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SILENT SOURCES ON A SURFACE FOR THE HELMHOLTZ EQUATION

AND DECOMPOSITION OF L2 VECTOR FIELDS

L. BARATCHART, H. HADDAR, AND C. VILLALOBOS GUILLÉN

Abstract. We study an inverse source problem with right hand side in divergence form for the Helmholtz

equation, whose underlying model can be related to weak scattering from thin interfaces. This inverse

problem is not uniquely solvable, as the forward operator has infinite-dimensional kernel. We present a
decomposition of (not necessarily tangent) vector fields of L2-class on a closed Lipschitz surface in R3,

which allows one to discuss an ansatz for the solution and constraints that restore uniqueness. This work
can be seen as a generalization of references [4, 6] dealing with the Laplace equation, but in the Helmholtz

case new ties arise between the observations from each side of the surface. Our proof is based on properties

of the Calderón projector on the boundary of Lipschitz domains, that we establish in a H−1 ×L2 setting.

1. Introduction

Inverse source problems are classical inverse problems that relate to numerous applications, including
medical imaging, ultrasound imaging, microwave imaging, or multimodal imaging techniques such as pho-
toacoustics [17]. This work is concerned with source terms in divergence form which arise naturally, for
example when modelling anisotropy in the medium response or when a static electromagnetic setting is
used like in Electro-Encephalography. The corresponding inverse problems are extremely ill-posed, since
the forward operator is not even injective, and thus the solution is subject to a fundamental uncertainty
that can only be resolved upon making additional assumptions. The aim of this paper is to contribute to
the analysis thereof in the case of the Helmholtz equation, by bringing out the structure of this uncertainty
in the situation where the source is supported on a surface.

Specifically, the model problem we are interested in is governed by an equation of the form

eq|HPeqeq|HPeq (1.1) ∆u + k2u = ∇ ⋅M in R3,

where u meets a Sommerfeld radiation condition at infinity. The left hand side of (1.1) is the Helmholtz
operator with wave number k, while the right-hand side is a source term in divergence form where M is
some distribution supported on a known Lipschitz surface Γ ⊂ R3, which is the boundary of a bounded
domain Ω ⊂ R3. Equation (1.1) can be viewed as an approximate model for scattering from thin interfaces,
see Remark 2, and references [11, 7]).

A typical inverse problem associated with (1.1) is to recover M from knowledge of the field ∇u outside
the surface. If M is such that the field vanishes inside (or outside) Ω, it is said to be silent inside (or
outside). The existence of non-trivial silent M implies non-injectivity of the forward operator, and is one
of the big issues facing such inverse problems.

When Γ is a compact, connected Lipschitz surface and k = 0, so that the left-hand side of (1.1) reduces
to the ordinary Laplacian, a direct sum decomposition of R3-valued vector fields with components in L2(Γ)
as an interior silent component, an exterior silent component, and a tangent divergence-free term (which
is silent on both sides) was obtained in [4]; see also [6] for the case of the plane. In the present paper,
we generalize such a decomposition to non-zero k and show that a fourth, finite-dimensional summand is
generally required. The description of the summands allows one to structure the solutions of the inverse
problem, and to specify how much information can be recovered from given data.

Our approach is different from [4] and relies heavily on properties of Calderón projectors [21], moreover
it is connected with the data completion algorithm proposed in [3]. We also make intensive use of properties
of singular integrals on Lipschitz surfaces expounded in [16], to derive the necessary material to handle low
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(L2) regularity. While it is possible, and in fact somewhat simpler to derive corresponding results for vector

fieldsM whose tangential and normal components belong to H1/2(Γ), the authors feel that the L2 theory is
more natural because the membershipM ∈ (L2(Γ))3 can be defined independently of the normal frame. In
contrast, the dependence of the latter on the embedding Γ → R3 makes it difficult to intrinsically describe
vector fields whose normal and tangential components lie in H1/2(Γ). And even more importantly perhaps,

the L2-framework is better suited for numerical implementations, as convergent discretization in W 1/2 is
hard to handle. We work in R3 throughout, even though generalizing to Rn is straightforward.

The paper is organized as follows. In Section 2, we set up notation and conventions used for function
spaces and operators in Euclidean space and on a surface. Section 3 is devoted to the statement of the
problem and the characterization of silent sources in terms of Calderón projectors. The main result of the
paper, namely the decomposition of L2(Γ)3 functions in terms of silent sources, is stated and proven in
Section 4. Finally, this decomposition is illustrated by explicit calculations in the case of spheres. The paper
concludes with a technical appendix containing a few results on surface potentials and elliptic regularity
that we could not find in the literature; several of them are adaptations to the case k > 0 of results from
[16].

2. Preliminaries and Notation
sec|prelimnot

If V is a topological vector space over R or C we denote by V ∗ its dual and we write G∗ ∶ W ∗ → V ∗

for the adjoint of an operator G ∶ V →W ; also, KerG denote its kernel and ImG its image. For v ∈ V and
ω ∈ V ∗, we let ⟨ω, v⟩ indicate the duality product. If V is equipped with a conjugation (v ↦ v), we define

a sesquilinear form on V ∗ × V by ⟪ω, v⟫ ∶= ⟨ω, v⟩, and for a Hilbert space V we denote the inner product
of v, u ∈ V by ⟪v, u⟫V . Notice our convention that such products are linear on the second entry. We also
identify V with V ∗ via the linear isometry v ↦ ⟪v, ⋅⟫V . When Ω ⊂ Rn is open, we set C∞(Ω) to be the
space of infinitely differentiable functions on Ω, and C∞c (Ω) the subspace of those having compact support.
We denote by E(Ω) the space C∞(Ω) endowed with the topology of uniform convergence of all derivatives
on compact sets, and by D(Ω) the space C∞c (Ω) equiped with the inductive topology of subspaces with
support in a fixed compact set [25, Chapter I, Section 2]. Then, D∗(Ω) is the space of distributions on
Ω. Given ω ∈ D∗(Rn) we let supp(ω) denote its support, and we write ∂jω for its (distributional) partial
derivative with respect to the j-th coordinate in Rn.

For p ≥ 1 and Q a Borel set in R3 with ρ a positive Borel measure on Q, we let Lp(Q,ρ) denote the
familiar Lebesgue space of p-summable functions (essentially bounded if p =∞) on Q. When ρ is Lebesgue
measure, we simply write Lp(Q). For E ⊂ Rn, a function f ∶ E → Rm is Lipschitz if ∣f(x) − f(y)∣ ≤ k∣x − y∣
for x, y ∈ E, and the smallest constant k for which this holds is the Lipschitz constant of f , denoted as
kf . We write Lip(E) for the space of Lipschitz functions E endowed with the norm ∥f∥L∞(E) + kf . Such a

function extends to a Lipschitz function on the whole of R3 [1, Theorem 7.2], and clearly the extension can
be chosen to have compact support if E is bounded.

For Ω ⊂ R3 an open set and s ∈ R, let Hs(Ω) denote the Bessel potential space of order s (with index

2); the latter consists of restrictions to Ω of tempered distributions T on R3 whose Fourier transform T̂ is

such that (1 + ∣ξ∣2)s/2T̂ ∈ L2(R3). On Hs(Ω) one puts the norm ∥(1 + ∣ξ∣2)s/2T̂ ∥L2(R3)∥, and if α ≥ 0 then

Hs(Ω) is a space of functions; see [21, ch. 3]. Clearly, H0(Ω) = L2(Ω) and Ht(Ω) ⊂ Hs(Ω) for s < t with
dense inclusion. In particular, Hs(R3) densely contains compactly supported Lipschitz functions for s ≤ 1.

A Lipschitz domain in Ω is one whose boundary is locally isometric to the graph of a Lipschitz function.
If Ω is Lipschitz then H1(Ω) coincides with functions in L2(Ω) whose distributional derivatives again
lie in L2(Ω), moreover Hs(Ω) is the real interpolation space [L2(Ω),H1(Ω)]s and H−s(Ω) = (Hs

0(Ω))∗,
where Hs

0(Ω) is the closure of D(Ω) in Hs(Ω), see [21, Theorems 3.18 & 3.30 & 3.33]. In particular,
Hs(Ω) ⊂ (Lip(Ω))∗ for s ≥ −1 as soon as Ω is Lipschitz and bounded, and in this range a member of Hs(Ω)
is completely determined by its action on compactly supported Lipschitz functions in Ω. Still in the case
that Ω is bounded and Lipschitz, we also define for s ≥ 0:

defHlocdefHloc (2.1) Hs
ℓ (R3 ∖Ω) ∶= {ω ∈ D∗(R3 ∖Ω) ∶ ω

∣Br∖Ω ∈H
s(Br ∖Ω), for each r > 0 such that Ω ⊂ Br},
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where Br ⊂ R3 denotes the open ball of radius r centered at 0. This space is denoted as Hs
loc(R3∖Ω) in [21],

but this conflicts with standard notation which is why we adopt a subscript ℓ. We also put for convenience
Hs
ℓ (Ω) ∶= Hs(Ω) to streamline notation at some places. This is consistent with (2.1), in that Hs

ℓ (Ω) is
comprised of functions lying in Hs(Ω ∩Br) for all r large enough.

For a compact Lipschitz surface M ⊂ R3 which is the boundary of a Lipchitz open set, we let σ indicate
surface measure on M ; i.e., σ =H2

∣M , the restriction to M of 2-dimensional Hausdorff measure [28, Remark

5.8.3]. We write L2(M) for L2(M,σ), also for n ≥ 1 and ϕ, ϕ̃ ∈ L2(M)n we let

⟨ϕ, ϕ̃⟩L2(M)n ∶= ∫
M
ϕ ⋅ ϕ̃ dσ and ⟪ϕ, ϕ̃⟫L2(M)n ∶= ∫

M
ϕ ⋅ ϕ̃ dσ,

where ϕ denotes the complex conjugate of ϕ. For the remaining definitions, we fix a particular compact
Lipschitz surfaceM ⊂ R3 with atlas {(θj , Uj)}j∈I , in such a way that θj(Uj) is a ball Bj ⊂ R2 for each j and,
for some rigid motion Rj of R

3, the map θ−1j ∶ Bj → R3 is of the form Rj ○ (I2 ×ψj) where I2 is the identity

operator on R2 and ψj ∶ Bj → R is Lipschitz-smooth. Without loss of generality, we assume that the charts
are finitely many. A point x ∈M such that θ−1j is differentiable at θj(x) for all j such that x ∈ Uj is called
regular. By Rademacher’s theorem, σ-a.e. x ∈M is regular. Defined this way regular points depend on the
atlas, but this is unimportant to us; see [28, Section 5.8] for a more intrinsic definition. Given a regular
point x ∈ M , we let TxM ⊂ R3 denote the tangent space of M at x. The latter is defined as the image of
the derivative Dθ−1j (θj(x)), and by the chain rule this definition is independent of j such that x ∈ Uj . For

a function f ∶M Ð→ C and a point x ∈ Ui such that f ○ θ−1j is differentiable at θj(x), we let ∇Tf(x) ∈ TxM
denote the surface gradient of f at the point x. Note that if f ∶M Ð→ C is Lipschitz then, for σ-a.e. x ∈M ,
∇Tf(x) is well defined. We endow Lip(M) with the norm ∥f∥∞ + ∥∇Tf∥∞; Lipschitz partitions of unity
subordinated to an open cover exist as in the smooth case. The space Lip(M) and Lipschitz partitions of
unity will allow us to quickly define Sobolev spaces of index s ∈ [−1,1] onM , which is all we need. For more
general cases, we refer the reader to [21, 13]. Indeed, if Lipc(Uj) denotes the spaces of Lipschitz functions
compactly supported in Uj , we see on using partitions of unity that a member of Lip(M)∗ is completely
determined by its effect on Lipschitz functions supported on Uj for each j. In addition, there is a one-to-one
correspondence between Lipc(Bj) and Lipc(Uj) given by Lipc(Bj) ∋ f ↦ f ○ θj ∈ Lipc(Uj). Now, letting
g̃ denote the extension by zero to all of M of a function initially defined on a subset of M , we put for
s ∈ [−1,1]:

defHsdefHs (2.2) Hs(M) ∶= {ψ ∈ Lip(M)∗ ∶ ∀j ∈ I, the map Lipc(Bj) ∋ f ↦ ⟨ψ, f̃ ○ θj⟩ belongs to Hs(Bj)} .

Moreover, if we write ψθj ∶ Lipc(Bj)→ R for the map ψθj(f) ∶= ⟨ψ, f̃ ○ θj⟩ above, we define the convergence

of a sequence (ψn)n ⊂ Hs(M) to ψ ∈ Hs(M) as the convergence ψ
θj
n → ψθj in Hs(Bj) for any j ∈ I.

