
HAL Id: hal-04367726
https://hal.science/hal-04367726v2

Preprint submitted on 20 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Silent sources on a surface for the Helmholtz equation
and decomposition of L2 vector fields

Laurent Baratchart, Houssem Haddar, Cristóbal Villalobos Guillén

To cite this version:
Laurent Baratchart, Houssem Haddar, Cristóbal Villalobos Guillén. Silent sources on a surface for
the Helmholtz equation and decomposition of L2 vector fields. 2024. �hal-04367726v2�

https://hal.science/hal-04367726v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SILENT SOURCES ON A SURFACE FOR THE HELMHOLTZ EQUATION
AND DECOMPOSITION OF L2 VECTOR FIELDS

L. BARATCHART∗, H. HADDAR† , AND C. VILLALOBOS GUILLÉN‡

Abstract. We present a decomposition of R3-valued vector fields of L2-class on the boundary of a Lipschiz domain in
R3, that relates to an inverse source problem with source term in divergence form for the Helmholtz equation. Applications
thereof include weak scattering from thin interfaces. The inverse problem is not uniquely solvable, as the forward operator has
infinite-dimensional kernel. The proposed decomposition brings out constraints that can be used to restore uniqueness. This
work subsumes the one in [3] dealing with the Laplace equation, and shines a light on new ties that arise in the Helmholtz case
between solutions on each side of the surface. Our approach uses properties of the Calderón projectors on the boundary of
Lipschitz domains, that we carry out in the L2 ×H−1 setting to handle L2 vector fields in the style of [29], dwelling on results
from [18]; it applies for any complex wave number.

1. Introduction. Inverse source problems for the wave equation are classical issues steming from
various applications, notably medical imaging; e.g., ultrasound imaging, microwave imaging, or multimodal
imaging techniques such as photoacoustics [19]. This work is concerned with source terms in divergence
form which arise naturally, for instance when modelling anisotropy in the medium response [13] or when
a static electromagnetic setting is used as in Electro-Encephalography [27] and Paleomagnetism [8]. The
corresponding inverse problems are extremely ill-posed, since the forward operator is not even injective and
the solution is thus subject to fundamental uncertainty that can only be resolved by making additional
assumptions. Our aim is to contribute to this analysis in the time-harmonic case, by bringing out the
structure of this uncertainty when sources are supported on a surface.

Specifically, the model problem we are interested in is governed by an equation of the form

(1.1) ∆u + k2u = ∇ ⋅M in R3,

where the scalar-valued potential u satisfies a Sommerfeld radiation condition at infinity. The left-hand side
of (1.1) is the Helmholtz operator with wave number k, while the right-hand side is a source term which
is the divergence on R3 of a R3-valued distribution M supported on some compact Lipschitz surface Γ;
the latter is the boundary of a bounded domain Ω ⊂ R3, assumed to be known. When k is real, Equation
(1.1) can be construed as an approximate model for scattering from thin interfaces, see Remark 3.1 and
references [13, 9]. In the particular case where k = 0, it yields the law of the magnetic potential generated by
a magnetization distribution M [7]. A typical inverse problem associated with (1.1) is to recover M from
knowledge of the field ∇u away from the surface, usually either inside or outside Ω. In many applications, Γ
is connected hence Ω has connected complement, but this does not simplify things much and we shall avoid
this extra-assumption. If M is such that the field ∇u vanishes inside (resp. outside) Ω, it is said to be silent
inside (resp. outside). The existence of non-trivial silent M makes the forward operator non-injective,
which is one of the big issues facing such inverse problems. Hereafter, we shall investigate silent sources M
lying in (L2(Γ))3, the space of R3-valued (not necessarily tangent) vector fields defined on Γ with square
summable components there.

When k = 0 and Γ is a compact, connected Lipschitz surface, so that (1.1) reduces to a Poisson equation
and Γ is the boundary of a domain with connected complement, then a direct sum decomposition of (L2(Γ))3
into sources silent inside (but not outside) whose tangent component is a gradient, sources silent outside
(but not inside) whose tangent component is a gradient, and tangent divergence-free sources (which are
silent on both sides) was obtained in [3]; see also [6] for the planar case and weaker regularity assumptions.
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In the present paper, we generalize this decomposition to non-zero (possibly complex) k, and show that in
this case a fourth, finite-dimensional summand is generally required. More precisely, letting Γ ∶= ∂Ω be the
boundary of a Lipschitz domain Ω ⊂ R3, we establish in Theorem 4.3 the following orthogonal decomposition
for R3-valued square summable vector fields on Γ:

L2(Γ)3 =Mν ⊕M− ⊕M+ ⊕M0,

where M0 consists of tangent, divergence-free fields in L2(Γ) (these are silent both inside and outside Γ),
while M+ (resp. M−) comprises vector fields silent inside (resp. outside) Γ whose tangential component is
a gradient, andMν is a finite-dimensional space of normal vector fields M generating via (1.1) a potential
u which is locally constant on Γ (equivalently: such that the restriction to Γ of the field ∇u is also normal).
When k = 0 (the case of the Laplacian), no such nonzero field M exists, and we recover the results of [3].
In any case the dimension of Mν cannot exceed the number of connected components of Γ, and it is equal
to the latter in the generic case where k2 ≠ 0 is not a Neumann eigenvalue of (minus) the Laplacian in Ω
nor in R3 ∖Ω (note that the exterior Neumann eigenvalue problem is not trivial if Γ is not connected).

Beyond its own, differential-geometric interest, this decomposition sheds light on the structure of the
solutions of the inverse problem and allows one to ansatz them, so as to gain insight on how much information
can be recovered from the given data.

Our approach departs from [3] and makes systematic use of Calderón projectors, in particular it is
connected with the data completion algorithm proposed in [1]. Properties of Calderón projectors that we
need are standard on the product H1/2(Γ) ×H−1/2(Γ) of fractional Sobolev spaces [24], but we must carry
them over to L2(Γ) ×H−1(Γ) in order to handle the case where M ∈ (L2(Γ))3 in (1.1); for this, we dwell
on the theory of singular integrals on Lipschitz (and even more general) surfaces expounded in [18], but
several results can also be found in [29]. While it would be possible, and in fact simpler to derive similar
results for vector fields M whose tangential and normal components belong to H1/2(Γ), we feel that the
L2 theory is not only more general but also more natural and better suited for numerical implementation:
it is more natural because the membership M ∈ (L2(Γ))3 naturally splits into a product membership of
both the normal and tangent component to L2(Γ), whereas fields whose tangential and normal components
belong to H1/2(Γ) cannot be characterized independently of the embedding Γ→ R3, making them difficult
to describe intrinsically; and the L2 theory is also better suited for numerical implementation, because
convergent discretization in H1/2 is known to be hard to handle. We work in R3 throughout, even though
the generalization to Rn is straightforward.

The paper is organized as follows. In Section 2, we set up notation and conventions used for function
spaces and operators in Euclidean space and on a surface. Section 3 states the problem and characterizes
silent sources in terms of Calderón projectors. The main result of the paper, namely the decomposition of
(L2(Γ))3 in terms related to silent sources, is stated and proven in Section 4. Finally, this decomposition
is illustrated by explicit calculations in the case of spheres. The paper also contains a technical appendix,
gathering some results on surface potentials and elliptic regularity that we could not find in the literature;
several of them are adaptations to the case k ≠ 0 of material from [18] or reproduction of results from [29].

2. Preliminaries and Notation. If V is a topological vector space over R or C, we denote by V ∗

its dual space and write Gt ∶ W ∗ → V ∗ for the transpose of an operator G ∶ V → W ; also, KerG denote its
kernel and ImG its image. For v ∈ V and ω ∈ V ∗, we let ⟨ω, v⟩ indicate the duality product. If V is equipped

with a conjugation, say v ↦ v, we define a sesquilinear form on V ∗ × V by ⟪ω, v⟫ ∶= ⟨ω, v⟩, and when V
is a Hilbert space we denote the (Hermitian) inner product of v, u ∈ V by ⟪v, u⟫V . Notice our convention
that such products are linear on the second entry. In the Hilbertian case, one can identify V with V ∗ via
the linear isometry v ↦ ⟪v, ⋅⟫V . Then, the adjoint G∗ ∶ W → V of an operator G ∶ V → W is defined by
⟪G∗w, v⟫V = ⟪w,Gv⟫W .

When Ω ⊂ Rn is open, we put C∞(Ω) for the space of infinitely differentiable functions on Ω, and
C∞c (Ω) for the subspace of those having compact support. We denote by E(Ω) the space C∞(Ω) endowed
with the topology of uniform convergence of all derivatives on compact sets, and by D(Ω) the space C∞c (Ω)
equiped with the inductive topology of subspaces with support in a fixed compact set [28, Chapter I, Section
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2]. Then, D∗(Ω) is the space of distributions on Ω, and E∗(Ω) the subspace of distributions with compact
support. Recall that the support of ω ∈ D∗(Rn) is the relatively closed set supp(ω) ⊂ Ω, no point of
which has a neighborhood where ω restricts to the zero distribution. Throughout, we let ∂jω denote the
(distributional) partial derivative of ω with respect to the j-th coordinate in Rn.

For 1 ≤ p ≤ ∞ and Q a Borel set in R3 with ρ a positive Borel measure on Q, we let Lp(Q,ρ) denote the
familiar Lebesgue space of p-summable functions on Q (essentially bounded if p = ∞). When ρ is Lebesgue
measure, we simply write Lp(Q). When E ⊂ Rn, a map f ∶ E → Rm is Lipschitz if ∣f(x) − f(y)∣ ≤ k∣x − y∣
for x, y ∈ E, and the smallest k for which this holds is the Lipschitz constant of f , denoted as kf . We set
Lip(E,Rm) to be the space of Lipschitz functions E → Rm endowed with the norm ∥f∥L∞(E)+kf . Members
of Lip(E,Rm) extend to Lipschitz functions on R3 with no increase of the Lipschitz constant [23, Theorem
7.2]; clearly, the extension can be chosen to have compact support if E is bounded.

For Ω ⊂ R3 an open set and s ∈ R, let Hs(Ω) denote the Bessel potential space of order s (with index
2); the latter consists of restrictions to Ω of tempered distributions T on R3 whose Fourier transform T̂ is
such that (1 + ∣ξ∣2)s/2T̂ ∈ L2(R3). On Hs(Ω) one puts the norm ∥(1 + ∣ξ∣2)s/2T̂ ∥L2(R3), and if s ≥ 0 then
Hs(Ω) is a space of functions [24, ch. 3]. Clearly, H0(Ω) = L2(Ω) and Ht(Ω) ⊂Hs(Ω) for s < t, with dense
inclusion. In particular, Hs(R3) densely contains Lipschitz functions with compact support for s ≤ 1.

A Lipschitz domain Ω ⊂ R3 is one whose boundary is locally isometric to the graph of a Lipschitz
function. If Ω is Lipschitz then H1(Ω) coincides with functions in L2(Ω) whose distributional derivatives
again lie in L2(Ω), moreover Hs(Ω) is the real interpolation space [L2(Ω),H1(Ω)]s for s ≥ 0, while H−s(Ω) =
(Hs

0(Ω))∗, where Hs
0(Ω) is the closure of D(Ω) in Hs(Ω), see [24, Theorems 3.18 & 3.30 & 3.33]. In

particular Hs(Ω) ⊂ (Lip(Ω))∗ for s ≥ −1 as soon as Ω is Lipschitz and bounded, and in this range of s a
member of Hs(Ω) is completely determined by its action on compactly supported Lipschitz functions in Ω.
Still in the case that Ω is bounded and Lipschitz, we also define for s ≥ 0:

(2.1) Hs
ℓ (R3 ∖Ω) ∶= {ω ∈ D∗(R3 ∖Ω) ∶ ω

∣Br∖Ω ∈H
s(Br ∖Ω), for each r > 0 such that Ω ⊂ Br},

where Br ⊂ R3 denotes the open ball of radius r centered at 0. This space is denoted as Hs
loc(R3∖Ω) in [24],

which conflicts with standard notation and is why we adopt a subscript ℓ (for “local”). For convenience, we
also (redundantly) define Hs

ℓ (Ω) ∶= Hs(Ω) to streamline notation at places. This is consistent with (2.1),
in that Hs

ℓ (Ω) is comprised in any case of functions lying in Hs(Ω ∩Br) for all r large enough.
For a compact Lipschitz surface M ⊂ R3 which is the boundary of a Lipchitz open set, we let σ indicate

surface measure on M ; hence σ = H2
∣M , the restriction to M of 2-dimensional Hausdorff measure [32, Remark

5.8.3]. We write L2(M) rather than L2(M,σ), and for ϕ, ϕ̃ ∈ L2(M)n with n ≥ 1 we let

⟨ϕ, ϕ̃⟩L2(M)n ∶= ∫
M
ϕ ⋅ ϕ̃ dσ and ⟪ϕ, ϕ̃⟫L2(M)n ∶= ∫

M
ϕ ⋅ ϕ̃ dσ,

where ϕ denotes the complex conjugate of ϕ. For the remaining definitions, we fix a particular compact
Lipschitz surface M ⊂ R3 with atlas {(θj , Uj)}j∈I , in such a way that θj(Uj) is a ball Bj ⊂ R2 for each j and,
for some rigid motion Rj of R3, the map θ−1j ∶ Bj → R3 is of the form Rj ○ (I2 ×ψj) where I2 is the identity

operator on R2 and ψj ∶ Bj → R is Lipschitz-smooth. Without loss of generality, we assume that the charts
are finitely many. A point x ∈M such that θ−1j is differentiable at θj(x) for all j such that x ∈ Uj is called
regular. By Rademacher’s theorem, σ-a.e. x ∈M is regular. Defined this way regular points depend on the
atlas, but this is unimportant to us; see [32, Section 5.8] for a more intrinsic definition. Given a regular
point x ∈ M , we let TxM ⊂ R3 denote the tangent space of M at x. The latter is defined as the image of
the derivative Dθ−1j (θj(x)), and by the chain rule this definition is independent of j such that x ∈ Uj . For

a function f ∶M Ð→ C and a point x ∈ Ui such that f ○ θ−1j is differentiable at θj(x), we let ∇Tf(x) ∈ TxM
denote the surface gradient of f at the point x. Note that if f ∶ M Ð→ C is Lipschitz then, for σ-a.e.
x ∈ M , ∇Tf(x) is well defined. We endow Lip(M) with the norm ∥f∥∞ + ∥∇Tf∥∞, which is consistent
with the norm previously defined on Lip(E). Lipschitz partitions of unity subordinated to an open cover
exist as in the smooth case. Using Lip(M) and Lipschitz partitions of unity, we can quickly define Sobolev
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spaces of index s ∈ [−1,1] on M , which is all we shall need (more general cases may be found in [24, 15]).
Indeed, if Lipc(Uj) denotes the space of Lipschitz functions compactly supported in Uj , we see on using
partitions of unity that a member of Lip(M)∗ is completely determined by its effect on Lipc(Uj) for each j.
In addition, Lipc(Bj) and Lipc(Uj) are isomorphic under the map Lipc(Bj) ∋ f ↦ f ○ θj ∈ Lipc(Uj). Now,
letting g̃ denote the extension by zero to all of M of a function initially defined on a subset of M , we put
for s ∈ [−1,1]:

(2.2) Hs(M) ∶= {ψ ∈ Lip(M)∗ ∶ ∀j ∈ I, the map Lipc(Bj) ∋ f ↦ ⟨ψ, f̃ ○ θj⟩ belongs to Hs(Bj)} .

