partial order ĺL on the set of vertices of the fan tree

θπpCq (that is, on its set of marked points), by declaring that P ĺL Q if and only if the unique segment
rL,P s joining L and P inside the tree is included in the analogous segment rL,Qs.

Note that the slope function Sπ is discontinuous at all the marked points of θπpCq resulting from the
identification of points of two different trunks, its directional limits jumping from a positive value to 0
when one passes from one trunk to another one in increasing way relative to the partial order ĺL. It follows
that the fan tree of a toroidal pseudo-resolution determines the trunks pθpFAi,BipCqq,SFAi,Bi pCqqiPI .

Example 4.34. Consider again the toroidal pseudo-resolution process of Example 4.28. The construction
of the trunks associated to its Newton fans is represented in Figure 19 for all the crosses at which one
applies STEP 2 of the algorithm, that is, for the crosses pAi, Biq with i P J . The remaining crosses are
those at which the algorithm stops while executing STEP 1. The corresponding trunks are represented
on the bottom line of Figure 19. Figure 20 shows the construction of the fan tree from the previous
collection of trunks. In order to make clear the process of gluing of points with the same label, the upper
part of the figure shows again the whole collection of trunks, as well as the labels of its marked points.

The following proposition is an easy consequence of Definition 4.33 and of Proposition 3.24 (recall that
the notion of dual graph of an abstract simple normal crossings curve was explained in Definition 3.22):

Proposition 4.35. The fan tree θπpCq is isomorphic to the dual graph of the boundary BΣ of the source
of the toroidal pseudo-resolution π : pΣ, BΣq Ñ pS,L`L1q of the curve singularity C, by an isomorphism
which respects the labels.

Example 4.36. Proposition 4.35 is illustrated in Figure 21 with the fan tree of the bottom of Figure 20
and the boundary BΣ of the bottom right of Figure 18. Both of them correspond to the toroidal pseudo-
resolution process of Example 4.28. The singular points of Σ may be found out from the knowledge of
the slope function on the trunks composing the fan tree. Indeed, consider the slopes β{α and δ{γ of
two consecutive vertices of the trunk of one of the Newton fans of the pseudo-resolution process. Then

the matrix

ˆ

α γ
β δ

˙

is of determinant ˘1 if and only if the intersection point oi of the irreducible

components of BΣ which corresponds to this edge is non-singular on Σ. Moreover, the surface singularity
pΣ, oiq is analytically isomorphic to the germ at its orbit of dimension 0 of the affine toric surface generated
by the cone R`xα e1 ` β e2, γ e1 ` δ e2y and the lattice N “ Zxe1, e2y. As in Figure 18, the singular
points on BΣ are indicated by small blue discs. The corresponding edges of the fan trees are represented
also in blue. Note that in the previous explanation it was important to say that one has to work with
the slope function on the individual trunks, instead of the slope function of the fan tree. For instance,
if one looks at the intersection point of the components E1 and E4, the corresponding slopes are to be
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Figure 19. The trunks associated to the toroidal pseudo-resolution of Example 4.28

read on the trunk θpFE1,L2
pCqq (they are therefore 0{1 and 2{3, and the associated matrix

ˆ

1 3
0 2

˙

is

not unimodular), not on the fan tree θπpCq (which would give the slopes 3{5 and 2{3, whose associated

matrix

ˆ

5 3
3 2

˙

is unimodular).

4.5. Historical comments.

The oldest method to study a plane curve singularity C, imagined by Newton around 1665, but
published only in 1736 as [88], is to express it first in local coordinates px, yq as the vanishing locus of
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Figure 20. Construction of the fan tree of the toroidal pseudo-resolution of Example 4.28

a power series fpx, yq satisfying fp0, 0q “ 0 and fp0, yq ‰ 0, then to compute iteratively a formal power

series ηpxq with rational positive exponents such that fpx, ηpxqq “ 0. Whenever
Bf

By
p0, 0q ‰ 0, there is

only one such series ηpxq which has moreover only integral exponents. This series is simply the Taylor
expansion at the origin of the explicit function ypxq whose existence is ensured by the implicit function

theorem applied to the function fpx, yq in the neighborhood of p0, 0q. But, if
Bf

By
p0, 0q “ 0, then there

are at least two such series, their number being equal to the order in y of the series fp0, yq.
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Figure 21. The fan tree θπpCq is isomorphic to the dual graph of the toroidal boundary BΣ

Figure 22. The first Newton polygon

Figure 23. The compact sides of a Newton polygon, as represented by Cramer

As explained on the example studied in Subsection 2.6, the first step of Newton’s iterative method
consists in finding the possible leading terms c xα of the series ηpxq. His main insight was that if one
substitutes y :“ c xα in the series fpx, yq, getting a formal power series with rational exponents in the
variable x, then there are at least two terms of this series with minimal exponent, and the sum of all such
terms vanishes. This fact has two consequences. First, there is a finite number of possible exponents
α, which are the slopes of the rays orthogonal to the compact edges of the Newton polygon of fpx, yq.
Secondly, for a fixed exponent αK corresponding to the compact edge K, there is a finite number of
values of the leading coefficient c, given by the roots of the algebraic equation fKpx, c x

αK q “ 0, where
fK is the restriction of f to K in the sense of Definition 4.2.
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Figure 24. Newton’s ruler

Newton’s explanations were much developed in Cramer’s 1750 book [27, Chapter VII], which seems
also interesting to us in this context for its interpretation of the weights of the variables x and y as orders
of magnitude for infinitely small quantities.

Figures 22 and 23 are extracted from [88, I, Section XXX] and [27, Section 103] respectively. The
first one represents the only drawing of Newton polygon in Newton’s book. Strictly speaking, what we
call the Newton polygon of a series in two variables was not formally introduced in the book. Newton
explained only how to move a ruler in order to get a first bounded edge of the polygon (see Figure 24).
More details about Newton’s and Cramer’s ideas on this subject may be found in Ghys’ 2017 book [50,
Pages 43–68].

Newton wrote that his procedure may be performed iteratively in order to compute as many terms of
the series ηpxq as desired. He also sketched in [88, Ch. I.LII] an explanation of the fact that, whenever
fpx, yq converges, the formal series with rational exponents ηpxq obtained by continuing forever the
procedure also converge and satisfy indeed, all of them, the relation fpx, ηpxqq “ 0. But it was Puiseux,
in his 1850 paper [106], who proved rigorously that one gets indeed as many series as the order in y of
fp0, yq, that all of them are obtained by substituting some root x1{n of the variable x into formal power
series with integral exponents, and that those formal power series are in fact convergent in a neighborhood
of the origin. In order to honor his work, the formal or convergent power series in a variable x of the
form ξpx1{nq, where ξpxq is a usual power series and n P N˚ are called nowadays Puiseux series or
Newton-Puiseux series.

Puiseux’s approach to the proofs of the existence and the convergence of these series avoided the use
of roots x1{n, by performing changes of variables of the form x “ xq1, y “ c1x

p
1 ` y1 or of the form

x “ xq1, y “ xp1pc1 ` y1q, where c1 is a non-zero constant and p{q is the irreducible expression of one of
the exponents αK given by the Newton polygon of f . Both changes of variables are compositions of a
birational change of variables and of the monomial change of variables x “ uq, y “ up v. This monomial
change of variables is birational only when q “ 1, that is, when αK P N˚. Therefore Puiseux’s changes of
variables are in general not birational. Nevertheless, by Lemma 6.24 below, such a map can be seen as the
local analytical expression of a birational map, with respect to a particular choice of local coordinates.

Zariski saw this non-birationality as a drawback, and in his 1939 paper [136] he introduced alternative
changes of variables of the form x “ xq1pc1 ` y1q

q1 , y “ xp1pc1 ` y1q
p1 , where pp1, q1q P N˚ ˆ N˚ and

p1q ´ q1p “ 1. This last condition means that Zariski’s changes of variables are birational.

Let us discuss now the toric approach to the study of plane curve singularities. Note that the changes
of variables used by Puiseux and by Zariski are compositions of affine morphisms and of toric ones. This
fact became clear after the development of toric geometry (see Subsection 3.5).

The systematic study of plane curve singularities using sequences of toric modifications began with
Mutsuo Oka’s 1995-96 papers [83], [8], [93], the first one written in collaboration with Lê and the second
one with A’Campo (see also Oka’s 1997 book [94, Ch. III, Sect. 4]). Oka gave an introduction to this
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approach in his 2010 paper [95], through the detailed examination of the case of one branch. The second
author generalized this approach to quasi-ordinary hypersurface singularities of arbitrary dimension in
his 2003 paper [52] and applied it to the study of deformations of real plane curve singularities in the
2010 papers [53] and [54], the second one written in collaboration with Risler.

Also during the 1990s, Pierrette Cassou-Noguès started studying plane curve singularities using Pui-
seux’s non-birational toric morphisms, called Newton maps. References to her early works on the subject,
done partly in collaboration, may be found in her 2011 paper [20] with P loski, her 2014-15 papers [22, 23]
with Veys, her 2014 paper with Libgober [21] and her 2018 paper with Raibaut [24].

In his 1997 paper [129], Veys considered the log-canonical model of a plane curve singularity, obtained
by contracting certain exceptional divisors on its minimal embedded resolution, in order to study asso-
ciated zeta functions. The modification from the log-canonical model to the ambient germ of the plane
curve singularity may be seen as a morphism associated with a toroidal pseudo-resolution of this singu-
larity. A toroidal pseudo-resolution algorithm for plane curve singularities was described by the second
author in [52, Section 3.4]. A more general algorithm was given by Cassou-Noguès and Libgober in [21,
Section 3]. Our Algorithm 4.22 of toroidal pseudo-resolution generalizes them, since it does not depend
on the choice of special kinds of coordinates.

There are several approaches for the search of optimal choices of smooth branches in STEP 2 of
Algorithm 4.22. Assume first that C is a branch, that f P Crrxssrys is the monic polynomial of degree
n defining C in the local coordinate system px, yq and that the line L “ Zpxq is transversal to C. Let a
be a divisor of n. The a-th approximate root h P Crrxssrys of f is the unique monic polynomial of degree
a such that the degree in y of f ´ hn{a is smaller than n ´ a. The importance of approximate roots
for the study of plane curve singularities and of the algebraic embeddings of C in C2 was emphasized
by Abhyankar and Moh in their 1973–75 papers [2] and [3]. Certain approximate roots of f , called
characteristic approximate roots, have the property that their strict transforms can be chosen at STEP
2 of Algorithm 4.22, providing in this way a toroidal pseudo-resolution of C with the minimal number of
Newton modifications. This number is precisely the number of characteristic exponents of C with respect
to x (see Section 6). This approach was explained by A’Campo and Oka in their 1996 paper [8].

Some properties of the approximate roots may fail when working with a base field of positive char-
acteristic. By contrast, the more general combinatorial notion of semiroot/maximal contact curve can
be defined over fields of arbitrary characteristic and plays a similar role (see the papers [77] of Lejeune-
Jalabert and [49] of the first author and P loski). For details on applications of approximate roots and
semiroots to the study of plane curve singularities, see the paper [60] of Gwoździewicz and P loski and
[99] of the third author. Proposition 4.35 above implies that if π : pΣ, BΣq Ñ pS,L ` L1q is a toroidal
embedded resolution of C which defines its minimal resolution, then the irreducible components of the
associated completion Ĉπ “ πpBΣq may be thought as generalizations of the notion of semiroot to plane
curve singularities with an arbitrary number of branches (see also the final comments in Example 6.33
below).

Assume now that C is an arbitrary plane curve singularity. The minimal number of Newton modifi-
cations involved in the construction of a toroidal pseudo-resolution C was characterized by Lê and Oka
in [83] in terms of properties of the dual graph of its minimal embedded resolution.

Another toric approach to the study of plane curve singularities was initiated in Goldin and Teissier’s
2000 paper [51], in the case of branches. They first reembedded in a special way the initial germ of surface
in a higher dimensional space, then they resolved the branch by just one toric modification of that space.
Their approach was done in the spirit of the philosophy of Teissier’s 1973 paper [119], in which he saw all
equisingular plane branches as deformations of a single branch of higher embedding dimension, the germ
at the origin of their common monomial curve. A generalization of some of the results in [51] to the case
of quasi-ordinary hypersurface singularities was obtained by the second author in [52]. The theoretical
possibility of studying analogously singularities of any dimension was established by Tevelev in his 2014
paper [125]. See Teissier’s comments in [124, Section 11] for more details about his toric approach to the
study of singularities.
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The notions of Newton non-degenerate polynomials and series were introduced by Kouchnirenko in
his 1976 paper [74], using the last characterization of Proposition 4.20. A version of the first character-
ization was essential in Varchenko’s theorem in [128] about the monodromy of Newton non-degenerate
holomorphic series. Then Khovanskii introduced in [73] Newton non-degenerate complete intersection
singularities, a notion which was much studied by Mutsuo Oka in a series of papers, which were the
basis of his 1997 monograph [94]. Characterizations of Newton non-degenerate singularities, analogous
to those of Proposition 4.20, are in fact true for complete intersection singularities (see Oka’s book [94] or
Teissier’s paper [122, Section 5]). This last paper contains interesting comments about the evolution of
the notion of Newton non-degeneracy, and an extension of it to arbitrary singularities, which are not nec-
essarily complete intersections. This extension was further studied in Fuensanta Aroca, Gómez-Morales
and Shabbir’s paper [9].

Let us discuss now the notion of tropicalization tropf introduced in Definition 4.4. The union of the
rays of the Newton fan Fpfq which intersect the interior of the regular cone σ0 is the tropical zero-
locus of the function tropf , as defined in tropical geometry, that is, the locus of non-differentiability
of the continuous piecewise linear function tropf . It is also part of the local tropicalization of the zero
locus Zpfq ãÑ pC2, 0q of f , as defined by Stepanov and the third author in [105] for complex analytic
singularities of arbitrary dimension embedded in germs of affine toric varieties. The local tropicalization
contains also portions at infinity, in a partial compactification of the cone defining the ambient toric
variety, in order to keep track of the intersections of the singularity with all the toric orbits.

A precursor of the notion of local tropicalisation was introduced under the name of “tropism of an
ideal” by Maurer in his 1980 article [85], which was unknown to the authors of [105] when they wrote
that paper. In our case, the tropism of the ideal pfq Ď Crrx, yss is the set of lattice points lying on the
rays of Fpfq which are different from the edges of the cone σ0. The term “tropism” had been used before
by Lejeune-Jalabert and Teissier in their 1973 paper [79], in the expression “tropisme critique”. They
saw this notion as a measure of anisotropy, as explained by Teissier in [65, Footnote to Sect. 1]:

“ As far as I know the term did not exist before. We tried to convey the idea that giving dif-

ferent weights to some variables made the space “anisotropic”, and we were intrigued by the

structure, for example, of anisotropic projective spaces (which are nowadays called weighted pro-

jective spaces). From there to “tropismes critiques” was a quite natural linguistic movement.

Of course there was no “tropical” idea around, but as you say, it is an amusing coincidence.

The Greek “Tropos” usually designates change, so that “tropisme critique” is well adapted to

denote the values where the change of weights becomes critical for the computation of the initial

ideal. The term “Isotropic”, apparently due to Cauchy, refers to the property of presenting the

same (physical) characters in all directions. Anisotropic is, of course, its negation. The name

of Tropical geometry originates, as you probably know, from tropical algebra which honours the

Brazilian computer scientist Imre Simon living close to the tropics, where the course of the sun

changes back to the equator. In a way the tropics of Capricorn and Cancer represent, for the

sun, critical tropisms.”

5. Lotuses

Throughout this section, we will assume that C is reduced. We explain the notion of Newton lotus (see
Definition 5.4), its relation with continued fractions (see Subsection 5.2) and how to construct a more
general lotus from the fan tree of a toroidal pseudo-resolution process (see Definition 5.26). It is a special
type of simplicial complex of dimension 2, built from the Newton lotuses associated with the Newton
fans generated by the process, by gluing them in the same way one glued the corresponding trunks into
the fan tree. It allows to visualize the combinatorics of the decomposition of the embedded resolution
morphism into point blow ups, as well as the associated Enriques diagram and the final dual graphs
(see Theorem 5.29). We show by two examples that its structure depends on the choice of auxiliary
curves introduced each time one executes STEP 2 of Algorithm 4.22, that is, on the choice of completion
Ĉπ of C (see Subsection 5.4). In Subsection 5.5 we define an operation of truncation of the lotus of a
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toroidal pseudo-resolution and we explain some of its uses. In the final Subsection 5.6 we give historical
information about other works in which appeared objects similar to the notion of lotus.

5.1. The lotus of a Newton fan.

In this subsection, whose content is very similar to that of [102, Section 5], we give a first level of
explanation of the subtitle of this article, a second level being described in Subsection 5.3. Namely, we
introduce the notion of lotus ΛpFq of a Newton fan F (see Definition 5.4). If the fan originates from
a Newton polygon N pfq, that is, if F “ Fpfq (see Definition 4.9), we imagine ΛpFq as a blossoming
of N pfq. The lotus of a Newton fan F allows to understand visually the decomposition into blow ups
of the toric modification defined by the regularized fan Freg. For instance, the dual graph of the final
exceptional divisor, the Enriques diagram and the graph of the proximity relation of the associated
constellation embed naturally in it, as subcomplexes of its 1-skeleton (see Propositions 5.11, 5.14 and
5.16).

e1 Ð basic vertex

basic vertex Ñ e2

0

δpe1, e2q

lateral edge

lateral edge

e1

e2

0

δpe1, e2q

δpe1, e1 ` e2q

δpe1 ` e2, e2q

Figure 25. Vocabulary and notations about petals

Lotuses are built from petals, which are triangles with supplementary structure (see Figure 25):

Definition 5.1. Let N be a 2-dimensional lattice and let pe1, e2q be a basis of it. Denote by δpe1, e2q

the convex and compact triangle with vertices e1, e2, e1 ` e2, contained in the real plane NR. It is the
petal associated with the basis pe1, e2q. Its base is the segment re1, e2s, oriented from e1 to e2.
The points e1 and e2 are called the basic vertices of the petal. Its lateral edges are the segments
rei, e1 ` e2s, for each i P t1, 2u.

Once the petal δpe1, e1 ` e2q is constructed, the construction may be repeated starting from each one
of the bases pe1, e1 ` e2q and pe1 ` e2, e2q of N , getting two new petals δpe1, e1 ` e2q and δpe1 ` e2, e2q,
and so on. Note that the bases produced by this process are ordered such as to define always the same
orientation of the real plane NR – we say that they are positive bases. In this way, one progressively
constructs an infinite simplicial complex embedded in the cone σ0: at the n-th step, one adds 2n petals
to those already constructed. Each petal, with the exception of the first one δpe1, e2q, has a common
edge – its base – with exactly one of the petals constructed at the previous step, called its parent.

The pairs of vectors pf1, f2q P N
2 which appear as bases of petals δpf1, f2q during the previous process

may be characterized in the following way (see [102, Remarque 5.1]):

Lemma 5.2. A segment rf1, f2s, oriented from f1 to f2, is the base of a petal δpf1, f2q constructed during
the previous process if and only if pf1, f2q is a positive basis of the lattice N contained in the cone σ0.
Said differently, if a positive basis pf1, f2q of N is contained in the cone σ0 and is different from pe1, e2q,
then there exists a unique permutation pi, jq of p1, 2q such that fj ´ fi P σ0 XN .