This convergence is independent of the atlas and the Hs(M) are Hilbert spaces. Again, for s < t we have
that Ht(M) ⊂ Hs(M) and H0(M) = L2(M), furthermore H−s(M) identifies with (Hs(M))∗. Note that
Lip(M) is dense in Hs(M) for all s ∈ [−1,1].

We refer on several occasions to results from [16] that uses a more general definition of Sobolev spaces,
discussed for example in [14]; in the present context, it reduces to the one just described.

We say that f ∈ Lip(M)3 (resp. L2(M)3, H1(M)3...) belongs to LipT (M) (resp. L2
T (M), H1

T (M))
if, for σ-a.e. x ∈ M , it has f(x) ∈ TxM . Now, for a ϕ ∈ L2

T (M), one can define by duality the surface
divergence of ϕ, denoted by ∇T⋅ϕ; i.e. for each f ∈ Lip(M), it is required that

⟨∇T⋅ϕ, f⟩ ∶= −⟨ϕ,∇Tf⟩L2(M)3 ,

and then it follows from the previous definitions that∇T⋅ϕ ∈H−1(M). We analogously define, for ϕ ∈ L2(M),
the weak tangential gradient of ϕ which we denote by ∇Tϕ. By density, we get for φ ∈H1(M), ϕ ∈ L2

T (M),
ϕ ∈ L2(M) and φ ∈H1

T (M) that
⟨∇T⋅ϕ, φ⟩ = −⟨ϕ,∇Tφ⟩L2(M)3 , and ⟨∇T⋅φ, ϕ⟩ = −⟨φ,∇ϕ⟩L2(M)3 .

In this paper, we often consider a bounded Lipschitz domain Ω+ with boundary Γ, and we let Ω− ∶= R3∖Ω+.
This choice of signs, where a ”-” is attached to the unbounded complement of the bounded domain (itself
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denoted with a ”+”), is as in [16] but departs from [21]; we implicitly take this discrepancy into account
when quoting results from [21]. Note that Γ is a Lipschitz surface, that needs not be connected in general.
As a short hand, unless stated otherwise, we use the symbol ± to mean both + and -, and we employ the
symbol ∓ to designate the opposite sign to ±.

Using [16, Theorem 4.3.6] together with Lemma A.1 and its proof (see equation (A.1)), we get that

H1(Γ) = {φ ∈ L2(Γ) ∶ ∇Tφ ∈ L2(Γ)3} .
For φ, φ̃ ∈H1(Γ), we have that ∇T⋅∇Tφ ∈H−1(Γ) ≡H1(Γ)∗ and ⟨∇T⋅∇Tφ, φ̃⟩ = −⟨∇Tφ,∇Tφ̃⟩L2(Γ)3 . We

put ∆T ∶= ∇T⋅∇T which is the Laplace-Beltrami operator on Γ. We also use the Hermitian form:

⟪φ, φ̃⟫H1(Γ) ∶= ⟪φ, φ̃⟫L2(Γ) + ⟪∇Tφ,∇Tφ̃⟫L2(Γ)3 ,

which generates the same topology onH1(Γ) as the one defined after (2.2) by invariance of Sobolev functions
under composition with Lipchitz maps [28, Theorem 2.2.2]. We denote by ∥ ⋅∥H1(Γ) the corresponding norm.

Also, we denote the dual norm in H−1(Γ) by ∥ ⋅ ∥H−1(Γ), and the latter arises from a Hermitian product
⟪⋅, ⋅⟫H−1(Γ). In [16], a different norm is used for this space which is equivalent to the present one.

We denote the classical trace on Γ from Ω± by γ± ∶ H1(Ω±) Ð→ H1/2(Γ), which is a bounded linear
operator. If for ϕ ∈H1

ℓ (R3) it holds that γ+ϕ = γ−ϕ, we simply write γϕ ∶= γ±ϕ.
We also use nontangential limits on Γ. That is, given α > 0, we define a nontangential domain of approach

to x ∈ Γ by
C±α(x) ∶= {y ∈ Ω± ∶ ∣x − y∣ ≤ (α + 1)dist(y,Γ)},

where dist indicates Euclidean distance between a point and a set. Subsequently, for ψ a measurable function
on Ω± and x ∈ Γ, we put

γ±αψ(x) ∶= lim
y → x

y ∈ C±α(x)

ψ(y)

whenever this limit exists. From [16, Proposition 3.3.1] it follows that x lies in C±α(x) for σ-a.e. x ∈ Γ, hence
this definition is meaningful σ-a.e. If the limit exists for every α > 0, we say that the nontangential limit of
ψ from Ω± exists at x. In the case that the nontangential limit of ψ exists for σ-a.e. x ∈ Γ, we denote the
resulting function by γ±ψ (same notation as the trace of a Sobolev function), and in case γ+ψ = γ−ψ we
likewise drop the subscript and write γψ.

rmk|traces Remark 1. The apparent abuse of notation assigning the same symbol to the trace/nontangential limit is
justified by the fact that for Lipschitz domains the trace coincides σ-a.e. with the nontangential limits for
H1
ℓ functions, in the case that such limits exist. One way to show this is to prove the result locally, when

the boundary is a Lipschitz graph above a plane A, and apply the absolute continuity of Sobolev functions
on a.e. line perpendicular to A [28, Section 2.1].

Note that the restriction mapping γ ∶ E(R3) Ð→ Lip(Γ), is continuous; we will use the symbol γ∗ to
denote the adjoint operator of this particular version of the trace.

3. Statement of the problem and layer potentials
sec|Stat_lay

3.1. Statement of the problem. We fix throughout k ≥ 0 and a bounded Lipschitz domain Ω+ ⊂ R3 with

boundary Γ, surface measure σ and outward-pointing unit normal ν(x) at σ-a.e. x ∈ Γ. Set G(x) ∶= − eik∣x∣
4π∣x∣

,

which is a fundamental solution the Helmholtz equation. We use G to denote its potential operator, that is:

G ∶ E∗(Rn) Ð→ D∗(R3)
d ↦ G ∗ d.

By [26, Theorem 27.6], the map G is continuous and injective. For M ∈ L2(Γ)3, we write M = νMν +MT

with Mν ∶=M ⋅ ν and MT ∶=M − νMν . Clearly, MT ∈ L2
T (Γ), therefore one can define ∇T⋅MT ∈H−1(Γ).

We then introduce the forward operator:

F ∶ L2(Γ)3 Ð→ D∗(R3)
M ↦ G[∇⋅(Mσ)],
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where byMσ we mean the measure on R3 such that d(Mσ) =Mdσ =MdH1
∣Γ, and ∇⋅(Mσ) is the (weak)

Euclidean divergence ofMσ in R3. Note that F(M) = ∇G∗ (Mσ) and thus, F(M) is a locally integrable
function on R3 which is real analytic on R3∖Γ. If we set u = F(M), then u satisfies the Helmholtz equation:

eq|helmholtzeq|helmholtz (3.1) ∆u + k2u = ∇ ⋅ (Mσ),
as well as the Sommerfeld radiation condition:

eq|RCeq|RC (3.2) lim
∣x∣→∞

∣x∣ ( ∂

∂∣x∣ − ik)u(x) = 0.

Since G is injective, the kernel of F consists of those M ∈ L2(Γ)3 such that ∇ ⋅ (Mσ) = 0. Also, as F(M)
is continuous off Γ and F(M) ∈ L1

loc(R3), membership of M in that kernel is tantamount to F(M) being
identically zero on R3 ∖ Γ. In other words, we have the following chain of equivalences:

equi|F=0_funequi|F=0_fun (3.3) F(M)(x) = 0 for all x ∈ R3 ∖ Γ ⇐⇒ M ∈ KerF ⇐⇒ ∇ ⋅ (Mσ) = 0.
We say that M is silent inside (resp. silent outside) if (F(M))∣Ω+ = 0 (resp. (F(M))∣Ω− = 0). When

M is both silent inside and silent outside, we say that it is silent everywhere (or simply silent), and if it is
neither silent inside nor silent outside we say that it is silent nowhere. The issue that we raise is to describe
the vector fields in L2(Γ)3 that correspond to these various notions of silence. Note that we only distinguish
between silence inside and outside Ω+: we do not consider diverse qualifications of silence in a prescribed
set of components of R3 ∖Ω+ arising when Γ is not connected, as is done for k = 0 in [4]. While, the present
approach can be adapted for that purpose, the basic features of the problem are already present in the case
that we study, and the results are simpler to state.

Note that a temperate distribution u and a vector field M ∈ L2(Γ)3 satisfy (3.1) and (3.2) if and only if

u = F(M). Indeed, a temperate solution T to ∆T +k2T = 0 on Rn has a Fourier transform T̂ with compact
support, hence T ∈ Hs(Rn) for some s; thus, if T meets (3.2) then we can appeal to [21, Theorems 7.12 &
9.6] to conclude that T ≡ 0.

rmk|remamodel Remark 2. Besides inverse magnetisation or EEG problems studied for example in [6, 4, 24] that correspond
to the case k = 0, equation (3.1) can serve as a model for scattering from thin films [11, 7]. Indeed, consider
a thin layer of constant width ϵ≪ 1 coating ∂Ω with some material characterised by a coefficient β, so that
the total field uϵ generated by some source f (compactly supported outside the thin layer) satisfies

∇ ⋅ (1 + βϵ)∇uϵ + k2uϵ = f in R3

together with Sommerfeld radiation condition, where βϵ = β inside the thin layer and is zero outside. Then,
formally at least,

uϵ = u0 + ϵu1 + o(ϵ)
where (the incident field) u0 satisfies ∆u0 + k2u0 = f in R3 and u1 meets (3.1) with M = −A∇u0, the
(anisotropic) matrix field A being defined on ∂Ω by

Aν = β

1 + βν and Aτ = βτ , ∀τ tangent to Γ.

The scattered field uϵ − u0 can then be approximated to the first order by ϵu1, see [11] for a rigorous
justification of this type of model in the case of thin interfaces with constant width ϵ.

3.2. Layer potentials and Green identities in Sobolev spaces. We recall below classical tools such
as layer potentials and Calderón projectors to express the solutions to the Helmholtz equation in Ω±. We
refer to [21] for the H1-theory, where the density of single and double layer potentials lie in H1/2(Γ) and
H−1/2(Γ) respectively. However, to deal with L2(Γ) and H−1(Γ) densities as is necessary to handle the
case that M ∈ L2(Γ)3, we need to extend the domain of definition of the operators under consideration, and
for this we appeal to the work in[16]. Although the results of [16] are derived for the case k = 0 only, we
adapt them to k ≠ 0 in Appendix A.1. Regarding references to [21], we warn the reader that the Helmholtz
equation there is minus ours, hence the fundamental solution and every other quantity linear in the latter
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are off by a sign with respect to the present ones; we implicitly take into account this discrepancy when
quting formulas from [21].

We write ν = (ν1, ν2, ν3) for the coordinates of the unit outer normal of Γ, pointing into Ω−. For

u ∈H1
ℓ (Ω±) such that ∆u ∈ L2

ℓ(Ω±), we let ∂±νu ∈H−1/2(Γ) be the interior and exterior co-normal derivatives
for the Helmholtz differential operator [21, Chapter 4]). These are well-known extensions, based on the first
Green formula, of the natural definition valid for u ∈H2

ℓ (Ω±):
∂+νu = ν ⋅ γ+(∇u) for u ∈H2(Ω+) and ∂−νu = ν ⋅ γ−(∇u) for u ∈H2

ℓ (Ω−).
As with the trace, if ∂−νu = ∂+νu for u ∈H1

ℓ (R3) we simply write ∂νu ∶= ∂±νu.
We denote the single and double layer potentials associated to (3.1) by SL and DL. Recall that SL = G○γ∗

and DL = G ○∂∗ν and that both are continuous and injective from Lip(Γ)∗ to D∗(R3). In particular, we have
for x ∈ R3 ∖ Γ and ϕ ∈ L2(Γ) [21, Equations (6.16) and (6.17)] that

defpotdsdefpotds (3.4) SLϕ(x) = ∫
Γ
G(x − y)ϕ(y)dσ(y), DLϕ(x) = ∫

Γ
∂ν,yG(x − y)ϕ(y)dσ(y),

where ∂ν,y indicates the normal derivative with respect to the variable y. It holds the mapping properties
[21, Theorem 6.11]:

eq|range_layer_classeq|range_layer_class (3.5) SL ∶H−1/2(Γ)Ð→H1
ℓ (R3) and DL ∶H1/2(Γ)Ð→H1

ℓ (Ω±).

rmk|reg_J Remark 3. Note that, for any M ∈ L2(Γ)3, we can write F(M) = ∑j ∂jSL(Mj). Hence, in view of Lemma
A.2 and the corresponding result for harmonic functions (namely, the case k = 0 that follows at once from
[27, Theorem 3.3 (i) & Corollary 3.5 (i)]), we get that F(M) ∈ L2

loc(R3)3.