Writing ψθj ∶ Lipc(Bj) → R for the map ψθj(f) ∶= ⟨ψ, f̃ ○ θj⟩ above, we define the convergence of a sequence

(ψn)n ⊂ Hs(M) to ψ ∈ Hs(M) as the convergence ψ
θj
n → ψθj in Hs(Bj) for any j ∈ I. This notion is

independent of the atlas and the Hs(M) are Hilbert spaces. Again, for s < t we have that Ht(M) ⊂Hs(M)
and H0(M) = L2(M), furthermore H−s(M) identifies with (Hs(M))∗. Note that Lip(M) is dense in
Hs(M) for s ∈ [−1,1]. This allows one to define the (weak) tangential gradient ∇T f of f ∈ H1(M) as the
limit in (L2(M))3 of the vector fields ∇T gn, where gn is any sequence of Lipschitz functions converging to
f in H1(M). When f ∈Hs(M) with 0 ≤ s < 1, the tangential gradient ∇Tf can still be defined as a current
acting on tangent vector fields of class H1−s(M) (viewed as 1-forms upon pairing them with tangent vector
fields using Euclidean scalar product); see for instance [4].

We refer on several occasions to results from [18] that uses a more general definition of Sobolev spaces,
discussed for example in [16]; in the present context, the latter reduces to the one just described.

We say that f ∈ Lip(M)3 (resp. L2(M)3, H1(M)3...) belongs to LipT (M) (resp. L2
T (M), H1

T (M)...)
if, for σ-a.e. x ∈M , there holds f(x) ∈ TxM . Now, for a ϕ ∈ L2

T (M), one can define by duality the surface
divergence of ϕ, as a member of H−1(M) denoted by ∇T⋅ϕ; i.e. for each f ∈ Lip(M), it is required that

⟨∇T⋅ϕ, f⟩ ∶= −⟨ϕ,∇Tf⟩L2(M)3 .

By density, we get for φ ∈H1(M), ϕ ∈ L2
T(M), ϕ ∈ L2(M) and φ ∈H1

T (M) that

⟨∇T⋅ϕ, φ⟩ = −⟨ϕ,∇Tφ⟩L2(M)3 , and ⟨∇T⋅φ, ϕ⟩L2(M) = −⟨φ,∇Tϕ⟩.

In this paper, we consider a bounded Lipschitz domain Ω+ with boundary Γ, and we let Ω− ∶= R3 ∖Ω+.
This choice of signs, where a “-” is attached to the unbounded complement of the bounded domain (itself
denoted with a “+”), is as in [18] but departs from [24]; we implicitly take this discrepancy into account
when quoting results from [24]. Note that Γ is a Lipschitz surface, that needs not be connected in general.
As a short hand, unless otherwise stated, we use the symbol ± to mean both + and -, and we employ the
symbol ∓ to designate the opposite sign to ±.

Using [18, Theorem 4.3.6] together with Lemma A.1 and its proof (see equation (A.1)), we get that

H1(Γ) = {φ ∈ L2(Γ) ∶ ∇Tφ ∈ L2(Γ)3} .

For φ, φ̃ ∈H1(Γ), one has ∇T⋅∇Tφ ∈H−1(Γ) =H1(Γ)∗ and ⟨∇T⋅∇Tφ, φ̃⟩ = −⟨∇Tφ,∇Tφ̃⟩L2(Γ)3 . We put
∆T ∶= ∇T⋅∇T which is the so-called Laplace-Beltrami operator on Γ. We also use the Hermitian form:

⟪φ, φ̃⟫H1(Γ) ∶= ⟪φ, φ̃⟫L2(Γ) + ⟪∇Tφ,∇Tφ̃⟫L2(Γ)3

which generates the same topology onH1(Γ) as the one defined after (2.2), by invariance of Sobolev functions
under composition with Lipchitz maps [32, Theorem 2.2.2]. We denote by ∥⋅∥H1(Γ) the corresponding norm.
Also, we denote by ∥ ⋅ ∥H−1(Γ) the dual norm in H−1(Γ), that arises from a Hermitian product written as
⟪⋅, ⋅⟫H−1(Γ). In [18], a different norm is used which is equivalent to the present one.

We denote the classical trace on Γ from Ω± by γ± ∶H1(Ω±) Ð→H1/2(Γ); it is a bounded linear operator.
If for ϕ ∈H1

ℓ (R3) it holds that γ+ϕ = γ−ϕ, we simply write γϕ ∶= γ±ϕ.
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We also use nontangential limits on Γ. That is, given α > 0, we define a nontangential domain of
approach to x ∈ Γ from Ω± by

C±α(x) ∶= {y ∈ Ω± ∶ ∣x − y∣ ≤ (α + 1)dist(y,Γ)},

where dist indicates the Euclidean distance between a point and a set. Subsequently, for ψ a measurable
function on Ω± and x ∈ Γ, we put

γ±αψ(x) ∶= lim
y → x

y ∈ C±α(x)

ψ(y)

whenever this limit exists. From [18, Proposition 3.3.1] it follows that x lies in C±α(x) for σ-a.e. x ∈ Γ, hence
this definition is meaningful σ-a.e. If the limit exists for every α > 0, we say that the nontangential limit of
ψ from Ω± exists at x. In the case that the nontangential limit of ψ exists for σ-a.e. x ∈ Γ, we denote the
resulting function by γ±ψ (same notation as the trace of a Sobolev function), and in case γ+ψ = γ−ψ we
likewise drop the subscript and write γψ.

Remark 2.1. The slight abuse of notation assigning the same symbol to the trace and the nontangential
limit should cause no confusion, since for Lipschitz domains and H1

ℓ functions the trace coincides σ-a.e. with
the nontangential limits whenever the latter exist. One way to show this is to prove the result locally, when
the boundary is a Lipschitz graph above a plane A, in which case one can invoke the absolute continuity of
Sobolev functions on a.e. line perpendicular to A [32, Section 2.1].

Note that the restriction mapping γ ∶ E(R3) Ð→ Lip(Γ), is continuous; we will use the symbol γ∗ to denote
the adjoint operator of this particular version of the trace.

3. Statement of the problem and layer potentials.

3.1. Statement of the problem. We fix throughout some k ∈ C in (1.1), together with a bounded
Lipschitz domain Ω+ ⊂ R3 with boundary Γ, surface measure σ and outward-pointing unit normal ν(x) at
σ-a.e. x ∈ Γ. In applications we have in mind, k is real and may be taken positive, but the decomposition
of vector fields that we establish in Theorem 4.3 holds for complex k as well.

Set G(x) ∶= − eik∣x∣
4π∣x∣

, which is a fundamental solution for the Helmholtz equation (1.1). We denote with

G its potential operator, that is:
G ∶ E∗(Rn) Ð→ D∗(R3)

d ↦ G ∗ d,
where G ∗ d indicates convolution. By [30, Theorem 27.6], the map G is continuous and injective. For
M ∈ L2(Γ)3, let us decompose the normal and tangential components as M = νMν +MT with Mν ∶=M ⋅ν
and MT ∶=M −νMν . Clearly, MT ∈ L2

T (Γ), therefore one can define ∇T⋅MT ∈H−1(Γ). We now introduce
the so-called forward operator of the inverse source problem:

F ∶ L2(Γ)3 Ð→ D∗(R3)
M ↦ G[∇⋅(Mσ)],

where Mσ designates the measure on R3 such that d(Mσ) =Mdσ =MdH1
∣Γ, and ∇⋅(Mσ) is the (weak)

Euclidean divergence of Mσ in R3. Note that F(M) = ∇G∗(Mσ) and thus, F(M) is a locally integrable
function on R3 which is real analytic on R3 ∖ Γ. If we set u = F(M), we see then that u satisfies the
Helmholtz equation:

(3.1) ∆u + k2u = ∇ ⋅ (Mσ) on R3,

as well as the Sommerfeld radiation condition:

(3.2) lim
∣x∣→∞

∣x∣ ( ∂

∂∣x∣ − ik)u(x) = 0.



6 L. BARATCHART, H. HADDAR AND C. VILLALOBOS GUILLÉN

Since G is injective, the kernel of F consists of those M ∈ L2(Γ)3 such that ∇ ⋅ (Mσ) = 0. Also, as F(M)
is continuous off Γ and lies in L1

loc(R3), membership of M in that kernel is tantamount to F(M) being
identically zero on R3 ∖ Γ. In other words, we have the following chain of equivalences:

(3.3) F(M)(x) = 0 for all x ∈ R3 ∖ Γ ⇐⇒ M ∈ KerF ⇐⇒ ∇ ⋅ (Mσ) = 0.

We say that M is silent inside (resp. silent outside) if (F(M))∣Ω+ = 0 (resp. (F(M))∣Ω− = 0). When
M is silent both inside and outside, we say that it is silent everywhere (or simply silent), in which case it
lies in the kernel of F , by (3.3). If M is neither silent inside nor outside, we say it is silent nowhere. The
existence of silent distributions on either side is a major difficulty facing the inverse problem of recovering
M , and the issue that we raise is to describe the vector fields in L2(Γ)3 that correspond to these various
notions of silence. Note that we only distinguish between silence inside and outside Ω+, and do not consider
diverse qualifications of silence in a prescribed subset of components of R3 ∖ Ω+ arising when Γ is not
connected. While the present approach could be adapted for that purpose, the case under study is entirely
typical already, and the results are simpler to state.

Note that a temperate distribution u and a vector field M ∈ L2(Γ)3 satisfy (3.1) and (3.2) if and only
if u = F(M). Indeed, the Fourier transform of a temperate solution T to ∆T + k2T = 0 on Rn has compact
support, hence T ∈ Hs(Rn) for some s. So, if in addition T satisfies (3.2), then we can appeal to [24,
Theorems 7.12 & 9.6] to conclude that T ≡ 0.

Remark 3.1. Besides inverse magnetisation or EEG problems studied for example in [6, 3, 27] that
correspond to the case k = 0, equation (3.1) can serve as a model for scattering from thin films [13, 9].
Indeed, consider a thin layer of constant width ϵ ≪ 1 coating ∂Ω with some material characterised by a
coefficient β, so that the total field uϵ generated by a source f (compactly supported outside the thin layer)
satisfies

∇ ⋅ (1 + βϵ)∇uϵ + k2uϵ = f in R3

together with Sommerfeld radiation condition, where βϵ = β inside the thin layer and βϵ = 0 outside. Then,
formally at least,

uϵ = u0 + ϵu1 + o(ϵ)
where the incident field u0 satisfies ∆u0 + k2u0 = f in R3 and u1 is a solution of (3.1) with M = −A∇u0,
the (anisotropic) matrix field A being defined on ∂Ω by

Aν = β

1 + βν and Aτ = βτ , ∀τ tangent to Γ.

The scattered field uϵ − u0 can then be approximated to the first order by ϵu1, see [13] for a rigorous
justification of this type of model in the case of thin interfaces with constant width ϵ.

3.2. Layer potentials and Green identities. We recall below classical tools such as layer potentials
and Calderón projectors to express the solutions to the Helmholtz equation in Ω±. We refer to [24] for the
H1-theory, where the densities of single and double layer potentials lie in H1/2(Γ) and H−1/2(Γ) respectively.
However, to deal with L2(Γ) and H−1(Γ) densities as is necessary to handle the case that M ∈ L2(Γ)3, we
need to extend the domain of definition of the operators under consideration, and for this we appeal to the
work in[18]. The results of [18] are derived for the case k = 0 only, but we adapt them to k ≠ 0 (possibly
complex) in Appendix A.1. Regarding reference [24], we warn the reader that the Helmholtz equation there
is minus ours, hence the fundamental solution there differs by a sign from ours; we implicitly take into
account this discrepancy when quoting formulas from [24].