We are ready to define the simplest kinds of lotuses:

Definition 5.3. The simplicial complex obtained as the union of all the petals constructed by the

previous process starting from the basis pe1, e2q of N , is called the universal lotus Λpe1, e2q relative

to pe1, e2q (see Figure 26). A lotus Λ relative to pe1, e2q is either the segment re1, e2s or the union of a
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non-empty set of petals of the universal lotus Λpe1, e2q, stable under the operation of taking the parent
of a petal. The segment re1, e2s is called the base of Λ. If Λ is of dimension 2, then the petal δpe1, e2q is
called its base petal. The point e1 is called the first basic vertex and e2 the second basic vertex
of the lotus. The lotus is oriented by restricting to it the orientation of NR induced by the basis pe1, e2q.

e1

e2

0

δpe1, e2q

Figure 26. Partial view of the universal lotus Λpe1, e2q relative to pe1, e2q

A lotus may be associated with any set E Ď r0,8s or with any Newton fan:

Definition 5.4. Let N be a lattice of rank 2, endowed with a basis pe1, e2q.

‚ If λ P p0,8q, then its lotus, denoted Λpλq , is the union of petals of the universal lotus Λpe1, e2q whose

interiors intersect the ray of slope λ. If λ P t0,8u, then its lotus Λpλq is just re1, e2s.

‚ If E Ď r0,8s, then its lotus ΛpEq is the union
Ť

λPE Λpλq of the lotuses of its elements.

‚ If F is a Newton fan and F “ FpEq in the sense of Definition 3.4, we say that ΛpFq :“ ΛpEq is the

lotus of the fan F .
‚ A Newton lotus is the lotus of a Newton fan. That is, it is a lotus relative to pe1, e2q with a finite
number of petals.

We could have called the lotuses relative to pe1, e2q finite lotuses instead of Newton lotuses. We chose
the second terminology because in Definition 5.26 below we will introduce a more general kind of lotuses
with a finite number of petals, and we want to distinguish the class of lotuses of Newton fans inside that
more general class of lotuses.

A lotus ΛpEq, for E Ď r0,8s, is a Newton lotus if and only E is a finite set of non-negative rational
numbers. Note that, as illustrated for instance by Example 5.9 below, the structure of the lotus ΛpEq
does not allow to reconstruct the initial set E . For this reason, we enrich ΛpEq with several marked points,
whose knowledge allows to reconstruct E unambiguously:

Definition 5.5. Fix a Newton lotus Λ.
‚ If Λ ‰ re1, e2s, we denote by B`Λ the compact and connected polygonal line defined as the complement

of the open segment pe1, e2q in the boundary of the lotus Λ. If Λ “ re1, e2s, we set B`Λ :“ re1, e2s. The
polygonal line B`Λ Ď Λ is called the lateral boundary of the lotus Λ.
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‚ We denote by pΛ the homeomorphism pΛ : r0,8s Ñ B`Λ which associates with any λ P r0,8s the

unique point pΛpλq P B`Λ of slope λ. If Λ “ ΛpEq where E Ď Q` Y t8u is finite and λ P E , then we call
pΛpEqpλq the marked point of λ (or of the ray of slope λ) in the lotus ΛpEq. We consider ΛpEq as a
marked lotus using those marked points.

Remark 5.6. Notice that if λ P E , then pΛpEqpλq is by construction the unique primitive element ppλq
of the lattice N , which has slope λ relative to the basis pe1, e2q. Therefore, it is independent of the
remaining elements of the set E .

We distinguish also by geometric properties several vertices of a Newton lotus:

Definition 5.7. Assume that Λ is a Newton lotus. A vertex of Λ different from e1 and e2 is called a
pinching point of the lotus Λ if it belongs to a unique petal of it. If the lotus Λ is two-dimensional,
then the lattice point which is connected to e2 (resp. to e1) inside the lateral boundary B`Λ of Λ is called
the last interior point (resp. first interior point) of the lateral boundary.

Remark 5.8. The pinching points of a Newton lotus ΛpEq are part of its marked points. Two Newton
lotuses ΛpE1q and ΛpE2q coincide as unmarked simplicial complexes if and only if their sets of pinching
points coincide.

pp 3
5 q

e1

e2

pp 5
2 q

pp 2
1 q

pp 3
5 q

e1

e2

Figure 27. The Newton lotuses Λ p3{5q, Λ p3{5, 2{1, 5{2q and their marked points

Example 5.9. In Figure 27 are represented the lotuses Λ p3{5q and ΛpEq, where E “ t3{5, 2{1, 5{2u is
the set whose fan FpEq was drawn in Figure 8. The lotus Λ p3{5q has only one pinching point, which is
p p3{5q. The pinching points of ΛpEq are p p3{5q and p p5{2q. Its marked points are p p3{5q, p p2{1q and
p p5{2q. This differentiates it from the lotus Λp3{5, 5{2q :“ Λpt3{5, 5{2uq, which is the same simplicial
complex if one forgets their respective marked points. The first interior point of ΛpEq is p p1{2q and its
last interior point is p p3{1q.

e1

e2

pp 5
2 q

pp 2
1 q

pp 3
5 q

e1

e2

Figure 28. The regularized fan Freg p3{5, 2{1, 5{2q and the Newton lotus Λ p3{5, 2{1, 5{2q
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By comparing Figures 27 and 9, which we combined in Figure 28, one sees that the lateral boundary of
the lotus Λp3{5, 2{1, 5{2q is exactly the polygonal line constructed when one performed the regularization
of the fan Fp3{5, 2{1, 5{2q (see Proposition 3.9). This is a general phenomenon, as shown by the following
proposition.

Proposition 5.10. Let F be a fan subdividing the cone σ0. Then the regularization Freg of F is obtained
by subdividing σ0 using the rays generated by all the lattice points lying along the lateral boundary B`ΛpFq
of the lotus ΛpFq.

Proof. Consider two successive marked points ppλq and ppµq of the lateral boundary B`ΛpFq. They are
primitive elements of the ambient lattice N . Denote by ppλq ` R`ppλq the closed half line originating
from the point ppλq and generated by the vector ppλq. Consider analogously the half-line ppµq `R`ppµq.
Let P pλ, µq be the polygonal line joining the points ppλq and ppµq inside B`ΛpFq. Consider the union of
the three previous polygonal lines: Qpλ, µq :“ pppλq ` R`ppλqq Y P pλ, µq Y pppµq ` R`ppµqq.

As the pinching points of ΛpFq belong to the marked points, this shows that there are no pinching
points in the interior of the polygonal line P pλ, µq. Therefore, Qpλ, µq is the boundary of a closed convex

set Q̂pλ, µq contained in the cone R`xppλq, ppµqy. The complement R`xppλq, ppµqy z Q̂pλ, µq is contained
in the union of the complement ΛpFq z B`ΛpFq and the convex hull of the points 0, e1, e2 deprived of the

segment re1, e2s. Therefore, the origin 0 is the only point of N contained in R`xppλq, ppµqyzQ̂pλ, µq. As all

the vertices of Qpλ, µq belong to N , this shows that Q̂pλ, µq is the convex hull of the set R`xppλq, ppµqyX
pN z t0uq. One concludes using Proposition 3.9. �

Consider again Figure 28. As shown by Proposition 3.24, the polygonal line on the left side gives a
concrete embedding of the dual graph of the boundary BXFreg . But it does not show the order in which
were performed the blow ups into which the associated modification ψF

σ0
: XF Ñ Xσ0

decomposes (see
Theorem 4.30). It turns out that this order is indicated by the lotus on the right side of Figure 28. To
understand this fact, recall first the combinatorial description of the blow up of the orbit of dimension 0
of the smooth affine toric surface Xσ0 , explained in Example 3.27: one gets it by subdividing the cone σ0

using the ray generated by e1 ` e2. In terms of the associated bases of N , one replaces the basis pe1, e2q

by the pair of bases pe1, e1 ` e2q and pe1 ` e2, e2q. Graphically, this may be understood as the passage
from the base re1, e2s of the petal δpe1, e2q seen as the simplest 2-dimensional lotus (see Definition 5.1)
to its lateral boundary re1, e1 ` e2s Y re1 ` e2, e2s. Again by Proposition 3.24, we may see this passage
as the replacement of the dual graph of BXσ0

by the dual graph of the boundary of the blown up toric
surface. Now, each new petal in the lotus ΛpFq corresponds to the blow up of an orbit of dimension 0 of
the previous toric surface. Its base may be seen as the dual graph of the irreducible components of the
boundary meeting at that point. One gets:

Proposition 5.11. Let F be a Newton fan. Then:
‚ The lateral boundary B`ΛpFq of the lotus ΛpFq is the dual graph of the boundary BXFreg of the smooth
toric surface XFreg . Two vertices of it are joined by an edge of the lotus ΛpFq if and only if the corre-
sponding orbits have intersecting closures at some moment of the process of creation of BXFreg by blow
ups of orbits of dimension 0, which are particular infinitely near points of Oσ0 P Xσ0 .
‚ If one associates with each orbit of dimension 0 the corresponding petal of ΛpFq, then the parent map on
the set of petals induces on the previous set of 0-dimensional orbits the restriction of the parent relation
defined on the set of infinitely near points of Oσ0

(see Definition 4.31).

Let us set a notation for the constellation created during a toric blow up process (see Definition 4.31):

Definition 5.12. Let F be a Newton fan. Denote by CF the finite constellation above Oσ0 consisting

of the 0-dimensional orbits Oσ, where σ varies among the regular 2-dimensional cones of the blow up
process leading to the smooth toric surface XFreg . It is the constellation of the fan F .

Let σ be one of the cones mentioned in Definition 5.12. It is of the form R`xf1, f2y, where pf1, f2q is a
positive basis of the lattice N . Proposition 5.11 shows that one may represent the 0-dimensional orbit Oσ
either by the edge rf1, f2s of the lotus ΛpFq or by the petal δpf1, f2q. How to understand the Enriques
diagram of the constellation CF using the lotus ΛpFq? It turns out that this may be done easily using
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the representing edges rf1, f2s. In order to explain it, let us introduce first the following definition (see
Figures 29 and 30):

Definition 5.13. Let δpf1, f2q be a petal of the universal lotus Λpe1, e2q. Assume that it is different from
δpe1, e2q, which means that there exists a unique permutation pi, jq of p1, 2q such that fj ´ fi P σ0 XN
(see Lemma 5.2). Then its Enriques edge is its lateral edge rfj , f1` f2s, that is, its unique lateral edge
which extends an edge of its parent petal. The Enriques tree of a lotus Λ is:

‚ the union of the Enriques edges of all its petals different from δpe1, e2q, rooted at its vertex e1`e2,
whenever Λ is of dimension 2;

‚ the vertex e1 ` e2 of δpe1, e2q, if Λ “ re1, e2s.

The extended Enriques tree of a lotus Λ is:

‚ the union of the Enriques subtree and of the lateral edge re1, e1 ` e2s of the base petal δpe1, e2q

of Λ, whenever Λ is of dimension 2;
‚ the lateral edge re1, e1 ` e2s of δpe1, e2q, if Λ “ re1, e2s.

e1

e2

0

δpe1, e2q

Figure 29. Partial view of the Enriques subtree of the universal lotus Λpe1, e2q

e1

e2

e1

e2

Figure 30. The Enriques tree and the extended Enriques tree of the lotus Λ p3{5, 2{1, 5{2q

One has the following interpretation of the Enriques diagram of the constellation of the fan F using
the lotus ΛpFq. It allows to understand for which reason we defined the Enriques tree of a lotus reduced
to the base re1, e2s in the previous way:
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Proposition 5.14. Let F be a Newton fan. Then the Enriques diagram ΓpCF q of the constellation CF
of F (see Definition 5.12) is isomorphic to the Enriques subtree of the lotus ΛpFq. This isomorphism
sends each orbit Oσ belonging to CF onto the point f1 ` f2, if σ “ R`xf1, f2y.

Proof. The basic idea is that we have a bijection between the set of infinitely near points of Oσ0
and the

set of prime exceptional divisors created by blowing them up. Therefore, the parent binary relation may
be thought as a binary relation on the set of those prime exceptional divisors. In this proposition, we
restrict to the divisors which are the orbit closures Oρ, where ρ varies among the rays of the regularization
Freg of F which are distinct from the edges of σ0. Each such a ray is generated by a lateral vertex of
ΛpFq, therefore the parent binary relation among those orbit closures may be also seen as a binary
relation among those lateral vertices. One may prove by induction on this number of rays, that is, on
the number of petals of the associated lotus ΛpFq, that the pairs of related vertices are precisely those
which are connected by an edge in the Enriques tree of ΛpFq.

The case F “ σ0 corresponds to a constellation formed by Oσ0
alone. In this case one looks at the

prime divisor created by blowing it up, that is, at OR`xe1`e2y. This explains why we defined ΓpCσ0
q as

the vertex e1 ` e2 of the petal δpe1, e2q. �

Remark 5.15. The reason why we introduced also the notion of extended Enriques tree in Definition
5.13, in addition to that of Enriques tree, will become clear after understanding point (8) of Theorem 5.29.
Briefly speaking, the constellations associated to the toroidal pseudo-resolution processes have associated
lotuses which are glued from lotuses of Newton fans. An analog of Proposition 5.14 is also true for
them. The corresponding Enriques tree contains the Enriques trees of the Newton fans created by the
toroidal process, but also other edges. Those supplementary edges are precisely the edges which have to
be added to the Enriques tree of a Newton fan in order to get the corresponding extended Enriques tree
(see Definition 5.26 below).

The lotus ΛpFq contains also the graph of the proximity binary relation on the constellation CF , whose
set of vertices is the given constellation, two points being joined by an edge if and only if one of them is
proximate to the other one (see Definition 4.31):

Proposition 5.16. Let F be a fan refining the regular cone σ0. Then the graph of the proximity binary
relation on the finite constellation CF is isomorphic to the union of the edges of the lotus ΛpFq which do
not contain the vertices e1 and e2.

The proof of this proposition is based on the same principles as the proof of Proposition 5.14 and is
left to the reader.

5.2. Lotuses and continued fractions.

In this subsection we explain a way to build, up to isomorphism, the lotus of a finite set of positive
rational numbers in the sense of Definition 5.4, starting from the continued fraction expansions of its
elements. Namely, given a positive rational number λ, we show how to construct an abstract lotus ∆pλq
starting from the continued fraction expansion of λ (see Definition 5.18) and we explain that ∆pλq is
isomorphic to the lotus Λpλq. Then we show how to glue two abstract lotuses ∆pλq and ∆pµq in order to
get a simplicial complex isomorphic to the lotus Λpλ, µq (see Proposition 5.23). This extends readily to
arbitrary finite sets of positive rationals.

Recall first the following classical notion:

Definition 5.17. Let k P N˚ and let a1, . . . , ak be natural numbers such that a1 ě 0 and aj ą 0 if
j P t2, . . . , ku. The continued fraction with terms a1, . . . , ak is the non-negative rational number:

ra1, a2, . . . , aks :“ a1 `
1

a2 `
1

¨ ¨ ¨ `
1

ak

.
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P0 “ A2 P´1 “ A1

P1

P2

P3 “ V ppr4, 2, 5sq

A2 A1

Figure 31. The construction of the abstract lotus ∆pr4, 2, 5sq

Any λ P Q˚` may be written uniquely as a continued fraction ra1, a2, . . . , aks if one imposes the
constraint that ak ą 1 whenever λ ‰ 1. One speaks then of the continued fraction expansion of λ.
Note that its first term a1 vanishes if and only if λ P p0, 1q.

Definition 5.18. Let λ P Q˚`. Consider its continued fraction expansion λ “ ra1, a2, . . . , aks. Its

abstract lotus ∆pλq is the simplicial complex constructed as follows:

‚ Start from an affine triangle rA1, A2, V s, with vertices A1, A2, V .
‚ Draw a polygonal line P0P1P2 . . . Pk´1 whose vertices belong alternatively to the sides rA1, V s, rA2, V s,
and such that P0 :“ A2 and

"

P1 P rA1, V q, with P1 “ A1 if and only if a1 “ 0,
Pi P pPi´2, V q for any i P t2, . . . , k ´ 1u.

By convention, we set also P´1 :“ A1, Pk :“ V . The resulting subdivision of the triangle rA1, A2, V s into
k triangles is the zigzag decomposition associated with λ.
‚ Decompose then each segment rPi´1, Pi`1s (for i P t0, . . . , k ´ 1u) into ai`1 segments, and join the
interior points of rPi´1, Pi`1s created in this way to Pi. One obtains then a new triangulation of the
initial triangle rA1, A2, V s, which is by definition the abstract lotus ∆pλq.

The base of the abstract lotus ∆pλq is the segment rA1, A2s, oriented from A1 to A2. One orients also
the other edges of ∆pλq in the following way:

‚ rPi´1, Pis is oriented from Pi to Pi´1, for each i P t1, . . . , k ´ 1u.
‚ An edge joining Pi to a point of the open segment pPi´1, Pi`1q is oriented towards Pi.
‚ An edge contained in a segment rV,Ajs is oriented towards Aj , for each j P t1, 2u.

The abstract lotus ∆pλq of λ P Q˚` is a simplicial complex of pure dimension 2, isomorphic to a convex
polygon triangulated by diagonals intersecting only at vertices and with a distinguished oriented base.
It is well-defined, up to combinatorial isomorphism of polygons triangulated by diagonals intersecting
only at vertices, respecting the bases and their orientations. The orientations of its other edges are in
fact determined by the orientation of the base. Those orientations will not be important in the sequel,
excepted in Proposition 5.21 below. For this reason we do not draw them in our examples of abstract
lotuses.

Example 5.19. Figures 31 and 32 represent the previous constructions applied to the numbers λ “
r4, 2, 5s and µ “ r3, 2, 1, 4s. On the left are shown the initial zigzag decompositions and on the right the
final abstract lotuses ∆pλq and ∆pµq.

The abstract lotus of a positive rational number is isomorphic with its lotus:

Proposition 5.20. There is a unique isomorphism between the lotus Λpλq and the abstract lotus ∆pλq,
seen as simplicial complexes with a marked point and an oriented base.

Proof. The isomorphism sends Ai to ei for i “ 1, 2. The proof may be done by induction on k, the
number of terms in the continued fraction expansion of λ. We leave the details to the reader. �
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P0 “ A2 P´1 “ A1

P1

P2

P3

P4 “ V ppr3, 2, 1, 4sq

A2 A1

Figure 32. The construction of the abstract lotus ∆pr3, 2, 1, 4sq

A2 A1

V

p2 “ 3

A2 A1

V

p1 “ 2

Figure 33. An illustration of Proposition 5.21 for p2{p1 “ 3{2

The previous isomorphism does not always send the orientations of the edges of Λpλq as chosen after
Definition 5.1 onto the orientations of the edges of ∆pλq as fixed in Definition 5.18. The possibility
of defining various canonical orientations on the edges of a lotus of the form Λpλq may be useful in
applications.