Recall the three Green Identities: for u, v ∈ H1(Ω±) with ∆u ∈ L2(Ω±) and for ± to mean + or −, one
has by [21, Theorem 4.4 (i)]:eqs|Green

eq|Green1eq|Green1 (3.6a) ⟪∇u,∇v⟫L2(Ω±)3
= −⟪∆u, v⟫L2(Ω±)

±⟪∂±νu, γ±v⟫ ;

if moreover ∆v ∈ L2(Ω±), then it holds in view of [21, Theorem 4.4 (iii)] that

eq|Green2eq|Green2 (3.6b) ⟪∆u + k2u, v⟫
L2(Ω±)

− ⟪u,∆v + k2v⟫
L2(Ω±)

= ∓⟪γ±u, ∂±νv⟫±⟪∂±νu, γ±v⟫

and, for u ∈ L2
loc(R3) with u∣Ω± ∈H1

ℓ (Ω±) satisfying (3.2) as well as

∆u∣Ω± + k2u∣Ω± = 0 in Ω±,

we get on applying [21, Theorem 6.10] to Φρu, where Φρ ∈ C∞c (Rn) is 1 on Bρ for arbitrary large ρ, that

eq|Green3eq|Green3 (3.6c) u = DL(γ+u − γ−u) − SL(∂+νu − ∂−νu).
The boundary version of layer potentials are bounded linear operators, with the mapping properties

S ∶Hs−1(Γ)Ð→Hs(Γ) and K ∶Hs(Γ)Ð→Hs(Γ)
for s ∈ {1,1/2,0} (these are the only cases we need)1. They have for ϕ ∈ L2(Γ) and σ-a.e. x ∈ Γ the integral
representations

eq|int_repeq|int_rep (3.7) Sϕ(x) = ∫
∂D

G(x − y)ϕ(y)dσ(y), Kϕ(x) = p.v.∫
∂D

∂ν,yG(x − y)ϕ(y)dσ(y),

as well as the following jump relations for ϕ ∈ L2(Γ) and ψ ∈H−1(Γ):

eq|jump_S_Keq|jump_S_K (3.8) (SLψ)∣Γ = Sψ and γ±(DLϕ) = (±1
2
Id +K)ϕ,

1For the case s = 1/2 these operators are defined in [21, Chapter 7,Eq. (7.3)] by γSLψ and γ+(DLϕ) + γ−(DLϕ) (and so
their “K” which they call T differs by (minus) a factor 2 from ours); there, Equation (3.7) is proven for ϕ Lipschitz while

Equation (3.8) is proven for ψ ∈ H−1/2(Γ) and ϕ ∈ H1/2(Γ). When s = 1,0, the case k = 0 is treated in [16, Proposition 3.3.2,
Corollary 3.6.3, Proposition 3.6.2 and Proposition 3.6.4], and adaptation to k ≠ 0 is made through Propositions A.3, A.4, A.5

and A.6 in the Appendix.
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where Id represents the identity operator, see [21, Equation (7.5)]. In (3.8), the first relation means that
Sψ is well defined a.e. on Γ, and it is worth pointing out that it exists in fact as an absolutely convergent
integral at quasi every point of Γ; this follows from the case k = 0 since a superharmonic function which is
not identically +∞ is finite quasi-everywhere, see [2]. Also, in the particular case where s = 1/2, the operator
S is self-adjoint [21, Eqns. (7.2) & (7.3)]. Moreover, there is a jump relation for the normal derivative of

SLϕ for ϕ ∈H−1/2(Γ) [21, Equation (7.5)], namely:

∂±ν(SLϕ) = (∓
1

2
Id +K∗)ϕ.

In another connection, the following operators are well-defined and bounded for s ∈ {1,1/2,0} 2:

T ∶= ∂νDL ∶Hs(Γ)Ð→Hs−1(Γ).

rmk|grad_DL Remark 4. Note that [16, Proposition 3.6.2] and Proposition A.5 further say that the linear operators
φ↦ γ±(∇DLφ), defined H1(Γ)Ð→ L2(Γ)3, are bounded.

Finally, let us introduce the Calderón projectors: P ± ∶Hs(Γ) ×Hs−1(Γ)Ð→Hs(Γ) ×Hs−1(Γ) is defined
for s ∈ {0,1/2,1} by block-matrix multiplication as

eq|defCalderoneq|defCalderon (3.9) P ±(ϕ,ψ) ∶= (
1
2
Id ±K ∓S
±T 1

2
Id ∓K∗)(

ϕ
ψ
)

where, in the case s = 0, the operator K∗ is dual to K ∶H1(Γ)Ð→H1(Γ). These operators are bounded by
what precedes, and clearly P + + P − = Id . When s = 1/2, it is known that these operators are projections,
see [21, Ex. 7.6]. So, by density and continuity, we deduce they are projections in the case s = 0 as well.
The case s = 1 follows by restriction of the case s = 1/2 to H1(Γ)×L2(Γ). Hereafter, we let P ±j (ϕ,ψ) denote
the j-th component of P ±(ϕ,ψ), for j = 1,2.

Note that if ϕ ∈ L2(Γ) then γ∗ϕ is in fact a measure, absolutely continuous with respect to σ, such that
d(γ∗ϕ) = ϕdσ. It entails in view of the dicussion before (3.4) that

F(M) = −DL(Mν) + SL(∇T⋅MT ),
which justifies the following definition of a new operator:

F̃ ∶ L2(Γ) ×H−1(Γ) Ð→ D∗(R3)
(ϕ,ψ) ↦ −DL(ϕ) + SL(ψ).

rmk|reg_tilde_F Remark 5. Note that u = F̃(ϕ,ψ)∣R3∖Γ belongs to C∞(R3 ∖ Γ) and that

∆u + k2u = 0 on Ω±.

Now, Γ has finitely many components, say Γ1, ...,Γl (see Lemma A.12), and for j = 1, ..., l we let 1Γj be the

piecewise constant function on Γ with value 1 on Γj and 0 elsewhere. For ψ ∈H−1(Γ), we define the number

cψ ∶= ∑lj=1⟨ψ,1Γj ⟩ and pick φψ−cψ ∈ H1(Γ) such that ∆Tφψ−cψ = ψ − cψ; this is possible by Lemma A.10.
Then, we can write

F̃(ϕ,ψ) = F̃(ϕ,∆Tφψ−cψ + cψ) = F(ϕν +∇Tφψ−cψ) + SL(cψ),

and thus, by Remark 3, the image of F̃ is included in L2
loc(R3).

2The case s = 1/2 is part of [21, Theorem 7.1]. When s = 1, the result for k = 0 follows from [16, Theorem 3.2.8, Proposition
3.6.2] and equation (3.6b); Proposition A.5 then adapts [16, Proposition 3.6.2] to the case k ≠ 0. To deal with s = 0, let C

indicate the complex conjugation operator and observe from [21, Eqns. (7.3)-(7.5)] that T = C ○ T ∗ ○ C ∶ H1/2 → H−1/2, so we

can use C ○ T ∗∣H1(Γ) ○ C to extend T ∶ H0 → H−1.



SILENT SOURCES FOR THE HELMHOLTZ EQUATION 8

To conclude this section, we address the fact that ∂±νu is currently defined for those u ∈ H1(Ω±) such
that ∆u ∈ L2

ℓ(Ω±) only, whereas we shall need a definition valid for any function in the image of F̃ . To this
end, we will use the following facts and the proceeding lemma.

First, by Equation (3.8), the nontangential limits γ±u of u = F̃(ϕ,ψ) are well-defined and belong to

L2(Γ). In view of (3.9), they also satisfy for any (ϕ̃, ψ̃) ∈ L2(Γ)×H−1(Γ) such that u = F̃(ϕ̃, ψ̃), the relation

eq|nontaneq|nontan (3.10) γ±u = (∓1
2
Id −K) (ϕ̃) + S(ψ̃) = ∓P ±1 (ϕ̃, ψ̃).

Second, for (ϕ,ψ) ∈H1/2(Γ) ×H−1/2(Γ), we get from (3.9) that

im|Calderon1im|Calderon1 (3.11) if u = F̃(ϕ,ψ) then (γ±u, ∂±νu)t = ∓P ±(ϕ,ψ) and ∆u + k2u = 0 on Ω±,

where the superscript “t” means “transpose”. Third, we get on extending u ∈ H1
ℓ (Ω±) by zero on Ω∓ with

± to mean + or −, and using (3.6c), the implication:

im|Calderon2im|Calderon2 (3.12) ∆u + k2u = 0 on Ω± Ô⇒ u = −F̃(±γ±u,±∂±νu) and (γ±u, ∂±νu)t = P ±(γ±u, ∂±νu).
Finally, the following lemma holds:

lemma|InOut Lemma 3.1. Let (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u = F̃(ϕ,ψ). Then, for a fixed choice of sign ± holds the
equivalence:

u∣Ω± = 0 ⇐⇒ P ±(ϕ,ψ) = 0.

Proof. Assume first that (ϕ,ψ) ∈ H1/2(Γ) × H−1/2(Γ). Then, (3.11) gives us ∆u + k2u = 0 on Ω± and
(γ±u, ∂±νu)t = ∓P ±(ϕ,ψ). If u∣Ω± = 0, then clearly 0 = (γ±u, ∂±νu) whence P ±(ϕ,ψ) = 0. Conversely,
suppose that P ±(ϕ,ψ) = 0 so that (γ±u, ∂±νu) = 0, by (3.11). By the mapping properties (3.5) we see that
u∣Ω± ∈ H1

ℓ (Ω±), and by Remark 5 we know that u ∈ L2
loc(R3). Thus, letting ũ be the extension by zero of

u∣Ω± to Ω∓, Implication (3.12) gives us ũ = −F̃(±γ±u,±∂±νu) = 0. Therefore, it holds indeed that u∣Ω± = 0.
Next, assume that (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and suppose that P ±(ϕ,ψ) = 0, hence P ∓(ϕ,ψ) = (ϕ,ψ). By

density, there exist a sequence, ((ϕn, ψn))n ⊂ H
1/2(Γ) ×H−1/2(Γ) such that (ϕn, ψn) → (ϕ,ψ) in L2(Γ) ×

H−1(Γ). On the one hand, P ∓(ϕn, ψn) converges to (ϕ,ψ) in L2(Γ) ×H−1(Γ) by the continuity of P ∓. On

the other hand, as P ∓(ϕn, ψn) ∈H1/2(Γ)×H−1/2(Γ) and the equality P ±P ∓(ϕn, ψn) = 0 mechanically holds

because (P ±)2 = P ± = P ±(P ±+P ∓), we get by the first part of the proof that F̃(P ∓(ϕn, ψn))∣Ω± = 0. Noticing
that F̃(P ∓(⋅, ⋅))∣Ω± is continuous from L2(Γ)×H−1(Γ) into D∗(Ω±), we conclude that F̃(P ∓(ϕn, ψn))∣Ω± →
u∣Ω± in D∗(Ω±) and therefore u∣Ω± = 0.

Conversely, assume that u∣Ω± = 0 and define (ϕ̃, ψ̃) ∶= P ±(ϕ,ψ). Then, Equation (3.10) implies that

ϕ̃ = P ±1 (ϕ,ψ) = ∓γ±u = 0.
Besides, P ∓ (ϕ̃, ψ̃) = P ∓P ±(ϕ,ψ) = 0 = P ±P ∓(ϕ,ψ) and thus, by the implication already proven, we get

F̃ (P ∓(ϕ,ψ))∣Ω± = 0 and 0 = F̃ (P ±(ϕ,ψ))∣Ω∓ = F̃ (0, ψ̃)∣Ω∓ = SL (ψ̃)∣Ω∓ .

Moreover, by the linearity of F̃ and the fact that Id = P ∓ + P ±, it also holds that

0 = u∣Ω± = F̃(ϕ,ψ)∣Ω± = F̃ (P ∓(ϕ,ψ))∣Ω± + F̃ (P
±(ϕ,ψ))∣Ω± = F̃ (0, ψ̃)∣Ω± = SL (ψ̃)∣Ω± .

Thus SL (ψ̃)
∣Ω+
= SL (ψ̃)

∣Ω−
= 0, and since SL is injective from Lip(Γ)∗ toD∗(R3) while SL (ψ̃) = F̃ (P ±(ϕ,ψ))

is a locally integrable function by Remark 5, it follows that ψ̃ = 0 whence P ±(ϕ,ψ) = 0, as desired. □

From Lemma 3.1 it is clear that, for (ϕ,ψ), (ϕ̃, ψ̃) ∈ L2(Γ) ×H−1(Γ), one has

F̃(ϕ,ψ)∣Ω± = F̃(ϕ̃, ψ̃)∣Ω± if and only if P ±(ϕ,ψ) = P ±(ϕ̃, ψ̃).