We write ν = (ν1, ν2, ν3) for the coordinates of the unit outer normal of Γ, pointing into Ω−. For
u ∈H1

ℓ (Ω±) such that ∆u ∈ L2
ℓ(Ω±), we let ∂±νu ∈H−1/2(Γ) be the interior and exterior co-normal derivatives

for the Helmholtz differential operator [24, Chapter 4]). These are well-known extensions, based on the first
Green formula, of the natural definition:

∂+νu = ν ⋅ γ+(∇u) for u ∈H2(Ω+) and ∂−νu = ν ⋅ γ−(∇u) for u ∈H2
ℓ (Ω−).
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As with the trace, if ∂−νu = ∂+νu for u ∈H1
ℓ (R3) we simply write ∂νu ∶= ∂±νu.

We denote the single and double layer potentials associated to (3.1) by SL and DL. Recall that formally
SL = G ○ γ∗ and DL = G ○ ∂∗ν [24, Chapter 6], both being continuous and injective from Lip(Γ)∗ to D∗(R3)
by density of traces of C∞c (R3)-functions in Lip(Γ) and the injectivity of G already pointed out. Unwinding
the definitions, we find for x ∈ R3 ∖ Γ and ϕ ∈ L2(Γ) that

(3.4) SLϕ(x) = ∫
Γ
G(x − y)ϕ(y)dσ(y), DLϕ(x) = ∫

Γ
(∂ν,yG(x − y))ϕ(y)dσ(y),

where ∂ν,y indicates the normal derivative with respect to the variable y; indeed, (3.4) follows from [24,
Equations (6.16) and (6.17)] on taking into account that ∂ν,y commutes with complex conjugation. It holds
the mapping properties [24, Theorem 6.11]:

(3.5) SL ∶H−1/2(Γ) Ð→H1
ℓ (R3) and DL ∶H1/2(Γ) Ð→H1

ℓ (Ω±).

Remark 3.2. Note that, for any M ∈ L2(Γ)3, one has F(M) = ∑j ∂j SL(Mj). Hence, in view of Lemma
A.2 and the corresponding result for harmonic functions (namely, the case k = 0 that follows at once from
[31, Theorem 3.3 (i) & Corollary 3.5 (i)]), we get that F(M) ∈ L2

loc(R3)3.

Recall the three Green Identities: for u, v ∈ H1(Ω±) with ∆u ∈ L2(Ω±) and for ± to mean + or −, one
has by [24, Theorem 4.4 (i)]:

(3.6a) ⟪∇u,∇v⟫L2(Ω±)3 = −⟪∆u, v⟫L2(Ω±) ±⟪∂
±
νu, γ

±v⟫ ;

if moreover ∆v ∈ L2(Ω±), then it holds in view of [24, Theorem 4.4 (iii)] that

(3.6b) ⟪∆u + k2u, v⟫
L2(Ω±)

− ⟪u,∆v + k2v⟫
L2(Ω±)

= ∓⟪γ±u, ∂±νv⟫±⟪∂±νu, γ±v⟫

and, for u ∈ L2
loc(R3) with u∣Ω± ∈H1

ℓ (Ω±) satisfying

(3.6c) ∆u∣Ω± + k2u∣Ω± = 0 in Ω±,

as well as (3.2) in the case of Ω−, we get on applying [24, Theorem 6.10] to Φρu for arbitrary large ρ, with
Φρ a member of C∞c (Rn) which is 1 on Bρ, that

(3.6d) u = DL(γ+u − γ−u) − SL(∂+νu − ∂−νu).

The boundary version of layer potentials are bounded linear operators, with the mapping properties

S ∶Hs−1(Γ) Ð→Hs(Γ) and K ∶Hs(Γ) Ð→Hs(Γ)

for s ∈ {1,1/2,0} (these are the only cases we need)1. They have for ϕ ∈ L2(Γ) and σ-a.e. x ∈ Γ the integral
representations

(3.7) Sϕ(x) = ∫
∂D

G(x − y)ϕ(y)dσ(y), Kϕ(x) = p.v.∫
∂D

∂ν,yG(x − y)ϕ(y)dσ(y),

which connect to jump relations for layer potentials through the following identities for traces, valid for
ϕ ∈ L2(Γ) and ψ ∈H−1(Γ):

(3.8) (SLψ)∣Γ = Sψ and γ±(DLϕ) = (±1

2
Id +K)ϕ,

1For the case s = 1/2 these operators are defined in [24, Chapter 7,Eq. (7.3)] by γ SLψ and γ+(DLϕ) + γ−(DLϕ) (and
so their “K” which they call T differs by (minus) a factor 2 from ours); there, Equation (3.7) is proven for ϕ Lipschitz while

Equation (3.8) is proven for ψ ∈ H−1/2(Γ) and ϕ ∈ H1/2(Γ). When s = 1,0, the case k = 0 is treated in [18, Proposition 3.3.2,
Corollary 3.6.3, Proposition 3.6.2 and Proposition 3.6.4], and adaptation to k ≠ 0 is made through Propositions A.3, A.4, A.5
and A.6 in the Appendix.
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where Id represents the identity operator, see [24, Equation (7.5)]. In (3.8), the first relation means that
Sψ is well defined a.e. on Γ. We will also use the operator DL ∶= G ○ ∂∗ν , where G is simply convolution by
G. In view of [24, Eqn. (7.3)], one can define a bounded linear endomorphism of H1/2(Γ) by

K ∶= 1

2
(γ+DL + γ−DL),

and clearly K, DL have the same mapping properties as K, DL, respectively. We also have a jump relation
for the normal derivative of SLϕ when ϕ ∈H−1/2(Γ) [24, Eqns. (7.3)-(7.5)], namely:

(3.9) ∂±ν(SLϕ) = (∓
1

2
Id +K∗)ϕ.

In another connection, the following operators are well-defined and bounded for s ∈ {1,1/2,0} 2:

(3.10) T ∶= ∂ν DL ∶Hs(Γ) Ð→Hs−1(Γ).

Remark 3.3. Note that [18, Proposition 3.6.2] and Proposition A.5 further imply that the linear oper-
ators φ↦ γ±(∇DLφ) are bounded from H1(Γ) into L2(Γ)3.

Finally, let us introduce the Calderón projectors: P ± ∶ Hs(Γ) ×Hs−1(Γ) Ð→ Hs(Γ) ×Hs−1(Γ), defined for
s ∈ {0,1/2,1} as block-matrix multiplication by

(3.11) P ±(ϕ,ψ) ∶= (
1
2
Id ±K ∓S
±T 1

2
Id ∓K∗)(

ϕ
ψ
)

where, in the case s = 0, the operator K∗ is adjoint to K ∶H1(Γ) Ð→H1(Γ). These operators are bounded
on the indicated spaces by what precedes, and clearly P + + P − = Id . When s = 1/2 it is known that P ± are
projections [24, Ex. 7.6], so by density and continuity we deduce they are projections in the case s = 0 as
well. The case s = 1 follows by restriction of the case s = 1/2 to H1(Γ) ×L2(Γ). Hereafter, we let P ±j (ϕ,ψ)
denote the j-th component of P ±(ϕ,ψ), for j = 1,2.

Note that if ϕ ∈ L2(Γ) then γ∗ϕ is in fact a measure, absolutely continuous with respect to σ, such that
d(γ∗ϕ) = ϕdσ. It entails in view of the dicussion before (3.4) that

F(M) = −DL(Mν) + SL(∇T⋅MT ),

which justifies the following definition of a new, related operator:

F̃ ∶ L2(Γ) ×H−1(Γ) Ð→ D∗(R3)
(ϕ,ψ) ↦ −DL(ϕ) + SL(ψ).

Remark 3.4. Note that u = F̃(ϕ,ψ)∣R3∖Γ belongs to C∞(R3 ∖ Γ) and that

∆u + k2u = 0 on Ω±.

Now, Γ has finitely many components, say Γ1, ...,Γl (see Lemma A.12), and for j = 1, ..., l we let 1Γj be
the piecewise constant function on Γ with value 1 on Γj and 0 on Γk when k ≠ j. For ψ ∈ H−1(Γ), let us

define cψ ∶= ∑lj=1⟨ψ,1Γj ⟩1Γj and consider φψ−cψ ∈ H1(Γ) such that ∆Tφψ−cψ = ψ − cψ; such a φψ−cψ exists
by Lemma A.10. Then, we can write

F̃(ϕ,ψ) = F̃(ϕ,∆Tφψ−cψ + cψ) = F(ϕν +∇Tφψ−cψ) + SL(cψ),

and thus, by (3.7) and Remark 3.2, the image of F̃ is included in L2
loc(R3).

2The case s = 1/2 is part of [24, Theorem 7.1]. When s = 1, the result for k = 0 follows from [18, Theorem 3.2.8,
Proposition 3.6.2] together with equation (3.6b), and Proposition A.5 adapts it to the case k ≠ 0. To deal with s = 0, let C
indicate the complex conjugation operator and observe from [24, Eqns. (7.3)-(7.5)] (in that reference T is called −R) that

T = C ○ T ∗ ○ C ∶ H1/2 → H−1/2; so, as T maps H1 into H0, we can use C ○ T ∗∣H0(Γ) ○ C to extend T ∶ H0 → H−1.
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To conclude this section, we address that ∂±νu has been defined for those u ∈ H1(Ω±) such that ∆u ∈
L2
ℓ(Ω±) only, whereas we need a definition which is valid for any function in the image of F̃ . To this end,

we will use the following facts and the proceeding lemma.
First, by Equation (3.8), the nontangential limits γ±u of u = F̃(ϕ,ψ) are well-defined and belong to

L2(Γ). In view of (3.11), they satisfy for any (ϕ̃, ψ̃) ∈ L2(Γ) ×H−1(Γ) such that u = F̃(ϕ̃, ψ̃), the relation

(3.12) γ±u = (∓1

2
Id −K) (ϕ̃) + S(ψ̃) = ∓P ±1 (ϕ̃, ψ̃).

Second, for (ϕ,ψ) ∈H1/2(Γ) ×H−1/2(Γ), we get from (3.11),(3.8), (3.9) and (3.10) that

(3.13) if u = F̃(ϕ,ψ) then (γ±u, ∂±νu)t = ∓P ±(ϕ,ψ) and ∆u + k2u = 0 on Ω±,

where the superscript “t” means “transpose”. Third, extending u ∈H1
ℓ (Ω±) by zero on Ω∓ while using (3.8),

(3.9), (3.10) and (3.6d) as well as (3.13) and P + + P − = Id, we get (with ± to mean + or −) that

(3.14) ∆u + k2u = 0 on Ω± Ô⇒ u = −F̃(±γ±u,±∂±νu) and (γ±u, ∂±νu)t = P ±(γ±u, ∂±νu).

Finally, the following lemma holds.

Lemma 3.5. Let (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u = F̃(ϕ,ψ). For any fixed choice of sign ± holds the
equivalence:

u∣Ω± = 0 ⇐⇒ P ±(ϕ,ψ) = 0.

Proof. Assume first that (ϕ,ψ) ∈ H1/2(Γ) ×H−1/2(Γ). Then, (3.13) gives us ∆u + k2u = 0 on Ω± and
(γ±u, ∂±νu)t = ∓P ±(ϕ,ψ). If u∣Ω± = 0, then clearly 0 = (γ±u, ∂±νu) whence P ±(ϕ,ψ) = 0. Conversely, suppose
that P ±(ϕ,ψ) = 0 so that (γ±u, ∂±νu) = 0. From (3.5) we see that u∣Ω± ∈ H1

ℓ (Ω±), and by Remark 3.4 we
know that u ∈ L2

loc(R3). Thus, letting ũ be the extension by zero of u∣Ω± to Ω∓, Implication (3.14) gives us

ũ = −F̃(±γ±u,±∂±νu) = 0. Therefore, it holds indeed that u∣Ω± = 0.
Next, assume that (ϕ,ψ) ∈ L2(Γ)×H−1(Γ) and suppose that P ±(ϕ,ψ) = 0, hence P ∓(ϕ,ψ) = (ϕ,ψ). By

density, there exist a sequence, ((ϕn, ψn))n ⊂ H
1/2(Γ) ×H−1/2(Γ) such that (ϕn, ψn) → (ϕ,ψ) in L2(Γ) ×

H−1(Γ). On the one hand, P ∓(ϕn, ψn) converges to (ϕ,ψ) in L2(Γ) ×H−1(Γ) by the continuity of P ∓. On
the other hand, as P ∓(ϕn, ψn) ∈H1/2(Γ)×H−1/2(Γ) and the equality P ±P ∓(ϕn, ψn) = 0 mechanically holds
because (P ±)2 = P ± = P ±(P ±+P ∓), we get by the first part of the proof that F̃(P ∓(ϕn, ψn))∣Ω± = 0. Noticing

that F̃(P ∓(⋅, ⋅))∣Ω± is continuous from L2(Γ) ×H−1(Γ) into D∗(Ω±), we conclude that F̃(P ∓(ϕn, ψn))∣Ω± →
u∣Ω± in D∗(Ω±) and therefore u∣Ω± = 0.

Conversely, assume that u∣Ω± = 0 and define (ϕ̃, ψ̃) ∶= P ±(ϕ,ψ). Then, Equation (3.12) implies that

(3.15) ϕ̃ = P ±1 (ϕ,ψ) = ∓γ±u = 0.