The rational number λ ą 0 may be recovered in the following way from the structure of the corre-
sponding abstract lotus:

Proposition 5.21. Assume that λ “ p2{p1 with p1, p2 P N˚ coprime. Then, for each j P t1, 2u, the
positive integer pj is equal to the number of oriented paths not containing the base rA1, A2s and going
from V to Aj inside the 1-skeleton of ∆pλq, oriented as in Definition 5.18.

This proposition may be easily proved by induction on the number of petals of ∆pλq. It shows a way
in which the numbers leading to the construction of a Newton lotus may be interpreted as combinatorial
invariants of the lotus, seen purely as a marked simplicial complex with oriented base.

Example 5.22. In Figure 33 is represented the case pp1, p2q “ p2, 3q of Proposition 5.21. We have drawn
twice the lotus ∆p3{2q “ ∆pr1, 2sq. On the right are drawn the 2 oriented paths starting from V and
arriving at A1. On the left are drawn the 3 oriented paths starting from V and arriving at A2. We see
that the constraint not to contain the base is necessary, otherwise one would obtain 2 more paths from
V to A2 by adding the base to the paths from V to A1.

Suppose now that one has two numbers λ, µ P Q˚`. If λ “ ra1, . . . , aks and µ “ rb1, . . . , bls, let
j P t0, . . . ,mintk, luu be maximal such that ai “ bi for all i P t1, . . . , ju. We may assume, up to
permutation of λ and µ, that k “ j or aj`1 ă bj`1. Define then:

(48) λ^ µ “ µ^ λ :“

$

&

%

ra1, . . . , ajs, if k “ j,
ra1, . . . , aj , aj`1s , if k “ j ` 1,
ra1, . . . , aj , aj`1 ` 1s , if k ą j ` 1.
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Next proposition explains that the symmetric binary operation ^ on Q˚` allows to describe the inter-
section of two lotuses of the form Λpλq:

Proposition 5.23. For any λ, µ P Q˚`, one has:

Λpλq X Λpµq “ Λpλ^ µq.

Therefore, the lotus Λpλ, µq is isomorphic as a simplicial complex with an oriented base to the triangulated
polygon obtained by gluing ∆pλq and ∆pµq along ∆pλ^ µq.

Proof. Assume that λ “ ra1, . . . , aks. Proposition 5.20 shows in particular that the lotus Λpλq has
n :“ a1` ¨ ¨ ¨ ` ak petals. Denote by pλiq1ďiďn the sequence of positive rationals such that the successive
non-basic vertices of the petals of Λpra1, . . . , aksq are the primitive vectors ppλ1q, . . . , ppλnq. The sequence
of continued fraction expansions of pλiq1ďiďn is:

(49) r1s, r2s, . . . , ra1s, ra1, 1s, ra1, 2s, . . . , ra1, a2s, ra1, a2, 1s, . . . , ra1, . . . , aks.

One may prove this fact at the same time as Proposition 5.20, by making now an induction on the number
n of petals of Λpra1, . . . , aksq, instead of the number k of terms of the continued fraction.

The proposition results then by combining the previous fact with formula (48). �

Example 5.24. Let us consider the two rational numbers λ “ r4, 2, 5s and µ “ r3, 2, 1, 4s of Example
5.19. Then j “ 0, k “ 3, l “ 4, therefore j ` 1 ă mintk, lu and λ^ µ “ r3` 1s “ 4. The lotus Λpλ, µq is
therefore isomorphic to the triangulated polygon with an oriented base of the right side of Figure 34.

ppr4, 2, 5sq

A2 A1

Z

ppr3, 2, 1, 4sq

A2 A1

“

ppr4, 2, 5sq ppr3, 2, 1, 4sq

A2 A1

Figure 34. The abstract lotus ∆pr4, 2, 5s, r3, 2, 1, 4sq

Iterating the gluing operation, one may construct an abstract lotus ∆pλ1, . . . , λkq combinatorially

equivalent to any given Newton lotus Λpλ1, . . . , λkq, seen as a triangulated polygon with marked points and
oriented base. One gets an abelian monoid of (abstract) lotuses, the monoid operation Z generalizing
the gluing operation of Figure 34. Namely, if E1 and E2 are finite subsets of Q` Y t8u, then:

(50) ∆pE1q Z∆pE2q :“ ∆pE1 Y E2q.

The neutral element of this monoid is the segment rA1, A2s “ ∆pHq “ ∆p0q “ ∆p8q “ ∆pt0,8uq.

5.3. The lotus of a toroidal pseudo-resolution.

In this subsection we reach a second level of explanation of the subtitle of this article, the first level
having been reached in Subsection 5.1 above. Namely, we define a new kind of lotus by gluing the
lotuses associated to the Newton fans produced by Algorithm 4.22 (see Definition 5.26). We illustrate
this definition by our recurrent example (see Example 5.28) and by the case of an arbitrary branch
(see Example 5.30). Finally, we show how this lotus allows to visualize many objects associated to the
regularized algorithm and with the decomposition into blow ups of points of the embedded resolution
produced by it (see Theorem 5.29).

Consider again a reduced curve singularity C on the smooth germ of surface pS, oq. Fix a smooth
branch L on pS, oq, and run Algorithm 4.22. Denote as before by π : pΣ, BΣq Ñ pS,L ` L1q a resulting
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toroidal pseudo-resolution of C. We associated to it a fan tree pθπpCq,Sπq, as explained in Definition 4.33.
One may associate an analogous fan tree pθπreg pCq,Sπreg q to the toroidal resolution πreg : pΣreg, BΣregq Ñ
pS,L ` L1q defined in Subsection 4.3 (see Proposition 4.29). One sees that the trunks used in the two
constructions are the same, as well as the gluing rules. What changes is that θπreg pCq has more vertices
than θπpCq, those labeled by the irreducible components of the exceptional divisor of the modification
η : Σreg Ñ Σ which resolves the singularities of the surface Σ. Therefore:

Proposition 5.25. Seen as rooted trees endowed with r0,8s-valued functions, the fan trees pθπpCq,Sπq
and pθπreg pCq,Sπreg q coincide. The second one contains more vertices than the first one, labeled by the
irreducible components of the exceptional divisor of the minimal resolution η : Σreg Ñ Σ. The fan tree
θπreg pCq of the toroidal resolution πreg is isomorphic to the dual graph of the boundary BΣreg by an
isomorphism which respects the labels of the irreducible components.

The disadvantage of the fan tree pθπreg pCq,Sπreg q is that one cannot see on it at a glance the partial
order of the blow ups leading to the resolution πreg : Σ Ñ S of C. We explained in Subsection 5.1 that
this order may be visualized by using the notion of lotus, for each Newton modification of the regularized
algorithm obtained by replacing STEP 3 with STEP 3reg. In order to visualize the blow up structure of
the resolution process leading to the modification πreg : pΣreg, BΣregq Ñ pS,L`L1q, we glue those lotuses
using the same rules as those allowing to construct the fan tree from its trunks (see Definition 4.33):

Definition 5.26. Let C be a reduced curve singularity and pL,L1q be a cross on the smooth germ pS, oq.

The lotus ΛπpCq of the toroidal pseudo-resolution π : pΣ, BΣq Ñ pS,L` L1q of C is a simplicial

complex of dimension 2 endowed with a marked oriented edge called its base. It is obtained by gluing
the disjoint union of the lotuses pΛpFAi,BipCqqqiPI in the following way:

(1) Label each vertex of those lotuses with the corresponding irreducible component Ek, Lj or Cl of
the boundary BΣreg of the smooth toroidal surface pΣreg, BΣregq.

(2) Identify all the vertices of
Ů

iPI ΛpFAi,BipCqq which have the same label. The result of this
identification is ΛπpCq and the images inside it of the labeled points of

Ů

iPI ΛpFAi,BipCqq are its
vertices. We keep for each one of them the same label as in the initial lotuses.

Introduce the following terminology for the anatomy of ΛπpCq:

‚ The petals of ΛπpCq are the images by the gluing morphism of the petals of the initial lotuses
pΛpFAi,BipCqqqiPI .
‚ Its base is the edge labeled by the initial cross pL,L1q and its basic petal is the petal having it as
base.
‚ Its basic vertices are the images inside it of the basic vertices of the 2-dimensional lotuses
pΛpFAj ,Bj pCqqqjPJ which were not identified with other vertices.

‚ Its lateral boundary B`ΛπpCq is the image by the gluing morphism of the union of the lateral

boundaries pB`ΛpFAi,BipCqqqiPI in the sense of Definition 5.5.
‚ Its lateral vertices are the vertices of ΛπpCq which are not basic.
‚ Its membranes are the images inside it of the lotuses ΛpFAi,BipCqq used to construct it.
‚ Its Enriques tree is the union of the Enriques tree of ΛpFA1,B1

pCqq (remember that pA1, B1q “ pL,L
1q)

and of the extended Enriques trees of the other Newton fans ΛpFAi,BipCqq (see Definition 5.13).

We introduce the notion of Enriques tree of a lotus in order to be able to state point (8) of Theorem
5.29 below. See also Remark 5.15.

Remark 5.27. The lateral boundary B`ΛπpCq is a covering subtree of the 1-skeleton of the lotus ΛπpCq,
that is, a subtree containing all of its vertices. The membranes of ΛπpCq may be obtained by removing
all the vertices of ΛπpCq and by taking the closures inside ΛπpCq of the connected components of the
resulting topological space. The lotus ΛπpCq is a flag complex, that is, it may be reconstructed from its
1-skeleton by filling each complete subgraph with k vertices by a pk ´ 1q-dimensional simplex. It turns
out that there are such complete subgraphs only for k P t1, 2u, for which values of k the filling process
adds nothing new, and for k “ 3, for which one gets all the petals of the lotus.
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Figure 35. The 2-dimensional Newton lotuses of Example 5.28

Example 5.28. Consider the toroidal pseudo-resolution process of Example 4.28. The construction of
the corresponding fan tree was explained in Example 4.36 and illustrated in Figure 20. The left column
of Figure 35 represents the Newton fans produced each time one runs STEP 2 of Algorithm 4.22. The
middle column shows the associated trunks and the right column the corresponding lotuses.

The associated lotus ΛπpCq is represented in Figure 36. It has 4 membranes of dimension 2 and 7
membranes of dimension 1. The oriented base of each lotus ΛpFAi,BipCqq used to construct it is indicated
in red. The base of ΛπpCq is the oriented edge whose vertices are labeled by L and L1. The basic vertices
of ΛπpCq are those labeled by L,L1, L2, L3, L4. The part of the lateral boundary B`ΛπpCq contained in
the 2-dimensional lotuses pΛpFAj ,Bj pCqqqjPJ is represented in orange. In order to get the whole lateral
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Figure 36. The lotus of the toroidal pseudo-resolution of Example 5.28
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Figure 37. Comparison of the fan tree and the lotus of Example 5.28

boundary, one has to add the 1-dimensional lotuses of the fans associated to the crosses at which one stops
at STEP 1, that is, the segments rE3, C1s, rE2, C2s, rE2, C3s, rE5, C4s, rE4, C5s, rE7, C6s and rE8, C7s.

In Figure 37 are represented side by side the fan tree θπpCq and the lotus ΛπpCq. Note that the fan
tree is homeomorphic (forgetting the values of the slope function at its vertices) with the lateral boundary
B`ΛπpCq, by a homeomorphism which preserves the labels. This is a general fact, as formulated in point
(4) of Theorem 5.29 below. This homeomorphism is not an isomorphism of trees because some of the
edges of the fan tree – the blue ones – get subdivided in the lateral boundary of the lotus. Those are
precisely the edges which correspond to the singular points of the surface Σ. One may see on the lateral
boundary the structure of the exceptional divisor of the minimal resolution of each such point.
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For instance, the intersection point of the curves E1 and E6 on Σ gets resolved by replacing that point
with an exceptional divisor with two components. Their self-intersection numbers in the smooth surface
Σreg are ´4 and ´3, as results from point (5) of Theorem 5.29.

Here comes the announced visualization of the structure of the decomposition of the modification
πreg : Σreg Ñ S into blow ups of points in terms of the anatomy of the lotus ΛπpCq (see Definition 5.26):

Theorem 5.29. Let C be a reduced curve singularity on the smooth germ of surface pS, oq. Consider a
toroidal pseudo-resolution π : pΣ, BΣq Ñ pS,L ` L1q of C produced by Algorithm 4.22. Its lotus ΛπpCq
represents the following aspects of the associated embedded resolution πreg : pΣreg, BΣregq Ñ pS,L` L1q:

(1) Its basic edges represent the crosses with respect to which STEP 2 of Algorithm 4.22 was applied.
(2) Its basic vertices represent the branches pLjqjPJ of the crosses used during the process, which were

introduced each time one executed STEP 2.
(3) Its lateral vertices represent the irreducible components Ek of the exceptional divisor pπregq´1poq

of the smooth modification πreg : Σreg Ñ S.
(4) Its lateral boundary B`ΛπpCq is the dual graph of the boundary divisor BΣreg and is homeomorphic

with the fan tree θπreg pCq, by a homeomorphism which respects the labels.
(5) The opposite of the number of petals of ΛπpCq containing a given lateral vertex is the self-

intersection number of the irreducible component of pπregq´1poq represented by that lateral vertex.
(6) The edges of ΛπpCq represent the affine charts used in the decomposition of π into a composition

of blow ups of points, and the pairs of irreducible components of pπregq´1p
ř

jPJ Ljq which are
strict transforms of crosses used at some stage of the composition of blow ups.

(7) The graph of the proximity binary relation on the constellation which is blown up is the full
subgraph of the 1-skeleton of the lotus ΛπpCq on its set of non-basic vertices.

(8) The Enriques tree of ΛπpCq is the Enriques diagram of the constellation of infinitely near points
at which are based the crosses introduced during the blow up process leading to the boundary BΣreg.

Proof. Points (1) and (2) result from Proposition 4.18. Points (3) and (4) result from Propositions 4.35,
5.10 and 5.25. Point (5) results from Corollary 2.28 and Proposition 2.37. A prototype of this result had
been stated in [102, Thm. 6.2]. Points (6) and (7) result from Proposition 5.16. Point (8) results from
Proposition 5.14. �

Example 5.30. Assume that C is a branch. Its fan tree θπpCq is a segment rL,Cs. Denote its interior
vertices by P1 ăL ¨ ¨ ¨ ăL Pk “ P , with k ě 1. Here ĺL denotes the total order on θπpCq induced
by the root L. Consider the continued fraction expansions of their slopes SπpPjq “ rpj , qj , . . . s, for all
j P t1, . . . , ku. Then the lotus ΛπpCq is represented in Figure 38. We explain in Examples 6.32 and 6.33
below how to give examples of branches which admit a pseudo-resolution process with such a lotus.

Example 5.31. Let us consider again our recurrent example of toroidal pseudo-resolution. Its associated
lotus was represented in Figure 36. In Figure 39 are represented the Enriques trees and extended Enriques
trees of its membranes of dimension 2. Finally, in Figure 40 is represented its full Enriques tree. In this
figure we have also represented the petals associated to the pairs pEi, Cjq, in order to draw the end edges
of the Enriques tree.

5.4. The dependence of the lotus on the choice of completion.

In this subsection we show using two examples that the lotus ΛπpCq of a toroidal pseudo-resolution
process π of a plane curve singularity C ãÑ S depends on the choice of auxiliary curves added each time
one executes STEP 2 of Algorithm 4.22, that is, on the choice of completion Ĉπ of C (see Definition
4.15).

In the following two examples 5.32 and 5.33, we build the lotuses ΛπpCq associated with two distinct
embedded resolutions π : pΣ, BΣq Ñ pS, BSq of the curve singularity C “ Zpfq, defined by the power
series f :“ y2 ´ 2xy ` x2 ´ x3 P Crrx, yss, relative to local coordinates px, yq on the germ pS, oq. These
examples illustrate the fact that the associated lotus ΛπpCq (see Definition 5.26), which is based on the
toroidal structure of Σ, depends on the choices of auxiliary curves done at STEP 2 of the Algorithm 4.22,
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Figure 38. The lotus of toroidal pseudo-resolution for one branch from Example 5.30

that is, on the choice of completion Ĉπ of C (see Definition 4.15). In both examples we run Algorithm
4.22 with L “ Zpxq, replacing STEP 3 by STEP 3reg as we explained in Subsection 4.3, and taking
different choices of auxiliary curves. The output, which determines the toroidal boundary on Σ, provides
two different lotuses. On both of them we recognize the same weighted dual graph of the final total
transform of C, thanks to point (4) of Theorem 5.29.

Example 5.32. We start the algorithm by choosing L1 :“ Zpy ´ xq. The cross pL,L1q at o is defined
by the local coordinate system px, y1 :“ y ´ xq. Relative to these coordinates, C has local equation
y2

1 ´ x3 “ 0. The Newton polygon NL,L1pCq has only one edge and its orthogonal ray has slope 3{2,
hence FL,L1pCq » Fp3{2q. The first trunk is just the segment reL, eL1s with its point of slope 3{2 marked.

The Newton modification π :“ ψC, regL,L1
: pΣ, BΣq Ñ pS, BSq has three exceptional divisors E1, E2 and

E3 which correspond to the rays of the regularization Fregp3{2q “ Fp1, 2, 3{2q of the fan Fp3{2q of slopes
1 and 2 and 3{2 respectively. In this case, the strict transform CL,L1

of C is smooth and intersects
transversally the component E3 of the exceptional divisor, that is, the Newton modification π is an
embedded resolution of C. Note that when running the algorithm 4.22, we include the cross pE3, CL,L1

q

in the toroidal structure of the boundary of Σ.
The lotus ΛπpCq is built by gluing the lotus ΛL,L1pCq “ Λp3{2q with the lotus reE3 , Cs associated to

the cross pE3, CL,L1
q, identifying the points labeled by E3 (see Figure 41).

Example 5.33. We start the algorithm by choosing L1 :“ Zpyq and the cross pL,L1q on pS, oq. The
Newton polygon NL,L1pCq has only one edge and its orthogonal ray has slope 1, hence FL,L1pCq » Fp1q.
The first trunk is the segment reL, eL1

s with its midpoint marked. The first lotus is just the petal
Λ1 :“ Λp1q “ δpeL, eL1

q with base reL, eL1
s.

The Newton modification ψCL,L1
is the usual blow up of the point o. We restrict it to the chart C2

v1,v2 ,
where x “ v1, y “ v1v2. The strict transform C1 :“ CL,L1

is defined in this chart by the equation
v2

2 ´ 2v2` 1´ v1 “ 0. The exceptional divisor E1 :“ Zpv1q intersects the strict transform C1 at the point
o1 defined by v2 “ 1. When running the algorithm, we have to choose a smooth branch B2 such that
pE1, B2q defines a cross at o1. We set B2 :“ Zpv2 ´ 1q and u1 :“ v2 ´ 1. Then, the local coordinates
pv1, u1q define the cross pE1, B2q. We denote by L2 the projection to S of the line B2 “ Zpu1q, which is
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Figure 39. The Enriques trees and the extended Enriques trees in Example 5.31

parametrized by v1 “ t and v2 “ 1. One gets that L2, which is parametrized by x “ t, y “ t, has local
equation y ´ x “ 0.