Now, based on (3.11), we define for u = F̃(ϕ,ψ) with (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u± = u∣Ω± :

∂±νu = ∂±νu± ∶= ∓P ±2 (ϕ,ψ) = −T (ϕ) + (∓
1

2
Id +K∗) (ψ),
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which extends the classical definition of normal derivatives. Altogether, it holds in this case that

eq|CalderonTrieq|CalderonTri (3.13) ∓P ±(γ±u, ∂±νu) = (γ±u, ∂±νu)t = ∓P ±(ϕ,ψ) and u∣Ω± = F̃(γ±u, ∂±νu).

rmk|tan_der Remark 6. Using once more [16, Proposition 3.6.2] together with Proposition A.5 and Lemma A.9, we get

for any u = F̃(φ,ϕ) with (φ,ϕ) ∈H1(Γ) ×L2(Γ) that
∂±νu = γ±(∇u) ⋅ ν

and, by an argument similar to the one in Remark 1,

γ±(∇u) = ∂±νu ν +∇Tγ
±u.

4. Decomposition of L2(Γ)3
sec|main

We start by introducing the spaces that we will use to decompose L2(Γ)3. First, let us define
M0 ∶= {M ∈ L2(Γ)3 ∶ M is silent everywhere}

and let M⊥
0 denote the subspace perpendicular to M0 in L2(Γ)3. Next, let us introduce the following

subspaces ofM⊥
0:

M− = {M ∈M⊥
0 ∶ M is silent outside },

M+ = {M ∈M⊥
0 ∶ M is silent inside }.

rmk|0+- Remark 7. It follows from the definition thatM+ ∩M− = {0}, since this intersection consists of fields silent
everywhere whereas both spaces belong toM⊥

0. Also, thanks to lemma 3.1, it holds

M0 ∶= {M ∈ L2(Γ)3 ∶ ∇T⋅MT = 0 and Mν = 0},
M± = {M ∈M⊥

0 ∶ P ±(Mν ,∇T⋅MT ) = 0},
and it follows easily from Lemma A.10 (the Helmholtz decomposition) that

M⊥
0 = {M ∈ L2(Γ)3 ∶ MT = ∇TUMT

, for some UMT
∈H1(Γ)}.

When k ≠ 0, M−, M+ and M0 are not enough to decompose L2(Γ)3 in its entirety. That is, for k ≠ 0
there exists a bounded Lipschitz domain Ω+ with boundary Γ carrying M ∈ L2(Γ)3 ∖ (M− ⊕M+ ⊕M0),
which is thus silent nowhere and whose potential in Ω± is not generated by a distribution silent in Ω∓; this
does not happen when k = 0 [4]. At the end of this section we will describe the space perpendicular to
(M− ⊕M+ ⊕M0), but prior to this we shall introduce a space Mν ⊂ L2(Γ)3, whose elements are purely
normal to Γ, that satisfies

Mν ⊕M− ⊕M+ ⊕M0 = L2(Γ)3.
Let {Γj}j∈J be the family of connected components of Γ. The fact that Ω+ is a bounded Lipschitz domain

implies that J must be finite and each Γj has strictly positive and finite area (see for example Lemma A.12).

We can index the connected components of Ω− by Ωj− for j ∈ J , and assume that

● J = {1, ..., nΓ}, so that nΓ is the number of connected components of Γ,
● Ω1

− is unbounded,

● for each j > 1, the set Ωj− is bounded,
● for each j ∈ J , the set Γj is the boundary of Ωj−.

For Σ ⊂ Γ, we let 1Σ denote the characteristic function of Σ in Γ. Also, for a vector space V and a family of
vectors {vℓ}ℓ∈L ⊂ V , we let ⟨vℓ⟩ℓ∈L denote the linear span of {vℓ}ℓ∈L in V . In order to study the dimension
ofMν , we introduce the space O ∶= ⟨1Γj ⟩j∈J ⊂H1(Γ), and the spaces N± defined on the lemma below:

lemma|char_tildeJ Lemma 4.1. For a fixed sign ±, the following subspaces of H1/2(Γ) coincide:
N 1
± ∶ = { γ±u ∶ u ∈H1

ℓ (Ω±) satisfies (3.2), ∆u + k2u = 0 on Ω±, and ∂
±
νu = 0 on Γ }

N 2
± ∶ = { ϕ ∈H1/2(Γ) ∶ P ±(ϕ,0) = (ϕ,0) }
N 3
± ∶ = { ϕ ∈H1/2(Γ) ∶ ϕν ∈M∓ }.
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We denote them by N± and N+ ∩N− = {0}, moreover these spaces are finite-dimensional.

Proof. Remark 7 and the identity P + + P − = Id together imply that N 2
± = N 3

± . Take now a γ±u ∈ N 1
± . By

Implication (3.12), we have that (γ±u,0) = (γ±u, ∂±νu) = P ±(γ±u, ∂±νu) = P ±(γ±u,0) and thus γ±u ∈ N 2
± .

On the other hand, if ϕ ∈ N 2
± and we let u = −DL(∓ϕ), then u∣Ω± ∈ H1

ℓ (Ω±) by (3.5) and it follows from

Implication (3.11) that ∆u + k2u = 0 on Ω±, and (γ±u, ∂±νu) = ∓P ±(∓ϕ,0) = (ϕ,0). Hence, ϕ ∈ N 1
± and

therefore, N 1
± = N 2

± . We now see that all three definitions are equivalent.
If Ω− is connected then, by uniqueness of the exterior Neumann problem for the Helmholtz equation when

(3.2) is satisfied, we obtain that {0} = N 1
− = N−. Otherwise, for either choice of sign ±, the sets Ω± ∖Ω1

− are
bounded and there exist Neumann eigenvalues, {ξ±j }∞j=1, with 0 ≤ ξ±1 ≤ ξ±2 ≤ ⋯, and ξ±j → ∞ as j → ∞, and

corresponding eigenfunctions {uj}∞j=1 ⊂H1(Ω± ∖Ω1
−), satisfying

eq|Neumanneq|Neumann (4.1) { −∆uj = ξ
±
j uj in Ω± ∖Ω1

−

∂±νuj = 0 on Γ,

where the {uj}∞j=1 are not identically zero and form a complete orthonormal system in L2(Ω± ∖ Ω1
−); see

[21, Chapter 9] (easily adapted to the case where Ω− is not connected by a direct sum construction). That
N± is finite-dimensional comes from the fact that if ϕ ∈ N±, then there can only be finitely many j > 0
such that k2 = ξ±j , and of necessity ϕ is a linear combination of the corresponding γ±uj . Finally, the fact

N+ ∩N− = {0} comes the definition of N 3
± and Remark 7. □

Continuing towards the definition of the space Mν , fix an orthonormal basis of O with respect to the
L2(Γ)-metric, say {ωj}j∈J , such that a subset of this basis is a basis of O ∩ (N+ ⊕N−), and let

J̃ ∶= {j ∈ J ∶ ωj ∉ N+ ⊕N−};

we put ñΓ for the cardinality of J̃ .
For each j ∈ J̃ , since J is finite and N+ ⊕ N− is finite-dimensional, the subspace of L2(Γ) defined as

Vj ∶= (N+ ⊕N− ⊕ ⟨ωℓ⟩ℓ∈J̃ℓ≠j)
⊥

is nontrivial, hence there is a nonzero Λ̃j ∈ Vj such that ωj−Λ̃j ∈ N+⊕N−⊕⟨ωℓ⟩ℓ∈J̃ℓ≠j .
Then, Λj ∶= Λ̃j/∥Λ̃j∥2L2(Γ) satisfies, ⟪Λj , ωl⟫L2(Γ) = δjl for l ∈ J , and ⟪Λj , ϕ⟫L2(Γ) = 0 for each ϕ ∈ N+ ⊕N−.
Therefore, by Lemma 4.1 and the Fredholm alternative (see for example [21, Chapter 9]), we can define for

each j ∈ J̃ the function u+j ∈H1(Ω+) verifying
⎧⎪⎪⎨⎪⎪⎩

∆u+j + k2u+j = 0 in Ω+

∂+νu
+
j = Λj on Γ,

and, for each j ∈ J̃ , we can take u−j ∈H1
ℓ (Ω−) verifying
⎧⎪⎪⎨⎪⎪⎩

∆u−j + k2u−j = 0 in Ω−

∂−νu
−
j = Λj on Γ,

together with the Sommerfeld radiation condition, (3.2). Then, define the following functions that belong

to H1/2(Γ),
ϕ+j ∶= γ−u−j , ϕ−j ∶= γ+u+j and ϕj ∶= ϕ−j − ϕ+j .

Finally, we letMν ∶= ⟨ϕjν⟩j∈J̃ . For the proofs of the results below, we will use nΓ, ñΓ, O, ωj , ϕj , ϕ±j and
Λj as defined above.

theo|decomposition Theorem 4.2. We have the decomposition,

eq|decomp_fulleq|decomp_full (4.2) L2(Γ)3 =Mν ⊕M− ⊕M+ ⊕M0,

where ⊕ denotes direct sum. Furthermore,

eq|decomp_perpeq|decomp_perp (4.3) (M− ⊕M+ ⊕M0)⊥ = ⟨γ [∇F(ωjν)]⟩j∈J̃ .
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In particular, if k = 0, thenMν = {0} and thus,

eq|decomp_easyeq|decomp_easy (4.4) L2(Γ)3 =M− ⊕M+ ⊕M0.

On the other hand, if k2 is not an eigenvalue for the problems in (4.1), then

codim (M− ⊕M+ ⊕M0) = dim(Mν) = nΓ.

Proof. We first show that the ϕjν, which clearly are in M⊥
0, do not belong to M− ⊕M+ and they are

indeed linearly independent. Assume for a contradiction that there exists M+ ∈M+ and M− ∈M− such
that ϕjν =M+ +M−. By equation (3.12) and the definitions of the ϕ±j ,

P +(ϕ+j ,Λj) = 0 and P −(ϕ−j ,Λj) = 0.

Then, P −(ϕj ,0) = P −(ϕ−j ,Λj) − P −(ϕ+j ,Λj) = −(ϕ+j ,Λj), however, by the definitions ofM+ andM−,

P −(ϕj ,0) = P −((M−
ν ,∇T⋅M−

T ) + (M+
ν ,∇T⋅M+

T )) = (M+
ν ,∇T⋅M+

T ),
which is not possible since ⟪Λj , ωj⟫L2(Γ) = 1 but ⟪∇T⋅M+

T , ωi⟫L2(Γ) = 0, since the ωi are locally constant.
Therefore ϕjν ∉M− ⊕M+.

Now, taking a family of complex numbers {aℓ}ℓ∈J̃ such that ∑ℓ aℓϕℓ = 0, we get that 0 = P −(∑ℓ aℓϕℓ,0) =
−∑ℓ aj(ϕ+ℓ ,Λℓ). In particular, for any j ∈ J̃ , 0 = ⟪∑ℓ aℓΛℓ, ωj⟫L2(Γ) = aj and thus, the ϕj are linearly
independent.

Note that, sinceMν ∩ (M− ⊕M+ ⊕M0) = {0}, we then have the inequality

eq|<dimeq|<dim (4.5) ñΓ = dimMν ≤ codim (M− ⊕M+ ⊕M0),
and thus, for equation (4.2) to hold it is only necessary to show that ñΓ ≥ codim (M− ⊕M+ ⊕M0).

Define the following linear operators

π ∶ M⊥
0 Ð→ L2(Γ) ×H−1(Γ)

M ↦ (Mν ,∇T⋅MT )
and

η ∶ H−1(Γ) Ð→ CnΓ

ψ ↦ (⟨ψ,1Γj ⟩)j .

Then, by Lemma A.10, given a (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ), we get the equivalence;

equi|pietaequi|pieta (4.6) (ϕ,ψ) ∈ Imπ if and only if ψ ∈ Ker η.

By Remark 7 and the fact that the projections P ± satisfy P + + P − = Id , it follows that
equi|MinM+-equi|MinM+- (4.7) π(M±) = Im (P ∓π) ∩ Imπ.

Also, using again the fact that P + + P − = Id , we obtain that, for any M ∈M⊥
0,

P +(π(M)) ∈ Imπ if and only if P −(π(M)) ∈ Imπ.

Hence, by equivalence (4.6), the following four inclusions are equivalent for any M ∈M⊥
0,

P +2 (π(M)) ∈ Ker η, P +(π(M)) ∈ Imπ, P −(π(M)) ∈ Imπ, and P −2 (π(M)) ∈ Ker η.

Thus, we can define

Π ∶ = Ker (ηP +2 π) = {M ∈M⊥
0 ∶ P +(π(M)) ∈ Imπ}

= Ker (ηP −2 π) = {M ∈M⊥
0 ∶ P −(π(M)) ∈ Imπ}.

