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A B S T R A C T
In the present work, the mechanical response of a fiber network metamaterial was studied when
subjected to 3-point flexure. To account for the initial deformation of the sample due to the
fabrication process, backtracking (i.e., the nominal mesh was accurately repositioned in the reference
configuration) was implemented in the Digital Volume Correlation (DVC) procedure. Kinematic
fields were then measured via DVC at two different scales. Finite element based DVC was validated
thanks to a series of initialization steps. The displacement fields were successfully measured and
a peculiar deformation mechanism was observed. These measurements were employed to calibrate
the constitutive parameters of a second gradient continuum model introduced for modeling this
type of metamaterial. Numerical simulations are shown to be in good agreement with experimental
measurements at the macroscopic scale.

1. Introduction
The advancement of additive manufacturing techniques

has made it possible to develop metamaterials whose inner
architecture may be very complex (Schaedler and Carter,
2016; Pfaff, Bierdel, Hoschke, Wickert, Riedel and Hier-
maier, 2020). This complexity determines their mechanical
properties, which can be designed to be highly-performing
and not achievable with standard materials. Such remarkable
properties may persist when new mesostructures are embed-
ded in a matrix. The obtained composite material, which can
be regarded as a fiber reinforced matrix (Franciosi, 2020;
Schulte, Dittmann, Eugster, Hesch, Reinicke, dell’Isola and
Hesch, 2020), still maintains some of the peculiarities of the
underlying metamaterial architecture.

Whether considered as an (embedded) phase of a com-
posite material or as a material per se, the mechanics of
metamaterials is often modeled in the context of general-
ized continua models (Alibert, Seppecher and dell’Isola,
2003). In the class of mechanical metamaterials, a very
sophisticated one is represented by fibrous arrangements
(i.e., architectures composed of fiber layers variously in-
terconnected (Ciallella, Pasquali, Gołaszewski, D’Annibale
and Giorgio, 2021; Spagnuolo and Cazzani, 2021)). When
designing fibrous metamaterials, a fundamental property to
exploit is the fact that the morphology of their mesostructure
significantly influences their macroscopic response (Yang,
Ganzosch, Giorgio and Abali, 2018). These properties are
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controlled to a lesser extent by the microscopic properties
of the constituent material (Spagnuolo, Peyre and Dupuy,
2019). Therefore, by working only on the geometric arrange-
ment of basic structural elements, and without changing the
constitutive material, it is possible to obtain very different
macroscopic responses (Giorgio, 2016; Boutin, dell’Isola,
Giorgio and Placidi, 2017).

There exist natural materials in which the aforemen-
tioned principle is exploited. Remarkable examples of natu-
ral fibrous architectures are found in bone tissues or woods.
In the case of bone tissues, the architecture of the fiber
network is obtained through the process of topological op-
timization (Desmorat and Desmorat, 2008; Giorgio, 2021)
induced by natural evolution. In this way, the resulting bone
microstructure is the best possible for finding a material hav-
ing optimal ratios between resistance and weight (George,
Allena and Remond, 2018; Giorgio, dell’Isola, Andreaus,
Alzahrani, Hayat and Lekszycki, 2019).

In this paper, results are presented concerning a 3-point
flexural test performed on a specimen made of a fibrous
architecture known as pantographic metamaterial. The sim-
plest example of such metamaterial is a sheet composed
of two mutually orthogonal fiber layers mechanically inter-
connected by cylindrical joints. These joints are generally
referred to as pivots or hinges in the literature (Alibert et al.,
2003; dell’Isola, Giorgio, Pawlikowski and Rizzi, 2016;
Giorgio, Varano, dell’Isola and Rizzi, 2021). They either
have some torsional rigidity, and thus add a deformation
mechanism to the fibers, or behave as perfect hinges, thereby
only ensuring that the families of fibers remain mutually
bonded, but exerting no constraint on the relative rotations
between them (Valmalle, Vintache, Smaniotto, Gutmann,
Spagnuolo, Ciallella and Hild, 2022). The relevance of such
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joints is that, in the macroscopic response, they are associ-
ated with macroshear contributions to the strain energy to be
used in the continuum model, and were proven to determine
the overall response of the metamaterial (Spagnuolo et al.,
2019; Spagnuolo, Andreaus, Misra, Giorgio and Hild, 2021;
Spagnuolo, Yildizdag, Pinelli, Cazzani and Hild, 2022). It
is worth noting that macroscale models used for describing
pantographic sheets are based on second gradient 2D con-
tinua (Mindlin, 1965; Pideri and Seppecher, 1997; Luscher,
McDowell and Bronkhorst, 2010; Turco, dell’Isola, Cazzani
and Rizzi, 2016; Germain, 2020).

The specimen considered herein is called a pantographic
block, namely, it consists of 𝑛 pantographic sheets intercon-
nected with hinges identical to those used inside each sheet.
The design of the interconnecting hinges has been conducted
in order to minimize any mechanical coupling phenom-
ena inducing deformations of the pantographic block cross-
sections (see Figure 1). Therefore, in the considered test, one
may use 2D second gradient continua models accounting
for the thickness of the block via a suitable increase of
model stiffnesses. Special attention is to be devoted to the
deformation mechanisms of such blocks when undergo-
ing flexure. The study of deformations at the level of the
mesostructure of the pantographic metamaterial is crucial.
From the point of view of continuum models describing
their mechanical response, the related flexural energy de-
termines the part of macrostrain energy depending on the
second gradient of macroplacement fields (Yang and Misra,
2012; Auffray, dell’Isola, Eremeyev, Madeo and Rosi, 2015;
Placidi, Andreaus and Giorgio, 2017; Barchiesi, Eugster,
Placidi and dell’Isola, 2019). The aim is then to observe
experimentally the effects due to second gradient energy
terms, in a mechanical test that reduces the strains relative
to the elongation of the fibers (contributing to first gradient
strain energy).

Figure 1: Example of pantographic block cross-section

In the present study, an in situ 3-point flexural test
was monitored via X-ray tomography (Maire and With-
ers, 2014), and Digital Volume Correlation was utilized
to measure displacement fields. As for Digital Image Cor-
relation (Sutton, 2013), there are essentially two types of
approaches to measure volumetric displacements, namely,
local DVC in which small and independent subvolumes
are registered (Bay, Smith, Fyhrie and Saad, 1999; Bay,
2008) and global (or FE-based) DVC (Roux, Hild, Viot
and Bernard, 2008) for which the whole region of inter-
est is meshed and correlated in a single analysis (Bul-
jac, Jailin, Mendoza, Neggers, Taillandier-Thomas, Bouterf,

Smaniotto, Hild and Roux, 2018). In the present case, FE-
based DVC was utilized and a unique mesh was constructed
for the whole metamaterial. FE-based DVC was already used
to quantify the deformation of pantographic metamaterials
subjected to torsion (Auger, Lavigne, Smaniotto, Spagnuolo,
dell’Isola and Hild, 2021; Valmalle et al., 2022). However,
to the authors’ best knowledge, it was not yet applied to any
flexural test on such metamaterials. Moreover, for the first
time, the experimental evidence shown in the present work
has made it possible to observe phenomena that one could
only expect on a theoretical level. These phenomena were
not previously observed; in fact, thanks to tomographic mea-
surements and subsequent DVC analyses, it was possible to
directly observe the deformations of the connecting hinges,
which are normally hidden by the fibers. The observation of
these deformations is crucial. In fact, it allows to validate
the hypothesis that the pantographic block can be regarded
as a superposition of pantographic sheets, which can be
described by means of a 2D continuum model.