The strict transform C1 has local equation u2
1´v1 “ 0. The Newton polygon NE1,B2pC1q has only one

edge and its orthogonal ray has slope 1{2, hence its associated fan is FE1,B2pC1q » Fp1{2q. The second

trunk is just the segment reE1
, eL2

s with a marked point of slope 1{2. The modification ψC1,reg
E1,B2

defined
by the regularization of this fan has two exceptional divisors E2 and E3 corresponding to the rays of the
regularization of the fan Fp1{2q of slopes 1 and 1{2 respectively. When we consider the regularization of
the fan FE1,B2

pC1q, we have to mark an additional point of slope 1 in the second trunk reE1
, eL2

s. The
associated lotus is Λ2 :“ Λp1{2q, with base reE1 , eL2s.
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Figure 40. The Enriques tree of the toroidal pseudo-resolution of Example 5.31
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Figure 41. The lotus ΛπpCq of Example 5.32

In this example, the composition π :“ ψC1,reg
E1,B2

˝ψCL,L1
: pΣ, BΣq Ñ pS, BSq is an embedded resolution of

C, since the strict transform C2 of C is smooth and intersects transversally the exceptional divisor of π
at a point o2 P E3. Notice that when running the algorithm, we have to consider also the cross pE3, C2q

at o2. Its trunk coincides with its associated lotus. It is just the segment Λ3 :“ reE3 , Cs, with no marked
points.

The lotus ΛπpCq is represented in Figure 43. It is obtained from Λ1, Λ2 and Λ3 (see Figure 42) by
identifying the points with the same label.

Remark 5.34. The lotus ΛπpCq may be embedded canonically into the set of semivaluations of the

local C-algebra ÔS,o (semi-valuations are defined similarly to valuations, but dropping the last condition

from Definition 2.19). Indeed, its base membrane ΛpFL,L1
pCqq embeds into the regular cone σL,L1

0 of

Definition 3.32, which may be interpreted valuatively by associating to each w P σL,L1

0 the valuation νw
defined by Equation (32). Each other membrane may be similarly interpreted valuatively, and one may
show that one gets in this way an embedding. Details may be found in [102, Section 7].

5.5. Truncated lotuses.

In this subsection we introduce an operation of truncation of the lotus of a toroidal pseudo-resolution
of a plane curve singularity C, and we explain how to use it in order to visualize the dual graph of
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Figure 42. The Newton lotuses Λ1, Λ2 and Λ3 of Example 5.33
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Figure 43. The lotus ΛπpCq of Example 5.33

the total transform of C on the associated embedded resolution, as well as the Enriques diagram of the
constellation of infinitely near points blown up for creating this resolution, in a way different from that
formulated in point (8) of Theorem 5.29.

Recall first from Definition 5.26 the construction of the lotus ΛπpCq of a toroidal pseudo-resolution
π : pΣ, BΣq Ñ pS,L ` L1q of the curve singularity C ãÑ S. As stated in point (4) of Theorem 5.29, its
lateral boundary B`ΛπpCq is isomorphic to the dual graph of the boundary divisor BΣreg. Here Σreg

denotes the minimal resolution of Σ, and BΣreg is the total transform on it of the boundary divisor BΣ
of the toroidal surface pΣ, BΣq. The divisor BΣreg is also the total transform of the completion Ĉπ of C
relative to π, that is, the sum of the total transform of C by the smooth modification πreg : Σreg Ñ S
and of the strict transforms of the branches Lj introduced while running Algorithm 4.22.

How to get the dual graph of the total transform of C on Σreg from the lateral boundary B`ΛπpCq?
One has simply to remove the ends of B`ΛπpCq which are labeled by the branches Lj , as well as the
edges which connect them to other vertices of B`ΛπpCq. This truncation operation performed on the tree
B`ΛπpCq may be seen as the restriction of a similar operation performed on the whole lotus ΛπpCq. Let
us explain this truncation operation on ΛπpCq, as well as some of its uses.

Consider first a petal δpe1, e2q associated to a base pe1, e2q of a lattice N (see Definition 5.1). Its axis
is the median rpe1` e2q{2, e1` e2s of the petal, joining the vertex e1` e2 to the midpoint of the opposite
edge. This axis decomposes the petal into two semipetals.

The semipetals of a lotus are the semipetals of all its petals. Using this vocabulary, as well as that
introduced in Definition 5.26 about the anatomy of lotuses of toroidal pseudo-resolutions, we may define
now the operation of truncation of such a lotus:

Definition 5.35. Let ΛπpCq be the lotus of a toroidal pseudo-resolution π of the plane curve singularity

C ãÑ pS, oq. Its truncation Λtrπ pCq is the union of the axis of its basic petal, of all the semipetals

which do not contain basic vertices and of all the membranes which are segments, that is, of the edges of

ΛπpCq which have an extremity labeled by a branch of C. The lateral boundary B`Λtrπ pCq of Λtrπ pCq

is the part of the lateral boundary of ΛπpCq which remains in Λtrπ pCq.
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Figure 44. The two semipetals and the axis of the petal δpe1, e2q

Figure 45. The truncation of the lotus of Figure 36 (see Example 5.36)

Truncating the lotus ΛπpCq corresponds to forgetting its points whose corresponding semivaluations
depend on the choice of the branches Lj . One keeps only those semivaluations determined by the given
curve singularity C and by the infinitely near points through which pass its strict transforms during the
blow up process (see Remark 5.34). In fact, the third author had introduced truncated lotuses in [102]
– under the name of sails – as objects which represent the combinatorial type of a blow up process of a
finite constellation, without considering any supplementary branches passing through the points of the
constellation.

By construction, the lateral boundary B`Λtrπ pCq is isomorphic to the dual graph of the total transform
pπregq˚pCq. One may read again the self-intersection number of each irreducible component of the
exceptional divisor of πreg as the opposite of the number of petals, semi-petals and axis containing the
vertex representing it.

Note that both lotuses of Figures 41 and 43 have the same truncations. The reason is that their
associated toroidal pseudo-resolutions lead to the same embedded resolution of C by regularization and
that the truncated lotus is a combinatorial object encoding the decomposition of this resolution into blow
ups of points.

Example 5.36. For instance, in Figure 45 is shown the truncation of the lotus of Figure 36. Its
lateral boundary is emphasized using thick orange segments. The component of the exceptional divisor
represented by the unique vertex of the lotus contained in the axis has self-intersection number ´4, as
this vertex is contained in the axis, in two semi-petals and in one petal of Λtrπ pCq.

Consider now the Enriques tree of the toroidal pseudo-resolution π. Its edges are certain lateral edges
of the 2-dimensional petals of ΛπpCq and of the 2-dimensional petals constructed from the 1-dimensional
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petals of ΛπpCq as bases (see Definition 5.26). For each edge rA,Bs of the Enriques tree, one may consider
instead the homothetic segment p1{2qrA,Bs, joining the points p1{2qA and p1{2qB. This homothety is
well-defined if one interprets the elements of the segment rA,Bs as valuations (see Remark 5.34). If both
A and B are vertices of the same petal, then the segment p1{2qrA,Bs joins two edge midpoints of this
petal. Otherwise, the interior points of the segment p1{2qrA,Bs are disjoint from the lotus ΛπpCq.

The union of such segments p1{2qrA,Bs – which were called ropes by the third author in [102] – is
isomorphic to the Enriques tree of π. Therefore it is another representation of the Enriques diagram of
the constellation whose blow up creates the resolution πreg.

Figure 46. Two ways of visualizing the Enriques tree on a truncated lotus

It is convenient to draw in a same picture both the truncation Λtrπ pCq and the union of the ropes.
For instance, for the lotus of Figure 36 this union is represented on the right side of Figure 46. For
comparison, the Enriques tree is represented on the left side. An advantage of the right-side drawing is
that the ropes whose interiors lie outside the truncation are exactly the ropes which were represented
by Enriques as curved arcs. One may similarly determine from this drawing which edges go straight in
Enriques’ convention. For details, one may consult [102, Thm. 6.2]. Note that the kites of the title of
[102] (in French cerf-volants) were the unions of truncated lotuses and of their ropes, as represented on
the right side of Figure 46.

Assume now that the combinatorial type of a plane curve singularity is given either using the dual
graph of its total transform by an embedded resolution, weighted by the self-intersection numbers of
the components of its exceptional divisor, or using the Enriques diagram of the decomposition of the
resolution morphism into blow ups of infinitely near points of o. How to get a series f P Crrx, yss defining
a curve singularity with the given combinatorial type?

One may apply the following steps:

‚ Pass from the given tree to the associated truncated lotus. If the given tree is an Enriques diagram, it
may be more convenient for drawing purposes to think about it as the union of ropes of the truncated
lotus which is searched for.
‚ Complete the truncated lotus into a lotus having it as truncation. This step is not canonical, as shown
by the comparison of Figures 41 and 43 above.
‚ Proceed as in Example 6.29 below, by constructing the fan tree of the lotus, then the associated Eggers-
Wall tree and writing finally a finite set of Newton-Puiseux series whose associated Eggers-Wall tree is
isomorphic with this one.
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5.6. Historical comments.

The study of plane curve singularities by using sequences of blow ups of points was initiated by Max
Noether in his 1875 paper [89], and became common in the meantime, as shown by the works [90] of
Noether, [35] of Enriques and Chisini, [126] of Du Val and [134, Sections I.2, II.2], [135] of Zariski.

Nowadays, a modification of C2 obtained as a sequence of blow ups of points is studied most of the time
through the structure of its exceptional divisor. One encodes the incidences between its components, as
well as their self-intersection numbers in a weighted dual graph, which is a tree (see [104] for a description
of the development of this idea). When one looks at an embedded resolution of the plane curve singularity
C, one adds new vertices to this graph, corresponding to the strict transforms of the branches of C.

Figure 47. An Enriques diagram

The dual trees of exceptional divisors were not the first graphs associated with a process of blow ups of
points. Another kind of tree, an Enriques diagram, encoding the proximity relation between the infinitely
near points which are blown up in the process (see Definition 4.31), was associated with such a process
in the 1917 book [35] of Enriques and Chisini. An example of an Enriques diagram, extracted from [35,
Page 383], may be seen in Figure 47. Details about the notion of Enriques diagram may be found in
Casas’ book [19] or in the third author’s papers [102], [96], the second written in collaboration with Pe
Pereira. The proximity relation was extended to higher dimensions by Semple in his 1938 paper [112].
Details about this generalization and about other approaches to the study of curve singularities of higher
embedding dimension may be found in Campillo and Castellanos’ 2005 book [18].

In order to understand the relation between the Enriques diagram of a finite constellation and the dual
graph of the blow up of the constellation, the third author introduced the notion of kite in his 2011 paper
[102]. A kite was defined by gluing lotuses into a sail, and attaching then ropes to this sail. The ropes
were lying inside each lotus as the veins in a leaf, and they allowed to visualize the Enriques diagram. In
turn, the dual graph could be visualised as the lateral boundary of the sail. A sail was composed not only
of petals, but also of axes and semi-petals. The lotuses were also used in Castellini’s thesis [25], written
under the supervision of the third author. Castellini was able to do everything with petals, eliminating
the use of axes, semi-petals and ropes, as what we call here the Enriques tree of a lotus proved to be
more convenient to visualize the Enriques diagram. Also, the terminology was simplified, the gluing of
lotuses resulting again in lotuses, instead of sails, as we do in the present paper.

It turns out that lotuses already appeared in disguise before the paper [102]. Their oldest ancestor
is probably the proximity relation, defined in Enriques and Chisini’s book [35, Page 381]. Indeed (see
Theorem 5.29 (7)), the graph of the proximity relation among all the points whose blow up composes the
embedded resolution produced by the second algorithm described in our paper may be identified with
the full subgraph of the 1-skeleton of the associated lotus on the set of vertices which are not basic. The
oldest drawings of such proximity graphs seem to be those of Du Val’s 1944 paper [127] (see Figures
48 and 49, in which one may also recognize what we call the “Enriques tree” of a lotus, drawn with
continuous segments). Before, the proximity binary relation was related to the exceptional divisor of the
associated blow up process in Barber and Zariski’s 1935 paper [12] and Du Val’s 1936 paper [126]. Du
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Figure 48. Du Val’s “proximity graphs”

Figure 49. Du Val’s version of universal lotus

Val introduced the notion of proximity matrix, equivalent to that of proximity binary relation. In his
1939 paper [136], Zariski began a new ideal-theoretical and valuation-theoretical trend in the study of
infinitely near points. A geometrical presentation of the previous approaches of study of infinitely near
points was given by Lejeune-Jalabert in her 1995 paper [78].

The graph of the proximity relation was mentioned again by Deligne in his 1973 paper [29], by Morihiko
Saito in his 2000 paper [108] and by Wall in his 2004 book [131, Sections 3.5, 3.6]. One may find drawings
of simple such graphs only in the first and the third reference.

Another occurrence of lotuses in disguise may be found in Schulze-Röbbecke’s 1977 Diplomarbeit
[111] written under the supervision of Brieskorn. In that paper are described particular divides (generic
immersions of segments in a disc) obtained by applying to branches A’Campo’s method of constructing
δ-constant deformations explained in the 1974-75 papers [6] and [7]. The diagram of Figure 50, extracted
from page 57 of [111], indicates the general shape of the divides constructed in that paper. One may
recognize inside it part of the lotus associated to a toroidal resolution process of a branch. In his already
mentioned 2015 PhD thesis [25], Castellini could extend Schulze-Röbbecke’s description to arbitrary plane
curve singularities, using in a crucial way the notion of lotus of a blow up process.
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Figure 50. The general shape of Schulze-Röbbecke’s divides

Let us discuss now the relation of the universal lotus introduced in Definition 5.3 with other objects
and constructions. The Enriques tree of the universal lotus Λpe1, e2q is an embedding into the cone
σ0 of almost all the Stern-Brocot tree defined by Graham, Knuth and Patashnik in [57, Page 116], in
reference to the 1858 paper [117] of Stern and the 1860 paper [16] of Brocot. This tree represents the
successive generation of the positive rational numbers starting from the sequence p0{1, 1{0q. At each
step of the generating process, one performs the Farey addition pa{b, c{dq Ñ pa` cq{pb` dq on the pairs
of successive terms of the increasing sequence of rationals obtained at the previous steps. The vertices
of the Stern-Brocot tree correspond bijectively with the positive rationals. For each Farey addition
pa{b, c{dq Ñ pa` cq{pb`dq in which c{d was created after a{b, one joins the vertices corresponding to c{d
and to pa` cq{pb` dq. The embedding of the Stern-Brocot tree represented in Figure 29 is obtained by
sending each vertex corresponding to λ P QXp0,8q to the primitive vector ppλq P N Xσ0 (see Notations
3.2) and each edge to a Euclidean segment. Another embedding in the cone σ0 of the same part of the
Stern-Brocot tree as above was described in [102, Rem. 5.7]. That embedding may be obtained from the
embedding of Figure 29 by applying a homothety of factor 1{2.

The sequence of continued fractions (49) appearing in the proof of Proposition 5.23 was called the slow
approximation (“approximation lente”) of ra1, . . . , aks in Lê, Michel and Weber’s paper [82, Appendice].
They used such sequences in order to describe the construction of the dual graph of the minimal embedded
resolution of a plane curve singularity starting from the generic characteristic exponents of its branches
and the orders of coincidence between such branches.
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The zigzag decompositions introduced in Definition 5.18 are a variant of the zigzag diagrams of the
third’s author 2007 paper [101, Section 5.2]. Those diagrams allow to relate geometrically the usual
continued fractions to the so-called Hirzebruch-Jung continued fractions. Those Hirzebruch-Jung contin-
ued fractions are the traditional tool, going back to Jung’s 1908 paper [68] and Hirzebruch’s 1953 paper
[62], to describe the regularization of a 2-dimensional strictly convex cone. They are also crucial for the
understanding of lens spaces, which becomes obvious once one sees that those 3-manifolds are exactly the
links of toric surface singularities. See Weber’s survey [133] for more details and historical explanations
about the relations between lens spaces and complex surface singularities.

In [87, Section 9.1], Neumann and Wahl described a method for reconstructing the dual graph of the
minimal resolution of a complex normal surface singularity whose link is an integral homology sphere
from the so-called splice diagram of the link. This method is based on the construction of a finite sequence
of rationals interpolating between two given positive rational numbers λ and µ. It may be described in
the following way using lotuses of sequences of positive rational numbers:
‚ Construct by successive additions of petals the lotus Λpλ, µq as the union of Λpλq and Λpµq.
‚ Consider the increasing sequence of slopes of vertices of Λpλ, µq lying between λ and µ, that is, of
vertices of the lateral boundary B`Λpλ, µq (see Definition 5.5) lying on the arc joining the primitive
vectors ppλq and ppµq of N .

In [40, Section 2.2], Fock and Goncharov described the tropical boundary hemisphere of the Teichmüller
space of the punctured torus as an infinite simplicial complex with integral vertices embedded in the real
affine space associated to a two-dimensional affine lattice. This simplicial complex is a union of universal
lotuses (see [40, Fig. 1]).

6. Relations of fan trees and lotuses with Eggers-Wall trees

In Subsection 6.1 we explain how to associate an Eggers-Wall tree ΘLpCq to a plane curve singularity
C ãÑ pS, oq, relative to a smooth branch L. It is a rooted tree endowed with three structure functions,
the index iL, the exponent eL and the contact complexity cL. In Subsection 6.2 we express the Newton
polygon of C relative to a cross pL,L1q in terms of the Eggers-Wall tree ΘLpC`L

1q of C`L1 relative to L
(see Corollary 6.17). In Subsection 6.5 we prove that the fan tree θπpCq associated with a toroidal pseudo-

resolution process of C is canonically isomorphic with the Eggers-Wall tree ΘLpĈπq of the completion
of C relative to this process (see Theorem 6.27), and we explain how to compute the triple piL, eL, cLq
of functions starting from the slope function of the fan tree (see Proposition 6.28). As a prerequisite,
in Subsections 6.3 and 6.4 we prove renormalization formulae, which compare the Eggers-Wall tree of C
relative to L and those of its strict transform relative to the exceptional divisor of a Newton modification.

6.1. Finite Eggers-Wall trees and the universal Eggers-Wall tree.

In this subsection we define the Eggers-Wall tree ΘLpCq of a reduced plane curve singularity C ãÑ pS, oq
relative to a smooth branch L (see Notations 6.7). It is constructed from the Newton-Puiseux series of C
relative to a local coordinate system px, yq such that L “ Zpxq (see Definition 6.3), but it is independent
of this choice (see Proposition 6.6). It is a rooted tree whose root is labeled by L and whose leaves are
labeled by the branches of C. It is endowed with three functions, the index iL, the exponent eL and the
contact complexity cL, which allow to compute the characteristic exponents of the Newton-Puiseux series
mentioned above and the intersection numbers of the branches of C (see Proposition 6.11). Finally, we
introduce the universal Eggers-Wall tree of pS, oq relative to L (see Definition 6.12), as the projective
limit of the Eggers-Wall trees of the plane curve singularities contained in S. For more details and proofs
one may consult our papers [45, Subsection 4.3] and [46, Section 3].