Then,M+⊕M− ⊂ Π, hence equivalence (4.7) implies that that π(M±) = [P ∓ ○ π] (Π). Thus π(M+⊕M−) =
π(Π) and, by injectiveness of π it follows thatM+ ⊕M− = Π.

For V a close subspace of M⊥
0, with the topology from L2(Γ)3, let V ⊥0 , denote the close subspace of

M⊥
0 which is perpendicular to V and such that V ⊕V ⊥0 =M⊥

0. Now, since the ηP ±2 π are continuous on the
topology ofM⊥

0 as a subspace of L2(Γ)3, we get

(M+ ⊕M− ⊕M0)⊥ = (M+ ⊕M−)⊥0 = Π⊥0 = (Ker (ηP ±2 π))
⊥0 = Im (π∗(P ±2 )∗η∗) = Im (π∗(P ±2 )∗η∗),
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where the last equality comes from the fact that Im (π∗(P ±2 )∗η∗) is finite dimensional and thus, closed on
M⊥

0. Now, taking a c ∈ C, any ψ ∈H−1(Γ), a pair (ϕ,φ) ∈ L2(Γ) ×H1(Γ) and any M ∈M⊥
0 we have,

⟪η∗c, ψ⟫ =∑
j

cj⟨ψ,1Γj ⟩ = ⟨∑
j

cj1Γj , ψ⟩ = ⟪∑
j

cj1Γj , ψ⟫ ,

eq|pi*eq|pi* (4.8) ⟪ π∗(ϕ,φ), M ⟫ = ⟪ (ϕ,φ), (Mν ,∇T⋅MT ) ⟫ = ⟪ϕ, Mν⟫−⟪∇Tφ, MT⟫ = ⟪ ϕν −∇Tφ, M ⟫L2(M)3 ,

and, by the fact that T ∗ = T on H1/2(Γ) and by Remark 6,

∓π∗(P ±2 )∗η∗(c) = ∓∑
j∈J

cj[±(T1γj)ν −∇T (
1

2
1γj ∓K1γj)]

= ∑
j∈J

cj[−(T1γj)ν −∇T(K1γj)]

= ∑
j∈J

cj[−(T1γj)ν −∇T (±
1

2
1γj +K1γj)] = γ±

⎛
⎝
∇F
⎛
⎝∑j∈J

cj1γjν
⎞
⎠
⎞
⎠
.

Then, the γ [∇F(ωjν)] are well defined and belong to L2(Γ)3 for any j ∈ J . This also shows, in light of

the third definition of Lemma 4.1, that for any j ∉ J̃ it follows that γ [∇F(ωjν)] = 0. Hence, equation (4.3)
is satisfied and thus,

ñΓ ≥ dim ((M− ⊕M+ ⊕M0)⊥) = codim (M− ⊕M+ ⊕M0).
Therefore, by equation (4.5), it follows that ñΓ = codim (M− ⊕M+ ⊕M0), then equation (4.2) holds and
the set {γ [∇F(ωjν)]}j∈J̃ consists of linearly independent functions.

Clearly, if k2 is not an eigen-value for the problem (4.1), then J̃ = J , and hence,

nΓ = ñΓ = dim(Mν) = codim (M− ⊕M+ ⊕M0).
Finally, in the case k = 0, by noticing that

F(1Γjν) =
⎧⎪⎪⎨⎪⎪⎩

−χ
R3∖Ωj

−

if j = 1
χΩj

−

otherwise,

it follows that γ [∇F(ωjν)] = 0, for every j ∈ J , then ñΓ = 0, Mν = {0}, and thus equation (4.4) is
satisfied. □

To finish this section we will find a characterization for the spacesM⊥
±.

Corollary 4.3. For a fixed choice of sign ±,

(M± ⊕M0)⊥ = { γ∓ (∇F̃(φ,ϕ)) ∶ (φ,ϕ) ∈H1(Γ) ×L2(Γ) }.

Proof. Take η, π and Π, as defined of the proof of Theorem 4.2 and recall that [P ∓ ○ π] (Π) = π(M±) ⊂ π(Π).
So, defining the bijective operator

πΠ ∶ M⊥
0 Ð→ π(Π)

M ↦ π(M),
it follows that πΠ(M±) = Im (P ∓πΠ) which implies that,

M± = Im (π−1Π P ∓πΠ)

For a V , subspace of Π, let V ⊥Π , denote the close subspace of Π perpendicular to V and such that V ⊕V ⊥Π =
Π. Noting that the π−1Π P ∓πΠ are projections, we get thatM± = Ker (π−1Π P ±πΠ) and thus,

eq|perp+-eq|perp+- (4.9) M⊥Π
± = Im [π∗Π(P ±)∗ (π−1Π )

∗].
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Now, given M ∈ Π = Π∗, ϕ ∈ L2(Γ) and ψ ∈ Ker η, recalling the equivalence (4.6) and using Remark 7 and
Lemma A.10,

⟪ (π−1Π )
∗
M , (ϕ,ψ) ⟫ = ⟪M , π−1Π (ϕ,ψ) ⟫ = ⟪M , ϕν +∇Tφψ ⟫

= ⟪ Mν , ϕ ⟫ − ⟪ ∇T⋅UMT
, ∇Tφψ ⟫ = ⟪ Mν , ϕ ⟫ − ⟪ UMT

, ψ ⟫,

Thus, (π−1Π )
∗
M = (Mν ,−UMT

) ∈ L2(Γ) ×H1(Γ). Then, from equation (4.9),

eq|perp+-subeq|perp+-sub (4.10) M⊥Π
± ⊂ [π∗Π ○ (P ±)∗] (L2(Γ) ×H1(Γ)).

Now, as T = T ∗ on H1/2(Γ) ⊃H1(Γ) and S = S∗ on H−1/2(Γ) ⊃ L2(Γ) we get for (ϕ,φ) ∈ L2(Γ)×H1(Γ),
that

(P ±)∗(ϕ,φ) = (
1
2
Id ±K∗ ±T
∓S 1

2
Id ∓K)(

ϕ
φ
) .

Hence, using Equation (4.8) and Remark 6, we obtain for (ϕ,φ) ∈ L2(Γ) ×H1(Γ),

± [π∗Π ○ (P ±)∗] (ϕ,−φ) = π∗Π ( (±
1

2
Id +K∗)ϕ − Tφ, −Sϕ + (∓1

2
Id +K)φ )

= (−Tφ + (±1
2
+K∗)ϕ)ν + ∇T (−(∓

1

2
Id +K)φ + Sϕ)

= ∂∓ν (−DL(φ) + SL(ϕ)) + ∇Tγ
∓ (−DL(φ) + SL(ϕ))

= γ∓ (∇F̃(φ,ϕ)) .

Then, noticing that (M± ⊕M0)⊥ = M⊥Π
± ⊕ (Π⊕M0)⊥ = M⊥Π

± ⊕ (M+ ⊕M− ⊕M0)⊥, and recalling
Equations (4.10) and (4.3), we have the inclusion

(M± ⊕M0)⊥ ⊂ { γ∓ (∇F̃(φ,ϕ)) ∶ (φ,ϕ) ∈H1(Γ) ×L2(Γ) }.
Thus, to finish the proof it only remains to show the inclusion on the opposite direction for the equation
above. Take any (φ,ϕ) ∈H1(Γ)×L2(Γ) and letM ∶= γ∓ (∇F̃(φ,ϕ)) and w = F̃(φ,ϕ). First note that using
Remark 7 and the fact that MT is a tangential gradient, it follows that M ⊥M0. Next, let M± ∈M±,
w± = F(M±) and note that, by Implication 3.11 and Remark 7,

±(γ∓w±, ∂∓νw±) = P ∓(M±
ν ,∇T⋅M±

T ) = (M±
ν ,∇T⋅M±

T ).
Then,

⟪M ,M±⟫L2(Γ) = ⟪∇T(γ∓w), M±
T⟫ + ⟪∂∓νw, M±

ν⟫ = −⟪γ∓w, ∇T⋅M±
T⟫ + ⟪∂∓νw, M±

ν⟫
= ∓⟪γ∓w, ∂∓νw±⟫ ± ⟪∂∓νw, γ∓w±⟫ = 0,

where the last equality follows from the Green’s identities an a density argument. Therefore M ⊥M± as
well, and since (M± ⊕M0)⊥ is closed, the corollary follows. □

4.1. Spherical case. In this subsection we assume that Γ = S2, the unit sphere on R3 and that k > 0. In
this case, some calculations from the previous subsection can be made explicit using the Addition Theorem.

Recall that, if we let Pmn denote the associated Legendre function of order m, then the following define
a complete orthonormal system in L2(S) [8, Theorem 2.8] and a complete orthogonal system in H1(S) [23,
Theorem 2.4.4]:

Y mn (x) ∶=
¿
ÁÁÀ2n + 1

4π

(n − ∣m∣)!
(n + ∣m∣)! P

∣m∣
n (cos θ) eimφ for m = −n, ..., n, and n = 0,1,2, ...,

where x = (sin θ cosφ, sin θ sinφ, cos θ). Note that (Y mn (x)) = Y −mn (x). These functions also satisfy

eq|lapYeq|lapY (4.11) ∆TY
m
n = −n(n + 1) Y mn .
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Note that this implies that ⟪Y mn , Y mn ⟫H1(S) = 1 + n(n + 1). Given ϕ ∈ L2(S) and M ∈ L2(S)3 define the
coefficients:

cmn (ϕ) ∶= ⟪Y mn , ϕ⟫L2(S) =
⟪Y mn , ϕ⟫H1(S)

⟪Y mn , Y mn ⟫H1(S)
for m = −n, ..., n, and n = 0,1,2, ...,

and, for m = −n, ..., n and n = 1,2,3, ...,

gmn (M) ∶=
⟪∇TY

m
n ,M⟫L2(S)3

n(n + 1) , rmn (M) ∶=
⟪ν ×∇TY

m
n ,M⟫L2(S)3

n(n + 1) ,

g00(M) ∶= 0 and r00(M) ∶= 0.

Then, ϕ = ∑ cmn (ϕ)Y mn in L2(S). Note that, for any n and m, gmn (M) = gmn (MT ) and rmn (M) = rmn (MT ).
Additionally, if u ∈H1(S) then u = ∑ cmn (u)Y mn in H1(S) and we have:

gmn (∇Tu) = cmn (u), rmn (∇Tu) = 0, gmn (ν ×∇Tu) = 0 and rmn (ν ×∇Tu) = cmn (u).

By Hodge decomposition, there exist u, v ∈H1(S) such that MT = ∇Tu + ν ×∇Tv, and hence,

MT = ∇T∑ cmn (u)Y mn + ν ×∇T∑ cmn (v)Y mn
=∑ gmn (M)∇TY

m
n +∑ rmn (M)(ν ×∇TY

m
n )

in L2(S)3. Therefore, ∇T⋅MT = −n(n + 1)∑ gmn (M)Y mn in H−1(S).
Further define, for a non-negative integer n, h

(1)
n as the spherical Hankel function of the first kind of

order n, and let jn denote the spherical Bessel function of order n. Then, since we are assuming that k ≠ 0,
we have the following Addition Theorem [8, Theorem 2.11]

G(x − y) = −ik
∞

∑
n=0

n

∑
m=−n

h(1)n (k∣x∣)Y mn (
x

∣x∣ ) jn(k∣y∣)(Y
m
n (

y

∣y∣ )) for ∣x∣ > ∣y∣,

where the series and its term by term first derivatives with respect to ∣x∣ and ∣y∣ are absolutely and uniformly
convergent on compact subsets of ∣x∣ > ∣y∣.