In fact, the models used in the description of this type
of metamaterials involve terms that depend on second order
gradient of the displacement field in the strain energy. For
this reason, it is useful to have precise experimental informa-
tion on such second gradient terms. These second gradient
terms are only related to fiber bending. This is the reason
why it is useful to isolate this deformation mechanism in
order to obtain a study free from quantities linked to other
deformation mechanisms. Typically, in a biased extension
test (i.e., biased with respect to the fiber directions, which
are tilted by ±45⁃ with respect to the horizontal direction)
other types of deformation modes emerge. We refer, for
example, to the elongation of fibers or the torsion of the
connecting elements (hinges). Much greater energy contri-
butions correspond to these mechanisms than to those of
the bending of the fibers (typically, this is the same ratio
as between extensional and flexural rigidities of a beam).
It is therefore essential to devise methods to isolate the
contribution of fiber bending. It was shown how to elimi-
nate torsion contributions of hinges by replacing them with
perfect pivots Spagnuolo (2020). In the present work, a 3-
point flexural test was designed to eliminate, or minimize,
the contributions of fiber elongation by only inducing fiber
bending.

The outline of the paper is as follows. First, the in situ test
is presented. Then, the different steps of FE-based DVC are
introduced. The measured displacement fields, correspond-
ing strain and gray level residual fields are analyzed to obtain
quantitative information on the various deformation mecha-
nisms at play in such test. Last, the modeling choices are
described in which the assumption of nearly undeformable
sections was probed.

2. In situ 3-point flexural test
The sample used herein, see Figures 1 and 2(a), was

produced by selective laser sintering (SLS) from polyamide
PA2200 powder and consisted in a rectangular cuboid of
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size 203.5 × 43.5 × 33 mm. The beams had a rectangular
cross-sectional area of 2.5 × 1.5 mm, and the connecting
cylinders had a diameter of 0.90 mm with a length of 2 mm
(Figure 2(b)). These values are nominal and were used to
design the pantographic block in the CAD modeler. The
resulting CAD file was then used to print the sample.

(a) (b)

Figure 2: (a) 3D rendering of the studied metamaterial
(length: 203.5 mm, height: 43.5 mm) with a 100 µm / vx
resolution. (b) Side view of hinges (0.90 mm in diameter) and
beams

The 3-point flexural test was monitored using computed
microtomography (Maire and Withers, 2014). Such imag-
ing technique is non-intrusive and provides 3D images of
samples tested in situ (Buffière, Maire, Adrien, Masse and
Boller, 2010). Special 3D printed supports, made of ABS,
were utilized (Figure 2(a)) to enable the total length and
height of the sample to be imaged (i.e., they had virtually the
same X-ray absorption as the tested sample). Nylon screws
were used to fix the supports to the aluminum alloy platens
(Figure 3(a)). The load was applied by the longitudinal actu-
ator moving the bottom platen of the in situ testing machine,
which was controlled in position (with steps of 5 mm). The
test was conducted up to the stroke limit (i.e., 20 mm) of the
machine. Cardboard was added to avoid friction and locking
of the beam ends with respect to the supports (Figure 3).

(a) (b)

Figure 3: (a) Sample in the reference configuration in the in
situ testing machine. (b) Sample in the deformed configuration
after the first loading step

Six tomographic scans were acquired, namely, two in the
reference configuration for uncertainty quantification, and
four in deformed configurations. The hardware parameters
of the in situ setup are gathered in Table 1. Once cropped,
the reconstructed volumes covered 50 × 50 × 100 mm3 with
a 100 µm/vx resolution.

Series of 1,500 radiographs per scan were acquired to
reconstruct 3D images of the deformed sample (Figure 4).
This large number of radiographs per scan was needed since

most of the sample occupied the whole length of the detector
(Table 1). Overall, the quality of the reconstructed volumes
was deemed very satisfactory for DVC calculations.

Figure 4: 3D renderings of the 4 deformed configurations

Figure 5 shows the plot of the reaction force versus pre-
scribed displacement. This curve appears to be essentially
linear. Four “discontinuity zones” are also observed, which
correspond to the four tomographic acquisitions. They re-
flect small relaxations of the material that occurred as a result
of test interruption and the effects of minute misalignment
due to the rotation of the turntable.

Figure 5: Force vs. deflection of the in situ 3-point flexural test

The reaction force plot is of crucial significance in this
study. As briefly addressed in the introduction, pantographic
metamaterials are describable as generalized (i.e., second
gradient) continua. In the latter ones, three contributions are
introduced to the strain energy of the metamaterial, namely,
one related to the elongation of the fibers, another one to the
flexure of the fibers, and a third one (if any) to the torsion
of the hinges. Specifically, for modeling the contribution
related to flexure of the fibers, one has to introduce the sec-
ond gradient of the placement field. This term is not present
in theories based on classical Continuum Mechanics and,
therefore, it is crucial to study it in order to fully characterize
such metamaterials (Greco, Giorgio and Battista, 2017). In
the present case, for the maximum prescribed displacement,
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the energy contribution associated with the elongation of
the fibers was expected to be negligible (Spagnuolo, 2020),
while the contributions associated with fiber flexure and
torsion of the hinges were present. The measured reaction
force was therefore the combined signature of both defor-
mation mechanisms. Since the measured reaction force was
essentially linear with respect to the prescribed displace-
ment, it was expected that nonlinear deformation mecha-
nisms (i.e., plasticity and damage) remained very limited.
This point will be further discussed when local strain fields
will be reported.

By comparing with theoretical results (Spagnuolo, 2020),
it was observed that the measured reaction force was signif-
icantly higher than expected for this type of material. Two
substantial differences are highlighted with respect to the
investigated case:

i. in the present case, the metamaterial was not a single
pantographic sheet, but consisted of a multilayered
network, and therefore one must take into account the
combined actions of various layers of bent fibers;

ii. the hinges were not perfect but deformed, and as
widely discussed in the literature, most of the defor-
mation energy of pantographic metamaterials is due to
the deformation of hinges (Giorgio, 2016; Spagnuolo
et al., 2019).

3. Different DVC steps
In the following analyses, two different scales were con-

sidered. Macroscale DVC dealt with a mesh for which all
the morphological details of the metamaterial were not
accounted for. It was useful to initialize mesoscale analyses
(in which the actual architecture of the metamaterial was
meshed) given the large displacement amplitudes between
each acquisition (Figure 4). The macroscale measurements
were subsequently compared to model predictions at the
same scale. The mesoscale enabled deformation mecha-
nisms to be quantified for the hinges. Various DVC steps had
thus to be tailored to the present case.
3.1. Mesh in the reference configuration

FE-based DVC (Roux et al., 2008; Hild, Bouterf, Chamoin,
Mathieu, Neggers, Pled, Tomičević and Roux, 2016) was
used in the present analyses. Such approach requires an FE
mesh to be constructed. In the present case, the starting point
was the STL model of the to-be-printed pantographic block.
This initial information corresponded to the nominal config-
uration of the digital twins (Figure 6). A 3D mesh made of 4-
noded (T4) tetrahedra was constructed from the STL model
with the PDE toolbox of Matlab. Once generated, the mesh
was cropped in order to measure displacement fields only
between the two outer supports, and for the mesh to remain
within the monitored volume when deformed. The voxelized
twin, which was needed for DVC purposes, was a mask
in which each voxel lying within the mesh was assigned a
nonzero value. It was also constructed from the STL model

of the nominal configuration (Figure 6). The STL model was
cropped (with Avizo Fire 8.0) to be consistent with the DVC
ROI, and to coincide with the size of the used mesh. With
this cropped STL file, a ray tracing algorithm (Patil and Ravi,
2005) was used to create the voxelized twin.