Let L be a smooth branch on pS, oq. Assume in the whole subsection that C is reduced. Let px, yq be
a local coordinate system on pS, oq, such that L “ Zpxq, and let f P Crrx, yss be a defining function of C
in this coordinate system. As a consequence of the Newton-Puiseux Theorem 2.20, one has:

Theorem 6.1. Assume that C does not contain L, that is, that x does not divide fpx, yq. Then there

exists a finite set Zxpfq of Newton-Puiseux series of Crrx1{Nss and a unit upx, yq of the local ring
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Crrx, yss, such that:

(51) fpx, yq “ upx, yq
ź

ηpxqPZxpfq

py ´ ηpxqq.

The set Zxpfq is obviously independent of the defining function f of C. For this reason, we will denote
it instead ZxpCq. It is the disjoint union of the sets ZxpClq, when Cl varies among the branches of C. It
allows to associate to f the following objects:

Definition 6.2. Let px, yq be a local coordinate system of pS, oq such that L “ Zpxq and let C be a
reduced curve singularity on pS, oq not containing L.

‚ The finite subset ZxpCq :“ Zxpfq from the statement of Theorem 6.1 is called the set of Newton-

Puiseux roots of C relative to x.
‚ The order of coincidence kxpξ, ξ

1q of two Newton-Puiseux series ξ, ξ1 is equal to νxpξ ´ ξ
1q.

‚ The order of coincidence kxpCl, Cmq of two distinct branches Cl and Cm of C is the maximal order

of coincidence of Newton-Puiseux roots of the two branches: maxtkxpξ, ξ
1q, ξ P ZxpClq, ξ1 P ZxpCmqu.

‚ The set of characteristic exponents ChxpClq of a branch Cl of C relative to the variable x is the set

of orders of coincidence of pairs of distinct Newton-Puiseux roots of it: tkxpξ, ξ
1q, ξ, ξ1 P ZxpClq, ξ ‰ ξ1u.

This shows that for each ξ P ZxpClq, there exists some ξ1 P ZxpCmq such that νxpξ´ ξ
1q “ kxpCl, Cmq.

Therefore, knowing a Newton-Puiseux root of Cl determines some Newton-Puiseux root of Cm until their
order of coincidence kxpCl, Cmq. This fact motivates the following construction of a rooted tree endowed
with two functions:

Definition 6.3. Let px, yq be a local coordinate system such that L “ Zpxq and C be a reduced curve
singularity on pS, oq.

‚ The Eggers-Wall tree ΘxpClq of a branch Cl ‰ L of C relative to x is a compact segment endowed

with a homeomorphism ex : ΘxpClq Ñ r0,8s called the exponent function, and with marked

points, which are the preimages by the exponent function of the characteristic exponents of Cl relative
to x. The point pexq

´1p0q is labeled by L and pexq
´1p8q is labeled by Cl. The index function

ix : ΘxpClq Ñ N˚ whose value ixpP q on a point P P ΘxpClq is equal to the lowest common multiple of

the denominators of the exponents of the marked points belonging to the half-open segment rL,P q.

‚ The Eggers-Wall tree ΘxpLq is reduced to a point labeled by L, at which expLq “ 0 and ixpLq “ 1.

‚ The Eggers-Wall tree ΘxpCq of C relative to x is obtained from the disjoint union of the Eggers-

Wall trees ΘxpClq of its branches by identifying, for each pair of distinct branches Cl and Cm of C, their
points with equal exponents not greater than the order of coincidence kxpCl, Cmq. Its marked points
are its ramification points and the images of the marked points of the trees ΘxpClq by the identification
map. Its labeled points are analogously the images of the labeled points of the trees ΘxpClq, the
identification map being label-preserving. The tree is rooted at the point labeled by L. It is endowed

with an exponent function ex : ΘxpCq Ñ r0,8s and an index function ix : ΘxpCq Ñ N˚ obtained

by gluing the exponent functions and index functions on the trees ΘxpClq respectively.

Note that, by construction, the exponent function is surjective in restriction to every segment rL,Cls “
ΘxpClq of ΘxpCq such that Cl ‰ L and that the ends of ΘxpCq are labeled by the branches of C and
by the smooth reference branch L. The marked points of ΘxpCq which are images of marked points
of the subtrees ΘxpClq may be recovered from the knowledge of the index function, as its set of points
of discontinuity. Therefore, the index function is constant on each open edge between two consecutive
marked points of ΘxpCq. Moreover, it is continuous from below relative to the partial order ĺL defined
by the root L of ΘxpCq.

The Eggers-Wall tree allows to determine visually the characteristic exponents of each branch Cl. One
has simply to follow the segment going from the root to the leaf representing the branch and to read all
the vertex weights of the discontinuity points of the index function. In particular, if an internal vertex of
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such a segment is not a ramification vertex of the tree, then its exponent is necessarily a characteristic
exponent of Cl.

0

Zpxq

Zpy3 ´ x7q

3
2

7
3

Zpy2 ´ 4x3q

1

1

3

2

0

Zpxq

Zpy3 ´ x7q

3
2

Zpyq

7
3

Zpy2 ´ 4x3q

1

1

1

3

2

Figure 51. The Eggers-Wall trees of Zpfpx, yqq and Zpxyfpx, yqq from Example 6.4

Example 6.4. Consider again the plane curve singularity C “ Zpfpx, yqq of Subsection 2.6. That is,
fpx, yq “ py2 ´ 4x3qpy3 ´ x7q. Its Eggers-Wall tree is drawn on the left side of Figure 51. On the right
side is drawn the Eggers-Wall tree of the singularity Zpxypy2´4x3qpy3´x7qq, which is the sum of C and
of the coordinate axes.

Look at the segment joining the root to the branch Zpy3 ´ x7q, on the left side of Figure 51. It
contains two internal vertices, with exponents 3{2 and 7{3. The vertex of exponent 7{3 is not a ramifi-
cation vertex of the tree, therefore 7{3 is a characteristic exponent of this branch. In turn, 3{2 is not a
characteristic exponent of this branch, as the value of the index function does not increase when crossing
the corresponding vertex. Note that, by contrast, it increases when crossing the same vertex on the
segment joining the root to the leaf corresponding to the branch Zpy2 ´ 4x3q, which shows that 3{2 is a
characteristic exponent of that branch.

We have represented both the Eggers-Wall tree of C and of its union with the coordinate axes in order
to show that the second one is homeomorphic to the dual graph of the total transform of the union by
its minimal embedded resolution, while our example shows that this is not true if one looks at the total
transform of C alone (see Figure 7). The previous homeomorphism is a general phenomenon, valid for
any plane curve singularity, as seen by combining Proposition 4.35 and Theorem 6.27 below. Note that
in full generality one needs to add to C more branches than simply the coordinate axes, considering a
completion in the sense of Definition 4.15.

Example 6.5. Consider a plane curve singularity C whose branches Ci, 1 ď i ď 3, are defined by the
Newton-Puiseux series ξi, where:

ξ1 “ x7{2 ´ x4 ` 2x17{4 ` x14{3, ξ2 “ x5{2 ` x8{3, ξ3 “ x2.

The sets of characteristic exponents of the branches are ChxpC1q “ t7{2, 17{4, 14{3u, ChxpC2q “ t5{2, 8{3u,
ChxpC3q “ H. One has kxpC1, C2q “ 5{2, kxpC1, C3q “ kxpC2, C3q “ 2. The Eggers-Wall trees ΘxpC1q

and ΘxpCq relative to x are drawn in Figure 52. We represented the value of the corresponding exponent
near each marked or labeled point, and the value of the corresponding index function near each edge.

In fact, the objects introduced in Definition 6.3 depend only on C and L, not on the coordinate system
px, yq such that L “ Zpxq (see [45, Proposition 103]):

Proposition 6.6. Let px, yq be a local coordinate system such that L “ Zpxq and C be a reduced curve
singularity on pS, oq. Then the tree ΘxpCq endowed with the pair of functions pix, exq is independent of
the choice of local coordinate system such that L “ Zpxq.

Proposition 6.6 motivates us to introduce the following notations:
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Figure 52. The Eggers-Wall tree of the curve singularities C1 and C of Example 6.5

Notations 6.7. Let L be a smooth branch and C be a reduced curve singularity on pS, oq. We denote

pΘLpCq, iL, eLq :“ pΘxpCq, ix, exq, for any local coordinate system px, yq on pS, oq such that L “ Zpxq.

We say that this rooted tree endowed with two structure functions is the Eggers-Wall tree of C
relative to L.

Remark 6.8. Let L be a smooth branch and C be a reduced curve singularity on pS, oq. Then for any
point Q P ΘLpCq, we have:

(52) iLpQq “ mintiLpAq , A is a branch on S such that Q ĺL Au,

where Q ĺL A has a meaning in the Eggers-Wall-tree ΘLpC ` Aq Ě ΘLpCq. Indeed, if Q ĺL Cl for
a branch Cl of C, and if B is a branch on S parametrized by the truncation of a Newton-Puiseux
series ξ P ZxpClq, obtained by keeping only the terms of ξ of exponent ă eLpQq, then Q ĺL B and
iLpQq “ iLpBq.

The exponent function and the index function determine a third function on the tree ΘLpCq, the
contact complexity function (see [46, Def. 3.19]):

Definition 6.9. Let C be a reduced curve singularity on pS, oq. The contact complexity function
cL : ΘLpCq Ñ r0,8s is defined by the formula:

cLpP q :“

ż P

L

deL
iL

.

Note that in restriction to a segment rL,Cls “ ΘLpClq of ΘLpCq, the contact complexity function is a
bijection rL,Cls Ñ r0,8s.

Remark 6.10. It follows immediately from Definition 6.9 that the contact complexity function together
with the index function determine the exponent function by the following formula:

(53) eLpP q “

ż P

L

iLdcL.

The importance of the contact complexity function stems from the following property, which in different
formulation goes back at least to Smith [115, Section 8], Stolz [118, Section 9] and Max Noether [90]:



THE COMBINATORICS OF PLANE CURVE SINGULARITIES 81

Proposition 6.11. Let L be a smooth branch and C be a reduced curve singularity on pS, oq, not con-

taining L. Let A and B be two distinct branches of C. Denote by A^L B the infimum of the points of

ΘLpCq labeled by A and B, relative to the partial order ĺL defined by the root L. Then:

(54) cLpA^L Bq “
A ¨B

pL ¨Aq ¨ pL ¨Bq
.

Proof. One may find a proof of Proposition 6.11 in [131, Thm. 4.1.6]. Let us just sketch the main idea.
Fix a local coordinate system px, yq on pS, oq, such that L “ Zpxq. Start from a normalization of the
branch A of the form uÑ pun, ζpuqq (see the explanations leading to formula (2)). Therefore, ζpx1{nq is
a Newton-Puiseux root of A. By Theorem 6.1, one has a defining function of the branch B of the form
ś

ηpxqPZxpBqpy ´ ηpxqq. Proposition 2.8 implies that:

A ¨B “ νu

¨

˝

ź

ηpxqPZxpBq

pζpuq ´ ηpunqq

˛

‚“
ÿ

ηpxqPZxpBq

νu pζpuq ´ ηpu
nqq .

The finite multi-set of rational numbers whose elements are summed may be expressed in terms of the
characteristic exponents of A and B which are not greater than the order of coincidence of A and B. A
little computation finishes the proof. �

If C and D are two reduced plane curve singularities on pS, oq, with C Ď D, then by construction one
has a natural embedding of rooted trees ΘLpCq Ď ΘLpDq. The uniqueness of the segment joining two
points of a tree allows to define a canonical retraction ΘLpDq Ñ ΘLpCq. One may consider then either
the direct limit of the previous embeddings, or the projective limit of the previous retractions, for varying
C and D. Both limits have natural topologies. The direct limit, which may be thought simply as the
union of all Eggers-Wall trees pΘLpCqqC , is not compact, but the projective limit is compact. It is in
fact a compactification of the direct limit. For this reason, the projective limit is more suitable in many
applications. Let us introduce a special notation for this notion, which will be used in Subsection 6.3
below.

Definition 6.12. Let L be a smooth branch on pS, oq. The universal Eggers-Wall tree ΘL of

pS, oq relative to L is the projective limit of the Eggers-Wall trees ΘLpCq of the various reduced curve
singularities C on pS, oq, relative to the natural retraction maps ΘLpDq Ñ ΘLpCq associated to the
inclusions C Ď D.

6.2. From Eggers-Wall trees to Newton polygons.

In this subsection we explain how the Newton polygon NL,L1pCq of a plane curve singularity C relative
to the cross pL,L1q (see Definition 4.14) may be determined from the Eggers-Wall tree ΘLpC ` L1q (see
Corollary 6.17).

The Minkowski sum K1 `K2 of two subsets of a real vector space is the set of sums v1`v2, where

each vi varies independently among the elements of Ki. It is a commutative and associative operation.
When both subsets are convex, their Minkowski sum is again convex.

The following property is classical and goes back at least to Dumas’ 1906 paper [30, Section 3] (where
it was formulated in a slightly different, p-adic, context):

Proposition 6.13. If C and D are germs of effective divisors on pS, oq, then:

NL,L1pC `Dq “ NL,L1pCq `NL,L1pDq.

Proof. This is a direct consequence of formula (35) and Proposition 4.12. �

One may extend the notion of Newton polygon to series in two variables with non-negative rational
exponents whose denominators are bounded. They have again only a finite number of edges. The simplest
Newton polygons are those with at most one compact edge:
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Definition 6.14. Assume that a, b P Q˚`. One associates them the following elementary Newton
polygons (see Figure 53):

!a

b

)

:“ N pxa ` ybq,
! a

8

)

:“ N pxaq,
!

8

b

)

:“ N pybq.

The quotient a{b is the inclination of the elementary Newton polygon
!a

b

)

.

Note that for any a P Q˚`Yt8u, b P Q˚` and any d P N˚, one has: d
!a

b

)

“

"

da

db

*

, where the left-hand

side is the Minkowski sum of
!a

b

)

with itself d times. This allows to write:

(55)
!a

b

)

“ b

"

a{b

1

*

whenever b P N˚. The elementary Newton polygons are generators of the semigroup of Newton polygons,
with respect to Minkowski sum. In fact one has more:

Proposition 6.15. Each Newton polygon N may be written in a unique way, up to permutations of the
terms, as a Minkowski sum of elementary Newton polygons with pairwise distinct inclinations. Their
compact edges are translations of the compact edges of N .

Proof. This is a consequence of the following property, which in turn may be proved by induction on p P
N˚: If N1,N2, . . . ,Np are elementary Newton polygons with finite non-zero strictly increasing inclinations,
then their Minkowski sum N has exactly p compact edges which are translations of the compact edges of
N1,N2, . . . ,Np. Moreover, they are met in this order when one lists them starting from the unique vertex
of N lying on the vertical axis. �

The next proposition explains how to compute the Newton polygon of a branch C relative to a cross
pL,L1q, starting from the Eggers-Wall tree of C ` L1 relative to L:

Lemma 6.16. Let pL,L1q be a cross and let C ‰ L be a branch on pS, oq. Then the Newton polygon
NL,L1pCq may be expressed as follows in terms of the Eggers-Wall tree pΘLpC ` L

1q, eL, iLq:

NL,L1pCq “ iLpCq

"

eLpC ^L L
1q

1

*

.

The fan FL,L1pCq has a unique ray in the interior of the cone σ0, and its slope is equal to eLpC ^L L
1q.

That is:

FL,L1pCq “ F
`

eLpC ^L L
1q
˘

.
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Proof. This is a consequence of Theorem 6.1. Indeed, let f P Crrxssrys be a defining function for C
relative to a local coordinate system px, yq defining the cross pL,L1q. We know that its set of Newton-
Puiseux roots Zxpfq has C ¨L “ iLpCq elements. All of them have the same support, since C is a branch,
which implies that they form a single orbit under the Galois action of multiplication of x1{iLpCq by the
group of iLpCq-th roots of 1. The order of any such series is equal to kxpL

1, Cq “ eLpC ^L L
1q. We

deduce from Proposition 6.13 that the Newton polygon NL,L1pCq is equal to the Minkowski sum of the
factors of f in formula (51). The first assertion follows since the Newton polygon of y ´ ηpxq is equal to
"

eLpC ^L L
1q

1

*

, for any series ηpxq P Zxpfq, and then by taking into account formula (55). The second

assertion is an immediate consequence of the first one. �

As a corollary we get the announced expression of the Newton polygon relative to pL,L1q of a reduced
curve singularity C in terms of the Eggers-Wall tree ΘLpC ` L

1q of C ` L1 relative to L:

Corollary 6.17. Let pL,L1q be a cross and let C be a reduced curve singularity on pS, oq not containing
the branch L. The Newton polygon NL,L1pCq of the germ C with respect to the cross pL,L1q is equal to
the Minkowski sum:

(56)
ÿ

l

iLpClq

"

eLpCl ^L L
1q

1

*

,

where Cl runs through the branches of C.

Proof. By Proposition 6.13, the Newton polygon NL,L1pCq is the Minkowski sum of the Newton polygons
of its branches. One uses then Lemma 6.16 for each such branch. �

Note that the previous result extends to not necessarily reduced curve singularities C if one defines their
Eggers-Wall tree as the Eggers-Wall tree of their reduction, each leaf being endowed with the multiplicity
of the corresponding branch in the divisor C. Then, in the right-hand side of Equation (56), each branch
Cl has to be counted with its multiplicity.

6.3. Renormalization of Eggers-Wall trees.

Let pL,L1q be a cross on pS, oq. In this subsection we will denote sometimes by Θo,LpCq the Eggers-

Wall tree denoted before by ΘLpCq, in order to emphasize the point at which it is based. Indeed, we
want to compare the previous tree with the Eggers-Wall tree Θow,EwpCwq of the germ pCw, owq of the
strict transform Cw of C at a smooth point ow of the exceptional divisor Ew of a Newton modification
relative to the cross pL,L1q, with respect to the germ at ow of the exceptional divisor Ew itself. Notice
that if C is a reduced curve, then the strict transform Cw may consist of several germs of curves, one
for each point of intersection of Cw with Ew. We show that the universal Eggers-Wall tree Θow,Ew in
the sense of Definition 6.12 embeds naturally in the universal Eggers-Wall tree Θo,L and we explain how
to relate their triples of structure functions (index, exponent and contact complexity). We conceive the
passage from Θo,LpCq to Θow,EwpCwq as a renormalization operation, which explains the title of this
subsection. We will give another proof of the renormalization Proposition 6.22 in Section 6.4, in terms
of Newton-Puiseux series.

Let us fix a cross pL,L1q on pS, oq. Fix also a weight vector w “ cw e1` dw e2 P σ0XNL,L1 . Denote

by πw : pSw, BSwq Ñ pS,L` L1q the modification obtained by subdividing σ0 along the ray R`w. If A

is a branch on S, we denote by Aw the strict transform of A by πw. We look at the modification πw in

the toroidal category, relative to the boundaries BS :“ L` L1 and BSw :“ Lw `Ew ` L
1
w, where Ew is

the exceptional divisor of the morphism πw.