Besides, P ∓ (ϕ̃, ψ̃) = P ∓P ±(ϕ,ψ) = 0 = P ±P ∓(ϕ,ψ) and thus, by the implication already proven, we get

F̃ (P ∓(ϕ,ψ))∣Ω± = 0 and 0 = F̃ (P ±(ϕ,ψ))∣Ω∓ = F̃ (0, ψ̃)∣Ω∓ = SL (ψ̃)∣Ω∓

where, in next to last equality, we used (3.15). Furthermore, by the linearity of F̃ and (3.15) again, it also
holds since Id = P ∓ + P ± and we assumed u∣Ω± = 0 that

0 = u∣Ω± = F̃(ϕ,ψ)∣Ω± = F̃ (P ∓(ϕ,ψ))∣Ω± + F̃ (P
±(ϕ,ψ))∣Ω± = F̃ (0, ψ̃)∣Ω± = SL (ψ̃)∣Ω± .

Thus, one has SL (ψ̃)
∣Ω+
= SL (ψ̃)

∣Ω−
= 0, and since SL is injective from Lip(Γ)∗ to D∗(R3) while SL (ψ̃) =

F̃ (P ±(ϕ,ψ)) by what precedes and the latter is locally integrable by Remark 3.4, it follows that ψ̃ = 0
whence P ±(ϕ,ψ) = 0, as was to be shown.
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From Lemma 3.5 it is clear that, for (ϕ,ψ), (ϕ̃, ψ̃) ∈ L2(Γ) ×H−1(Γ), one has

F̃(ϕ,ψ)∣Ω± = F̃(ϕ̃, ψ̃)∣Ω± if and only if P ±(ϕ,ψ) = P ±(ϕ̃, ψ̃).

Now, based on (3.13), for u = F̃(ϕ,ψ) with (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u± = u∣Ω± we define:

∂±νu = ∂±νu± ∶= ∓P ±2 (ϕ,ψ) = −T (ϕ) + (∓
1

2
Id +K∗) (ψ),

which extends the classical definition of normal derivatives. Altogether, it holds in this case as well that

(3.16) P ±(γ±u, ∂±νu) = (γ±u, ∂±νu)t = ∓P ±(ϕ,ψ) and u∣Ω± = F̃(γ±u, ∂±νu).

Remark 3.6. Using once more [18, Proposition 3.6.2] together with Proposition A.5 and Lemma A.9,
we get for any u = F̃(φ,ϕ) with (φ,ϕ) ∈H1(Γ) ×L2(Γ) that

∂±νu = γ±(∇u) ⋅ ν

and, by an argument similar to the one in Remark 2.1,

γ±(∇u) = ∂±νu ν +∇Tγ
±u.

4. Decomposition of L2(Γ)3. We start by introducing the spaces that we will use to decompose
L2(Γ)3. First, let us define

M0 ∶= {M ∈ L2(Γ)3 ∶ M is silent everywhere}

and let M⊥
0 denote the subspace perpendicular to M0 in L2(Γ)3. Next, let us introduce the following

subspaces of M⊥
0:

M− = {M ∈ M⊥
0 ∶ M is silent outside },

M+ = {M ∈ M⊥
0 ∶ M is silent inside }.

Remark 4.1. It follows from the definition thatM+ ∩M− = {0}, since this intersection consists of fields
silent everywhere whereas both spaces belong to M⊥

0. Also, thanks to Lemma 3.5, it holds that

(4.1) M0 ∶= {M ∈ L2(Γ)3 ∶ ∇T⋅MT = 0 and Mν = 0},

(4.2) M± = {M ∈ M⊥
0 ∶ P ±(Mν ,∇T⋅MT ) = 0},

and it follows easily from Lemma A.10 that every tangent field in L2(Γ)3 is the sum of a gradient and a
divergence-free one (the Helmholtz decomposition), hence

(4.3) M⊥
0 = {M ∈ L2(Γ)3 ∶ MT = ∇TUMT

, for some UMT
∈H1(Γ)}.

When k ≠ 0, M−, M+ and M0 are not enough to decompose L2(Γ)3. That is, for k ≠ 0 there exists
a bounded Lipschitz domain Ω+ with boundary Γ carrying a nonzero M ∈ L2(Γ)3 ∖ (M− ⊕M+ ⊕M0),
which is thus silent nowhere and whose potential in Ω± is not generated by a distribution silent in Ω∓;
this cannot happen when k = 0 [3]. At the end of this section we will describe the space perpendicular to
(M− ⊕M+ ⊕M0), but prior to this we shall introduce a space Mν ⊂ L2(Γ)3, whose elements are purely
normal to Γ, that satisfies

Mν ⊕M− ⊕M+ ⊕M0 = L2(Γ)3.
Let {Γj}j∈J be the family of connected components of Γ. The fact that Ω+ is a bounded Lipschitz domain

implies that J must be finite and each Γj has finite strictly positive area (see for example Lemma A.12).

We can index the connected components of Ω− by Ωj− for j ∈ J , and assume that
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● J = {1, ..., nΓ}, so that nΓ is the number of connected components of Γ,
● Ω1

− is unbounded,
● for each j > 1, the set Ωj− is bounded,
● for each j ∈ J , the set Γj is the boundary of Ωj−.

For Σ ⊂ Γ, we let 1Σ ∶ Γ→ R denote the characteristic function of Σ. Also, for V a vector space and {vℓ}ℓ∈L
a family of vectors in V , we indicate by ⟨vℓ⟩ℓ∈L their linear span. In order to study the dimension of Mν ,
we introduce the space O ∶= ⟨1Γj ⟩j∈J ⊂H1(Γ), and the spaces N± defined in the lemma below:

Lemma 4.2. For a fixed sign ±, the following subspaces of H1/2(Γ) coincide:

N 1
± ∶ = { γ±u ∶ u ∈H1

ℓ (Ω±) satisfies (3.2), ∆u + k2u = 0 on Ω±, and ∂
±
νu = 0 on Γ }

N 2
± ∶ = { ϕ ∈H1/2(Γ) ∶ P ±(ϕ,0) = (ϕ,0) }
N 3
± ∶ = { ϕ ∈H1/2(Γ) ∶ ϕν ∈ M∓ }.

We denote them by N± and there holds N+ ∩N− = {0}, moreover these spaces are finite-dimensional.

Of course, condition (3.2) is void if one chooses the “+” sign.

Proof. Remark 4.1 and the identity P + +P − = Id together imply that N 2
± = N 3

± . Take now a γ±u ∈ N 1
± .

By Implication (3.14), we have that (γ±u,0) = (γ±u, ∂±νu) = P ±(γ±u, ∂±νu) = P ±(γ±u,0) and thus γ±u ∈ N 2
± .

Conversely, if ϕ ∈ N 2
± and we let u = −DL(∓ϕ), then u∣Ω± ∈H1

ℓ (Ω±) by (3.5) and it follows from Implication
(3.13) that ∆u + k2u = 0 on Ω±, and (γ±u, ∂±νu)t = ∓P ±(∓ϕ,0) = (ϕ,0). Hence, ϕ ∈ N 1

± and therefore,
N 1
± = N 2

± . We now see that all three definitions are equivalent.
If Ω− is connected; i.e. if Ω− = Ω1

−, then by uniqueness of the exterior Neumann problem for the
Helmholtz equation when the Sommerfeld condition (3.2) is satisfied [24, Ex. 9.5], we obtain that {0} =
N 1
− = N−. Otherwise, for either choice of sign ±, the sets Ω± ∖ Ω1

− are bounded and there exist Neumann
eigenvalues {ξ±j }∞j=1 for −∆, with 0 ≤ ξ±1 ≤ ξ±2 ≤ ⋯ and ξ±j → ∞ as j → ∞, as well as corresponding

eigenfunctions {uj}∞j=1 ⊂H1(Ω± ∖Ω1
−), satisfying

(4.4) { −∆uj = ξ±j uj in Ω± ∖Ω1
− (of course Ω+ ∖Ω1

− = Ω+),
∂±νuj = 0 on Γ,

where the {uj}∞j=1 form a complete orthonormal system in L2(Ω± ∖Ω1
−); see [24, Theorem 4.12] for the case

of a bounded and connected open set. To deal with the case where Ω− is not connected, one may apply the
previous reference to each Ωj− in order to get eigenvalues ξj,−1 , ξj,−2 ,⋯ and eigenvectors uj1, u

j
2,⋯ defined on

Ωj− for each j ∈ {2,⋯, nΓ}, then extend every ujk by zero on Ωm− for m ≠ j so as to get an orthonormal basis

of  L2(Ω− ∖ Ω1
−) = ∑Ωj− where the last sum is orthogonal, and arrange the ξj,−k in nondecreasing order for

2 ≤ j ≤ nΓ and k ∈ N. That N± is finite-dimensional now comes from the fact that there can only be finitely
many j for which k2 = ξ±j , and of necessity each ϕ ∈ N± is a linear combination of the corresponding γ±uj .

Finally, that N+ ∩N− = {0} follows from the definition of N 3
± and Remark 4.1.

Continuing towards the definition of the spaceMν , fix an orthonormal basis {ωj}j∈J of O for the L2(Γ)
scalar product, that contains a basis of O ∩ (N+ ⊕N−) if the latter does not reduce to zero. Define

J̃ ∶= {j ∈ J ∶ ωj ∉ N+ ⊕N−},

and put ñΓ for the cardinality of J̃ .

For each j ∈ J̃ , let Λ̃j be the orthogonal projection of ωj onto Vj ∶= (N+ ⊕N− ⊕ ⟨ωℓ⟩ℓ∈J̃ℓ≠j)
⊥

, so that

0 ≠ Λ̃j ∈ Vj while ωj − Λ̃j ∈ N+ ⊕ N− ⊕ ⟨ωℓ⟩ℓ∈J̃ℓ≠j . Then, Λj ∶= Λ̃j/∥Λ̃j∥2L2(Γ) satisfies, ⟪Λj , ωl⟫L2(Γ) = δjl for

l ∈ J , and ⟪Λj , ϕ⟫L2(Γ) = 0 for each ϕ ∈ N+ ⊕N−. Therefore, by Lemma 4.2 and the Fredholm alternative

for coercive Dirichlet-Neumann problems [24, Theorem 4.10], we can define for each j ∈ J̃ a function
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u+j ∈H1(Ω+) satisfying

⎧⎪⎪⎨⎪⎪⎩

∆u+j + k2u+j = 0 in Ω+

∂+νu
+
j = Λj on Γ,

as well as a function u−j ∈H1
ℓ (Ω−) satisfying

⎧⎪⎪⎨⎪⎪⎩

∆u−j + k2u−j = 0 in Ω−

∂−νu
−
j = Λj on Γ,

together with the Sommerfeld radiation condition (3.2). Let us define functions ϕ±j and ϕj in H1/2(Γ) by

ϕ+j ∶= γ−u−j , ϕ−j ∶= γ+u+j and ϕj ∶= ϕ−j − ϕ+j ,

to finally putMν ∶= ⟨ϕjν⟩j∈J̃ . The theorem below is the main result of the paper; for the proof, we will use
nΓ, ñΓ, O, ωj , ϕj , ϕ

±
j and Λj as defined above.

Theorem 4.3. There holds the direct sum decomposition,

(4.5) L2(Γ)3 =Mν ⊕M− ⊕M+ ⊕M0,

where the orthogonal Mν to M− ⊕M+ ⊕M0 in L2(Γ)3 is finite-dimensional, consists of purely normal
vector fields and can be rewritten as

(4.6) (M− ⊕M+ ⊕M0)⊥ = ⟨γ [∇F(ωjν)]⟩
j∈J̃

.

If k = 0, thenMν = {0} and therefore the decomposition reduces to:

(4.7) L2(Γ)3 =M− ⊕M+ ⊕M0.

In contrast, if k2 ≠ 0 is not an eigenvalue for one of the problems in (4.4) then

codim (M− ⊕M+ ⊕M0) = dim(Mν) = nΓ;

in particular, this is the case when k ∈ C ∖R. In general, one has dim(Mν) = ñΓ ≤ nΓ.
Proof. We first show that the space Mν , which is clearly contained in M⊥

0, intersects M− ⊕M+ in 0
only, and that the ϕjν are linearly independent for j ∈ J̃ . Indeed, assume for a contradiction that there
exists coefficients cj ∈ C together with M+ ∈ M+ and M− ∈ M− such that ∑j cjϕjν = M+ +M−. By
definition of the ϕ±j and Implication (3.14), one has for each j since P + + P − = Id that

P +(ϕ+j ,Λj) = 0 and P −(ϕ−j ,Λj) = 0,

hence also

(4.8) P −(ϕj ,0) = P −(ϕ−j ,Λj) − P −(ϕ+j ,Λj) = −(ϕ+j ,Λj).

However, since M+
T +M−

T = 0 because M+ +M− is a normal vector field by assumption, (4.2) implies:

P −(∑
j

cjϕj ,0) = P −(M−
ν ,∇T⋅M−

T ) + P −(M+
ν ,∇T⋅M+

T ) = (M+
ν ,∇T⋅M+

T ),

whence cj = 0 for all j in view of (4.8) because ⟪Λj , ωk⟫L2(Γ) = δj,k whereas ⟪∇T⋅M+
T , ωk⟫L2(Γ) = 0, as the

ωk are locally constant on Γ. Therefore the sum in (4.5) is indeed direct and the ϕjν, j ∈ J̃ , form a basis
of Mν . Moreover, since Mν ∩ (M− ⊕M+ ⊕M0) = {0}, one has the inequality

(4.9) ñΓ = dimMν ≤ codim (M− ⊕M+ ⊕M0)
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and thus, for Equation (4.5) to hold it is enough to show that ñΓ ≥ codim (M− ⊕M+ ⊕M0).
Define two continuous linear operators by

π ∶ M⊥
0 Ð→ L2(Γ) ×H−1(Γ)

M ↦ (Mν ,∇T⋅MT )
and

η ∶ H−1(Γ) Ð→ CnΓ

ψ ↦ (⟨ψ,1Γj ⟩)
t
.