Figure 6: Digital twins of the nominal configuration of the
studied metamaterial

Figure 7 shows the mesh in the nominal configuration.
The mesh initially contained 62,270 nodes and 177,067 T4
elements whose mean size (measured as the cube root of
the average elementary volume) was 6 vx. Another issue
appeared, namely, the PDE mesher generated few very small
elements (with volumes of the order of one voxel) that would
have resulted in a very poor conditioning of the Hessian
matrices used in DVC calculations. The choice was made
to remove the elements whose size was less than 2 vx.
This slightly modified mesh contained 62,261 nodes and
171,755 T4 elements whose mean length still was 6 vx. All
hinges were explicitly meshed. Conversely, the geometric
details of each beam close to the connections were not as
fine (Figure 7(b-d)). This choice resulted from compromises
between mesh fineness, voxel resolution and size of the DVC
(Hessian) matrix.

Because of small errors due to printing, mispositioning
of the sample and the application of a preload, the experi-
mental reference configuration did not coincide with that of
the digital twin. Therefore, a backtracking procedure (Auger
et al., 2021) was needed to fit the mesh constructed with
the digital twin onto the printed configuration. Another
route could have been to resort to so-called shape correla-
tion (Kleinendorst, Hoefnagels and Geers, 2019). However,
in the present case, standard DVC was sufficient with no
need for mechanical regularization. The procedure consisted
in registering the printed configuration with the voxelized
digital twin (Figure 6). An auxiliary mesh encompassing
the volume in the printed configuration was considered and
DVC was run. It is worth noting that this mesh was also used
in the DVC analyses at the macroscale.

Figure 9 shows the displacement field that had to be
applied between the printed and nominal configurations.
The rigid body translations were taken out since they were
due to the fact that the reconstruction frame and that of
the digital twin did not coincide. The displacement fields
along the vertical and longitudinal directions were consistent
with a flexural preload that was applied. The displacement
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(a)

(b) (c) (d)

Figure 7: (a) Mesoscale mesh of the nominal configuration
with its reference frame. Side (b) and front (c) views of
hinges. (d) Detail of one individual hinge ans its reference
frame (axial and tangential directions). The red and blue nodes
depict the top respectively the bottom planes used to measure
displacement and rotation jumps

Figure 8: Reference (printed) configuration to be registered
with the nominal configuration via DVC using an auxiliary
(i.e., macroscopic) mesh encompassing the reference config-
uration. The nominal mesh is then backtracked

field along the transverse direction also had the signature of
flexural preload but with smaller amplitude.
3.2. Uncertainty quantification

The reconstructed volumes were registered using the
Correli 3.0 framework (Leclerc, Neggers, Mathieu, Hild and
Roux, 2015) in which Hencky regularization (dell’Isola,
Seppecher, Spagnuolo, Barchiesi, Hild, Lekszycki, Gior-
gio, Placidi, Andreaus, Cuomo, Eugster, Pfaff, Hoschke,
Langkemper, Turco, Sarikaya, Misra, De Angelo, D’Annibale,
Bouterf, Pinelli, Misra, Desmorat, Pawlikowski, Dupuy,
Scerrato, Peyre, Laudato, Manzari, Göransson, Hesch, Hesch,

(a) (b) (c)

Figure 9: Displacement fields in the 𝑥 (i.e., longitudinal) (a),
𝑦 (i.e., transverse) (b) and 𝑧 (i.e., vertical) (c) directions
obtained by the backtracking procedure. The fields are shown
on the deformed configuration and expressed in voxels (1 vx ≡
0.1 mm)

Franciosi, Dirrenberger, Maurin, Vangelatos, Grigoropou-
los, Melissinaki, Farsari, Muller, Abali, Liebold, Ganzosch,
Harrison, Drobnicki, Igumnov, Alzahrani and Hayat, 2019b)
was implemented for the mesoscale analyses (Tab. 2), since
virtually no contrast existed within the printed parts (except
few porosities), which prevented analyses to be performed at
even lower scales. In the present case, the measured displace-
ment field 𝐮was parameterized with the nodal displacements
associated with the finite element discretization based on 4-
noded (T4) tetrahedra (Hild et al., 2016).

At this stage, the regularization length was not yet se-
lected. Therefore, the uncertainties were studied for dif-
ferent regularization lengths 𝓁𝑚 with the same mesh. The
noise floor levels were assessed using the two scans of the
reference configuration. DVC analyses were run with the
backtracked mesh (Figures 8). Rigid body motions were sub-
tracted from the measured displacement fields, the standard
deviations of each nodal displacement component was esti-
mated and are displayed in Figure 10(a). The measurement
uncertainties were very close for the three spatial directions
for a given regularization length. The (classical) compromise
between measurement uncertainty and regularization length
was found (Leclerc, Périé, Hild and Roux, 2012). However,
it was observed that the uncertainty level was not solely
controlled by acquisition noise since the power −3∕2 de-
pendence of the displacement uncertainty was not followed.
This result proves that other sources of error also occurred,
which was expected when dealing with tomographic acqui-
sitions (Buljac et al., 2018). For large regularization lengths,
standard displacement uncertainties as low as 10−2 vx were
reached thanks to the regularization strategy used herein.

The maximum principal strain 𝜖1 and the von Mises
equivalent strain 𝜖𝑣𝑀 will be reported in the sequel. The
latter one was considered to assess the level of plastic strains
in the hinges and beams. Their standard uncertainties were
therefore evaluated as well. They correspond, for each strain
descriptor, to the standard deviation of the elementary quan-
tities assessed in the whole mesoscale mesh. The larger
the regularization length, the lower the standard strain un-
certainties (Figure 10(b)). Apart from the second principal
strain (𝜖2), all three strain components (𝜖1, 𝜖3 and 𝜖𝑣𝑀 ) had
virtually identical uncertainties. When large regularization
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(a) (b)

Figure 10: Standard displacement (a) and strain (b) uncertain-
ties as functions of the regularization length 𝓁𝑚. The physical
size of one voxel is 0.1 mm. The cyan dotted lines show power
law interpolations with exponents −3∕2 (a) and −5∕2 (b)

lengths were selected, the strain uncertainties were com-
patible with the measurement of elastic strains. Conversely,
when less regularized, DVC analyses will not allow elas-
tic strains to be measured accurately. Conversely, plastic
strains could be quantified even for very small regularization
lengths (for levels greater than 10−2). Last, let us note that
the power law interpolation with an exponent of −5∕2 was
not followed for the same reasons as those discussed for the
displacement uncertainties.