Denote by W the point of ΘLpL
1q corresponding to w, that is, the unique point of ΘLpL

1q whose
exponent is the slope of the ray R`w in the basis pe1, e2q:

(57) eLpW q “
dw
cw
.
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Since pL,L1q is a cross on pS, oq and W P ΘLpL
1q, one has that iLpW q “ 1. Therefore, by Definition 6.9,

the contact complexity of W is:

(58) cLpW q “
dw
cw
.

Recall that A^LB denotes the infimum of the points A and B of the universal Eggers-Wall tree Θo,L

relative to the partial order ĺL induced by the root L. We need the following lemma:

Lemma 6.18. Let A be a branch on pS, oq different from L,L1. The following properties are equivalent:

(1) The strict transform Aw of A by πw intersects Ew z pLw Y L
1
wq.

(2) The fan FL,L1pAq is the subdivision of σ0 along the ray R`w.
(3) A^L L

1 “W .

In addition, if these properties hold, then the order of vanishing of A along Ew is equal to dwiLpAq and
the intersection number Ew ¨Aw is iLpAq{cw.

Proof. The equivalence of these three properties is immediate from Propositions 4.18 and 6.16. Recall
that the order of vanishing ordEwpAq is by definition the multiplicity of Ew in the divisor pπ˚wLq, that is,
the value taken by the divisorial valuation ordEw defined by Ew on a defining function f of A. Thanks
to Proposition 4.18, this value is equal to tropAL,L1pwq, which may be written dwiLpAq by Lemma 6.16.
By Proposition 4.18, Ew ¨Aw is equal to the integral length of the compact edge of the Newton polygon
NL,L1pAq. The equality Ew ¨Aw “ iLpAq{cw follows by using Lemma 6.16 again. �

Lemma 6.19. Let A and B be two branches on pS, oq. Consider the point W P ΘLpL
1q fixed above,

determined by relation (57). Assume that W “ A^L L
1 “ B ^L L

1 inside the universal Eggers-Wall tree
ΘL. Then the following conditions are equivalent:

(1) A^L B “W .

(2) A ¨B “
dw
cw
pL ¨AqpL ¨Bq.

(3) Aw X Ew ‰ Bw X Ew.

Proof.
Proof of (1) ñ (2). This implication is a consequence of Formulae (54) and (58).

Proof of (2) ñ (1). Let us denote by W 1 the point A^LB. The assumption W ĺL A, W ĺL B implies
that W ĺL W 1. By Formula (54), we get cLpW

1q “ dw{cw “ cLpW q. Since the function cL is strictly
increasing on rL,As, the inequalities L ĺL W ĺL W

1 ĺL A imply that W “W 1.

Proof of (1) ô (3). Let px, yq be a system of local coordinates defining the cross pL,L1q. Denote by fA
a defining function of A with respect to this system and by KA the compact edge of the Newton polygon
NL,L1pAq. By the proof of Lemma 6.16, if αA is the coefficient of xdw{cw in a fixed Newton-Puiseux series
of A, then the restriction of fA to the compact edge KA is equal to:

˜

ź

γcw“1

py ´ αA γ x
dw{cwq

¸iLpAq{cw

“ pycw ´ αcwA xdwqiLpAq{cw .

We consider similar notations for the branch B. By Proposition 4.18, the point of intersection of the
strict transform of Aw with Ew is parametrized by the coefficient αcwA . The desired equivalence follows
since αcwA ‰ αcwB if and only if for every γ P C with γcw “ 1, one has that αA ‰ γ ¨ αB , which is also
equivalent to the property kLpA,Bq “ dw{cw by the definition of the order of coincidence (see Definition
6.2). �

Proposition 6.20. Let A and B be two branches on S. Consider the point W P ΘLpL
1q fixed above.

Assume that W “ A^L L
1 “ B ^L L

1. Then:

(1) L ¨A “ cwpEw ¨Awq.

(2) A ¨B “ Aw ¨Bw `
dw
cw
pL ¨AqpL ¨Bq.

(3) Aw ¨Bw ą 0 if and only if W ăL A^L B.



THE COMBINATORICS OF PLANE CURVE SINGULARITIES 85

(4) cLpA^L Bq “
1

c2w
cEwpAw ^Ew Bwq `

dw
cw
.

Proof. Notice first that the hypothesis and Lemma 6.18 imply that the strict transforms Aw, Bw of A

and B by πw intersect Ew z pLw Y L1wq. If C is a branch on pS, oq, denote by pπ˚wCqex the exceptional

part of the total transform divisor pπ˚wCq “ pπ
˚
wCqex ` Cw of C on Sw.

Proof of (1). We have:

L ¨A
piq
““ pπ˚wLq ¨ pπ

˚
wAq “

piiq
““ pπ˚wLq ¨Aw “
piiiq
““ pπ˚wLqex ¨Aw “
pivq
““ ordEwpLqpEw ¨Awq “
pvq
““ νwpχ

ε1qpEw ¨Awq “
pviq
““ ppcwe1 ` dwe2q ¨ ε1qpEw ¨Awq “
pviiq
““ cwpEw ¨Awq.

Let us explain each one of the previous equalities:

‚ Equality piq results from the birational invariance of the intersection product, if one works with
total transforms of divisors.

‚ Equality piiq is a consequence of the equality pπ˚wLq ¨ pπ
˚
wAqex “ 0, which results from the

projection formula (see [61, Appendix A1]), applied to the divisors L on S, pπ˚wAqex on Sw and
to the proper morphism πw.

‚ Equality piiiq follows from the hypothesis Lw ¨ Aw “ 0 and the bilinearity of the intersection
product.

‚ Equality pivq is a consequence of the equality pπ˚wLqex “ ordEwpLqEw.
‚ Equality pvq results from the equalities ordEw “ νw (see Equation 32) and x “ χε1 .
‚ Equality pviq results from the fact that w “ cwe1 ` dwe2.
‚ Equality pviiq results from the fact that pε1, ε2q is the dual basis of pe1, e2q.

L1w Lw

Bw

Aw A1w

Ew

L

L1A A1B

W

Figure 54. The choice of branch A1 in the proof of Proposition 6.20 (2)

Proof of (2). Let us choose a branch A1 on pS, oq such that:

(59) iLpAq “ iLpA
1q and W “ A^L L

1 “ A1 ^L L
1.

Using Lemma 6.19, we can translate this hypothesis in terms of the total transform of the branches A,A1

by πw. On the left side of Figure 54 is represented the total transform of L`L1`A`A1`B by πw and
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on its right side is represented the Eggers-Wall tree ΘLpL`L
1`A`A1`Bq, for some branch B. Then:

A ¨B
piq
““ pπ˚wAq ¨ pπ

˚
wBq “

piiq
““ pπ˚wAq ¨Bw “
piiiq
““ Aw ¨Bw ` pπ

˚
wAqex ¨Bw “

pivq
““ Aw ¨Bw ` pπ

˚
wA

1qex ¨Bw “
pvq
““ Aw ¨Bw ` pπ

˚
wA

1q ¨Bw “
pviq
““ Aw ¨Bw `A

1 ¨B “
pviiq
““ Aw ¨Bw ` pL ¨A

1qpL ¨Bq cLpW q “
pviiiq
““ Aw ¨Bw ` pL ¨AqpL ¨Bq

dw
cw
.

Let us explain each one of the previous equalities:

‚ Equalities piq and piiq are analogs of the equalities piq and piiq in the proof of point (1) above.
‚ Equality piiiq results from the bilinearity of the intersection product.
‚ Equality pivq results from the hypothesis (59) and Lemma 6.18, which imply that ordEwpAq “

ordEwpA
1q. Then one concludes using the equality pπ˚wCqex ¨Bw “ ordEwpCqpEw ¨Bwq, for each

C P tA,A1u.
‚ Equality pvq results from the fact that, by construction, A1w and Bw are disjoint.
‚ Equality pviq results from the projection formula.
‚ Equality pviiq results from Lemma 6.19.
‚ Equality pviiiq results from Equation (58) and from the equality L ¨ A “ L ¨ A1, which is a

consequence of the hypothesis (59) and the equality L ¨ C “ iLpCq for each C P tA,A1u.

Proof of (3). By hypothesis, the strict transforms Aw and Bw intersect the set EwzpLw Y L1wq, which
is equal to the torus orbit OR`w. By the proof of Proposition 4.18, this implies that w is orthogonal to
the compact edges of the Newton polygons NL,L1pAq and NL,L1pBq. Lemma 6.16 implies that eLpW q “
eLpA^L L

1q “ eLpB ^L L
1q. As the three points W,A^L L

1, B ^L L
1 belong to the segment rL,L1s and

that eL is strictly increasing on it, we get the equalities W “ A ^L L
1 “ B ^L L

1. This implies that
W ĺL A, W ĺL B. The claim follows from point (2) by using Lemma 6.19.

Proof of (4). Dividing both sides of the formula of point (2) by the product pL ¨AqpL ¨Bq, we get:

A ¨B

pL ¨Aq ¨ pL ¨Bq
“

Aw ¨Bw
pL ¨Aq ¨ pL ¨Bq

`
dw
cw
.

Using point (1), we get:
Aw ¨Bw

pL ¨Aq ¨ pL ¨Bq
“

1

c2w

Aw ¨Bw
pEw ¨Awq ¨ pLw ¨Bwq

.

By applying formula (54) twice we obtain the desired formula:

(60) cLpA^L Bq “
1

c2w
cEwpAw ^Ew Bwq `

dw
cw
.

�

Let us define in combinatorial terms a natural embedding of the universal Eggers-Wall tree Θow,Ew

into the universal Eggers-Wall tree Θo,L (see 6.12):

Definition 6.21. Let Aw be a branch on the germ of surface pSw, owq. Denote by A its image by the
modification πw. The natural embedding of the universal Eggers-Wall tree Θow,Ew into the universal
Eggers-Wall tree Θo,L is defined by sending each point Q of the Eggers-Wall segment Θow,EwpAwq to the
unique point Q1 of Θo,LpAq which satisfies:

(61) cLpQ
1q “

1

c2w
cEwpQq `

dw
cw
.
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If pCw, owq is a reduced curve on pSw, owq, then the embedding of the Eggers-Wall tree Θow,EwpCwq in
Θo,LpCq is well-defined thanks to Formula (60) applied to any pair Aw, Bw of branches of pCw, owq. That
is, the embeddings of the Eggers-Wall segments of its branches glue into an embedding of Θow,EwpCwq
in Θo,LpCq. Notice that the root Ew of Θow,EwpCwq corresponds to the point W P Θo,LpL

1q defined by
relation (57) and that the leaf of Θow,Ew labeled by Aw corresponds to the leaf of Θo,L labeled by A.

The following proposition describes how to pass from the functions piEw , eEwq on the tree Θow,EwpCwq
to the functions piL, eLq on Θo,LpCq:

Proposition 6.22. Let pCw, owq be a reduced curve singularity on pSw, owq. Identify the tree Θow,EwpCwq
with the subtree of Θo,LpCq defined by the natural embedding of Definition 6.21. One has the following
relations in restriction to this subtree:

(1) iL “ cw iEw .

(2) eL “
1

cw
eEw `

dw
cw
.

Proof.
Proof of (1). We show first the assertion for an end of Θow,EwpCwq corresponding to a branch Bw of
Cw. By the definition of the index function, we have the equalities iLpBq “ L ¨B and iEwpBwq “ Ew ¨Bw.
Combining these equalities with point (1) of Proposition 6.20, we get:

(62) iLpBq “ cwiEwpBwq.

Let Q ‰ Ew be any rational point of Θow,EwpCwq. By the equality (52), there exists a branch Aw on the
germ of surface pSw, owq such that iEwpAwq “ iEwpQq. We get:

iLpQq
p52q
ď iLpAq

p62q
“ cwiEwpAwq “ cwiEwpQq.

This implies that iLpQq ď cwiEwpQq. Analogously, using again equality (52), there exists a branch B
on the germ pS, oq such that W ăL Q ăL B and iLpBq “ iLpQq. By Definition 6.21 of the natural
embedding of Θow,Ew in Θo,L, this implies that Q ăEw B. Therefore:

iLpQq “ iLpBq
p62q
“ cwiEwpBwq

p52q
ě cwiEwpQq.

It follows that iLpQq “ cwiEwpQq. We have shown that the equality in point (1) holds in restriction to
the rational points of Θow,EwpCwq, and by the continuity properties of the index functions, it holds for
every point of Θow,EwpCwq.

Proof of (2). Let P be a point of Θow,EwpCwq. This implies that W ĺL P . By the integral formula
(53), we get:

eLpP q “

ż P

L

iLdcL “

ż W

L

iLdcL `

ż P

W

iLdcL.

Using again equation (53), we have:

(63)

ż W

L

iLdcL “ eLpW q “
dw
cw
.

We compute the second integral
şP

W
iLdcL by making a change of variable. Differentiating formula

(61), we get dcL “ p1{c
2
wqdcEw . Using the expression for iL of point (1), we obtain:

(64)

ż P

W

iLdcL “
1

cw

ż P

W

iEw dcEw “
1

cw
eEwpP q,

where we have used again the integral formula (53). We end the proof by combining the equalities (63)
and (64):

eLpP q “
dw
cw
`

1

cw
eEwpP q.

�
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Remark 6.23. Identify the tree Θow,Ew with the subtree of the universal Eggers-Wall tree Θo,L defined
by the embedding of Definition 6.21. As a consequence of Proposition 6.22, the two formulae stated in it
also hold on Θow,Ew .

6.4. Renormalization in terms of Newton-Puiseux series.

We give a different proof of Proposition 6.22 by using Newton-Puiseux series. This proof relates the
Newton modifications in the toroidal category of Definition 4.14 with the Newton maps, which appear
sometimes in the algorithmic construction of Newton-Puiseux series (see Subsection 6.6).

We keep the notations introduced at the beginning of Section 6.3. Let A be a branch on pS, oq such
that Aw intersects Ew at a point ow P EwzpLwYL

1
wq. Consider local coordinates px, yq defining the cross

pL,L1q. Recall from Definition 6.2 that ZxpAq denotes the set of Newton-Puiseux roots of A relative to
x. Let us choose η P ZxpAq. It may be expressed as:

(65) η “
ÿ

kěm

αkx
k{n,

where n “ A ¨ L, m “ A ¨ L1. Hence αm ‰ 0. All the series in ZxpAq have the same support, since they
form a single orbit under the Galois action of multiplication of x1{n by the complex n-th roots of 1 (see
Remark 2.21).

Let us denote p :“ gcdpn,mq. Our hypothesis that Aw meets EwzpLw Y L
1
wq implies that:

(66) n “ cw ¨ p, m “ dw ¨ p.

The branch A is defined by f “ 0, where:

(67) f “
ź

γn“1

py ´ pγ ¨ ηqpxqq “ pycw ´ αcwm xdwqp ` . . . .

We have only written on the right-hand side of (67) the restriction of f to the unique compact edge of
the Newton polygon of fpx, yq.

Lemma 6.24. There exist local coordinates px1, y1q on the germ pSw, owq such that Ew “ Zpx1q and the
map πw is defined by:

(68)

"

x “ xcw1 ,

y “ xdw1 pαm ` y1q.

Proof. Consider a vector w1 “ awe1 ` bwe2 such that:

(69) bwcw ´ awdw “ 1.

Therefore the cone σ “ R`xw,w1y is regular and included in one cone of the fan FL,L1pAq. As explained in
the proof of Proposition 4.18, we can look at the intersection of Aw with the orbit OR`w “ EwzpLwYL

1
wq

in the open subset corresponding to this orbit on the toric surface Xσ “ C2
u,v. The toric morphism ψσσ0

is the monomial map defined by
"

x “ ucwvaw

y “ udwvbw

(see Example 3.26). The orbit OR`w, seen on the surface C2
u,v, is the pointed axis C˚v . The maximal

monomial in pu, vq which divides pψσσ0
q˚f is equal to pucwdwvawdwqp. After factoring out this monomial

and setting u “ 0 we get:

(70) pvawcw´bwdw ´ αcwm q
p p69q
“ pv ´ αcwm q

p.

This shows that the point ow has coordinates pu, vq “ p0, αcwm q. The formulae

(71)

"

u “ x1py1 ` αmq
´aw ,

v “ py1 ` αmq
cw ,
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define local coordinates px1, y1q at ow, since the jacobian determinant of pu, v ´ αcwm q with respect to
px1, y1q does not vanish at p0, 0q. Notice also that Zpx1q “ Zpuq “ Ew. By (69) we get:

"

x “ xcw1 py1 ` αmq
´awcwpy1 ` αmq

awcw “ xcw1
y “ xdw1 py1 ` αmq

bwcw´dwaw “ xdw1 pαm ` y1q.

�

Proposition 6.25. With respect to the coordinates px1, y1q introduced in Lemma 6.24, the series

ηw :“
ÿ

kąm

αmx
pk´mq{p
1 ,

is a Newton-Puiseux series parametrizing the branch Aw on pSw, owq.

Proof. By formula (70), we have that pAw ¨ Ewqow “ p. It follows that the Newton-Puiseux series in
Zx1

pAwq must have exponents in p1{pqN˚. By composing (68) with the change of variable

(72) x1 “ xp2,

we get:

(73)

"

x “ xn2 ,

y “ xdwp2 pαm ` y1q.

Apply the substitution (73) to the factor y ´ pγ ¨ ηqpx1{nq, using that x2 “ x1{n by definition, and factor

out the monomial xdwp2 . We get the series

(74) pαm ` y1q ´ αmγ
m ´

ÿ

kąm

αkγ
kxk´m2 P Crrx2, y1ss.

This series has vanishing constant term if and only if γm “ 1. Since γn “ 1 and gcdpn,mq “ p, one may
check that this condition holds if and only if γp “ 1, and in this case for any k ą m one has γk “ γk´m.

It follows that the series (74) which are non-units are precisely the conjugates of the series y1 ´ ηwpx
1{p
1 q

under the Galois action, since x2 “ x
1{p
1 by definition (72). Therefore, the product of all the conjugates

of y1 ´ ηwpx
1{p
1 q under the Galois action defines a polynomial in Crrx1ssry1s which divides the strict

transform of f by the map (68). The remaining factor is a series with nonzero constant term, and must
belong to the ring Crrx1, y1ss since it is invariant under the Galois action. �

Corollary 6.26. Let A,B be two branches on pS, oq such that ow P Aw XBw X Ew. Then:

kxpA,Bq “
dw
cw
` cw ¨ kx1

pAw, Bwq.

Proof. By point (3) of Proposition 6.20, the inequality Aw ¨ Bw ą 0 (which results from the hypothesis
that ow P Aw X Bw) implies that kxpA,Bq ą dw{cw. It follows that if we fix a Newton-Puiseux series
η P ZxpAq, then there exists ξ P ZxpBq with the same order and the same leading coefficient. We can
apply Lemma 6.24, using this leading coefficient, to define suitable local coordinates px1, y1q at the point
o1. The formula results from Proposition 6.25 by taking into account the facts that ηw P Zx1

pAwq and
ξw P Zx1pBwq. �

Corollary 6.26 implies readily Proposition 6.22.