Note that π is injective, by (4.1). From Lemma A.10, we further get for (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) that

(4.10) (ϕ,ψ) ∈ Imπ if and only if ψ ∈ Ker η.

Since P +P − = P −P + = 0, we get if M1,M2 ∈ M⊥
0 satisfy π(M1) = P ∓(π(M2) that P ±(π(M1)) = 0,

which entails in view of (4.2) that M1 ∈ M±. As P + + P − = Id , it ensues readily that

(4.11) π(M±) = Im (P ∓π) ∩ Imπ.

Moreover, still using the identity P + + P − = Id , we get for any M ∈ M⊥
0 that

P +(π(M)) ∈ Imπ if and only if P −(π(M)) ∈ Imπ.

Hence, by (4.10), the following four memberships are equivalent for M ∈ M⊥
0:

P +2 (π(M)) ∈ Ker η⇔ P +(π(M)) ∈ Imπ⇔ P −(π(M)) ∈ Imπ⇔ P −2 (π(M)) ∈ Ker η.

Subsequently, we define

Π ∶ = Ker (ηP +2 π) = {M ∈ M⊥
0 ∶ P +(π(M)) ∈ Imπ}(4.12)

= Ker (ηP −2 π) = {M ∈ M⊥
0 ∶ P −(π(M)) ∈ Imπ}.

From (4.2) it is clear that M+ ⊕M− ⊂ Π, hence π(M±) = [P ∓ ○ π] (Π) by (4.11). Thus, on using that
P + + P − = Id and P ±P ∓ = 0, we obtain π(M+ ⊕M−) = π(Π) and so M+ ⊕M− = Π, since π is injective.

Now, for V a closed subspace ofM⊥
0 ⊂ L2(Γ)3, let us denote by V ⊥0 its orthogonal complement inM⊥

0.
From (4.12) and the continuity of ηP ±2 π ∶ M⊥

0 → CnΓ , we get that
(4.13)

(M+ ⊕M− ⊕M0)⊥ = (M+ ⊕M−)⊥0 = Π⊥0 = (Ker (ηP ±2 π))
⊥0 = Im (π∗(P ±2 )∗η∗)

clos
. = Im (π∗(P ±2 )∗η∗),

where we used a superscript clos to distinguish topological closure from complex conjugation, and the last
equality uses that Im (π∗(P ±2 )∗η∗) is finite-dimensional (for η is CnΓ-valued), whence it is closed in M⊥

0.
Taking c = (c1,⋯, cnΓ

)t ∈ CnΓ together with ψ ∈H−1(Γ), we have for M ∈ M⊥
0 that

⟪η∗c, ψ⟫ = ∑
j

cj⟨ψ,1Γj ⟩ = ⟨∑
j

cj1Γj , ψ⟩ = ⟪∑
j

cj1Γj , ψ⟫ .

Besides, given a pair (ϕ,φ) ∈ L2(Γ) ×H1(Γ), it holds that

(4.14) ⟪ π∗(ϕ,φ), M ⟫ = ⟪ (ϕ,φ), (Mν ,∇T⋅MT ) ⟫ = ⟪ϕ, Mν⟫−⟪∇Tφ, MT⟫ = ⟪ ϕν−∇Tφ, M ⟫L2(M)3 .

So, by (3.11) and Remark 3.6, we get on using that T ∗ = C ○T ○C on H1/2(Γ) (see footnote 2 before (3.10)):

∓π∗(P ±2 )∗η∗(c) = ∓∑
j∈J

cj[±(T ∗1Γj)ν −∇T (
1

2
1Γj ∓K1Γj)]

= ∑
j∈J

cj[−(T1Γj)ν −∇T(K1Γj)]

= ∑
j∈J

cj[−(T1Γj)ν −∇T (±
1

2
1Γj +K1Γj)] = γ±

⎛
⎜
⎝
∇F
⎛
⎝∑j∈J

cj1Γjν
⎞
⎠
⎞
⎟
⎠
.
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Thus, the γ [∇F(ωjν)] are well-defined in L2(Γ)3 for any j ∈ J ; i.e., their traces from either side of Γ

coincide, and in light of (4.13) together with the third definition of Lemma 4.2 one has γ [∇F(ωjν)] = 0

whenever j ∉ J̃ . Hence, Equation (4.6) is satisfied and consequently

ñΓ ≥ dim ((M− ⊕M+ ⊕M0)⊥) = codim (M− ⊕M+ ⊕M0).

Therefore, it follows from (4.9) that ñΓ = codim (M− ⊕M+ ⊕M0), and so (4.5) holds. In addition, we

obtain that the set {γ [∇F(ωjν)]}j∈J̃ consists of linearly independent functions.

Clearly, if k2 ≠ 0 is not an eigenvalue for the problem (4.4) then J̃ = J , and hence

nΓ = ñΓ = dim(Mν) = codim (M− ⊕M+ ⊕M0).

Finally, when k = 0, we notice that

F(1Γjν) =
⎧⎪⎪⎨⎪⎪⎩

−χ
R3∖Ωj−

if j = 1

χΩj−
otherwise,

entailing that γ [∇F(ωjν)] = 0 for every j ∈ J . Then, ñΓ = 0 and Mν = {0}, so that (4.7) is satisfied.

To conclude this section, let us characterize the orthogonal space to silent sources on either side:

Corollary 4.4. For a fixed choice of sign ±, it holds that

(M± ⊕M0)⊥ = { γ∓ (∇F̃(φ,ϕ)) ∶ (φ,ϕ) ∈H1(Γ) ×L2(Γ) } .

Proof. Take η, π and Π as in the proof of Theorem 4.3, so that Π = M+ ⊕M−, and let πΠ be the
restriction of π to Π onto its image:

πΠ ∶ Π Ð→ π(Π)
M ↦ π(M).

Observing that πΠ is a bijective operator and recalling from the discussion after (4.12) the identity
[P ∓ ○ π] (Π) = π(M±), we get since the π−1Π P ∓πΠ are projections adding up to the identity that

(4.15) M± = Im (π−1Π P ∓πΠ) , M± = Ker (π−1Π P ±πΠ) .

In particular (4.15) implies that π−1Π P ∓πΠ has closed range, hence so does the range of its adjoint [24,
Theorem 2.13]. Now, for a V ⊂ Π a subspace, let V ⊥Π , denote the orthogonal space to V in Π ⊂ L2(Γ)3.

From (4.15) and the closedness of the range of π∗Π(P ±)∗ (π−1Π )
∗
, we deduce that

(4.16) M⊥Π
± = Im [π∗Π(P ±)∗ (π−1Π )

∗] .

Let f±j designate, for 1 ≤ j ≤ nΓ, the linear form on L2(Γ) ×H−1(Γ) given by the j-th coordinate of ηP ±2 .
It follows from (4.12) that π(Π) = ∩mj=1Kerφ+j ∩ Imπ = ∩mj=1Kerφ−j ∩ Imπ and hence, by the Hahn-Banach
theorem, the dual (π(Π))∗ is the quotient space (Imπ)∗/⟨φ+j ⟩j∈J = (Imπ)∗/⟨φ−j ⟩j∈J . Now, givenM ∈ Π ∼ Π∗

and (ϕ,ψ) ∈ π(Π), we get from (4.10) while using Remark 4.1, Lemma A.10 and (4.3) that

⟪ (π−1Π )
∗
M , (ϕ,ψ) ⟫ = ⟪M , π−1Π (ϕ,ψ) ⟫ = ⟪M , ϕν +∇Tφψ ⟫ = ⟪ Mν , ϕ ⟫ − ⟪ ∇TUMT

, ∇Tφψ ⟫
= ⟪ Mν , ϕ ⟫ − ⟪ UMT

, ∆Tφψ ⟫ = ⟪ Mν , ϕ ⟫ − ⟪ UMT
, ψ ⟫.

Thus, it holds that(π−1Π )
∗
M = (Mν ,−UMT

) ∈ L2(Γ) ×H1(Γ) and therefore, by Equation (4.16),

(4.17) M⊥Π
± ⊂ [π∗Π ○ (P ±)∗] (L2(Γ) ×H1(Γ)) .
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In another connection, in view of (3.11), we get for (ϕ,φ) ∈ L2(Γ) ×H1(Γ) that

(P ±)∗(ϕ,φ) = (
1
2
Id ±K∗ ±T ∗
∓S∗ 1

2
Id ∓K)(

ϕ
φ
) .

Consequently, using Equation (4.14) and Remark 3.6, we obtain for (ϕ,φ) ∈ L2(Γ) ×H1(Γ),

±[π∗Π ○ (P ±)∗] (ϕ,−φ) = π∗Π ( (±
1

2
Id +K∗)ϕ − T ∗φ, −S∗ϕ + (∓1

2
Id +K)φ )

= (−T ∗φ + (±1

2
+K∗)ϕ)ν + ∇T (−(∓

1

2
Id +K)φ + S∗ϕ)

= (−Tφ + (±1

2
+K∗)ϕ)ν + ∇T (−(∓

1

2
Id +K)φ + Sϕ)

= ∂∓ν (−DL(φ) + SL(ϕ)) + ∇Tγ
∓ (−DL(φ) + SL(ϕ))

= γ∓ (∇F̃(φ,ϕ)) .

Then, noticing that (M± ⊕M0)⊥ = M⊥Π
± ⊕ (Π⊕M0)⊥ = M⊥Π

± ⊕ (M+ ⊕M− ⊕M0)⊥ and, recalling
Equations (4.17) and (4.6), we get from what precedes the inclusion

(M± ⊕M0)⊥ ⊂ { γ∓ (∇F̃(φ,ϕ)) ∶ (φ,ϕ) ∈H1(Γ) ×L2(Γ) } .

To finish the proof, it remains to show the opposite inclusion. Take any (φ,ϕ) ∈ H1(Γ) × L2(Γ) and set

M ∶= γ∓ (∇F̃(φ,ϕ)), together with w = F̃(φ,ϕ). Using Remark 4.1 and the fact that MT is a tangential

gradient, it follows the orthogonality relation M ⊥ M0. Besides, if we pick M± ∈ M± and w± = F(M±),
then we note by Implication 3.13 and (4.2) that

±(γ∓w±, ∂∓νw±) = P ∓(M±
ν ,∇T⋅M±

T ) = (M±
ν ,∇T⋅M±

T ).

Then, since ∇T⋅M±
T = ±∂∓νw± and M±

ν = ±γ∓w± by (3.16), (4.2) and the fact that P + + P − = Id, it ensues

⟪M ,M±⟫L2(Γ) = ⟪∇T(γ∓w), M±
T⟫ + ⟪∂∓νw, M±

ν⟫ = −⟪γ∓w, ∇T⋅M±
T⟫ + ⟪∂∓νw, M±

ν⟫
= ∓⟪γ∓w, ∂∓νw±⟫ ± ⟪∂∓νw, γ∓w±⟫
= −⟪∆w,w±⟫L2(Ω∓) + ⟪w,∆w

±⟫L2(Ω∓)

= ⟪k2w,w±⟫
L2(Ω∓)

− ⟪w,k2w±⟫
L2(Ω∓)

= 0

= −⟪∆w + k2w,w±⟫
L2(Ω∓)

+ ⟪w,∆w± + k2w±⟫
L2(Ω∓)

= −⟪(k2 − k2)w,w±⟫
L2(Ω∓)

where the fourth equality follows from Equation 3.6b and the fifth uses that w satisfies (3.6c) with k
replaced by k. Therefore M ⊥M± as well, and the corollary follows.

4.1. Spherical case. In this subsection we assume that Γ = S2, the unit sphere on R3, and that
k > 0. In this case, some calculations from the previous subsection can be made explicit using the Addition
Theorem.

Recall that, if we let Pmn denote the associated Legendre function of order m, then the following define
a complete orthonormal system in L2(S) [10, Theorem 2.8] and a complete orthogonal system in H1(S) [26,
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Theorem 2.4.4]:

Y mn (x) ∶=
¿
ÁÁÀ2n + 1

4π

(n − ∣m∣)!
(n + ∣m∣)! P

∣m∣
n (cos θ) eimφ for m = −n, ..., n, and n = 0,1,2, ...,

where x = (sin θ cosφ, sin θ sinφ, cos θ). Note that (Y mn (x)) = Y −mn (x). These functions also satisfy

(4.18) ∆TY
m
n = −n(n + 1) Y mn .

Note that this implies that ⟪Y mn , Y mn ⟫H1(S) = 1 + n(n + 1). Given ϕ ∈ L2(S) and M ∈ L2(S)3 define the
coefficients:

cmn (ϕ) ∶= ⟪Y mn , ϕ⟫L2(S) =
⟪Y mn , ϕ⟫H1(S)

⟪Y mn , Y mn ⟫H1(S)
for m = −n, ..., n, and n = 0,1,2, ...,

and, for m = −n, ..., n and n = 1,2,3, ...,

gmn (M) ∶=
⟪∇TY

m
n ,M⟫L2(S)3

n(n + 1) , rmn (M) ∶=
⟪ν ×∇TY

m
n ,M⟫L2(S)3

n(n + 1) ,

g00(M) ∶= 0 and r00(M) ∶= 0.

Then, ϕ = ∑ cmn (ϕ)Y mn in L2(S). Note that, for any n and m, gmn (M) = gmn (MT ) and rmn (M) = rmn (MT ).
Additionally, if u ∈H1(S) then u = ∑ cmn (u)Y mn in H1(S) and we have:

gmn (∇Tu) = cmn (u), rmn (∇Tu) = 0, gmn (ν ×∇Tu) = 0 and rmn (ν ×∇Tu) = cmn (u).