Last, the uncertainties were evaluated for the 1,935
hinges that were explicitly meshed (Figure 7(b-d)). The axial
direction of the hinges corresponded to the 𝑦-direction in the
nominal configuration. There are two nodal planes connect-
ing each hinge to the beams (i.e., bottom and top sections).
For each of them, the mean displacements and rotations
were computed. The displacement jumps were obtained by
subtracting the mean displacement of the bottom section of
the hinge to that of the top section (Figure 7(d)). Similarly,
the rotation jumps were assessed by subtracting the mean
rotation of the bottom section to that of the top section. In the
following, the axial components of the rotation ([[𝜃𝑎]]) and
displacement ([[𝑢𝑎]]) jumps were computed in addition to the
corresponding transverse components (i.e., the norm of the
two components in the plane normal to the axial direction).
Figure 11 shows their standard uncertainty levels as func-
tions of the regularization length 𝓁𝑚. For the displacement
jumps, the uncertainties were lower than those of the nodal
displacements (Figure 10(a)). For the rotation jumps, the
corresponding uncertainties were very close to those of the
minor and major principal strains (Figure 10(b)).
3.3. Initialization

Due to the large deformations between consecutive scans
(Figure 4), the DVC calculations had to be initialized. A
digital image correlation (DIC) algorithm was used on each
nodal cross-section of the macromesh encompassing the
sample (i.e., the auxiliary mesh of the backtracking pro-
cedure, see Figure 8) seeking in-plane rigid body motions
(i.e., assuming that there was no out-of-plane motion. Be-
cause the top grip was motionless in this experiment, the
middle section of the pantograph was expected to be essen-
tially motionless. Accordingly, the DIC calculations were

Figure 11: Standard displacement (a) and rotation (b) jump
uncertainties as functions of the regularization length 𝓁𝑚. The
physical size of one voxel is 0.1 mm

run from the middle plane along the right and the left
directions separately, using the rigid body of the previous
nodal plane to initialize the next DIC calculation.

The displacement field found at this stage was then
used as initialization for incremental DVC calculations (Fig-
ures 12 and 13), which converged in less than 10 iterations
for a criterion on the L2-norm of the displacement correc-
tions that was less than 10−2 vx. The displacements along the
(vertical) 𝑧-direction near the outer supports (corresponding
to the loading) had very large amplitudes between each scan
(about 50 vx). The incremental calculations converged easily
because such large displacements were initialized thanks to
the DIC procedure.

(a) (b)

(c) (d)

Figure 12: Initialization results in terms of displacements
(expressed in voxels, 1 vx ≡ 0.1 mm) along the 𝑧 (i.e., vertical)
direction for the different deformed configurations. (a) 5 mm,
(b) 10 mm, (c) 15 mm and (d) 20 mm deflections
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The deformed configurations show that rather large dis-
placements occurred in the (longitudinal) 𝑥-direction (Fig-
ure 13) as well. They were induced by large rotations that
took place in the vicinity of the outer supports. Such dis-
placements were not pre-corrected by the initialization pro-
cedure, contrary to those in the 𝑧-direction.

(a) (b)

(c) (d)

Figure 13: Initialization results in terms of displacements (ex-
pressed in voxels, 1 vx ≡ 100 µm) along the 𝑥 (i.e., longitudinal)
direction for the different deformed configurations. (a) 5 mm,
(b) 10 mm, (c) 15 mm and (d) 20 mm deflections

3.4. Direct DVC calculations
The displacement fields measured on the macroscopic

mesh (Figures 12 and 13) were used to initialize DVC
analyses at the mesoscale. They were run directly for the
4 deformed scans using the backtracked mesh (Figure 8).
The DVC calculations were stopped when the L2-norm
of displacement corrections were less than 10−2 vx. All
calculations converged quickly. Had the DVC analyses not
been initialized, the convergence would have been very slow,
if possible.

Since regularized DVC was selected at the mesoscale,
the measured displacement field 𝐮 was determined by mini-
mizing the sum of squared gray level differences

Φ2
𝑐 ({𝜐𝜐𝜐}) =

1
|ROI|

∑

ROI

(

𝐼0(𝐱) − 𝐼𝑡(𝐱 + 𝐮(𝐱, {𝜐𝜐𝜐}))
)2 (1)

where the gray level residual 𝜑𝑐 at each voxel 𝐱 reads
𝜑𝑐 = 𝐼0(𝐱) − 𝐼𝑡(𝐱 + 𝐮(𝐱)) (2)

penalized by the equilibrium gap
Φ2

𝑚({𝜐𝜐𝜐}) = {𝜐𝜐𝜐}⊤[𝐊]⊤[𝐊]{𝜐𝜐𝜐} (3)
such that

{𝜐𝜐𝜐}meas = argmin
{𝜐𝜐𝜐}

(

Φ2
𝑐 ({𝜐𝜐𝜐}) +𝑤𝑚Φ2

𝑚({𝜕𝜐𝜐𝜐})
) (4)

where {𝜕𝜐𝜐𝜐} denotes the column vector of incremental nodal
displacements from one analysis to the next, [𝐊] the rect-
angular stiffness matrix associated with bulk and free sur-
face nodes, 𝐼0 the volume in the reference configuration,
𝐼𝑡 the volume in the deformed configuration, and ROI the
selected region of interest. The regularization weight 𝑤𝑚is proportional to the regularization length 𝓁𝑚 raised to the
power 4 (Taillandier-Thomas, Roux, Morgeneyer and Hild,
2014). It is worth mentioning that since regularization was
performed at the mesoscale, the stiffness matrix is associated
with a standard (i.e., Cauchy) continuum formulation.

Figure 14(a) shows the change of the root mean square
(RMS) gray level residualΦ𝑐 as a function of the equilibrium
gap Φ𝑚 for five different regularization lengths. In addition
to the four acquisitions under different deflections, a fifth
result was added, which corresponds to that of the uncer-
tainty quantification for which a second scan was acquired
in the reference configuration. This first case always led to
the lowest gray level residuals. The fact that the gray level
residuals remained rather close to these minimum levels
when the sample was deformed is an indication that the reg-
istrations were successful. When the regularization length
was increased, the equilibrium gap Φ𝑚 decreased as more
weight was put on the penalty term. Conversely, the gray
level residuals increased as the sample was more deformed
for large regularization lengths. This trend indicates that the
regularization was too strong for the largest regularization
lengths (i.e., Hencky elasticity was no longer sufficient to
globally account for the underlying behavior).

(a) (b)

Figure 14: (a) Equilibrium gap Φ𝑚 vs. gray level residual Φ𝑐 for
the five analyzed scans and for different regularization lengths
(expressed in voxels, 1 vx ≡ 0.1 mm). (b) Corresponding plot
for the last deformation step. The digitization of the registered
volumes was 8 bits

One of the criteria used to select the regularization
weight consists in looking for the maximum curvature
(i.e., L-curve criterion (Hansen, 2000)) in the previous
plot for a given deformation step (e.g., for the maximum
deflection, see Figure 14(b)). According to that criterion, the
regularization length 𝓁𝑚 = 25 vx provided the best balance
between Φ𝑐 and Φ𝑚. This result applied to all the considered
deflections and 𝓁𝑚 = 25 vx was therefore selected (Table 2).