Then, using Fubini-Tonelli theorem we obtain:

SL(Y mn )(x) =
⎧⎪⎪⎨⎪⎪⎩

−ik h(1)n (k∣x∣) jn(k) Y mn ( x∣x∣) for ∣x∣ > 1
−ik h(1)n (k) jn(k∣x∣) Y mn ( x∣x∣) for ∣x∣ < 1

,

DL(Y mn )(x) =
⎧⎪⎪⎨⎪⎪⎩

−ik2 h(1)n (k∣x∣) j′n(k) Y mn ( x∣x∣) for ∣x∣ > 1
−ik2 (h(1)n )′(k) jn(k∣x∣) Y mn ( x∣x∣) for ∣x∣ < 1

,

thus,

K(Y mn ) = −
1

2
ik2 (h(1)n (k)j′n(k) + (h(1)n )′(k) jn(k)) Y mn T (Y mn ) = −ik3 (h(1)n )′(k) j′n(k) Y mn

S(Y mn ) = −ik h(1)n (k) jn(k) Y mn K∗(Y mn ) =K(Y mn ),
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Since K, T , S, K∗ and ∇T⋅ ∶ L2(S)3 Ð→ H−1(S) are continuous, and h
(1)
n (k)j′n(k) − (h

(1)
n )′(k) jn(k) =

1/(ik2), using (4.11) we get

P −(Mν ,∇T⋅MT ) =
⎛
⎝∑n,m

[(1/2 −K(Y mn ))cmn (Mν) + S(Y mn )(−n(n + 1)gmn (MT ))]Y mn ,

∑
n,m

[−T (Y mn )cmn (Mν) + (1/2 +K(Y mn ))(−n(n + 1)gmn (MT ))]Y mn
⎞
⎠

=
⎛
⎝∑n,m

ikh(1)n (k) [kj′n(k)cmn (Mν) + jn(k)n(n + 1)gmn (MT )]Y mn ,

∑
n,m

ik2(h(1)n )′(k) [kj′n(k)cmn (Mν) + jn(k)n(n + 1)gmn (MT )]Y mn
⎞
⎠
,

and

P +(Mν ,∇T⋅MT ) =
⎛
⎝∑n,m

−ikjn(k) [k(h(1)n )′(k)cmn (Mν) + h(1)n (k)n(n + 1)gmn (MT )]Y mn ,

∑
n,m

−ik2j′n(k) [k(h(1)n )′(k)cmn (Mν) + h(1)n (k)n(n + 1)gmn (MT )]Y mn
⎞
⎠
,

Recall that for all n, h
(1)
n (k) ≠ 0 ≠ (h(1)n )′(k) for k is real and positive. Therefore,

M− = {M ∈ L2(S)3 ∶ kj′n(k)cmn (Mν) = −jn(k) n(n + 1)gmn (MT )(4.12)

for m = −n, ..., n, and n = 0,1,2, ...,},
and

M+ = {M ∈ L2(S)3 ∶ k(h(1)n )′(k) cmn (Mν) = −h(1)n (k) n(n + 1)gmn (MT )(4.13)

for m = −n, ..., n, and n = 0,1,2, ..., such that jn(k) ≠ 0 or j′n(k) ≠ 0}.
Since j0(k) = sin(k)/k, for no real k we get j0(k) = 0 = j′0(k). Hence, for a M ∈M+ +M−, if j

′
0(k) ≠ 0,

we have that c00(Mν) = 0. Thus, ⟪M , Y 0
0 ν⟫L2(M)3 = 0. Otherwise, when j′0(k) = 0 and k > 0, we have

P −(Y 0
0 ,0) = 0. Therefore, using Theorem 4.2 we get the following result.

Theorem 4.4. For a k > 0, if j′0(k) ≠ 0 (which happens a.e.), then

(M− ⊕M+ ⊕M0)⊥ = {M ∈ L2(S)3 ∶ MT = 0 and Mν is constant},
on the other hand, if j′0(k) = 0, which happens for example when k = 0, then

L2(S)3 =M− ⊕M+ ⊕M0.

Appendix A.
App|ext

A.1. Adaptation of results from [16]. The statements in this section are either adaptations to the case
k > 0, of directly taken from [16]. For each of them, we write in parenthesis where in [16] they can be
found. For convenience, throughout this section, we will denote the function G and the operators SL, DL,
S, and K by Gk, SLk, DLk, Sk and Kk respectively. For the operators Sk and Kk we will use the definitions
given in [21] (without the 1/2 for Kk and K∗k ) and then show that they can be extended with the required
properties.

Recall C±α(x) from the definition of the nontangential limit. For a vector valued measurable function ψ
on Ω±, we define the function N±αψ, on Γ, such that, for x ∈ Γ,

N±αψ(x) ∶= sup{∣ψ(y)∣ ∶ y ∈ C±α(x)} ,
taking the convention that N±αψ(x) = 0 when C±α(x) = ∅.
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In [16, section 3.6], the Sobolev space L2
1(Γ, dσ) is defined as the subspace of L2(Γ) comprised of those

functions φ such that ∣⟨ φ , νjγ(∂lf) − νlγ(∂jf) ⟩L2(Γ)∣ ≤ C∥f∣Γ∥L2(Γ) for all f ∈ C1(R3), any l, j ∈ {1,2,3}
and some constant C = C(φ), with νj to mean the j-th coordinate of the unit normal field on Γ. That is, if
one puts as in [16] ∂τl,jf ∶= νjγ(∂lf) − νlγ(∂jf) for f ∈ C1(R3) then ∂τl,jf depends only on the restriction

f∣Γ and members of L2
1(Γ) are those φ ∈ L2(Γ) whose distributional ∂τl,jφ is an L2(Γ)-function for each j, l.

To justify quoting certain results from [16], we will show in the next lemma that this definition agrees with
the one of the Sobolev space H1(Γ) made in Section 2.

lemma|tan_der Lemma A.1. Given j, l ∈ {1,2,3}, one can define a bounded linear operator ∂τi,j ∶ H1(Γ) Ð→ L2(Γ) on
letting, for any φ ∈H1(Γ) and f ∈ C1(R3):

⟨ ∂τj,lφ, γ(f) ⟩ ∶= − ⟨ φ , νjγ(∂lf) − νlγ(∂jf) ⟩L2(Γ).

Moreover, a function φ ∈ L2(Γ) lies in H1(Γ) if and only if the operators ∂τi,j defined above (in the weak

sense) correspond to scalar product with L2-functions.

Proof. Note that a tangent vector field on Γ can be regarded as a 1-form, defined by taking the scalar
product in the tangent space at regular points. For {(θj , Uj)}j∈I ( I finite) a Lipschitz atlas on Γ, we say
that a k-form ω is of L2-class (here k ∈ {0,1,2}) if its expression in local coordinates (pullback of ω under
the Lipschitz map θ−1j ), say

(θ−1j )∗(ω)(y) = ∑
i1<i2,⋯,<ik

a
{ϕj}
i1,⋯,ik

(y) dyi1 ∧⋯ ∧ dyik

has coefficients a
{ϕj}
i1,⋯,ik

that are L2 functions on θj(Uj). This notion is independent of the atlas. Now, for

f ∈ C∞c (R3), it holds that

mplatmplat (A.1) (∂τ2,3f , ∂τ3,1f , ∂τ1,2f)t = ∇f × ν
where “×” indicates the vector product and the superscript “t” means “transpose”. Thus, observing that
ν = ∂y1θ−1j × ∂y2θ−1j /∣∂y1θ−1j × ∂y2θ−1j ∣ on θj(Uj), we get from the double vector product formula that the

1-form associated with ∇f × ν is given in local coordinates (y1, y2) on θj(Uj) by

forcoforco (A.2) (g1,1∂y2(f ○ θ−1j ) − g2,1∂y1(f ○ θ−1j ))dy1 + (g1,2∂y2(f ○ θ−1j ) − g2,2∂y1(f ○ θ−1j ))dy2

where (gi1,i2) is the metric tensor (the Gram matrix of ∂y1θ
−1
j , ∂y2θ

−1
j ). Since the latter is uniformly

boundedly invertible on compact manifold that are local Lipschitz graphs, the fact that (A.2) is of L2-class
amounts to say that ∇f ○ θ−1i lies in (L2(θj(Uj)))3. By density of traces of C∞c (R3)-functions in L2(Γ), we
conclude what we want. □

Then, we have a lemma that was just stated on [16] since it was proven in [12]. However, we add a proof
for convenience of the reader.

lemma|C_Gk Lemma A.2 (Lemma 6.4.2). For each fixed R > 0 and k > 0, there exists a constant C > 0 such that, for
1 ≤ j ≤ 3 the following estimates are uniformly satisfied for 0 < ∣x∣ < R:

∣Gk(x) −G0(x)∣ ≤ C
∣∂jGk(x) − ∂jG0(x)∣ ≤ C

∣∂ℓ∂jG(x) − ∂ℓ∂jG0(x)∣ ∣x∣ ≤ C

Proof. Since Gk −G0 is C∞(R3 ∖ {0}), it is enough to show that the lim sup when x → 0 in all of the left
hand sides of the equations of the lemma are bounded by a constant depending only on k:

lim sup
x→0

∣Gk(x) −G0(x)∣ = lim
x→0

∣−1 + eik∣x∣∣
4π∣x∣ = k

4π
,
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and

lim sup
x→0

∣∂jGk(x) − ∂jG0(x)∣ = lim sup
x→0

∣xj
eik∣x∣k∣x∣ + ieik∣x∣ − i

4π∣x∣3 ∣ ≤ lim
x→0

∣xjeik∣x∣k∣x∣ + ieik∣x∣ − i∣
4π∣x∣2 = k

2

8π
.

lim sup
x→0

∣∂j∂jG(x) − ∂j∂jG0(x)∣∣x∣ = lim sup
x→0

∣eik∣x∣ (ik∣x∣3 − ∣x∣2 − k2x2j ∣x∣2 − 3ikx2j ∣x∣ + 3x2j) + ∣x∣2 − 3x2j ∣
4π∣x∣4

≤ lim sup
x→0

∣eik∣x∣ (ik∣x∣3 − ∣x∣2) + ∣x∣2∣
4π∣x∣4 + lim sup

x→0

∣eik∣x∣ (−k2x2j ∣x∣2 − 3ikx2j ∣x∣ + 3x2j) − 3x2j ∣
4π∣x∣4

≤ lim
x→0

∣eik∣x∣ (ik∣x∣ − 1) + 1∣
4π∣x∣2 + lim

x→0

∣eik∣x∣ (−k2∣x∣2 − 3ik∣x∣ + 3) − 3∣
4π∣x∣2 = k

2

4π
,

and, for j ≠ ℓ,

lim sup
x→0

∣∂ℓ∂jG(x) − ∂ℓ∂jG0(x)∣∣x∣ = lim sup
x→0

∣xjxℓ (3 + eik∣x∣(k2∣x∣2 + 3ik∣x∣ − 3))∣
4π∣x∣4

≤ lim
x→0

∣3 + eik∣x∣(k2∣x∣2 + 3ik∣x∣ − 3)∣
4π∣x∣2 = k

2

8π
.

□

Then, we continue with a generalization of a relatively basic result that is just partly stated on [16] and
whose proof, for the k = 0 case, can be found as part of [5, Theorem 4.5.].

prop|limSL Proposition A.3 (Partly stated on equation (3.6.27) and Corollary 3.6.3). Given a ϕ ∈ L2(Γ), it is satis-

fied in the nontangential sense that γ±SLkϕ = Skϕ, σ-a.e. and, for every α > 0, there exists a constant C̃α
such that ∥N±α(SLkϕ)∥2 ≤ C̃α∥ϕ∥2. Also, the left equation of (3.7) is satisfied and we have the mapping
property,

eq|hmt_S_k-0->1eq|hmt_S_k-0->1 (A.3) Sk ∶ L2(Γ)Ð→H1(Γ).

Proof. Note that for any x ∈ Γ and ϕ ∈ L2(Γ), using the k = 0 result,

∣∫
Γ
Gk(x − y)ϕ(y)dσ(y)∣ ≤ ∫

Γ
∣Gk(x − y)∣ ∣ϕ(y)∣ dσ(y) = ∫

Γ
G0(x − y) ∣ϕ(y)∣ dσ(y) = S0∣ϕ∣(x),

and thus, we have that in general, for σ-a.e. x ∈ Γ, the integral in the left equation of (3.7) defines a bounded

linear operator from L2(Γ) to itself. Let’s call this operator S̃k. Now, notice the following facts; Lip(Γ)
is dense in L2(Γ); both Lip(Γ) and L2(Γ) are dense in H−1/2(Γ); Sk and S̃k coincide in Lip(Γ); and the

image of Lip(Γ) over S̃k belongs to L2(Γ). Then, Sk and S̃k must also coincide in L2(Γ). Thus, as a small

abuse of notation we will refer to S̃k as simply Sk. Next, if ∥ϕ∥2 = 1, and we take C from Lemma A.2

∥∇TSkϕ −∇TS0ϕ∥2 = sup
f ∈ LipT (Γ)
∥f∥∞ ≤ 1

∫
Γ

⎛
⎜
⎝
∫
Γ

(Gk −G0)(x − y) ϕ(y) dσ(y)
⎞
⎟
⎠
∇T⋅f(x) dσ(x)

= sup
f ∈ LipT (Γ)
∥f∥∞ ≤ 1

∫
Γ

⎛
⎜
⎝
∫
Γ

(∇Gk −∇G0)(x − y) ⋅ f(x) dσ(x)
⎞
⎟
⎠
ϕ(y) dσ(y)

=∫
Γ

⎛
⎜
⎝
∫
Γ

∣(∇Gk −∇G0)(x − y)∣ dσ(x)
⎞
⎟
⎠
∣ϕ(y)∣ dσ(y)

≤
√
3Cσ(Γ)∥ϕ∥1 ≤

√
3Cσ(Γ)(∥ϕ∥22 + σ(Γ)) =

√
3Cσ(Γ)(1 + σ(Γ)),
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Then, as S0 ∶ L2(Γ)Ð→H1(Γ) is bounded and ∥Skϕ∥H1(Γ) ≤ ∥Skϕ−S0ϕ∥H1(Γ)+∥S0ϕ∥H1(Γ), we obtain that

Sk is also a bounded linear operator from L2(Γ) to H1(Γ).
Take α > 0, x ∈ Γ and y ∈ C±α(x). Then for any z ∈ Γ

(A.4) ∣y − z∣ ≥ dist(y,Γ) ≥ ∣x − y∣
α + 1 so, ∣y − z∣(α + 2) ≥ ∣x − y∣ + ∣y − z∣ ≥ ∣x − z∣.