By Hodge decomposition, there exist u, v ∈H1(S) such that MT = ∇Tu + ν ×∇Tv, and hence,

MT = ∇T∑ cmn (u)Y mn + ν ×∇T∑ cmn (v)Y mn
= ∑ gmn (M)∇TY

m
n +∑ rmn (M)(ν ×∇TY

m
n )

in L2(S)3. Therefore, ∇T⋅MT = −n(n + 1)∑ gmn (M)Y mn in H−1(S).
Further define, for a non-negative integer n, h

(1)
n as the spherical Hankel function of the first kind of

order n, and let jn denote the spherical Bessel function of order n. Then, since we are assuming that k ≠ 0,
we have the following Addition Theorem [10, Theorem 2.11]

G(x − y) = −ik
∞

∑
n=0

n

∑
m=−n

h(1)n (k∣x∣)Y mn (
x

∣x∣ ) jn(k∣y∣)(Y
m
n (

y

∣y∣ )) for ∣x∣ > ∣y∣,

where the series and its term by term first derivatives with respect to ∣x∣ and ∣y∣ are absolutely and uniformly
convergent on compact subsets of ∣x∣ > ∣y∣.

Then, using Fubini-Tonelli theorem we obtain:

SL(Y mn )(x) =
⎧⎪⎪⎨⎪⎪⎩

−ik h(1)n (k∣x∣) jn(k) Y mn ( x∣x∣) for ∣x∣ > 1

−ik h(1)n (k) jn(k∣x∣) Y mn ( x∣x∣) for ∣x∣ < 1
,

DL(Y mn )(x) =
⎧⎪⎪⎨⎪⎪⎩

−ik2 h(1)n (k∣x∣) j′n(k) Y mn ( x∣x∣) for ∣x∣ > 1

−ik2 (h(1)n )′(k) jn(k∣x∣) Y mn ( x∣x∣) for ∣x∣ < 1
,

thus,

K(Y mn ) = −
1

2
ik2 (h(1)n (k)j′n(k) + (h(1)n )′(k) jn(k)) Y mn T (Y mn ) = −ik3 (h(1)n )′(k) j′n(k) Y mn

S(Y mn ) = −ik h(1)n (k) jn(k) Y mn K∗(Y mn ) =K(Y mn ),
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Since K, T , S, K∗ and ∇T⋅ ∶ L2(S)3 Ð→ H−1(S) are continuous, and h
(1)
n (k)j′n(k) − (h

(1)
n )′(k) jn(k) =

1/(ik2), using (4.18) we get

P −(Mν ,∇T⋅MT ) =
⎛
⎝∑n,m

[(1/2 −K(Y mn ))cmn (Mν) + S(Y mn )(−n(n + 1)gmn (MT ))]Y mn ,

∑
n,m

[−T (Y mn )cmn (Mν) + (1/2 +K(Y mn ))(−n(n + 1)gmn (MT ))]Y mn
⎞
⎠

=
⎛
⎝∑n,m

ikh(1)n (k) [kj′n(k)cmn (Mν) + jn(k)n(n + 1)gmn (MT )]Y mn ,

∑
n,m

ik2(h(1)n )′(k) [kj′n(k)cmn (Mν) + jn(k)n(n + 1)gmn (MT )]Y mn
⎞
⎠
,

and

P +(Mν ,∇T⋅MT ) =
⎛
⎝∑n,m

−ikjn(k) [k(h(1)n )′(k)cmn (Mν) + h(1)n (k)n(n + 1)gmn (MT )]Y mn ,

∑
n,m

−ik2j′n(k) [k(h(1)n )′(k)cmn (Mν) + h(1)n (k)n(n + 1)gmn (MT )]Y mn
⎞
⎠
,

Recall that for all n, h
(1)
n (k) ≠ 0 ≠ (h(1)n )′(k) for k is real and positive. Therefore,

M− = {M ∈ L2(S)3 ∶ kj′n(k)cmn (Mν) = −jn(k) n(n + 1)gmn (MT )(4.19)

for m = −n, ..., n, and n = 0,1,2, ...,},

and

M+ = {M ∈ L2(S)3 ∶ k(h(1)n )′(k) cmn (Mν) = −h(1)n (k) n(n + 1)gmn (MT )(4.20)

for m = −n, ..., n, and n = 0,1,2, ..., such that jn(k) ≠ 0 or j′n(k) ≠ 0}.

Since j0(k) = sin(k)/k, for no real k do we get j0(k) = 0 = j′0(k). Hence, for M ∈ M+ +M− and
j′0(k) ≠ 0, we have that c00(Mν) = 0 and thus, ⟪M , Y 0

0 ν⟫L2(M)3 = 0. Otherwise, when j′0(k) = 0 and k > 0,
we obtain P −(Y 0

0 ,0) = 0. Therefore, using Theorem 4.3 we deduce the following result.

Theorem 4.5. For a k > 0 such that j′0(k) ≠ 0 (which happens for almost every k), holds in L2(S)3
that

(M− ⊕M+ ⊕M0)⊥ = {M ∈ L2(S)3 ∶ MT = 0 and Mν is constant};

on the other hand, if j′0(k) = 0 (this happens in particular when k = 0), then

L2(S)3 =M− ⊕M+ ⊕M0.

It is worth mentioning that when k = 0, the subspacesM∓ of L2(S)3 coincide with the Hardy spaces H± of
harmonic gradients inside and outside S introduced by Stein ad Weiss. This follows easily from (4.19) and
(4.20); compare [2].

Appendix A. .
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A.1. L2 behaviour of layer potentials on Lipschitz domains for the Helmholtz equation.
The statements in this section are adapted to the case k ≠ 0 from [18], or mere reproductions of material
from that reference. For each of them, we write in parenthesis where in [18] they can be found. We also
want to stress that, as pointed out to the authors by a referee, many results of this subsection can be found
in sections 4 and 5 of [29]. In particular this is true of Propositions A.3 and A.4, of the second part of
Proposition A.5 and of the first equality in Proposition A.7.

For convenience, throughout this section, we will denote the function G and the operators SL, DL, S,
and K by Gk, SLk, DLk, Sk and Kk respectively. For the operators Sk and Kk we will use the definitions
given in [24] (without the 1/2 for Kk and K∗k ) and then show that they can be extended with the required
properties.

Recall C±α(x) from the definition of the nontangential limit. For a vector valued measurable function ψ
on Ω±, we define the function N±αψ, on Γ, such that, for x ∈ Γ,

N±αψ(x) ∶= sup{∣ψ(y)∣ ∶ y ∈ C±α(x)} ,
taking the convention that N±αψ(x) = 0 when C±α(x) = ∅.

In [18, section 3.6], the Sobolev space L2
1(Γ, dσ) is defined as the subspace of L2(Γ) comprised of those

functions φ such that ∣⟨ φ , νjγ(∂lf) − νlγ(∂jf) ⟩L2(Γ)∣ ≤ C∥f∣Γ∥L2(Γ) for all f ∈ C1(R3), any l, j ∈ {1,2,3}
and some constant C = C(φ), with νj to mean the j-th coordinate of the unit normal field on Γ. That is, if
one puts as in [18] ∂τl,jf ∶= νjγ(∂lf) − νlγ(∂jf) for f ∈ C1(R3) then ∂τl,jf depends only on the restriction
f∣Γ and members of L2

1(Γ) are those φ ∈ L2(Γ) whose distributional ∂τl,jφ is an L2(Γ)-function for each j, l.
To justify quoting certain results from [18], we will show in the next lemma that this definition agrees with
the one of the Sobolev space H1(Γ) made in Section 2.

Lemma A.1. Given j, l ∈ {1,2,3}, one can define a bounded linear operator ∂τi,j ∶ H1(Γ) Ð→ L2(Γ) on
letting, for any φ ∈H1(Γ) and f ∈ C1(R3):

⟨ ∂τj,lφ, γ(f) ⟩ ∶= − ⟨ φ , νjγ(∂lf) − νlγ(∂jf) ⟩L2(Γ).

Moreover, a function φ ∈ L2(Γ) lies in H1(Γ) if and only if the operators ∂τi,j defined above (in the weak
sense) correspond to scalar product with L2-functions.

Proof. Note that a tangent vector field on Γ can be regarded as a 1-form, defined by taking the scalar
product in the tangent space at regular points. For {(θj , Uj)}j∈I ( I finite) a Lipschitz atlas on Γ, we say
that a k-form ω is of L2-class (here k ∈ {0,1,2}) if its expression in local coordinates (pullback of ω under
the Lipschitz map θ−1j ), say

(θ−1j )∗(ω)(y) = ∑
i1<i2,⋯,<ik

a
{ϕj}
i1,⋯,ik

(y) dyi1 ∧⋯ ∧ dyik

has coefficients a
{ϕj}
i1,⋯,ik

that are L2 functions on θj(Uj). This notion is independent of the atlas. Now, for

f ∈ C∞c (R3), it holds that

(A.1) (∂τ2,3f , ∂τ3,1f , ∂τ1,2f)t = ∇f × ν
where “×” indicates the vector product and the superscript “t” means “transpose”. Thus, observing that
ν = ∂y1θ−1j × ∂y2θ−1j /∣∂y1θ−1j × ∂y2θ−1j ∣ on θj(Uj), we get from the double vector product formula that the
1-form associated with ∇f × ν is given in local coordinates (y1, y2) on θj(Uj) by

(A.2) (g1,1∂y2(f ○ θ−1j ) − g2,1∂y1(f ○ θ−1j ))dy1 + (g1,2∂y2(f ○ θ−1j ) − g2,2∂y1(f ○ θ−1j ))dy2

where (gi1,i2) is the metric tensor (the Gram matrix of ∂y1θ
−1
j , ∂y2θ

−1
j ). Since the latter is uniformly

boundedly invertible on compact manifold that are local Lipschitz graphs, the fact that (A.2) is of L2-class
amounts to say that ∇f ○ θ−1i lies in (L2(θj(Uj)))3. By density of traces of C∞c (R3)-functions in L2(Γ), we
conclude what we want.
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Then, we have a lemma that was just stated on [18] since it was proven in [14]. However, we add a
proof for convenience of the reader.

Lemma A.2 (Lemma 6.4.2). For each fixed R > 0 and k > 0, there exists a constant C > 0 such that,
for 1 ≤ j ≤ 3 the following estimates are uniformly satisfied for 0 < ∣x∣ < R:

∣Gk(x) −G0(x)∣ ≤ C
∣∂jGk(x) − ∂jG0(x)∣ ≤ C

∣∂ℓ∂jG(x) − ∂ℓ∂jG0(x)∣ ∣x∣ ≤ C

Proof. Since Gk −G0 is C∞(R3 ∖ {0}), it is enough to show that the lim sup when x → 0 in all of the
left hand sides of the equations of the lemma are bounded by a constant depending only on k:

lim sup
x→0

∣Gk(x) −G0(x)∣ = lim
x→0

∣−1 + eik∣x∣∣
4π∣x∣ = k

4π
,

and

lim sup
x→0

∣∂jGk(x) − ∂jG0(x)∣ = lim sup
x→0

∣xj
eik∣x∣k∣x∣ + ieik∣x∣ − i

4π∣x∣3 ∣ ≤ lim
x→0

∣xjeik∣x∣k∣x∣ + ieik∣x∣ − i∣
4π∣x∣2 = k

2

8π
.

lim sup
x→0

∣∂j∂jG(x) − ∂j∂jG0(x)∣∣x∣ = lim sup
x→0

∣eik∣x∣ (ik∣x∣3 − ∣x∣2 − k2x2j ∣x∣2 − 3ikx2j ∣x∣ + 3x2j) + ∣x∣2 − 3x2j ∣
4π∣x∣4

≤ lim sup
x→0

∣eik∣x∣ (ik∣x∣3 − ∣x∣2) + ∣x∣2∣
4π∣x∣4 + lim sup

x→0

∣eik∣x∣ (−k2x2j ∣x∣2 − 3ikx2j ∣x∣ + 3x2j) − 3x2j ∣
4π∣x∣4

≤ lim
x→0

∣eik∣x∣ (ik∣x∣ − 1) + 1∣
4π∣x∣2 + lim

x→0

∣eik∣x∣ (−k2∣x∣2 − 3ik∣x∣ + 3) − 3∣
4π∣x∣2 = k

2

4π
,

and, for j ≠ ℓ,

lim sup
x→0

∣∂ℓ∂jG(x) − ∂ℓ∂jG0(x)∣∣x∣ = lim sup
x→0

∣xjxℓ (3 + eik∣x∣(k2∣x∣2 + 3ik∣x∣ − 3))∣
4π∣x∣4

≤ lim
x→0

∣3 + eik∣x∣(k2∣x∣2 + 3ik∣x∣ − 3)∣
4π∣x∣2 = k

2

8π
.

Then, we continue with a generalization of a relatively basic result that is just partly stated on [18] and
whose proof, for the k = 0 case, can be found as part of [5, Theorem 4.5.].

Proposition A.3 (Partly stated on equation (3.6.27) and Corollary 3.6.3). Given a ϕ ∈ L2(Γ), it is
satisfied in the nontangential sense that γ± SLk ϕ = Skϕ, σ-a.e. and, for every α > 0, there exists a constant
C̃α such that ∥N±α(SLk ϕ)∥2 ≤ C̃α∥ϕ∥2. Also, the left equation of (3.7) is satisfied and we have the mapping
property,

(A.3) Sk ∶ L2(Γ) Ð→H1(Γ).