Figure 15 shows the gray level residual fields at the end
of direct calculations for each loading step. The gray levels
were the lowest close to the middle section for each scan as
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it did not move much (because the middle support was mo-
tionless). Higher levels were observed at the two ends of the
pantograph because of very large displacements (Figures 16
and 17) making the calculations more difficult. The top and
bottom surface of the pantograph also concentrated higher
residual levels as there was corrugated cardboard (undulat-
ing polypropylene sheet commonly known as coroplast) on
the top and bottom parts of the sample to ensure smooth
contact between the pantograph and the supports. Overall,
the residuals remained sufficiently low for the DVC results
to be deemed trustworthy.

(a) (b)

(c) (d)

Figure 15: Gray level residuals for the different deformed
configurations. (a) 5 mm, (b) 10 mm, (c) 15 mm and (d)
20 mm deflections. The digitization of the registered volumes
was 8 bits

4. Analysis of the results
4.1. Displacement fields

Figure 16 shows the measured vertical displacement
fields on the corresponding deformed configurations. Their
overall levels were similar to those measured at the macroscale
(Figure 12). This observation shows that the macroscale
analysis provided good initial guesses for the global char-
acterization of the kinematics of the flexural test.

Figure 17 displays the measured longitudinal displace-
ment fields on the corresponding deformed configurations.
The displacements essentially characterize the section rota-
tions (as was already observed on the macroscale analyses,
see Figure 13), and their amplitudes increased linearly with
the deflection. Very large levels were observed, which could
be captured thanks to the various initialization steps that
were followed herein.

In Figure 18, the measured displacement fields along the
transverse direction are shown for the four deflections. Their
amplitudes were significantly lower than those observed for
the other two displacement components (Figure 16 and 17).

(a) (b)

(c) (d)

Figure 16: Displacement fields along the 𝑧 (i.e., vertical)
direction for the different deformed configurations. (a) 5 mm,
(b) 10 mm, (c) 15 mm and (d) 20 mm deflections. The
displacements are expressed in voxels (1 vx ≡ 0.1 mm)

(a) (b)

(c) (d)

Figure 17: Displacement fields along the 𝑥 (i.e., longitudinal)
direction for the different deformed configurations. (a) 5 mm,
(b) 10 mm, (c) 15 mm and (d) 20 mm deflections. The
displacements are expressed in voxels (1 vx ≡ 0.1 mm)

In some 3-point flexural tests (Maati, Tabourot, Bal-
land and Belaid, 2020), the emergence of Poisson effects
in one direction perpendicular to that of the prescribed
displacement were observed. This effect, which generally
occurs in bias-extension or bias-compression tests on pan-
tographic metamaterials as studied in this work was not
detected experimentally or was almost absent, as shown in
Figures 16-18. As pointed out previously, a major role in
the mechanics of pantographic metamaterials was played by
the hinges connecting the fiber layers. The emergence of the

M. Valmalle, B. Smaniotto, M. Spagnuolo, A. Ciallella, F. Hild: Preprint submitted to Elsevier Page 8 of 18



Mesoscale DVC analyses and parameter calibration for pantographic block in flexure

(a) (b)

(c) (d)

Figure 18: Displacement fields along the 𝑦 (i.e., transverse)
direction for the different deformed configurations. (a) 5 mm,
(b) 10 mm, (c) 15 mm and (d) 20 mm deflections. The
displacements are expressed in voxels (1 vx ≡ 0.1 mm)

Poisson’s effect is related to the aspect ratio of the cylinders
constituting the hinges. With slender hinges, as in the present
case, this effect was hindered. Instead, such effect would
be observed with hinges with a low aspect ratio. Further
investigations are needed to clarify these questions.
4.2. Strain fields

Von Mises and maximum principal strain fields are
shown in Figure 19. Both fields were equivalent in overall
distributions. There was one remarkable phenomenon that
was the opposite behavior of the two mutually orthogonal
families of beams. Near the outer supports, the family of
beams that was oriented toward the middle of the pantograph
concentrated most of the strains (and thus most of the
stresses). This observation is unusual for a standard flexural
test to have the highest strain levels near the outer supports
and not around the mid-section. Since the equivalent von
Mises strain was greater than 1% in some areas at the end
of the test, it was concluded that inelasticity had occurred
even though the load/displacement response was still linear
(Figure 5). This conclusion was confirmed by the fact that
when large regularization lengths were considered, higher
RMS gray level residuals were observed (Figure 14).

To further investigate this phenomenon, the maximum
principal strain field is shown separately for the two families
of beams in Figure 20. Apart from the first loading step, the
strain distribution was no longer symmetric with respect to
the mid-section plane. The deformation concentrated in the
beams oriented toward the central section and located at both
ends of the metamaterial.
4.3. Hinge kinematics

The analysis now focuses on the 1,935 hinges. The
first set of results is related to the deformation mechanism

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 19: Von Mises equivalent strain (left) and maximum
principal strain (right) fields for the 4 different deformed
configurations. (a,b) 5 mm, (c,d) 10 mm, (e,f) 15 mm and
(g,h) 20 mm deflections

that occurs in flexure of such metamaterials. The Gaussian
curvature of a surface at a given point is the product of
the principal curvatures 𝜅1 and 𝜅2. Monoclastic surfaces
are characterized by flexure occurring in only one direction
(i.e., zero Gaussian curvature). Synclastic surfaces have
principal curvatures with the same sign (i.e., positive Gaus-
sian curvature). Conversely, anticlastic surfaces have princi-
pal curvatures with opposite signs (i.e., negative Gaussian
curvature). In the present case, the deformed (upper) surface
defined by the center of gravity (𝑥, 𝑦) of each hinge was ana-
lyzed when computing 𝑢𝑧(𝑥, 𝑦) once the rigid body motions
were subtracted. Figure 21 shows the corresponding maps
for the four deflection steps. The overall shape remained
the same; only the amplitude increased with the applied
displacement of the supports.
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(a)

(b)

(c)

(d)

Figure 20: Maximum principal strain fields shown for the 4
different deformed configurations on the whole mesh (left),
first family of beams (center) and second family of beams
(right). (a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 20 mm
deflections

(a) (b)

(c) (d)

Figure 21: Vertical displacement fields 𝑢𝑧 of each hinge center
of gravity (of the upper row of the pantographic block) once
the rigid body motions were subtracted. (a) 5 mm, (b) 10 mm,
(c) 15 mm and (d) 20 mm deflections. The displacements are
expressed in voxels (1 vx ≡ 0.1 mm)

From the previous results, it was easy to conclude di-
rectly on the deformation mode of the studied surface since it
was fully dominated by the flexural mode in the longitudinal
direction. Consequently, a parabolic fit was performed and
the curvatures were assessed at the center of the consid-
ered surface (Figure 22). The major principal curvature
was linearly related to the prescribed deflection. This is the
signature of a flexural test. The minor curvature amplitude
was significantly lower than that of the major curvature
(as expected from Figure 21). Yet, it was negative, which
indicated that the deformation mode was slightly anticlastic
(i.e., negative Gaussian curvature). Interestingly, for the
largest deflection step, the Gaussian curvature decreased
significantly, which further indicated that nonlinear effects
may have occurred.

Figure 22: Principal curvatures 𝜅1 and 𝜅2, corresponding mean
and Gaussian curvatures for the center of the upper surface of
the pantographic block (Figure 21)

The second set of results is related to the displacement
and rotation jumps for each hinge. As in the uncertainty
quantification (Figure 11), the axial and transverse compo-
nents of the rotation and displacement jumps are reported.
Let us note that the amplitudes were at least one order of
magnitude higher than their standard uncertainties. Conse-
quently, their levels were deemed trustworthy. Figure 23(a)
shows the axial displacement jump for each hinge for the last
loading step. The hinges in the central part of the sample
underwent rather modest displacement jumps (i.e., less than
0.5 vx in absolute value). Conversely, higher absolute levels
were observed closer to the external supports.