Thus,

∣SLkϕ(y)∣ = ∣∫
Γ
Gk(y − z)ϕ(z)dσ(z)∣ ≤ ∫

Γ

(α + 2)∣ϕ(z)∣
4π∣x − z∣ dσ(z) = (α + 2)S0∣ϕ∣(x).

Hence, we can use Dominated convergence and the result for k = 0, to obtain for σ-a.e. x ∈ Γ, that it is
satisfied in the nontangential sense γ±SLkϕ = Skϕ. Also, taking C̃α to be the operator norm of S0 times
α + 2 we obtain that ∥N±α(SLkϕ)∥2 ≤ C̃α∥ϕ∥2. □

prop|K_k Proposition A.4 (Proposition 3.3.2). Take a ϕ ∈ L2(Γ). For f = ϕ, the principal value of equation (3.7)
exists for σ-a.e. x ∈ Γ and it can be used to extend the operator Kk to

Kk ∶ L2(Γ)Ð→ L2(Γ)

which is bounded. Furthermore, the right equation of (3.8) is satisfied in the nontangential limit sense and

for every α > 0, we have that ∥N±α(DLkϕ)∥2 ≤ C̃α∥ϕ∥2 for some C̃α > 0 depending only on Γ, k and α.

Proof. By [16, Proposition 3.3.2] the result is valid for k = 0. Take any ϕ ∈ L2(Γ) and x ∈ Γ such that
K0ϕ(x) is well-defined, which is σ-a.e. Define for any ε > 0

Kε
kϕ(x) ∶= ∫

y ∈ Γ
∣x − y∣ > ε

∂ν,yGk(x − y) ϕ(y) dσ(y) = − ∫
y ∈ Γ

∣x − y∣ > ε

(∇Gk)(x − y) ⋅ ν(y) ϕ(y) dσ(y).

Then, Kε
0 defines a bounded linear operator from L2(Γ) to itself and, whenever K0ϕ(x) is well defined,

Kε
0ϕ(x) → K0ϕ(x) as ε → 0. Thus, for any sequence (εn)n such that εn → 0 as n → ∞, the sequence
(Kεn

0 ϕ(x))n is Cauchy, whenever K0ϕ(x) is well-defined. Hence, showing that the principal value of equa-
tion (3.7) exists for x is equivalent to showing that the sequence (Kεn

k ϕ(x))n is Cauchy as well. Take m > n
and see that,

∣Kεn
k ϕ(x) −Kεm

k ϕ(x)∣ ≤ ∣Kεn
k ϕ(x) −Kεm

k ϕ(x) −Kεn
0 ϕ(x) +Kεm

0 ϕ(x)∣ + ∣Kεn
0 ϕ(x) −Kεm

0 ϕ(x)∣

≤ ∫
y ∈ Γ

εn > ∣x − y∣ > εm

∣(∇Gk −∇G0)(x − y)∣ ∣ϕ(y)∣ dσ(y) + ∣Kεn
0 ϕ(x) −Kεm

0 ϕ(x)∣

≤ ∫
y ∈ Γ

εn > ∣x − y∣ > εm

√
3C ∣ϕ(y)∣ dσ(y) + ∣Kεn

0 ϕ(x) −Kεm
0 ϕ(x)∣

where the constant C, taken from Lemma A.2, depends only on k and the size of the bounded set Γ.
Thus, the integrability of ϕ and the fact that (Kεn

0 ϕ(x))∞n=1 is Cauchy imply that (Kεn
k ϕ(x))∞n=1 is Cauchy

as well. Since the result is valid for k = 0, the value K0ϕ(x) is well defined for σ-a.e. x ∈ Γ. Then,

K̃kϕ(x) ∶= limε→0K
ε
kϕ(x) is also well defined for σ-a.e. x ∈ Γ, and it defines a measurable function since it

is the point-wise limit of L2 functions.
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Note that K̃k defines a linear operator on L2(Γ). Take now any ϕ ∈ L2(Γ) with ∥ϕ∥2 = 1. Then using,
Fatou’s lemma we get

∥K̃kϕ −K0ϕ∥
2

2
≤ lim inf

ε→0 ∫
x∈Γ

RRRRRRRRRRRRRRRRRRR

∫
y ∈ Γ

∣x − y∣ > ε

(∇Gk −∇G0)(x − y) ⋅ ν(y) ϕ(y) dσ(y)

RRRRRRRRRRRRRRRRRRR

2

dσ(x)

≤ lim inf
ε→0 ∫

x∈Γ

⎛
⎜⎜⎜⎜
⎝
∫

y ∈ Γ
∣x − y∣ > ε

∣(∇Gk −∇G0)(x − y)∣ ∣ϕ(y)∣ dσ(y)
⎞
⎟⎟⎟⎟
⎠

2

dσ(x)

≤ 3C2σ(Γ)∥ϕ∥21 ≤ 3C2σ(Γ)(∥ϕ∥22 + σ(Γ))2 = 3C2σ(Γ)(1 + σ(Γ))2,

with the same constant C as before. Then, as K0 is bounded and ∥K̃kϕ∥2 ≤ ∥K̃kϕ −K0ϕ∥2 + ∥K0ϕ∥2, we
obtain that K̃k is bounded having L2(Γ) as its image. Now, using an argument analogous to the one in

Lemma A.3 for S̃k, we can show that K̃k coincides with Kk in L2(Γ) and thus, as a small abuse of notation

we will refer to K̃k as just Kk.
Fix a ϕ ∈ L2(Γ) such that ∥ϕ∥2 = 1. By [16, equation (3.3.6)], for any α > 0 there exists a constant Cα

such that

∥N±α(DL0ϕ)∥2 ≤ Cα.

On the other hand,

∣N±α(DLkϕ)(x) −N±α(DL0ϕ)(x)∣ ≤N±α(DLkϕ −DL0ϕ)(x)

= sup
z∈C±α(x)

∣∫
Γ
(∇Gk −∇G0)(z − y) ⋅ ν(y) ϕ(y) dσ(y)∣

≤ sup
z∈C±α(x)

∫
Γ
∣(∇Gk −∇G0)(z − y)∣ ∣ϕ(y)∣ dσ(y)

≤
√
3C∥ϕ∥1 ≤

√
3C(1 + σ(Γ)).

Then,

∥N±α(DLkϕ)∥2 ≤ ∥N
±
α(DLkϕ) −N±α(DL0ϕ)∥2 + ∥N

±
α(DL0ϕ)∥2

≤
√
3σ(Γ)C(1 + σ(Γ)) +Cα =∶ C̃α.

Therefore, for a general ϕ ∈ L2(Γ) we get

eq|DLmaxnontaneq|DLmaxnontan (A.5) ∥N±α(DLkϕ)∥2 ≤ C̃α∥ϕ∥2.

With a slightly modified argument to the one of the proof of [16, Proposition 3.3.2], it follows that for
all f ∈ Lip(Γ), the nontangential limit γ±DLkf exists and satisfies the right equation of (3.8).

We will prove that the nontangential limits γ±DLϕ(x) exists for σ-a.e. x ∈ Γ for real valued functions
ϕ but the result for the complex valued ones follows immediately by linearity. Take now any real-valued
ϕ ∈ L2(Γ) and, using the the density of Lip(Γ) in L2(Γ), we can take a sequence (fn)n ⊂ Lip(Γ) of real
value functions that converge to ϕ in L2(Γ). Then define, for any real-valued measurable function ψ on Ω±
and for any x ∈ Γ such that x ∈ C±α(x) (which by [16, Proposition 3.3.1], happens for σ-a.e. x ∈ Γ),

eq|trace_infsupeq|trace_infsup (A.6) γ±α,infψ(x) ∶= lim inf
y → x

y ∈ C±α(x)

ψ(x) and γ±α,supψ(x) ∶= lim sup
y → x

y ∈ C±α(x)

ψ(x),
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and denote the resulting function on Γ by γ±α,infψ and γ±α,supψ, respectively. Then, using Equation (A.5)

∥γ±α,infDLkϕ − γ±DLkfn∥2 = ∥γ±α,infDLkϕ − γ±α,supDLkfn∥2 ≤ ∥γ±α,infDLk(ϕ − fn)∥2
≤ ∥N±αDLk(ϕ − fn)∥2 ≤ C̃α∥(ϕ − fn)∥2

and

∥γ±α,supDLkϕ − γ±DLkfn∥2 = ∥γ±α,supDLkϕ − γ±α,supDLkfn∥2 ≤ ∥γ±α,supDLk(ϕ − fn)∥2
≤ ∥N±αDLk(ϕ − fn)∥2 ≤ C̃α∥(ϕ − fn)∥2.

This implies, by the convergence of (fn)n to ϕ in L2(Γ), that for any α > 0 it is satisfied that γ±α,infψ(x) =
γ±α,supψ(x) for σ-a.e. x ∈ Γ. Hence, for any α > 0 the limit γ±αDLϕ(x) exists for σ-a.e. x ∈ Γ. Next, note
that for any x ∈ Γ and α > β > 0, if γ±αDLϕ(x) exists then γ±βDLϕ(x) also exists and is equal to γ±αDLϕ(x).
Thus, by taking a sequence of αn →∞, we obtain that for σ-a.e. x ∈ Γ, the nontangential limit γ±DLϕ(x)
exists.

Finally, by Remark 1, the nontangential limit γ±DLϕ(x) is equal to the classical trace and therefore,

by the density of Lip(Γ) in L2(Γ), the continuity of operator Kk ∶ L2(Γ) Ð→ L2(Γ) and Kk ∶ H1/2(Γ) Ð→
H1/2(Γ), we obtain that γ±DLϕ(x) satisfies the right equation of (3.8) in the nontangential sense. □

prop|gradDL Proposition A.5 (Proposition 3.6.2). For each φ ∈H1(Γ), the nontangential limit γ±∂jDLkφ exists σ-a.e.

on Γ, for each j = 1,2,3. Also, C̃α > 0 can be taken such that,

eq|Na_gradDLeq|Na_gradDL (A.7) ∥N±α(∇DLkφ)∥2 ≤ C̃α∥φ∥H1(Γ).

Finally, the restriction of Kk to H1(Γ) is bounded as an operator on H1(Γ) and we get the mapping property,

Kk ∶H1(Γ)Ð→H1(Γ).

Proof. Adapting the proof of [16, Proposition 3.6.2], take any x ∈ Ω± and j = 1,2,3. Then,

∂jDLkφ(x) = −∫
Γ

3

∑
l=1

[∂j∂lGk](x − y)νl(y)φ(y)dσ(y)

=∫
Γ

φ(y)
⎛
⎝
k2Gk(x − y)νj(y) +∑

l≠j

[∂l∂lGk](x − y)νj(y) − [∂j∂lGk](x − y)νl(y)
⎞
⎠
dσ(y)

= k2SLk(φνj) +∑
l≠j
∫
Γ
∂τj,lφ(y)∂lGk(x − y)dσ(y),derexpderexp (A.8)

where the second inequality uses the fact that ∆G + k2G = 0 on R3 ∖ {0} and the third uses Lemma A.1.
The first term in (A.8) is only weakly singular and can be handled as in Lemma A.3. As for the second
term, recalling that the result is known for the case k = 0 [27, Lemma 5.7], we are left to prove: (i) the
existence of the nontangential limit a.e. on Γ and (ii) the domination of the L2-norm of the nontangential
maximal function by C∥φ∥H1(Γ), this time for the quantity

∑
l≠j
∫
Γ
∂τj,lφ(y) (∂lGk(x − y) − ∂lG0(x − y))dσ(y).

Now, both (i) and (ii) follow by dominated convergence from the second inequality in Lemma A.2. □

prop|sl-1 Proposition A.6 (Proposition 3.6.4). The operator Sk ∶ H−1/2(Γ) Ð→ H1/2(Γ) can be extended to the
bounded linear operator

Sk ∶H−1(Γ)Ð→ L2(Γ),
which is the dual of (Sk)∣H1(Γ). Also, it is satisfied in the nontangential sense that

γ±SLkψ = Skψ, σ-a.e. for every ψ ∈H−1(Γ)
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and, for every α > 0, there exists a constant C̃α such that,

∥N±α(SLkψ)∥2 ≤ C̃α∥ψ∥H−1(Γ).