Proof. Note that for any x ∈ Γ and ϕ ∈ L2(Γ), using the k = 0 result,

∣∫
Γ
Gk(x − y)ϕ(y)dσ(y)∣ ≤ ∫

Γ
∣Gk(x − y)∣ ∣ϕ(y)∣ dσ(y) = ∫

Γ
G0(x − y) ∣ϕ(y)∣ dσ(y) = S0∣ϕ∣(x),

and thus, we have that in general, for σ-a.e. x ∈ Γ, the integral in the left equation of (3.7) defines a bounded
linear operator from L2(Γ) to itself. Let’s call this operator S̃k. Now, notice the following facts; Lip(Γ)
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is dense in L2(Γ); both Lip(Γ) and L2(Γ) are dense in H−1/2(Γ); Sk and S̃k coincide in Lip(Γ); and the
image of Lip(Γ) over S̃k belongs to L2(Γ). Then, Sk and S̃k must also coincide in L2(Γ). Thus, as a small
abuse of notation we will refer to S̃k as simply Sk. Next, if ∥ϕ∥2 = 1, and we take C from Lemma A.2

∥∇TSkϕ −∇TS0ϕ∥2 = sup
f ∈ LipT (Γ)∥f∥∞ ≤ 1

∫
Γ

⎛
⎜
⎝
∫
Γ

(Gk −G0)(x − y) ϕ(y) dσ(y)
⎞
⎟
⎠
∇T⋅f(x) dσ(x)

= sup
f ∈ LipT (Γ)∥f∥∞ ≤ 1

∫
Γ

⎛
⎜
⎝
∫
Γ

(∇Gk −∇G0)(x − y) ⋅ f(x) dσ(x)
⎞
⎟
⎠
ϕ(y) dσ(y)

=∫
Γ

⎛
⎜
⎝
∫
Γ

∣(∇Gk −∇G0)(x − y)∣ dσ(x)
⎞
⎟
⎠
∣ϕ(y)∣ dσ(y)

≤
√

3Cσ(Γ)∥ϕ∥1 ≤
√

3Cσ(Γ)(∥ϕ∥22 + σ(Γ)) =
√

3Cσ(Γ)(1 + σ(Γ)),

Then, as S0 ∶ L2(Γ) Ð→H1(Γ) is bounded and ∥Skϕ∥H1(Γ) ≤ ∥Skϕ−S0ϕ∥H1(Γ)+∥S0ϕ∥H1(Γ), we obtain that
Sk is also a bounded linear operator from L2(Γ) to H1(Γ).

Take α > 0, x ∈ Γ and y ∈ C±α(x). Then for any z ∈ Γ

(A.4) ∣y − z∣ ≥ dist(y,Γ) ≥ ∣x − y∣
α + 1

so, ∣y − z∣(α + 2) ≥ ∣x − y∣ + ∣y − z∣ ≥ ∣x − z∣.

Thus,

∣SLk ϕ(y)∣ = ∣∫
Γ
Gk(y − z)ϕ(z)dσ(z)∣ ≤ ∫

Γ

(α + 2)∣ϕ(z)∣
4π∣x − z∣ dσ(z) = (α + 2)S0∣ϕ∣(x).

Hence, we can use Dominated convergence and the result for k = 0, to obtain for σ-a.e. x ∈ Γ, that it is
satisfied in the nontangential sense γ± SLk ϕ = Skϕ. Also, taking C̃α to be the operator norm of S0 times
α + 2 we obtain that ∥N±α(SLk ϕ)∥2 ≤ C̃α∥ϕ∥2.

Proposition A.4 (Proposition 3.3.2). Take a ϕ ∈ L2(Γ). For f = ϕ, the principal value of equa-
tion (3.7) exists for σ-a.e. x ∈ Γ and it can be used to extend the operator Kk to

Kk ∶ L2(Γ) Ð→ L2(Γ)

which is bounded. Furthermore, the right equation of (3.8) is satisfied in the nontangential limit sense and
for every α > 0, we have that ∥N±α(DLk ϕ)∥2 ≤ C̃α∥ϕ∥2 for some C̃α > 0 depending only on Γ, k and α.

Proof. By [18, Proposition 3.3.2] the result is valid for k = 0. Take any ϕ ∈ L2(Γ) and x ∈ Γ such that
K0ϕ(x) is well-defined, which is σ-a.e. Define for any ε > 0

Kε
kϕ(x) ∶= ∫

y ∈ Γ
∣x − y∣ > ε

∂ν,yGk(x − y) ϕ(y) dσ(y) = − ∫
y ∈ Γ

∣x − y∣ > ε

(∇Gk)(x − y) ⋅ ν(y) ϕ(y) dσ(y).

Then, Kε
0 defines a bounded linear operator from L2(Γ) to itself and, whenever K0ϕ(x) is well defined,

Kε
0ϕ(x) → K0ϕ(x) as ε → 0. Thus, for any sequence (εn)n such that εn → 0 as n → ∞, the sequence
(Kεn

0 ϕ(x))n is Cauchy, whenever K0ϕ(x) is well-defined. Hence, showing that the principal value of equa-
tion (3.7) exists for x is equivalent to showing that the sequence (Kεn

k ϕ(x))n is Cauchy as well. Take m > n
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and see that,

∣Kεn
k ϕ(x) −Kεm

k ϕ(x)∣ ≤ ∣Kεn
k ϕ(x) −Kεm

k ϕ(x) −Kεn
0 ϕ(x) +Kεm

0 ϕ(x)∣ + ∣Kεn
0 ϕ(x) −Kεm

0 ϕ(x)∣

≤ ∫
y ∈ Γ

εn > ∣x − y∣ > εm

∣(∇Gk −∇G0)(x − y)∣ ∣ϕ(y)∣ dσ(y) + ∣Kεn
0 ϕ(x) −Kεm

0 ϕ(x)∣

≤ ∫
y ∈ Γ

εn > ∣x − y∣ > εm

√
3C ∣ϕ(y)∣ dσ(y) + ∣Kεn

0 ϕ(x) −Kεm
0 ϕ(x)∣

where the constant C, taken from Lemma A.2, depends only on k and the size of the bounded set Γ.
Thus, the integrability of ϕ and the fact that (Kεn

0 ϕ(x))∞n=1 is Cauchy imply that (Kεn
k ϕ(x))∞n=1 is Cauchy

as well. Since the result is valid for k = 0, the value K0ϕ(x) is well defined for σ-a.e. x ∈ Γ. Then,
Kkϕ(x) ∶= limε→0K

ε
kϕ(x) is also well defined for σ-a.e. x ∈ Γ, and it defines a measurable function since it

is the point-wise limit of L2 functions.
Note that Kk defines a linear operator on L2(Γ). Take now any ϕ ∈ L2(Γ) with ∥ϕ∥2 = 1. Then using,

Fatou’s lemma we get

∥Kkϕ −K0ϕ∥
2

2
≤ lim inf

ε→0 ∫
x∈Γ

RRRRRRRRRRRRRRRRRR

∫
y ∈ Γ

∣x − y∣ > ε

(∇Gk −∇G0)(x − y) ⋅ ν(y) ϕ(y) dσ(y)

RRRRRRRRRRRRRRRRRR

2

dσ(x)

≤ lim inf
ε→0 ∫

x∈Γ

⎛
⎜⎜⎜
⎝
∫
y ∈ Γ

∣x − y∣ > ε

∣(∇Gk −∇G0)(x − y)∣ ∣ϕ(y)∣ dσ(y)
⎞
⎟⎟⎟
⎠

2

dσ(x)

≤ 3C2σ(Γ)∥ϕ∥21 ≤ 3C2σ(Γ)(∥ϕ∥22 + σ(Γ))2 = 3C2σ(Γ)(1 + σ(Γ))2,

with the same constant C as before. Then, as K0 is bounded and ∥Kkϕ∥2 ≤ ∥Kkϕ −K0ϕ∥2 + ∥K0ϕ∥2, we
obtain that Kk is bounded having L2(Γ) as its image. Now, using an argument analogous to the one in
Lemma A.3 for S̃k, we can show that Kk coincides with Kk in L2(Γ) and thus, as a small abuse of notation
we will refer to Kk as just Kk.

Fix a ϕ ∈ L2(Γ) such that ∥ϕ∥2 = 1. By [18, equation (3.3.6)], for any α > 0 there exists a constant Cα
such that

∥N±α(DL0 ϕ)∥2 ≤ Cα.

On the other hand,

∣N±α(DLk ϕ)(x) −N±α(DL0 ϕ)(x)∣ ≤N±α(DLk ϕ −DL0 ϕ)(x)

= sup
z∈C±α(x)

∣∫
Γ
(∇Gk −∇G0)(z − y) ⋅ ν(y) ϕ(y) dσ(y)∣

≤ sup
z∈C±α(x)

∫
Γ
∣(∇Gk −∇G0)(z − y)∣ ∣ϕ(y)∣ dσ(y)

≤
√

3C∥ϕ∥1 ≤
√

3C(1 + σ(Γ)).

Then,

∥N±α(DLk ϕ)∥2 ≤ ∥N
±
α(DLk ϕ) −N±α(DL0 ϕ)∥2 + ∥N

±
α(DL0 ϕ)∥2

≤
√

3σ(Γ)C(1 + σ(Γ)) +Cα =∶ C̃α.
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Therefore, for a general ϕ ∈ L2(Γ) we get

(A.5) ∥N±α(DLk ϕ)∥2 ≤ C̃α∥ϕ∥2.

With a slightly modified argument to the one of the proof of [18, Proposition 3.3.2], it follows that for
all f ∈ Lip(Γ), the nontangential limit γ±DLk f exists and satisfies the right equation of (3.8).

We will prove that the nontangential limits γ±DLϕ(x) exists for σ-a.e. x ∈ Γ for real valued functions
ϕ but the result for the complex valued ones follows immediately by linearity. Take now any real-valued
ϕ ∈ L2(Γ) and, using the the density of Lip(Γ) in L2(Γ), we can take a sequence (fn)n ⊂ Lip(Γ) of real
value functions that converge to ϕ in L2(Γ). Then define, for any real-valued measurable function ψ on Ω±
and for any x ∈ Γ such that x ∈ C±α(x) (which by [18, Proposition 3.3.1], happens for σ-a.e. x ∈ Γ),

(A.6) γ±α,infψ(x) ∶= lim inf
y → x

y ∈ C±α(x)

ψ(x) and γ±α,supψ(x) ∶= lim sup
y → x

y ∈ C±α(x)

ψ(x),

and denote the resulting function on Γ by γ±α,infψ and γ±α,supψ, respectively. Then, using Equation (A.5)

∥γ±α,inf DLk ϕ − γ±DLk fn∥2 = ∥γ±α,inf DLk ϕ − γ±α,supDLk fn∥2 ≤ ∥γ±α,inf DLk(ϕ − fn)∥2
≤ ∥N±αDLk(ϕ − fn)∥2 ≤ C̃α∥(ϕ − fn)∥2

and

∥γ±α,supDLk ϕ − γ±DLk fn∥2 = ∥γ±α,supDLk ϕ − γ±α,supDLk fn∥2 ≤ ∥γ±α,supDLk(ϕ − fn)∥2
≤ ∥N±αDLk(ϕ − fn)∥2 ≤ C̃α∥(ϕ − fn)∥2.

This implies, by the convergence of (fn)n to ϕ in L2(Γ), that for any α > 0 it is satisfied that γ±α,infψ(x) =
γ±α,supψ(x) for σ-a.e. x ∈ Γ. Hence, for any α > 0 the limit γ±αDLϕ(x) exists for σ-a.e. x ∈ Γ. Next, note
that for any x ∈ Γ and α > β > 0, if γ±αDLϕ(x) exists then γ±β DLϕ(x) also exists and is equal to γ±αDLϕ(x).
Thus, by taking a sequence of αn →∞, we obtain that for σ-a.e. x ∈ Γ, the nontangential limit γ±DLϕ(x)
exists.

Finally, by Remark 2.1, the nontangential limit γ±DLϕ(x) is equal to the classical trace and therefore,
by the density of Lip(Γ) in L2(Γ), the continuity of operator Kk ∶ L2(Γ) Ð→ L2(Γ) and Kk ∶ H1/2(Γ) Ð→
H1/2(Γ), we obtain that γ±DLϕ(x) satisfies the right equation of (3.8) in the nontangential sense.

Proposition A.5 (Proposition 3.6.2). For each φ ∈H1(Γ), the nontangential limit γ±∂j DLk φ exists

σ-a.e. on Γ, for each j = 1,2,3. Also, C̃α > 0 can be taken such that,

(A.7) ∥N±α(∇DLk φ)∥2 ≤ C̃α∥φ∥H1(Γ).

Finally, the restriction of Kk to H1(Γ) is bounded as an operator on H1(Γ) and we get the mapping property,

Kk ∶H1(Γ) Ð→H1(Γ).

Proof. Adapting the proof of [18, Proposition 3.6.2], take any x ∈ Ω± and j = 1,2,3. Then,

∂j DLk φ(x) = −∫
Γ

3

∑
l=1

[∂j∂lGk](x − y)νl(y)φ(y)dσ(y)

=∫
Γ

φ(y)
⎛
⎝
k2Gk(x − y)νj(y) +∑

l≠j

[∂l∂lGk](x − y)νj(y) − [∂j∂lGk](x − y)νl(y)
⎞
⎠

dσ(y)

= k2 SLk(φνj) +∑
l≠j
∫
Γ
∂τj,lφ(y)∂lGk(x − y)dσ(y),(A.8)
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where the second inequality uses the fact that ∆G + k2G = 0 on R3 ∖ {0} and the third uses Lemma A.1.
The first term in (A.8) is only weakly singular and can be handled as in Lemma A.3. As for the second
term, recalling that the result is known for the case k = 0 [31, Lemma 5.7], we are left to prove: (i) the
existence of the nontangential limit a.e. on Γ and (ii) the domination of the L2-norm of the nontangential
maximal function by C∥φ∥H1(Γ), this time for the quantity

∑
l≠j
∫
Γ
∂τj,lφ(y) (∂lGk(x − y) − ∂lG0(x − y))dσ(y).