The tangential displacement jumps were higher in the
central part of the sample in comparison to their levels
closer to the external supports (Figure23(b)). Similar trends
were observed for the axial rotation jumps (Figure23(c)).
However, their sign was alternating from one layer to the
next. This was due to the fact that the two families of
beams did not deform in a similar way (Figure 20). For
the transverse rotation jumps (Figure23(d)), they were also
alternating from one layer to the next. Their amplitudes
remained smaller than those of the axial rotation jumps.
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(a) (b)

(c) (d)

Figure 23: Axial (a) and transverse (b) displacement jumps
(expressed in voxels, 1 vx ≡ 0.1 mm) for each hinge. Corre-
sponding axial (c) and transverse (d) rotation jumps (expressed
in rad) for each hinge. The results are shown for the last
deformed configuration

The distribution of the four previous quantities are dis-
played in Figure 24 in terms of cumulative plots for the
four deformation steps. For all four jumps, the larger the
deflection, the wider their distributions. For the axial dis-
placement jumps (Figure 24(a)), they were mostly negative
(i.e., shortening of the hinges). The amplitude of the trans-
verse displacement jumps (Figure 24(b)) was significantly
higher than that in the axial direction for all deflections.
The distribution of axial rotation jumps (Figure 24(c)) was
virtually symmetric with respect to the 0 rad angle, which
was due to the different deformation of the two families of
beams (Figure 20). The amplitudes of the transverse rotation
jumps (Figure 24(d)) were lower than those of the axial
rotation jumps for any loading step. These observations show
that the two dominant deformation modes of the hinges were
shear and torsion. Conversely, axial contraction and flexure
remained less active.

Very similar results were obtained on the lower row of
hinges. For the sake of conciseness, they are not further dis-
cussed. Last, given the fact that the transverse displacements
remained very small (Figure 18) in comparison to their
vertical and horizontal components (Figures 16 and 17),
the two lateral surfaces of the pantographic block did not
experience significant deformations.

(a) (b)

(c) (d)

Figure 24: Cumulative plots of axial (a) and transverse (b)
displacement jumps for the four applied deflections. The
displacements are expressed in voxels (1 vx ≡ 0.1 mm).
Corresponding plots for the axial (c) and transverse (d)
rotation jumps

5. Prediction of deformation patterns in
3-point flexure of pantographic blocks with
elastic hinges

5.1. Modeling overview
The design of pantographic sheets involved two mutually

orthogonal fiber arrays that were mechanically interacting
thanks to continuously distributed and equidistant cylin-
drical joints. Their mechanical and geometric properties
greatly influence the overall response of pantographic sheets.
When these joints are very stiff the resulting behavior after
homogenization is governed by an orthotropic first gradient
strain energy (Boutin et al., 2017). Conversely, when they
have small torsional rigidity, suitably rescaled with respect
to the inter-joint distance, the response corresponds to that
of a second gradient medium (dell’Isola, Seppecher, Alib-
ert, Lekszycki, Grygoruk, Pawlikowski, Steigmann, Giorgio,
Andreaus, Turco, Gołaszewski et al., 2019a; dell’Isola et al.,
2019b). Elastic joints induce a microdeformation mecha-
nism that allows for relative rotations of the fibers. In the
limit case when they behave as perfect hinges, the flexural
energy of the pantographic architecture becomes dominant
and at the macroscale second gradient effects are observed.

Assuming that the cylindrical hinges were small and
stiff enough, the two families of fibers can be described in
terms of the same macrodisplacement field, as the hinges
exert elastic or any constraint on their relative rotations. In
macroscopic descriptions, the joints control the shear defor-
mations and their torsional energy is equal to the macros-
hear energy. It was proven that small variations of their
mechanical and geometric properties caused large changes in
macromechanical properties, including a transition from first
to second gradient macrostrain energies (Cuomo, dell’Isola,
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Greco and Rizzi, 2017). Therefore, the models to be used
in the description of pantographic sheets must be associated
with second gradient 2D continua (dell’Isola et al., 2016).
5.2. Pantographic blocks

The mechanical properties of the interconnecting hinges
were designed to reduce all mechanical couplings that may
cause deformations of cross-sections of the pantographic
block. This choice was made in order to allow for the use
of already available 2D second gradient continuum models.
The three-dimensionality of the block was simply accounted
for by using a suitable increase of 2D pantographic sheet
stiffnesses (i.e., strain energy multiplied by the number of
pantographic sheets composing the block).

In 3-point flexure, as shown above, fiber flexure became
dominant at the mesolevel. As a consequence, in the macro-
scopic mechanical response, the second gradient strain en-
ergy dominates. The only surviving first gradient energies
are those relative to shear deformations, which are tuned
by suitably choosing the geometric properties of cylindrical
hinges (Spagnuolo et al., 2019; Giorgio, 2016).
5.3. Pantographic sheet model

In the previous section, it was observed that, notwith-
standing the fact that a 3D pantographic block was stud-
ied, a 2D model may be adopted because all deformations
were essentially planar. The fact that multiple pantographic
sheets were printed will be taken into account by suitably
correcting the constitutive parameters. Let us consider a
reference configuration of a pantographic lattice (Figure 25).
A 2D second gradient continuum model for properly de-
scribing the pantographic sheet was introduced by dell’Isola
et al. (dell’Isola et al., 2016) and generalized by Spagnuolo et
al. (Spagnuolo, Barcz, Pfaff, dell’Isola and Franciosi, 2017).
In the following, the original model (dell’Isola et al., 2016)
was selected for the sake of simplicity. Let (𝐃1,𝐃2) be an
orthogonal basis for the reference configuration, where both
vectors are aligned with the fiber directions (i.e., orthogonal
in the reference configuration).

L

ℓ Ω

D 2

D
1

Figure 25: Reference configuration of a pantographic block

A 2D continuum is considered whose reference shape is
given by a rectangular domain Ω = [0,L] × [0,𝓁] ⊂ ℝ2,
where L and 𝓁 are identified as the lengths of the sides of
the continuum medium (Figure 25) and L = 3𝓁. The current
shape of the rectangle is mathematically described by a

regular placement function 𝝌 ∶ Ω → ℝ2. In Ref. (dell’Isola
et al., 2016), it was shown how, by means of asymptotic
homogenization (dell’Isola et al., 2016) and assuming that
𝝌(⋅) is at least twice differentiable, the macroscopic strain
energy for the pantographic metamaterial is obtained

 (𝝌(⋅)) = ∫Ω

∑

𝛼

𝐾𝑒
2
(||𝑭D𝛼|| − 1)2 𝑑Ω

+ ∫Ω

∑

𝛼

𝐾𝑏
2

[

∇∇∇𝑭 |D𝛼 ⊗ D𝛼 ⋅∇∇∇𝑭 |D𝛼 ⊗ D𝛼

||𝑭D𝛼||
2

−
(

𝑭D𝛼
||𝑭D𝛼||

⋅
∇∇∇𝑭 |D𝛼 ⊗ D𝛼

||𝑭D𝛼||

)2
]

𝑑Ω (5)

where 𝑭 denotes the deformation gradient ∇∇∇𝝌 , and
(

∇∇∇𝑭 |D𝛼 ⊗ D𝛼
)𝛽 = 𝐹 𝛽

𝛼,𝛼 = 𝜒𝛽
,𝛼𝛼 , with 𝛼, 𝛽 = {1, 2}. The

parameters 𝐾𝑒 and 𝐾𝑏 represent, respectively, the elongation
and bending stiffnesses. The first integral in Equation (5) is
related to fiber elongation while the second one refers to fiber
flexure. It is worth noting that the flexural energy is written
in terms of the gradient of the deformation tensor∇∇∇𝑭 , which
corresponds to the second gradient of the placement function
∇∇∇2𝝌 . This observation is consistent with the fact that the
second gradient term is representative of fiber flexure.