Proof. Note that by Lemma A.3 and Equation (3.7), for every ϕ ∈ L2(Γ), we get (Sk)∗∣H1(Γ)(ϕ) = Sk(ϕ).
Then, using again density of Hs(Γ) in Ht(Γ) for t < s, and Lemma A.3, we obtain that (Sk)∗∣H1(Γ) is

indeed an extension of Sk ∶ H−1/2(Γ) Ð→ H1/2(Γ). The rest of the proof follows from similar arguments to
Proposition A.4. □

prop|trace_partial_nu Proposition A.7 (Proposition 6.3.1). For any ϕ ∈ L2(Γ) we get

∂±νSLkϕ = (∓
1

2
Id +K∗k)ϕ

= ν ⋅ γ±(∇SLkϕ)

Proof. The first equality is just the classical result [21, Equation (7.5)]. For the second equality, it can be
shown, similarly as in the previous lemmas, that γ± ○ ∂jSLk − γ± ○ ∂jSL0 defines a bounded linear operator
from L2(∂) to itself, so that, by [16, Proposition 6.3.1], γ± ○ ∂jSLk is as well bounded Finally, we can show
the result for Lipschitz functions, dividing the integral as in the proof of [16, Proposition 3.3.2] and also
integrating against a test function; and finish the proof by a density argument. □

A.2. Auxiliary regularity results. In this section, we state an prove a couple of lemmas which are
folklore but not easy to find in the literature.

lemma|reg_L Lemma A.8. For Ω+ ⊂ R3 a bounded Lipschitz domain, the map S0 ∶ L2(Γ) → H1(Γ) is an isomorphism.
Moreover, for each f ∈ L2(Γ) , the harmonic function SL0f has gradient with nontangential maximal

function N±α(∣∇SL0f ∣) ∈ L2(Γ). In addition, SL0f lies in H3/2(Ω).

Proof. We adopt the notation of Lemma A.12: Γ1, ...,Γl are the components of Γ ordered so that the
connected components O1, ...,Ol of R

3 ∖Ω satisfy O1 = Ext(Γ1) and Oj = Int(Γj) for j ≠ 1. When l = 1, the
lemma follows from [27, Theorem 3.3 & Corollary 3.5], except for the last statement. The latter is made
in [19, Remark (b)], but that part of the argument based on interpolation which is given there is wrong.

Instead, one can observe like these authors that x ↦ ∣∂i∂jSL0f(x)∣dist(x,Γ)1/2 ∈ L2(Ω) for 1 ≤ i, j ≤ n
(this follows from [10, Theorem 1] using Fubini’s theorem), and appeal to [18, Theorem 4.1] to obtain that

SL0f ∈ H3/2(Ω). In the general case, let us write S0(fj) (resp. SL0(fj)) for the single layer potential of
fj ∈ L2(Γj) on Γj (resp. on R

3 ∖ Γj), and consider the map F ∶ ΠjL2(Γj)→ ΠjH
1(Γj) given by

F (f1,⋯, fl) ∶=
⎛
⎝
S0(fj) +∑

k≠j

γΓjSL0(fk))
⎞
⎠

l

j=1

.

Clearly, by the case l = 1, this map is of the form J+K where J(f1,⋯, fl) = (S0(fj))lj=1 is invertible and K is

a compact operator. Moreover F is injective, for if F (f1,⋯, fl) = 0 then the harmonic function ∑j SL0(fj)
is identically zero in Ω± as it has vanishing nontangential limit a.e on Γ and L2(Γ)-nontangential maximal
function by the case l = 1 and the smoothness of SL0fj across Γk for k ≠ j, so that we can apply [9, Theorems
1 & 3] (note that ∑j SL0(fj) is zero at infinity by construction); taking the Laplacian, we conclude that
all fj are zero, thereby proving the announced injectivity. Thus, by a well-known theorem of F. Riesz, F is
an isomorphism, and since S0f = ∑j S0(fj) when we put fj = f∣Γj the fact that Nα∣∇SL0(f)∣ lies in L2(Γ)
and that SL0f ∈H3/2(Ω) now follows immediately from the case l = 1. □

lemma|reg_J Lemma A.9. Let Ω+ ⊂ R3 be a bounded Lipschitz domain, (ϕ,ψ) ∈ L2(Γ) ×H−1(Γ) and u = F̃(ϕ,ψ). If

γ+u ∈H1(Γ) then u ∈H3/2(Ω+), and if γ−u ∈H1(Γ) then u ∈H3/2
ℓ (Ω−).

Proof. We only prove the statement for γ−u, as the case of γ+u is analogous but simpler. Let B ⊂ R3

be an open ball centered at 0 containing Ω+, and let u′ = u
∣B∖Ω+ which is square integrable by remark 3.
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By [18, Theorem B], there is a w ∈ H3/2(B ∖ Ω+) such that ∆w = −k2u′ and γB∖Ω+w = 0. Note that

γB∖Ω+u
′ ∈ H1(∂(B ∖ Ω+)), since γ−u ∈ H1(Γ) by assumption and u is analytic on Ω−. So, by Lemma

A.8, there is a harmonic function v ∈ H3/2(B ∖ Ω+) whose gradient has Nα∣∇SL0(f)∣ ∈ L2(Γ), and whose

nontangential limit a.e. on Γ is γB∖Ω+u
′. Hence, as v + w ∈ H3/2(B ∖ Ω+), it is enough to show that

h ∶= u′ − v − w is the zero fonction. For this we shall prove that it lies in H1(B ∖ Ω+) and has zero trace;

since it is harmonic by construction, this will achieve the proof. Now, h ∈H1(B∖Ω+) if and only if u′ does,
and remark 3 together with the third inequality in Lemma A.2 entail in view of Lemma A.8 that u′ is the
sum of a harmonic function of the form SL0f with f ∈ L2(Γ) (that lies in H1(B∖Ω+) plus a function with
nontangentially bounded derivative (because x ↦ 1/∣x∣ is locally integrable in dimension 2). Altogether,

u′ ∈ H1(B ∖Ω+), and h ∈ H1(B ∖Ω+) as well. Finally, the trace of w is zero and the nontangential limit of
v, which is also its trace, is γB∖Ω+u

′. Hence h has zero trace, as wanted. □

lemma|inv_LapBel Lemma A.10. Let Γ ⊂ R3 be the boundary of a bounded Lipschitz domain and let {Γj}j∈J be its connected
components. If ψ ∈ H−1(Γ) is such that for every j ∈ J , ⟨ψ,1Γj ⟩ = 0, then there exists a φψ ∈ H1(Γ) such
that ∆Tφψ = ψ.
Proof. Let Z denote the space {φ ∈ H1(Γ) : for every j ∈ J , ⟨φ,1Γj ⟩ = 0} together with the inner product
⟪φ, φ̃⟫Z ∶= ⟪∇Tφ,∇Tφ̃⟫L2(Γ)3 . By the Poincaré inequality (obtained from its Euclidean version applied
in a minimal system of finitely many charts (Vj ,Φj) with Lipschitz smooth image that cover Γ to bound
∥φ−∫Vj∖(∪k≠jVk) φ∥L2(Vj) by Kj∥∇φ∥L2(Vj) for each j), one checks that Z is a Hilbert space. Pick ψ ∈H−1(Γ)
such that, for every j ∈ J , ⟨ψ,1Γj ⟩ = 0. Using the Poincaré inequality again, the function φ↦ −⟨ψ,φ⟩ belongs
to the dual of Z. Thus there exists a φψ ∈ Z such that, for every φ ∈ Z, ⟨ψ,φ⟩ = −⟪φψ, φ⟫Z . Take now any
φ ∈H1(Γ) and let, for any j ∈ J , αj = σ(Γj)−1⟨φ,1Γj ⟩. Then,

⟨ψ,φ⟩ = ⟨ψ , φ −∑
j∈J

αj1Γj +∑
j∈J

αj1Γj⟩ = ⟨ψ , φ −∑
j∈J

αj1Γj⟩ = −⟪φψ , φ −∑
j∈J

αj1Γj⟫
Z

= − ⟨∇Tφψ , ∇T

⎛
⎝
φ −∑

j∈J

αj1Γj
⎞
⎠
⟩
L2(Γ)3

= −⟨∇Tφψ,∇Tφ⟩L2(Γ)3 = ⟨∆Tφψ, φ⟩,

and hence ∆Tφψ = ψ. □

A.3. Basic topological facts. Using the fact that all surfaces embedded in R3 are triangulable [20,
Theorem 5.12], the following lemma can be found in [22, Corollary 74.2]. This is generally true for any
connected compact hypersurface on Rn and follows as a consequence of Alexander duality [15, Corollary
3.45], but the proof is more involved.

lemma|Alexander Lemma A.11. Take a connected surface Γ ⊂ R3 which is compact as a topological space.
Then the set R3 ∖ Γ has two connected components; one bounded, which we will denote by Int(Γ), and

another unbounded, which we will denote by Ext(Γ).
Furthermore, ∂(Int(Γ)) = Γ = ∂(Ext(Γ)).
We say that a set Γ ⊂ R3 is locally a Lipschitz graph if for every x ∈ Γ there exists an open ball B ⊂ R3,

a h > 0, a plane H ⊂ R3 passing through s and with a normal unit vector ν, and a real-valued Lipschitz
continuous function g on H such that the set defined as

C ∶= {x + tν ∶ x ∈ B ∩H, −h < t < h},
satisfies:

C ∩ Γ = {x + tν ∶ x ∈ B ∩H, t = g(x)}.
lemma|connect_lip_bound Lemma A.12. Let Ω ⊂ R3 be a bounded Lipschitz domain. Then, Γ has finitely many connected compo-

nents, say Γ1, ...,Γl, each of which is locally a Lipschitz graph in R3 .
Moreover, the connected components of R3 ∖ Ω consist of l Lipschitz domains O1, ...,Ol, and with a

suitable ordering O1 = Ext(Γ1) while Oj = Int(Γj) for j ≠ 1.
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Proof. The connected components Ω ⊂ R3 are finite in number; otherwise indeed, there would exist a
sequence (Ωk)k of such components, with Ωk ∩ Ωj = ∅ for k ≠ j. Then, we could construct a sequence
(xk)k ∈ Ωk such that xk remains at bounded distance from Γk ⊂ Γ, hence xk would be bounded and
extracting a subsequence if necessary we might assume that xk converges in R3 to some y. However, this
is impossible for y cannot lie in Ω since the connected components of the latter are open, nor can it lie in
R3 ∖ Ω, and it cannot belong to Γ either because, as Γ is a compact Lipschitz manifold which is locally
a Lipschitz graph, each x ∈ Γ has a neighborhood whose intersections with both Ω and Γ are connected.
Consequently, by compactness, Γ has finitely many connected components, say Γ1, ...,Γl, and each Γj is
locally a Lipschitz graph in R3.

As Ω is connected by assumption, for each j ∈ {1, ..., l} one of the following is true; either Ω ⊂ Int(Γj), so
that Ω ⊂ Int(Γj) and then, using Lemma A.11, Ext(Γj) ⊂ R3∖Ω; or else Ω ⊂ Ext(Γj) and then, analogously,

Int(Γj) ⊂ R3 ∖ Ω. Since there is exactly one unbounded connected component of R3 ∖ Ω, say O1, it must
contain Ext(Γj) for all j such that Ω ⊂ Int(Γj); let us enumerate these j as j1, ..., jm. For 1 ≤ i, k ≤ m, it
holds that Int(Γji)∩ Int(Γjk) ≠ ∅ because Ω lies in this intersection, and since the Γj are disjoint one of
these interiors is included in the other, say Int(Γji) ⊂ Int(Γjk). But if ji ≠ jk, then Γjk ⊂ Ext(Γji) and the
latter is contained in O1, a contradiction. Consequently, m = 1 and Ω lies interior to exactly one of the Γj ,
say Γ1. Necessarily then, O1 = Ext(Γ1) because O1 cannot strictly contain Ext(Γ1) without containing a
point of Γ1, which is impossible. Likewise, Ω ⊂ Ext(Γj) for j ≠ 1 and then Int(Γj) is a connected component

of R3 ∖ Ω. Next, the closure of every bounded connected component of R3 ∖ Ω must meet some Γj , and

necessarily j ≠ 1 for each point of Γ1 has a neighborhood included in O1 ∪Ω, by the local Lipschitz graph
property. Hence, this connected component meets Int(Γj) for some j ≠ 1, therefore it must coincide with
Int(Γj). Finally, due to Lemma A.11 and the definition of locally Lipschitz graphs, for each j ∈ {1, ..., l}
both Int(Γj) and Ext(Γj) are Lipschitz domains. □
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