Now, both (i) and (ii) follow by dominated convergence from the second inequality in Lemma A.2.

Proposition A.6 (Proposition 3.6.4). The operator Sk ∶H−1/2(Γ) Ð→H1/2(Γ) can be extended to the
bounded linear operator

Sk ∶H−1(Γ) Ð→ L2(Γ),

which is the dual of (Sk)∣H1(Γ). Also, it is satisfied in the nontangential sense that

γ± SLk ψ = Skψ, σ-a.e. for every ψ ∈H−1(Γ)

and, for every α > 0, there exists a constant C̃α such that,

∥N±α(SLk ψ)∥2 ≤ C̃α∥ψ∥H−1(Γ).

Proof. Note that by Lemma A.3 and Equation (3.7), for every ϕ ∈ L2(Γ), we get (Sk)∗∣H1(Γ)(ϕ) = Sk(ϕ).
Then, using again density of Hs(Γ) in Ht(Γ) for t < s, and Lemma A.3, we obtain that (Sk)∗∣H1(Γ) is

indeed an extension of Sk ∶ H−1/2(Γ) Ð→ H1/2(Γ). The rest of the proof follows from similar arguments to
Proposition A.4.

Proposition A.7 (Proposition 6.3.1). For any ϕ ∈ L2(Γ) we get

∂±ν SLk ϕ = (∓
1

2
Id +K∗k)ϕ

= ν ⋅ γ±(∇SLk ϕ)

Proof. The first equality is just the classical result [24, Equation (7.5)]. For the second equality, it
can be shown, similarly as in the previous lemmas, that γ± ○ ∂j SLk −γ± ○ ∂j SL0 defines a bounded linear
operator from L2(∂) to itself, so that, by [18, Proposition 6.3.1], γ± ○ ∂j SLk is as well bounded Finally, we
can show the result for Lipschitz functions, dividing the integral as in the proof of [18, Proposition 3.3.2]
and also integrating against a test function; and finish the proof by a density argument.

A.2. Auxiliary regularity results. In this section, we state an prove a couple of lemmas which are
folklore but not easy to find in the literature.

Lemma A.8. For Ω+ ⊂ R3 a bounded Lipschitz domain, the map S0 ∶ L2(Γ) →H1(Γ) is an isomorphism.
Moreover, for each f ∈ L2(Γ) , the harmonic function SL0f has gradient with nontangential maximal
function N±α(∣∇SL0f ∣) ∈ L2(Γ). In addition, SL0f lies in H3/2(Ω).

Proof. We adopt the notation of Lemma A.12: Γ1, ...,Γl are the components of Γ ordered so that the
connected components O1, ...,Ol of R3 ∖Ω satisfy O1 = Ext(Γ1) and Oj = Int(Γj) for j ≠ 1. When l = 1, the
lemma follows from [31, Theorem 3.3 & Corollary 3.5], except for the last statement. The latter is made
in [21, Remark (b)], but that part of the argument based on interpolation which is given there is wrong.
Instead, one can observe like these authors that x ↦ ∣∂i∂jSL0f(x)∣dist(x,Γ)1/2 ∈ L2(Ω) for 1 ≤ i, j ≤ n
(this follows from [12, Theorem 1] using Fubini’s theorem), and appeal to [20, Theorem 4.1] to obtain that
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SL0f ∈ H3/2(Ω). In the general case, let us write S0(fj) (resp. SL0(fj)) for the single layer potential of
fj ∈ L2(Γj) on Γj (resp. on R3 ∖ Γj), and consider the map F ∶ ΠjL

2(Γj) → ΠjH
1(Γj) given by

F (f1,⋯, fl) ∶=
⎛
⎝
S0(fj) + ∑

k≠j

γΓjSL0(fk))
⎞
⎠

l

j=1

.

Clearly, by the case l = 1, this map is of the form J + K where J(f1,⋯, fl) = (S0(fj))lj=1 is invertible
and K is a compact operator. Moreover F is injective, for if F (f1,⋯, fl) = 0 then the harmonic function

∑j SL0(fj) is identically zero in Ω± as it has vanishing nontangential limit a.e on Γ and L2(Γ)-nontangential
maximal function by the case l = 1 and the smoothness of SL0fj across Γk for k ≠ j, so that we can apply
[11, Theorems 1 & 3] (note that ∑j SL0(fj) is zero at infinity by construction); taking the Laplacian, we
conclude that all fj are zero, thereby proving the announced injectivity. Thus, by a well-known theorem of
F. Riesz, F is an isomorphism, and since S0f = ∑j S0(fj) when we put fj = f∣Γj the fact that Nα∣∇SL0(f)∣
lies in L2(Γ) and that SL0f ∈H3/2(Ω) now follows immediately from the case l = 1.

Lemma A.9. Let Ω+ ⊂ R3 be a bounded Lipschitz domain, (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u = F̃(ϕ,ψ). If

γ+u ∈H1(Γ) then u ∈H3/2(Ω+), and if γ−u ∈H1(Γ) then u ∈H3/2
ℓ (Ω−).

Proof. We only prove the statement for γ−u, as the case of γ+u is analogous but simpler. Let B ⊂ R3

be an open ball centered at 0 containing Ω+, and let u′ = u
∣B∖Ω+ which is square integrable by remark 3.2.

By [20, Theorem B], there is a w ∈ H3/2(B ∖ Ω+) such that ∆w = −k2u′ and γB∖Ω+w = 0. Note that

γB∖Ω+u
′ ∈ H1(∂(B ∖ Ω+)), since γ−u ∈ H1(Γ) by assumption and u is analytic on Ω−. So, by Lemma

A.8, there is a harmonic function v ∈ H3/2(B ∖ Ω+) whose gradient has Nα∣∇SL0(f)∣ ∈ L2(Γ), and whose
nontangential limit a.e. on Γ is γB∖Ω+u

′. Hence, as v + w ∈ H3/2(B ∖ Ω+), it is enough to show that

h ∶= u′ − v − w is the zero fonction. For this we shall prove that it lies in H1(B ∖ Ω+) and has zero trace;
since it is harmonic by construction, this will achieve the proof. Now, h ∈H1(B∖Ω+) if and only if u′ does,
and remark 3.2 together with the third inequality in Lemma A.2 entail in view of Lemma A.8 that u′ is the
sum of a harmonic function of the form SL0f with f ∈ L2(Γ) (that lies in H1(B∖Ω+) plus a function with
nontangentially bounded derivative (because x ↦ 1/∣x∣ is locally integrable in dimension 2). Altogether,
u′ ∈ H1(B ∖Ω+), and h ∈ H1(B ∖Ω+) as well. Finally, the trace of w is zero and the nontangential limit of
v, which is also its trace, is γB∖Ω+u

′. Hence h has zero trace, as wanted.

Lemma A.10. Let Γ ⊂ R3 be the boundary of a bounded Lipschitz domain and let {Γj}j∈J be its connected
components. If ψ ∈ H−1(Γ) is such that for every j ∈ J , ⟨ψ,1Γj ⟩ = 0, then there exists a φψ ∈ H1(Γ) such
that ∆Tφψ = ψ.

Proof. Let Z denote the space {φ ∈H1(Γ) : for every j ∈ J , ⟨φ,1Γj ⟩ = 0} together with the inner product
⟪φ, φ̃⟫Z ∶= ⟪∇Tφ,∇Tφ̃⟫L2(Γ)3 . By the Poincaré inequality (obtained from its Euclidean version applied
in a minimal system of finitely many charts (Vj ,Φj) with Lipschitz smooth image that cover Γ to bound
∥φ−∫Vj∖(∪k≠jVk) φ∥L2(Vj) by Kj∥∇φ∥L2(Vj) for each j), one checks that Z is a Hilbert space. Pick ψ ∈H−1(Γ)
such that, for every j ∈ J , ⟨ψ,1Γj ⟩ = 0. Using the Poincaré inequality again, the function φ↦ −⟨ψ,φ⟩ belongs
to the dual of Z. Thus there exists a φψ ∈ Z such that, for every φ ∈ Z, ⟨ψ,φ⟩ = −⟪φψ, φ⟫Z . Take now any
φ ∈H1(Γ) and let, for any j ∈ J , αj = σ(Γj)−1⟨φ,1Γj ⟩. Then,

⟨ψ,φ⟩ = ⟨ψ , φ − ∑
j∈J

αj1Γj + ∑
j∈J

αj1Γj⟩ = ⟨ψ , φ − ∑
j∈J

αj1Γj⟩ = −⟪φψ , φ − ∑
j∈J

αj1Γj⟫
Z

= −⟨∇Tφψ , ∇T

⎛
⎝
φ − ∑

j∈J

αj1Γj
⎞
⎠
⟩
L2(Γ)3

= −⟨∇Tφψ,∇Tφ⟩L2(Γ)3 = ⟨∆Tφψ, φ⟩,

and hence ∆Tφψ = ψ.
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A.3. Basic topological facts. Using the fact that all surfaces embedded in R3 are triangulable [22,
Theorem 5.12], the following lemma can be found in [25, Corollary 74.2]. This is generally true for any
connected compact hypersurface on Rn and follows as a consequence of Alexander duality [17, Corollary
3.45], but the proof is more involved.

Lemma A.11. Take a connected surface Γ ⊂ R3 which is compact as a topological space.
Then the set R3 ∖ Γ has two connected components; one bounded, which we will denote by Int(Γ), and

another unbounded, which we will denote by Ext(Γ).
Furthermore, ∂(Int(Γ)) = Γ = ∂(Ext(Γ)).
We say that a set Γ ⊂ R3 is locally a Lipschitz graph if for every x ∈ Γ there exists an open ball B ⊂ R3,

a h > 0, a plane H ⊂ R3 passing through s and with a normal unit vector ν, and a real-valued Lipschitz
continuous function g on H such that the set defined as

C ∶= {x + tν ∶ x ∈ B ∩H, −h < t < h},

satisfies:

C ∩ Γ = {x + tν ∶ x ∈ B ∩H, t = g(x)}.

Lemma A.12. Let Ω ⊂ R3 be a bounded Lipschitz domain. Then, Γ has finitely many connected compo-
nents, say Γ1, ...,Γl, each of which is locally a Lipschitz graph in R3 .

Moreover, the connected components of R3 ∖ Ω consist of l Lipschitz domains O1, ...,Ol, and with a
suitable ordering O1 = Ext(Γ1) while Oj = Int(Γj) for j ≠ 1.

Proof. The connected components Ω ⊂ R3 are finite in number; otherwise indeed, there would exist
a sequence (Ωk)k of such components, with Ωk ∩ Ωj = ∅ for k ≠ j. Then, we could construct a sequence
(xk)k ∈ Ωk such that xk remains at bounded distance from Γk ⊂ Γ, hence xk would be bounded and
extracting a subsequence if necessary we might assume that xk converges in R3 to some y. However, this
is impossible for y cannot lie in Ω since the connected components of the latter are open, nor can it lie in
R3 ∖ Ω, and it cannot belong to Γ either because, as Γ is a compact Lipschitz manifold which is locally
a Lipschitz graph, each x ∈ Γ has a neighborhood whose intersections with both Ω and Γ are connected.
Consequently, by compactness, Γ has finitely many connected components, say Γ1, ...,Γl, and each Γj is
locally a Lipschitz graph in R3.

As Ω is connected by assumption, for each j ∈ {1, ..., l} one of the following is true; either Ω ⊂ Int(Γj), so

that Ω ⊂ Int(Γj) and then, using Lemma A.11, Ext(Γj) ⊂ R3∖Ω; or else Ω ⊂ Ext(Γj) and then, analogously,
Int(Γj) ⊂ R3 ∖ Ω. Since there is exactly one unbounded connected component of R3 ∖ Ω, say O1, it must
contain Ext(Γj) for all j such that Ω ⊂ Int(Γj); let us enumerate these j as j1, ..., jm. For 1 ≤ i, k ≤ m, it
holds that Int(Γji)∩ Int(Γjk) ≠ ∅ because Ω lies in this intersection, and since the Γj are disjoint one of
these interiors is included in the other, say Int(Γji) ⊂ Int(Γjk). But if ji ≠ jk, then Γjk ⊂ Ext(Γji) and the
latter is contained in O1, a contradiction. Consequently, m = 1 and Ω lies interior to exactly one of the Γj ,
say Γ1. Necessarily then, O1 = Ext(Γ1) because O1 cannot strictly contain Ext(Γ1) without containing a
point of Γ1, which is impossible. Likewise, Ω ⊂ Ext(Γj) for j ≠ 1 and then Int(Γj) is a connected component
of R3 ∖ Ω. Next, the closure of every bounded connected component of R3 ∖ Ω must meet some Γj , and
necessarily j ≠ 1 for each point of Γ1 has a neighborhood included in O1 ∪Ω, by the local Lipschitz graph
property. Hence, this connected component meets Int(Γj) for some j ≠ 1, therefore it must coincide with
Int(Γj). Finally, due to Lemma A.11 and the definition of locally Lipschitz graphs, for each j ∈ {1, ..., l}
both Int(Γj) and Ext(Γj) are Lipschitz domains.
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[28] L. Schwartz, Théorie des distributions, Hermann, 1978.
[29] R. Torres and G. Welland, The helmholtz equation and transmission problems with lipschitz interfaces, Indiana

University Mathematics Journal, 42 (1993), pp. 1457–1485.
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