If microstructural joints cannot be considered as per-
fect hinges, as in the present study, one has to deal with
their deformation adding further terms to the strain energy
(Equation (5)). The hinges are modeled as elastic cylinders.
Consequently, one should take into account their torsion and
shear deformations. These two deformation mechanisms are
sometimes negligible. In the present case, the diameter of
the pivots was 0.90 mm and their height 2 mm. They were
considered slender and their microshear should be taken into
account. Yet, the experiment was designed to minimize all
deformations except fiber flexure. For this reason, micros-
hear was neglected.

A simple form for the microtorsion (corresponding to
macroshear) energy term was assumed to depend on the
angle between the interconnected fibers from the pivot raised
to the power 𝛾 (dell’Isola et al., 2016). The latter may be
obtained from the fit of experimental data, and may depend
on the type of material with which the pantographic structure
was additively manufactured. The proposed form for the
shear energy reads
𝔘𝑠(𝝌(⋅))=

=∫Ω
𝐾𝑠
2

|

|

|

|

|

cos−1
(

𝑭D1
||𝑭D1||

⋅
𝑭D2

||𝑭D2||

)

− 𝜋
2

|

|

|

|

|

𝛾

𝑑Ω (6)

where 𝐾𝑠 is the macro-shear stiffness, which is related to the
torsional stiffness of the cylinders modeling the connecting
joints. The term cos−1

(

𝑭D1
||𝑭D1||

⋅ 𝑭D2
||𝑭D2||

)

− 𝜋
2 represents the

angular variation between two fibers in correspondence with
a chosen pivot. For the numerical simulations presented
hereafter, it was assumed that 𝛾 = 2.

HF2MS: info on Comsol, model implementation, etc.
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5.4. Validation of modeling hypotheses
The main assumption of the bidimensional model de-

scribed in the previous subsection concerned the flatness
of transverse cross-sections. For a standard isotropic 3D
continuum, Saint Venant solutions prove the existence of
so-called anticlastic deformations of cross-sections (Bellow,
Ford and Kennedy, 1965). The pantographic blocks were
designed in such a way that neither anticlastic nor any other
deformation would occur for transverse cross-sections. Such
hypothesis is in accordance with the DVC measurements
shown in Figures 21-22. It was concluded that the defor-
mation of the transverse surface of the pantographic block
was weakly anticlastic. Figure 22 reports that curvature 𝜅2,
which would vanish for synclastic deformation, was slightly
negative, thereby producing a Gaussian curvature that was
negative as well. This negative value was higher in modulus
for the last deflection step, showing that nonlinear effects
started playing a more important role. Yet, the curvature
𝜅2 had a very low value and that this non-zero value was
not due to out-of-plane deformations but to microshear of
connecting hinges, which allowed for relative sliding at fiber
levels that was at the basis of anticlastic deformation. It has
to be noted that this effect may be considered negligible in
the case under examination and for this reason the 2D model
employed for numerical simulations is still valid.

A further validation of the theoretical assumptions is
obtained by comparing the displacement fields displayed in
Figures 16-17 with the transverse displacement in Figure 18,
which was considerably lower than the other two. This result
means that cross-sections did not deform much, thus the 2D
model may be adopted in the description of the pantographic
block.
5.5. Comparison between predicted and measured

deformed shapes
Via numerical simulations based on the 2D continuum

model described in Equations (5-6), the deformed shapes
of a bidimensional continuum corresponding to the pan-
tographic block were computed for the designed 3-point
flexural test.

The numerical simulations were carried out using the
commercial finite element code Comsol Multiphysics. This
software allows a mesh to be produced in an automated
manner. The simulations were conducted by implementing
the equations underlying the model in weak form. Specif-
ically, the Weak Form module was used, which allows for
the minimization of the strain energy written in terms of
displacement field variables and their derivatives. The finite
elements used for the discretization are of the 5th order
(Argyris type), while quadratic Lagrange elements were
used to prescribe boundary conditions.

The constitutive parameters were calibrated using the
force measurements and taking into account (i) the total
number of the pantographic sheets, (ii) the fact that 3D
printed materials may have mechanical properties different

from the bulk material. The calibrated values for the consti-
tutive parameters 𝐾𝑒, 𝐾𝑏 and 𝐾𝑠 are as follows

𝐾1
𝑒 = 𝐾2

𝑒 = 6.9 kN/m, 𝐾1
𝑏 = 𝐾2

𝑏 = 4.7 Nmm,
𝐾𝑠 = 360 N/m. (7)

Figure 26 shows a good agreement between the experimental
measurements and the predicted reaction forces once the
model was calibrated.

(a)

Figure 26: Comparison between measured and numerically
computed reaction forces vs. prescribed deflection

The calibration of the parameters was performed in a
qualitative manner. Of course, better parameter identifica-
tion systems can be implemented and in the case of discrete
models this has been done. In the case of the continuum 2D
model, the complexity of its implementation implies consid-
erable effort and the creation of a code external to Comsol
(e.g. in Matlab) to calibrate the parameters in order to ob-
tain a force-displacement curve in accurate agreement with
the experimental one. However, it has been observed that
calibrating the parameters only on the force-displacement
curve subsequently results in deformed shapes that do not
coincide with the experimental ones. This suggests that the
quantitative calibration technique must be specially designed
and must take multiple factors into account.

In Figures 27-28, the predicted vertical and longitudinal
displacement fields are shown. These fields can be com-
pared with those displayed in Figures 16-17, which were
measured via DVC. They are in good qualitative agreement.
It was concluded that the 2D model was consistent with
macroscopic data (i.e., force-deflection curve) and with ex-
perimentally measured displacement fields. The adopted 2D
model cannot be used for getting predictions analogous to
the results of Figure 18, where transverse displacement fields
are displayed. For the latter one, the amplitudes were low in
comparison to the other two components.

Figures 29-31 show three strain components, namely,
𝜖𝑥𝑥, 𝜖𝑥𝑧 and 𝜖𝑧𝑧, where directions 𝑥 and 𝑧 were the same
as in the DVC frame. Figures 29-30 give a remarkable
feature typical of pantographic metamaterials. Due to their
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(a) (b)

(c) (d)

Figure 27: Computed transverse displacement fields on de-
formed shapes of the pantographic block for different pre-
scribed deflections: (a) 5 mm, (b) 10 mm, (c) 15 mm and
(d) 20mm. The displacements are expressed in mm.