6.5. From fan trees to Eggers-Wall trees.

In this subsection we assume that C is reduced. We explain that there exists a canonical isomorphism
from the fan tree θπpCq of a toroidal pseudo-resolution π of C produced by running Algorithm 4.22, to

the Eggers-Wall tree of the completion Ĉπ of C (see Theorem 6.27). We also explain how to compute
the index, exponent and contact complexity functions on the Eggers-Wall tree from the slope function
on the fan tree (see Proposition 6.28).

Let L be a smooth branch on the germ pS, oq. Assume that we run Algorithm 4.22, arriving at a

toroidal pseudo-resolution π : pΣ, BΣq Ñ pS,L ` L1q. Consider the corresponding completion Ĉπ, in the
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sense of Definition 4.15. There are two trees associated with this setting which have their ends labeled
by the branches of Ĉπ, the fan tree θπpCq and the Eggers-Wall tree ΘLpĈπq. How are they related? It
turns out that they are isomorphic:

Theorem 6.27. There is a unique isomorphism from the fan tree θπpCq to the Eggers-Wall tree ΘLpĈπq,

which preserves the labels of the ends of both trees by the branches of Ĉπ.

Proof. At the first step of Algorithm 4.22, one chooses a smooth branch L1 such that pL,L1q is a cross on

pS, oq. By definition, the branch L1 is a component of the completion Ĉπ. Let us consider the segment

rL,L1s of ΘLpĈπq and the first trunk θFL,L1 pCq “ reL, eL1s. We have a homeomorphism

Ψo : reL, eL1s Ñ rL,L1s “ ΘLpL
1q

sending a vector w P reL, eL1s to the unique point W P rL,L1s whose exponent eLpW q is equal to the
slope of w with respect to the basis peL, eL1q of NL,L1 . By Corollary 6.17, the map Ψo defines also a
bijection between the set of marked points of the trunk, according to Definition 4.33, and the set of the
marked points of the tree ΘLpĈπq which belong to the segment rL,L1s according to Definition 6.3.

Let oi be a point of BSFL,L1 pCq, lying on the strict transform of C. The point oi is considered at the

fourth step of Algorithm 4.22. Let Ai denote the germ of BSFL,L1 pCq at oi and let pAi, Biq be the cross

at oi chosen when one passes again through the first and second steps of Algorithm 4.22. By definition,

Li :“ πL,L1pBiq is a branch of Ĉπ. We denote by Ĉπ,oi (resp. Coi ) the germ of the strict transform

of Ĉπ (resp. C) at the point oi. We use the Notations 4.25. Let us consider the segment rAi, Lis of the

Eggers-Wall tree Θoi,AipĈπ,oiq and the trunk θFAi,Bi pCoi q “ reAi , eBis. Arguing as before, we obtain a

homeomorphism Ψoi : reAi , eBis Ñ rAi, Lis which sends w P reAi , eBis to the unique point W P rAi, Lis
such that eAipW q is equal to the slope of w with respect to the basis peAi , eBiq of the lattice NAi,Bi . In
addition, we get also that the homeomorphism Ψoi defines a bijection between the marked points of the

trunk θFAi,Bi pCoi q and the marked points of Θoi,AipĈπ,oiq on the segment rAi, Lis. By Proposition 6.22,

we have an embedding of the Eggers-Wall tree Θoi,AipĈπ,oiq such that the root Ai of this tree is sent to

the marked point L1 ^L Li of ΘLpĈπq. By Definition 4.33, the point eAi of the trunk θpFAi,BipCqq is
identified with the marked point labeled by Ai on θpFL,L1pCqq, during the construction of the fan tree
θπpCq.

If T is a tree and P1, . . . , Ps P T , we denote by rP1, . . . , Pss the smallest subtree of T containing
P1, . . . , Ps. We apply this notation for the subtree reL, eL1 , eBj s of θπpCq and the subtree rL,L1, Ljs of

ΘLpĈπq. The previous discussion implies that the homeomorphisms Ψo and Ψoi can be glued into a
homeomorphism

reL, eL1 , eBj s Ñ rL,L1, Ljs,

which sends the ramification vertex eAi of the tree reL, eL1 , eBj s to the ramification vertex L1 ^L Lj of
rL,L1, Ljs. We repeat this construction each time we pass through a cross at the first and second steps
during the iterations of Algorithm 4.22. By induction, we get a finite number of homeomorphisms Ψoj ,

which glue into a homeomorphism Ψ : θπpCq Ñ ΘLpĈπq which respects the labelings of the ends of both

trees by the branches of Ĉπ. �

Identify the two rooted trees θπpCq and ΘLpĈπq by the isomorphism of Theorem 6.27. For every point

P P θπpCq, define the set δP Ă rL,P q as the finite subset of discontinuity points of the restriction of

the slope function Sπ to the segment rL,P q. If λ P Q˚, denote by denpλq the denominator q of λ, when

one writes it in the form p{q, with pp, qq P ZˆN˚, and p, q coprime. The fan tree θπpCq comes endowed
with only one function, the slope function Sπ, while the Eggers-Wall tree is endowed with the index iL,
the exponent eL and the contact complexity cL functions. These functions are related by:

Proposition 6.28. For every P P θπpCq, one has:

(1) iLpP q “
ź

QPδP

denpSπpQqq.
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(2) eLpP q “

ż P

L

1

iL
dSπ.

(3) cLpP q “

ż P

L

1

i2L
dSπ.

Proof. In order to follow the proof, one has to keep in mind the isomorphism of the fan tree with the
Eggers-Wall tree built in Theorem 6.27. If the set δP is empty, that is, if the slope function Sπ is
continuous in restriction to rL,P q, then P belongs to the first trunk rL,L1s. By definition, for any
Q P rL,L1s we have:

(75) iLpQq “ 1, eLpQq “ SπpQq.

Hence the equalities (1), (2) and (3) hold trivially for P .
We prove the assertions (1) and (2) by induction on the number of elements of the set δP of discontinuity

points. Assume that δP “ tW “ W1,W2, . . . ,Wku with k ě 1, and W ăL W2 ăL ¨ ¨ ¨ ăL Wk ăL P . By
construction, the point W belongs to the first trunk of θπpCq. Then, using the notation (57), we have
eLpW q “ dw{cw “ SπpW q, with cw “ denpSπpW qq. We decompose the integral of the second member of
equality (2) in the form:

ż P

L

1

iL
dSπ “

ż W

L

1

iL
dSπ `

ż P

W

1

iL
dSπ.

By (75), one has:

(76)

ż W

L

1

iL
dSπ “ eLpW q “

dw
cw
.

With the notations of Section 6.3, we consider the reduced curve Cw at pSw, owq, consisting of those
branches Aw which are the strict transforms of branches A of C such that W ăL P ăL A (see point (3)
of Proposition 6.20). Proposition 6.22 implies that:

(77) iLpQq “ cwiEwpQq, for Q P rW,P s Ă ΘEwpCwq.

Hence:

(78)

ż P

W

1

iL
dSπ “

1

cw

ż P

W

1

iEw
dSπ “

1

cw
eEwpP q.

To understand the last equality of (78), apply the induction hypothesis to the integral
şP

W
p1{iEwqdSπ,

with respect to the set tW2, . . . ,Wku of discontinuity points of the restriction of the slope function Sπ to
rW,P q. The equality (2) follows from (76), (78) and point (2) of Proposition 6.22.

The equality (1) follows similarly by (77) and the induction hypothesis applied to iEwpP q.

Let us prove the equality (3). By point (2) one has deL “ p1{iLqdSπ. Therefore:

cLpP q “

ż P

L

1

iL
deL “

ż P

L

1

i2L
dSπ.

�

Example 6.29. Consider the toroidal pseudo-resolution process of Example 4.28. Figure 55 shows the
fan tree θπpCq and the corresponding Eggers-Wall tree ΘLpĈπq, for which are indicated the values of the
exponent and the index functions. We computed them using Proposition 6.28. For instance, we have

iLpE6q “ 1 ¨ 5 “ 5, eLpE6q “
3

5
`

1

5
¨

5

3
“

14

15
, iLpE8q “ 1 ¨ 5 ¨ 3 “ 15 and eLpE8q “

14

15
`

1

15
¨

1

2
“

29

30
.

Proposition 6.28 allows us to define a concrete reduced curve singularity C which admits the toroidal
resolution process described in Example 4.28, whose lotus was represented in Figure 36 and whose
Enriques tree was represented in Figure 40. Namely, we fix local coordinates px, yq and we choose
Newton-Puiseux series η1pxq, . . . , η7pxq defining branches C1, . . . , C7, then we take supplementary series
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Figure 55. The fan tree θπpCq and the corresponding Eggers-Wall tree ΘLpĈπq in
Example 6.29

λ1pxq, . . . , λ4pxq defining branches L1, . . . L4, such that the Eggers-Wall tree ΘLpC1 ` ¨ ¨ ¨ ` C7 ` L1 `

¨ ¨ ¨ ` L4q is that on the right side of Figure 55. For instance, one may choose:

η1pxq :“ x5{2, η2pxq :“ x2, η3pxq :“ ´x2, η4pxq :“ x3{5 ` x3{4,

η5pxq :“ x3{5 ` x11{15 η6pxq :“ 2x3{5 ` x6{5, η7pxq :“ 2x3{5 ` x14{15 ` x29{30,

λ1pxq :“ 0, λ2pxq :“ x3{5, λ3pxq :“ 2x3{5, λ4pxq :“ 2x3{5 ` x14{15.

Remark 6.30. The right part of Figure 55 shows the Eggers-Wall tree of the completion of a plane
curve singularity generated by a toroidal pseudo-resolution process. One may verify that it satisfies the
following property which characterizes the Eggers-Wall trees of such completions: each vertex which is
not an end of the tree is contained in the interior of a segment in restriction to which the index function
is constant (in particular, such an Eggers-Wall tree has no vertices of valency 2). When one has such an
Eggers-Wall tree, it originates from a fan tree as described in Proposition 6.28. But this fan tree is not
unique. One has to determine first which segments of the Eggers-Wall tree are trunks of the fan tree, and
there may be different choices. For instance, in Figure 55 one could decide that the segment rL,C2s is a
trunk, instead of rL,L1s. Once the trunks are chosen, the sets δP are determined for every point P of the
tree. This allows to compute the slope function Sπ by integrating the differential relation dSπ “ iLdeL,
which is a consequence of Proposition 6.28 (2).

Proposition 6.28 may be written more explicitly as follows:

Corollary 6.31. Let P be a vertex of θπpCq “ ΘLpĈπq, different from the root L. Assume that when one
moves on the segment rL,P s from L to P , one meets successively the vertices P1, . . . , Pk “ P of δP YtP u.
Denote SπpPjq “ dj{cj with coprime cj , dj P N˚, for all j P t1, . . . , ku (with ck “ 1 and dk “ 8 if P is a
leaf of the tree). Then:

(1) iLpP q “ c1 ¨ ¨ ¨ ck´1.

(2) cLpP q “
d1

c1
`

d2

c21c2
`

d3

c21c
2
2c3

` ¨ ¨ ¨ `
dk

c21 ¨ ¨ ¨ c
2
k´1ck

.

(3) eLpP q “
d1

c1
`

d2

c1c2
`

d3

c1c2c3
` ¨ ¨ ¨ `

dk
c1 ¨ ¨ ¨ ck

.

Example 6.32. Let us specialize Corollary 6.31 to the case where P is a leaf of θπpCq “ ΘLpĈπq, labeled
by a branch C. Therefore the characteristic exponents of a Newton-Puiseux series of C relative to L are:
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(79)
mj

n1 ¨ ¨ ¨nj
:“

d1

c1
`

d2

c1c2
` ¨ ¨ ¨ `

dj
c1 ¨ ¨ ¨ cj

,

for all j P t1, . . . , ku. Here the positive integers pm1, . . . ,mkq and pn1, . . . , nkq are chosen such that mj

and nj are coprime for all j P t1, . . . , ku. The relations (79) may be reexpressed in the following way:

(80) pcj , djq “ pnj ,mj ´ nj ¨mj´1q,

for all j P t1, . . . , ku (with the convention m0 :“ 0). Sometimes the couples pmj , njq are called the
Puiseux pairs and the couples pdj , cjq are called the Newton pairs of the given Newton-Puiseux series.
The importance of using both sequences of pairs in the topological study of plane curve singularities was
emphasized by Eisenbud and Neumann in their book [34, Page 6]. More details may be found in Weber’s
survey [132, Section 6.1].

Example 6.33. This is a continuation of Example 6.32. Consider pairs of coprime integers pnj ,mjq P

N˚ ˆ N˚ with nj ą 1, for j “ 1, . . . , k and the Newton-Puiseux series

xm1{n1 ` xm2{pn1n2q ` ¨ ¨ ¨ ` xmk{pn1¨¨¨nkq,

defining a branch C. We can build a toroidal pseudo-resolution π of C with respect to L “ Zpxq, such

that Ĉπ “ L` C `
řk
j“1 Lj and the branches L1, . . . , Lk are defined by the Newton-Puiseux series:

0, xm1{n1 , xm1{n1 ` xm2{pn1n2q, . . . , xm1{n1 ` xm2{pn1n2q ` ¨ ¨ ¨ ` xmk´1{pn1¨¨¨nk´1q.

Then the associated lotus is as represented in Figure 38. Using formula (80) and the notations intro-
duced in Example 5.30, we have:

mj

nj
´mj´1 “ rpj , qj , . . .s,

for all j P t1, . . . , ku. In fact, one gets the same lotus whenever C is an arbitrary branch with the
previous characteristic exponents relative to L and the branches Lj are semiroots of C (see [99, Corollary
5.6]). This shows that our notion of completion of a reduced curve singularity C relative to a toroidal
pseudo-resolution process is a generalization of the operation which adds to a branch a complete system
of semiroots relative to L (see [99, Definition 6.4]).

6.6. Historical comments.

Historical information about the notion of characteristic exponent may be found in our paper [44,
Introduction, Rem. 2.9].

In addition to the older Enriques diagrams and dual graphs of exceptional divisors of embedded
resolutions, Kuo and Lu associated a third kind of tree to a curve singularity C “ Zpfpx, yqq in their
1977 paper [75]. An example of such a tree, extracted from their paper, is shown in Figure 57. Their
trees were rooted and their sets of leaves were in bijection with the set of Newton-Puiseux series ηpxq
associated with the corresponding plane curve singularity C. They used their trees in order to relate the

structure of C to that of its polar curve defined by the equation
Bf

By
“ 0.

Figure 56. A Kuo-Lu tree

In his 1983 paper [33], Eggers showed that a kind of Galois quotient of the Kuo-Lu tree of f was more
convenient for this purpose. Figure 57 shows the first example given in [33]. A variant of the Eggers
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Figure 57. An Eggers tree

tree, better suited for computations, was introduced by Wall [130] and presented in more details in his
textbook [131, Sections 4.2 and 9.4].

The third author coined in his 2001 thesis [98] the name Eggers-Wall tree for Wall’s version of Eggers’
tree. He proved in [98, Section 4.4] that the Eggers-Wall tree of C relative to generic coordinates could
almost always be embedded in the dual graph of the minimal embedded resolution of C as the convex
hull of its vertices representing the branches of C. He discovered this fact experimentally, by applying
in many examples the first author’s algorithm described in her 1996 thesis [42, Section 1.4.6], for the
passage from Eggers’ tree to the dual graph. Another proof of this embedding result was obtained in
terms of certain toroidal-pseudo resolutions introduced by the second author in [52, Section 3.4]. Wall
improved the description of this embedding in his 2004 book [131], and Favre and Jonsson explained it
differently from their valuative viewpoint in their 2004 book [38, Appendix D2]. Recently, we gave a new
viewpoint on this embedding result in [45, Theorem 112], in the framework of Eggers-Wall trees defined
relative to arbitrary coordinate systems. It is important to consider the Eggers-Wall tree of C relative
to coordinate systems which are not necessarily generic relative to C. Indeed, this freedom is essential
when one wants to compare the Eggers-Wall tree of C with that of its strict transform by a blow up
or a more complicated toric modification, because after such a modification the natural coordinate x
defines the exceptional divisor, and is not necessarily generic with respect to the strict transform. In his
paper [100], extracted from his thesis [98], the third author did not consider any genericity hypothesis,
in order to extend the definition of this kind of tree to higher dimensional quasi-ordinary hypersurface
singularities. This generalized notion of Eggers-Wall tree was further developed in connexion with the
study of the associated polar hypersurfaces in the 2005 paper [43] of the first and second authors. In
turn, the notion of Kuo-Lu tree was extended to quasi-ordinary hypersurface singularities by the first
author and Gwoździewicz in their 2015 paper [47] and used again by them in [48], in order to study the
structure of higher order polars of such singularities.

The notations for elementary Newton polygons described in Definition 6.14 were introduced by Teissier
in his 1977 paper [120, Section 3.6], where he restricted them to a, b P N˚Yt8u. Allowing the two numbers
in Definition 6.14 to be rational is convenient in order to express Newton polygons in terms of Eggers-Wall
trees (see Corollary 6.17).

Let us consider now the valuative aspects of Eggers-Wall trees. Favre and Jonsson proved in their 2004
book [38] that the set of semivaluations of the local C-algebra ÔS,o which are normalized by the constraint
that a defining function x of the smooth germ L has value 1, has a natural structure of rooted real tree,
which they called the valuative tree. In his 2015 survey [67], Jonsson revisited part of the theory of [38]
with a more geometric approach which is valid for algebraically closed fields of arbitrary characteristic.
Favre and Jonsson gave several descriptions of its tree structure. In our paper [46, Theorem 8.34] we gave
a new description of it, as the universal Eggers-Wall tree of Definition 6.12. Namely, we proved that the
valuative tree could also be obtained as a projective limit of Eggers-Wall trees. The main point of our
proof is that ΘLpCq embeds naturally in the valuative tree, for any C. We showed also in [46, Theorem
8.18] that the triple piL, 1`eL, cLq is the pullback by this embedding of a triple of three natural functions
on the valuative tree: the multiplicity, the log-discrepancy and the self-interaction.
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An advantage of the identification of ΘL with the valuative tree is that it allows to get an interpretation
of the points of ΘL which do not belong to any ΘLpCq as special infinitely singular semivaluations, in
the language of [38] and [67].

Another advantage is obtained when the base algebraically closed field has positive characteristic. Let
us define the functions iL, cL and eL on θπpCq by the equalities appearing in Proposition 6.28. This
provides a definition of a notion of Eggers-Wall tree in positive characteristic, where Newton-Puiseux
series are not enough for the study of plane curve singularities (see Remark 2.17). The approach of Section
6.3 may be generalized to prove that in restriction to θπpCq, the multiplicity function relative to L is
equal to iL, the contact complexity function relative to L is equal to cL and the log-discrepancy function
relative to L is equal to 1 ` eL. This abstract Eggers-Wall tree may be associated with the ultrametric
distance on the branches of C, as described in our paper [45]. It may be seen also as a generalization
of the notion of characteristic exponents in positive characteristic introduced in Campillo’s book [17],
where the author computes these exponents using Hamburger-Noether expansions (see [17, Section 3.3]),
infinitely near points (see [17, Remark 3.3.8]) or Newton polygons (see [17, Section 3.4]).