(a) (b)

(c) (d)

Figure 28: Computed longitudinal displacement fields on
the deformed shapes of the pantographic block for different
prescribed deflections: (a) 5 mm, (b) 10 mm, (c) 15 mm and
(d) 20 mm. The displacements are expressed in mm.

peculiar geometry, the 𝜖𝑥𝑥 and 𝜖𝑧𝑧 fields are strongly related.
Specifically, an increase in one corresponds to an equal
decrease in the other one. Considering the elementary cell
of the architecture,i.e., a lozenge whose vertices are replaced
by hinges, and assuming approximately that only relative
rigid rotations were possible between the four hinged sides,
then the diagonals of the lozenge were constrained to vary
accordingly. The assumption of rigid rotations may seem
restrictive. The mechanics of pantographic metamaterial is

much more complex indeed. However, such approximate de-
scription allows Figures 29-30 to be interpreted correctly. On
close scrutiny, Figure 29 turns out to be the exact opposite
of Figure 30.

(a) (b)

(c) (d)

Figure 29: Computed 𝜖𝑥𝑥 strain fields on deformed shapes
of the pantographic block for different prescribed deflections.
(a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 20 mm

(a) (b)

(c) (d)

Figure 30: Computed 𝜖𝑧𝑧 strain fields on deformed shapes of
the pantographic block for different prescribed displacement
values: (a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 20 mm

The observation of Figure 31 shows that the shear strain
𝜖𝑥𝑧 was lower in magnitude than the other two components.
It was thus concluded that the shear energy played a minor
role in this type of test. This conclusion was also drawn
by plotting the relative angle change between the two fiber
families (Figure 32). As stated in Equation (6), the shear
energy was written in terms of angular change.
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(a) (b)

(c) (d)

Figure 31: Computed 𝜖𝑥𝑧 strain field on deformed shapes of
the pantographic block for different prescribed displacement
values: (a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 20 mm

At the mesostructural level, the previous observation
corresponds to the fact that the magnitude of joint torsion
remained low. In Figure 32, the rotation fields (correspond-
ing to relative rotation of fibers at the mesostructural level)
are shown and only two portions of the specimen exhibited
non negligible values. The relative angles between the two
fiber families remained almost everywhere equal to 90°.
Two portions of the mesostructure, instead, exhibited non-
negligible changes of angles. Specifically, there are two
portions where changes in the angles are observed. These
portions are located in correspondence of the vertical sym-
metry axis, passing through the support. Due to the fact that
the concavity induced by flexure was oriented upward, then
the angle between the top fibers increased, while the angle
between the bottom fibers decreased. These zones were very
localized and a large part of the fibers remained orthog-
onal even in the deformed configuration. For this reason,
the mechanical behavior of the pantographic metamaterial
subjected to 3-point flexure was dominated by the flexure of
fibers.

Figure 32: Computed relative angles (in degrees) between the
two fiber families for two deflections. (up) 10mm, (down)
20mm.

6. Conclusion
Very few studies were conducted to quantify the de-

formation of pantographic metamaterials in flexure. In the
present case, an in situ flexural test was performed. It allowed
the metamaterial mesostructure to be imaged for different
applied deflections, and kinematic details to be quantified
(in particular at the beam and hinge levels) thanks to digital
volume correlation (DVC). Such analyses were made pos-
sible by using FE-based DVC for which a sub-millimeter
mesh, originally constructed on the nominal twin, was fitted
to the underlying mesostructure thanks to a backtracking
procedure. Given the large displacement amplitudes expe-
rienced by the metamaterial, a multi-step initialization was
implemented in order to allow mesoscale DVC analyses
to converge even under such challenging situation. Since
virtually no contrast existed in the solid phase, mechanical
regularization was utilized. In the present case, Hencky
elasticity was assumed to penalize the DVC cost function
with the equilibrium gap cost function. An L-curve criterion
was followed to choose the regularization length, which led
to the best balance between both cost functions. The analysis
of the correlation residual fields showed that convergence
was achieved with the selected parameters.

The analysis of the strain fields for the two families of
beams showed that they did not deform the same way during
the test. Moreover, very high levels were observed close
to the external supports, which was a signature of higher
order gradient continua. At the hinge level, the displacement
and rotation jumps were assessed. It was concluded that the
two dominant deformation mechanisms were torsion and
shear in comparison to axial contraction and flexure. They
led to weakly anticlastic deformations at the macroscale.
As evidenced in the present study, a topic of interest for
further research is related to the analysis of clasticity of
pantographic sheets and blocks. Due to the fact that in this
type of metamaterial large deformations and large rotations
occur, one should refer to nonlinear shell theories for cor-
rectly modeling the mechanical problem (Eremeyev and
Zubov, 2007; Eremeyev and Lebedev, 2011; Eremeyev and
Altenbach, 2017).

M. Valmalle, B. Smaniotto, M. Spagnuolo, A. Ciallella, F. Hild: Preprint submitted to Elsevier Page 15 of 18



Mesoscale DVC analyses and parameter calibration for pantographic block in flexure

The interest of studying pantographic metamaterials lies
in the fact that it requires second gradient homogenized
continuum models for its description. It was shown that
microstructures call for higher gradient theories in contin-
uum descriptions (Germain, 1973, 2020). Specifically, a 2D
planar model for pantographic sheets (dell’Isola et al., 2016)
was employed herein for performing numerical simulations
validated by experimental measurements. This was possible
for a pantographic block due to the fact that the deforma-
tions measured via DVC analyses were essentially planar.
The numerical simulations were in good agreement with
the experiment in terms of reaction force vs. prescribed
displacement. Numerical evaluations of displacement fields
were shown to be consistent with DVC results.

The study presented herein calls for further experiments.
It is necessary to check the emergence of Poisson effects
in relation to the aspect ratio of the hinges (i.e., clasticity).
Moreover, it may be interesting to study 3-point flexural
tests in the transverse direction with respect to that adopted
herein. Significantly higher Poisson effects are expected to
occur.
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Appendix: DVC hardware and analyses
parameters
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Table 1
DVC hardware parameters

Tomograph North Star Imaging X50+
X-ray source XRayWorX XWT-240-CT
Target / Anode W (reflection mode)
Filter none
Voltage 120 kV
Current 170 µA
Focal spot size 5 µm
Tube to detector 771.4 mm
Tube to object 514.1 mm
Detector Dexela 2923
Definition 1536 × 1944 pixels (2 × 2 binning)
Number of projections 1500
Angular amplitude 360°
Frame average 5 per projection
Frame rate 5 fps
Acquisition duration 44 min 14 s
Reconstruction algorithm filtered back-projection
Gray Levels amplitude 16 bits
Volume size 620 × 1850 × 880 voxels (after crop)
Field of view 62.0 × 185.0 × 88.0 mm3 (after crop)
Image scale 100 µm/voxel

Table 2
DVC analysis parameters

DIC software Correli 3.0 (Leclerc et al., 2015)
Image filtering none
Element length (mean) 6 vx (or 0.6 mm)
Shape functions linear (T4 elements (Hild et al., 2016))
Mesh see Figure 9
Matching criterion penalized sum of squared differences
Regularization length 𝓁𝑚 = 25 vx (or 2.5 mm)
Interpolant cubic
Displacement noise floor see Figure 10(a)
Strain noise floor see Figure 10(b)

M. Valmalle, B. Smaniotto, M. Spagnuolo, A. Ciallella, F. Hild: Preprint submitted to Elsevier Page 18 of 18