Assume now that the germ C is holomorphic. Then the Enriques diagram and the weighted dual
graph of the minimal embedded resolution, as well as the Eggers-Wall tree relative to generic coordinates
encode the same information, which is equivalent to the embedded topological type of C. Proofs of this
fundamental fact may be found in Wall’s book [131, Propositions 4.3.8 and 4.3.9].

A basic problem is then to find methods to transform one kind of tree into the two other kinds. Noether
described in [90] how to pass from the characteristic exponents of an irreducible curve singularity C to
the structure of the blow up process leading to an embedded resolution. Enriques and Chisini generalized
this approach in [35, Libr. IV, Cap. I] to the case when C is not necessarily irreducible. Namely, they
showed how to pass from the characteristic exponents of its branches and the orders of coincidence of
pairs of branches in generic coordinates to the associated Enriques diagram.

Zariski and Lejeune-Jalabert proved by different methods in their 1971 paper [137] and 1972 thesis
[77] respectively, that the characteristic exponents of the branches of C and the intersection numbers of
its pairs of branches determine the embedded topological type of C and the combinatorics of its minimal
embedded resolution. This may be seen as a proof of the fact that the weighted dual graph of the minimal
embedded resolution is equivalent to the generic Eggers-Wall tree. Methods to pass from the knowledge
of the characteristic exponents and intersection numbers to the dual graph were explained by Eisenbud
and Neumann [34, Appendix to Ch. 1], Brieskorn and Knörrer [15, Section 8.4], Michel and Weber [86],
de Jong and Pfister [66, Section 5.4] and an algorithm was described by the first author in [42, Sect.
1.4.6].

Let us mention now several other trees which were associated to plane curve singularities.
As explained in Subsection 4.5, the changes of variables considered by Puiseux (called sometimes New-

ton maps) were compositions of affine and of toric ones, which in general were not birational. Nevertheless,
an algorithm of abstract resolution and of computation of Newton-Puiseux series may be developed also
using them. A variant of the fan trees, adapted to this context and called Newton trees, was used by
Cassou-Noguès in her papers mentioned in Subsection 4.5, written alone or in collaboration. The Newton
trees encode also the toroidal pseudo-resolution processes described in the paper [21] of Cassou-Noguès
and Libgober. We refer the reader especially to the papers [20] and [22] for more details about this
approach. The changes of coordinates (71), which are very similar to Newton maps, were also used in the
paper [72] of Kennedy and McEwan to study the monodromy of holomorphic plane curve singularities.

Newton maps and Newton trees have been used to study the singularities of quasi-ordinary hypersur-
faces by Artal, Cassou-Noguès, Luengo and Melle Hernández (see for instance [10] and [11]). In their 2014
paper [55], the second author and González Villa compared the Newton maps with the toric morphisms
appearing in a toroidal pseudo-resolution of an irreducible germ of quasi-ordinary hypersurface.

Newton trees are algebraic variants of the splice diagrams associated by Eisenbud and Neumann in
their 1986 book [34] to any oriented graph link in an integral homology sphere, extending a graphical
convention introduced by Siebenmann in his 1980 paper [114]. In our recent paper [46, Section 5], we
explained how to pass from the Eggers-Wall tree of a holomorphic plane curve singularity C relative to
a smooth branch L to the splice diagram of the oriented link of L` C in S3.
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In his 1993 papers [69] and [70], Kapranov associated a version of Kuo and Lu’s trees to finite sets of
formal power series with complex and real coefficients respectively. He called them Bruhat-Tits trees.

A version of Kuo and Lu’s trees was used recently by Ghys in his book [50] about the topology of
real plane curve singularities. He associated two such trees, one for x ą 0 and another one for x ă 0 to
any germ whose branches are smooth and transversal to the reference branch x “ 0, and studied their
relation, describing all the possible couples of such trees. In a theorem proved with Christopher-Lloyd
Simon (see [50, Page 266]), Ghys extended this analysis to all plane curve singularities with only real
branches. For this more general problem, it was not any more a variant of Kuo and Lu’s tree which was
crucial, but a real version of the dual graph of the associated minimal resolution. A different real version
of the dual resolution graph was introduced before by Castellini in [25, Chap. 3].

Ghys’ version of Kuo and Lu’s trees was also used by Sorea in her study [116] of curve singularities
defined over R but without any real branch, that is, singularities of real analytic functions fpx, yq in the
neighborhood of a local maximum or minimum. Those trees were related in this work with another kind
of tree, defined using Morse theory, the so-called Poincaré-Reeb tree of the function f relative to x.

Versions of our fan tree were considered by Weber in his 2008 survey [132] about the embedded
topological type of holomorphic plane curve singularities, based on the earlier 1985 preprint [86] of Michel
and Weber, which contained also many examples. The reading of Weber’s survey [132] should facilitate
the interpretations of the objects manipulated in this paper in terms of the embedded topological type
of C.

7. Overview and perspectives

We begin this final section by an overview of the content of the paper. Then we formulate a few
remarks about perspectives of development of the use of lotuses in the study of singularities. The final
Subsection 7.3 contains a list of notations used in this paper.

7.1. Overview.

In this subsection we give an overview of the construction of the fan tree and of the associated lotus
from the Newton fans generated by a toroidal pseudo-resolution process of a plane curve singularity. It
helps us to understand the relations between Newton polygons, Newton-Puiseux series, iterations of blow
ups, final exceptional divisor and the associated Enriques diagrams, dual graphs and Eggers-Wall trees.

L

L

Figure 58. Overview of the constructions of the paper
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We invite the reader to look at Figure 58, which combines Figure 35 and Figure 37, but without their
labels. Let us recall briefly the names and main properties of the objects presented in this drawing, which
is our way to encode the combinatorics of Algorithm 4.22, and how they allow to visualize the relations
between Enriques diagrams, dual graphs and Eggers-Wall trees (see Theorem 5.29):

(1) Given a curve singularity C embedded in a smooth germ of surface S, study it using a cross
pL,L1q (see Definition 3.31).

(2) Construct the Newton fan FL,L1pCq from the associated Newton polygon NL,L1pCq (see Definitions
4.2 and 4.14).

(3) Draw the trunk θFL,L1 pCq (see Definition 4.32) and the lotus ΛpFL,L1pCqq (see Definitions 5.4 and

5.5) of the Newton fan.
(4) As a simplicial complex, the lotus of a Newton fan is determined by the continued fraction

expansions of the slopes of the fan’s rays (see Subsection 5.2).
(5) Make the Newton modification (see Definition 4.14) determined by the Newton fan and look at

the germs of the strict transform of C at all its intersection points with the exceptional divisor.
All those points are smooth on the reduced total transform of L`L1. For each such germ of the
strict transform of C, complete locally the exceptional divisor into a cross.

(6) Each new cross allows to construct again a trunk and a lotus associated to the corresponding
germ of the strict transform of C. Combining the corresponding Newton modifications, one gets
a new level of Newton modifications.

(7) One iterates these constructions until reaching a toroidal surface Σ (see Definition 3.29) on which
the total transform of C and of all the crosses used during the process is an abstract normal
crossings curve, forming the boundary divisor BΣ of a toroidal pseudo-resolution π of C (see

Definition 4.15). The map π is also a toroidal pseudo-resolution of the completion Ĉπ “ πpBΣq
of C relative to π (see Definition 4.15), which is a curve singularity containing the branches of
C and all the branches whose strict transforms are chosen to define crosses at certain steps of
Algorithm 4.22.

(8) In order to get a global combinatorial view, one constructs the associated fan tree pθπpCq,Sπq
(see Definition 4.33), by gluing the trunks generated by the toroidal pseudo-resolution process.
The function Sπ : θπpCq Ñ r0,8s is called the slope function.

(9) The fan tree does not allow to visualize the decomposition of the regularization πreg of π (see
Proposition 4.29) into blow ups of points. In order to get such a vision, one constructs the lotus
ΛπpCq of the process (see Definition 5.26) by gluing the Newton lotuses (see Definition 5.4) of
the strict tranforms of C relative to all the crosses used during the process.

(10) The edges of the lotus correspond bijectively to the crosses created during the toroidal embedding
resolution process by blow ups of points (see Theorem 5.29 (6)). Therefore, one may see the lotus
as the space-time of the evolution of the dual graphs of the toroidal surfaces appearing during
this process.

(11) The graph of the proximity binary relation (see Definition 4.31) on the constellation which is
blown up is the full subgraph of the 1-skeleton of the lotus ΛπpCq on its set of non-basic vertices
(see Theorem 5.29 (7)).

(12) The Enriques diagram (see Definition 4.31) of the constellation of infinitely near points blown up
in order to decompose πreg, which are the base points of the crosses appearing in the algorithm,
is isomorphic with the Enriques tree (see Definition 5.26) of the lotus ΛπpCq.

(13) There is a second way of visualizing the Enriques diagram, using a truncated lotus Λtrπ pCq (see
Subsection 5.5).

(14) The fan tree θπpCq is homeomorphic with the lateral boundary B`ΛπpCq (see Definition 5.26) of
the lotus generated by running Algorithm 4.22.

(15) The lateral boundary B`ΛπpCq is isomorphic with the dual graph (see Definition 3.22) of the
boundary divisor BΣ. There is a simple combinatorial rule for reading on the lotus the self-
intersection numbers of the components of the exceptional divisor of the modification πreg (see
Theorem 5.29 (5)).
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(16) The fan tree θπpCq is also isomorphic with the Eggers-Wall tree ΘLpĈπq (see Definition 6.3) of
the completion of C relative to the toroidal modification π (see Theorem 6.27). The triple of

functions (index iL, exponent eL, contact complexity cL) defined on ΘLpĈπq is determined by the
slope function Sπ on the fan tree through explicit formulae (see Proposition 6.28).

(17) If pL,L1q is a cross on S, then the Eggers-Wall tree ΘLpC ` L
1q determines the Newton polygon

NL,L1pCq (see Corollary 6.17).

7.2. Perspectives.

In this subsection we give a few perspectives on possible uses of lotuses. We believe that the lotuses
of plane curve singularities may be useful in the following research topics:

(1) In the study of the topology of δ-constant deformations of such singularities. As mentioned in
Subsection 6.6, Castellini’s work [25] gives a first step in this direction. An important advantage
of lotuses in this context is that the lotuses of the singularities appearing in the deformations
constructed in [25] by A’Campo’s method embed in the lotus of the original singularity. This
embedding relation is much more difficult to express in terms of classical tree invariants of plane
curve singularities. A crucial question is to understand whether this embedding property is
specific to A’Campo type deformations, or if it extends to other kinds of δ-constant deformations.

(2) In the analogous study for real plane curve singularities. One should probably describe real
variants of the lotuses, embedded canonically up to isotopy in an oriented real plane. Again,
Castellini’s work [25, Sect. 3.3.2] gives a first step in this direction.

(3) In the extension of the distributive lattice structures described by Pe Pereira and the third author
in [96] to arbitrary finite constellations, and in the application of those structures to the problem
of adjacency of plane curve singularities. The natural operad structure on the set of finite lotuses
associated to toroidal pseudo-resolution processes (defined by gluing the base of one lotus to an
edge of the lateral boundary of another lotus) could be also useful in this direction.

(4) In the study of complex surface singularities through the Hirzebruch-Jung method (see [103]).
This method starts from a finite projection to a germ of smooth surface, and considers then an
embedded resolution of the discriminant curve. The lotuses of such discriminant curves could
be used as supports for encoding information about the initial finite projection, from which one
could read invariants of the surface singularity.

7.3. List of notations.

In order to help browsing through the text, we list the notations used for the main objects met in it:
!

a
b

)

: Elementary Newton polygon (see Definition 6.14).

ra1, . . . , aks: Continued fraction with terms a1, . . . , ak (see Definition 5.17).

cmpfq: Coefficient of the monomial χm in the series f (see Definition 4.1).

cL: Contact complexity function (see Definition 6.9).

CL,L1 : Strict transform of C by the Newton modification ψCL,L1 (see Definition 4.14).

Ĉπ: Completion of C relative to the toroidal pseudo-resolution π (see Definition 4.15).

ConvpY q: Convex hull of a subset Y of a real affine space.

χm: Monomial with exponent m PM (see the beginning of Subsection 3.2).

BX: Toric boundary of the toric variety X (see Definition 3.18), or toroidal boundary of the
toroidal variety X (see Definition 3.29).

B`ΛπpCq: Lateral boundary of the lotus ΛπpCq (see Definition 5.5).

eL: Exponent function (see Definition 6.3 and Notations 6.7).

fK : Restriction of f to the compact edge K of its Newton polygon (see Definition 4.2).

Fpfq: Newton fan of the non-zero series f P Crrx, yss (see Definition 4.9).

FL,L1pCq: Newton fan of C relative to the cross pL,L1q (see Definition 4.14).

Freg: Regularization of the fan F (see Definition 3.8).

ΓpCq: Enriques diagram of the finite constellation C (see Definition 4.31).
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Hf,ρ: Supporting half-plane of the Newton polygon N pfq determined by the ray ρ Ă σ0 (see
Proposition 4.7).

iL: Index function (see Definition 6.3 and Notations 6.7).

kxpξ, ξ
1q: Order of coincidence of two Newton-Puiseux series (see Definition 6.2).

kxpC,C
1q: Order of coincidence of two distinct branches, relative to a local coordinate system px, yq

(see Definition 6.2).
lZ: Integral length (see Definition 3.1).

pL,L1q: Cross on a germ of smooth surface (see Definition 3.31).

ΛpFq: Lotus of the Newton fan F (see Definition 5.4).

Λpλ1, . . . , λrq: Lotus associated to the finite set tλ1, . . . , λru Ă Q` Y t8u (see Definition 5.4).

ΛπpCq: Lotus of the toroidal pseudo-resolution π of C (see Definition 5.26).

Λtruncπ pCq: Truncation of the lotus ΛπpCq (see Definition 5.35).

mopCq: Multiplicity of the plane curve singularity C at the point o (see Definition 2.5).

ML,L1 : Monomial lattice associated to the cross pL,L1q, (see Definition 3.32).

N: Set of non-negative integers.

N˚: Set of positive integers.

NL,L1 : Weight lattice associated to the cross pL,L1q (see Definition 3.32).

N pfq: Newton polygon of the non-zero series f P Crrx, yss (see Definition 4.2).

NL,L1pCq: Newton polygon of C relative to the cross pL,L1q (see Definition 4.14).

Oρ: Toric orbit associated to the cone ρ of a fan (see the relation (22)).

ÔS,o: Completed local ring of the complex surface S at the point o (see Definition 2.5).

π˚pCq : Total transform of a plane curve singularity C by a modification π (see Definition 2.31).

ψF
σ : Toric morphism from XF to Xσ associated to any fan F which subdivides the cone σ

(see relation (25)).
ψCL,L1 : Newton modification defined by C relative to the cross pL,L1q (see Definition 4.14).

R`: Set of non-negative real numbers.

Spfq: Support of the power series f P Crrx, yss (see Definition 4.1).

Sπ: Slope function of the toroidal pseudo-resolution π of C (see Definition 4.33).

σ0: Regular cone generated by the canonical basis of the lattice Z2.

σL,L
1

0 : Regular cone generated by the canonical basis of the lattice NL,L1 (see Definition 3.32).

tw: One parameter subgroup of the algebraic torus TN , corresponding to the weight vector
w P N (see the beginning of Subsection 3.2).

TN : Complex algebraic torus with weight lattice N (see formula (16)).

tropf : Tropicalization of the non-zero power series f P Crrx, yss (see Definition 4.4).

tropCL,L1 : Tropical function of the curve singularity C relative to the cross pL,L1q (see Definition
4.14).

θpFq: Trunk of the fan F (see Definition 4.32).

θπpCq: Fan tree of the toroidal pseudo-resolution π of C (see Definition 4.33).

ΘLpCq: Eggers-Wall tree of the plane curve singularity C relative to the smooth branch L (see
Definition 6.3 and Notations 6.7).

ΘL: Universal Eggers-Wall tree (see Definition 6.12).

Xσ: Affine toric variety defined by the fan consisting of the faces of the cone σ (see Definition
3.14).

XF : Toric variety defined by the fan F (see Definition 3.15).

Z: Operation of the monoid of abstract lotuses (see formula (50)).

^: Operation on the set Q˚` allowing to describe the intersection of Newton lotuses (see
formula (48)).

Zpfq: Zero-locus of a holomorphic function f or of a formal germ f P ÔS,o.

ZxpCq: Set of Newton-Puiseux roots of a plane curve singularity C relative to a local coordinate
system px, yq (see Definition 6.2).
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[6] A’Campo, N. Le groupe de monodromie du déploiement des singularités isolées de courbes planes II. Proc. of the

International Congress of Mathematicians, Vancouver, 1974, 395–404. 75
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Lect. Notes in Maths. 340, Springer, Berlin, 1973, 1–37. 75
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[47] Garćıa Barroso, E. R., Gwoździewicz, J. Quasi-ordinary singularities: tree model, discriminant, and irreducibility. Int.
Math. Res. Not. IMRN 2015, no. 14, 5783–5805. 94
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[54] González Pérez, P. D., Risler, J.-J. Multi-Harnack smoothings of real plane branches. Ann. Sci. Éc. Norm. Supér. (4)
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95, 96
[87] Neumann, W., Wahl, J. Complex surface singularities with integral homology sphere links. Geom. Topol. 9 (2005),

757–811. 77

[88] Newton, I. The method of fluxions and infinite series. Printed by H. Woodfall and sold by J. Nourse, London, 1736.
Translated into french by M. Buffon, Debure libraire, 1740: La méthode des fluxions et des suites infinies. 49, 52

[89] Noether, M. Ueber die singulären Werthsysteme einer algebraischen Function und die singulären Punkte einer alge-
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réelles. Thèse, Univ. Paris 7, 2001. Available at https://tel.archives-ouvertes.fr/tel-00002800v1. 94

[99] Popescu-Pampu, P. Approximate roots. In Valuation theory and its applications. F.V. Kuhlmann et al. eds. Fields Inst.

Communications 33, AMS 2003, 285–321. 53, 93
[100] Popescu-Pampu, P. Sur le contact d’une hypersurface quasi-ordinaire avec ses hypersurfaces polaires. Journal of the

Inst. of Math. Jussieu 3 (2004), 105–138. 94

[101] Popescu-Pampu, P. The geometry of continued fractions and the topology of surface singularities. Dans Singularities
in Geometry and Topology 2004. Advanced Studies in Pure Mathematics 46, 2007, 119–195. 77

[102] Popescu-Pampu, P. Le cerf-volant d’une constellation. L’Ens. Math. 57 (2011), 303–347. 47, 55, 67, 70, 72, 73, 74, 76
[103] Popescu-Pampu, P. Introduction to Jung’s method of resolution of singularities. In Topology of Algebraic Varieties and

Singularities. Proceedings of the conference in honor of the 60th birthday of Anatoly Libgober. J. I. Cogolludo-Agustin

and E. Hironaka eds. Contemporary Mathematics 538, AMS, 2011, 401–432. 98
[104] Popescu-Pampu, P. From singularities to graphs. arXiv:1808.00378. 28, 74

[105] Popescu-Pampu, P., Stepanov, D. Local tropicalization. In Algebraic and Combinatorial aspects of Tropical Geometry.
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