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ESTIMATION OF THE SMOOTHING PARAMETERS IN
THE HPMV FILTER

BY

A. DERMOUNE, B. DJEHICHE and N. RAHMANIA

Abstract. We suggest an optimality criterion, for choosing the best smoothing
parameters for an extension of the so-called Hodrick-Prescott Multivariate (HPMV) filter.
We show that this criterion admits a whole set of optimal smoothing parameters, to
which belong the widely used noise-to-signal ratios. We also propose explicit consistent
estimators of these noise-to-signal ratios, which in turn yield a new performant method
to estimate the output gap.
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1. Introduction

To estimate unobserved economic variables such as the potential output,
the non-accelerating inflation rate of unemployment (NAIRU), and the real
interest rate, three approaches are usually advocated. These include struc-
tural methods which rely on economic modeling, filtering methods which
apply statistical devices, and methods which combine both and to which be-
longs the so-called Hodrick-Prescott Multivariate (HPMV) filter, suggested
in Laxton and Tetlow [11]. The HPMV filter is the standard univariate
Hodrick-Prescott (HP) filter (Leser [12]) augmented with relevant eco-
nomic information, such that the Phillips curve, Okun’s law, production
function (see for example Proietti et al. [13]) and other indicators such
as the output capacity utilization (see Bell [2], Laxton and Tetlow [11],
Richardson et al. [14], Cotis et al. [6], Boone [4], Chagny and
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Lemoine [5], Benes and N’Diaye [3], Trimbur [16], and the references
therein).

The univariate HP filter captures the output processes, without taking
into account any structure or dynamics of other important macroeconomic
variables such as inflation rate. Moreover, it suffers from a number of
deficiencies such as end-points uncertainty in estimating the output gap.
Indeed, since trends are estimated as two-sided moving averages of the
data, with future outcomes used to condition the current value, at the end
of the sample, where these future values are not available, the filter does not
have the benefit of hindsight to infer the current trend value. This means
that the precision of the trend estimates deteriorates markedely right when
those estimates are needed most to prepare a forecast or make judgments
as to appropriate settings of the policy instrument (see [4] and [13] for more
details). The main idea behind the HPMV filter is thus to be able to correct
this deficiency by including more information on the majore macroeconomic
variables than just the available data of the variable of interest.

More specifically, the HPMV filter seeks to estimate the unobserved
variable (yt, t = 1, . . . , T ) which minimizes

(1.1)

T∑
t=1

(xt − yt)
2 + α1

T−2∑
t=1

(yt+2 − 2yt+1 + yt)
2 + α2ξ

2
t

for appropriately chosen positive parameters α1 and α2. This is a basic HP
filter augmented with the residuals ξ from the following estimated economic
relationship (the Phillips Curve): x∗t = βyt + dXt+ ξt, where, x

∗
t is another

explanatory variable that can be explained by the unobserved variable y,
and X is an exogenous variable affected by the parameter d.

There are two different approaches to the question of choosing the
smoothing parameters α1 and α2. The first approach is to consider the
free choice of the smoothing parameters as an advantage. The features of
the data can be explored by varying them (seeRichardson et al. [14] and
Trimbur [16] for instance). The other view often used by macreconomists
suggests that the choice of α1 and α2 should be on the basis of priors about
the relative variance of each of the terms in (1.1); the higher the variance
of the term the lower weight it receives in the minimization process (see
Laxton-Tetlow [11] and Boone [4]).

The main result of this paper is an optimality criterion for selecting the
best smoothing parameters and construct consistent estimators of them.
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In turn, this will be the basis for improving estimation methods of the
potential output gap which is a powerful concept in the models of many
inflation targeting central banks, which rely on this ”unobserved measure”
in its policy making.

The optimal smoothing parameters for the HPMV filter are pairs of pos-
itive parameters (α1, α2) which minimize the difference (using the Euclidean
norm) between ŷ((α1, α2), (x, z)), that solves (1.1), and E[ y|x],

α∗ = arg min
(α1,α2)

∥E[ y| (x, z)]− ŷ((α1, α2), (x, z))∥2,

where, z = x∗ − dX.
The organisation of this paper is as follows. Section 2 describes the

HPMV filter, and suggests an optimality criterion for choosing the best
smoothing parameters, where we show that there is a whole set of such
optimal solutions. We also show that the noise-to-signal ratios used in the
macroeconomic literature are optimal as well. In Section 3, we apply the
recent results obtained in Dermoune et al. [7] and [8] to find consistent
estimators of these noise-to-signal ratios. Finally, in Section 4 we present
calibration and simulation results that highlight the performance of these
estimators. We apply our estimators to analyse the performance of the
potential output of the US GDP using US inflation as explanatory variable.
The data sets correspond to the period 2002-2009. Compared with the
values of the smoothing parameters suggested in the classical HP filter and
the HPMV of Laxton-Tetlow [11], our results show higher performance
in estimating the potential output gap, notably at the end-points.

2. The Hodrick-Prescott Multivariate filter

As a general principle, a macroeconomic time series can be decomposed
into its seasonal variation, a ’business-cycle’ component , irregular short-
term movements, and its long-term trend (or potential output) component.
It is standard practice for economic series to be seasonally adjusted. The
univariate HP filter is then applied to the seasonally adjusted series to
obtaine cyclical residual, also called the potential output gap, which is an
estimate of the combined cyclical and irregular component of the series.

Let x = (x1, . . . , xT ) ∈ RT be a time series of observables. The HP filter
decomposes x into a nonstationary potential output y ∈ RT and a cyclical
component, the potential output gap (noise term) u ∈ RT :

(2.1) x = y + u.
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Given a smoothing parameter α > 0, this decomposition of x is obtained
by minimizing the weighted sum of squares

(2.2) ∥x− y∥2 + α∥D2y∥2

with respect to y, where, for a ∈ RT , ∥a∥2 =
∑T

i=1 a
2
i . Here, D2y is the

potential output disturbance obtained by acting the second order forward
shift operator D2 on y = (y1, y2, . . . , yT ): D2yt := (yt+2 − yt+1) − (yt+1 −
yt), t = 1, 2, . . . , T − 2, or, equivalently, D2yt := 2(yt+2+yt

2 − yt+1), t =
1, 2, . . . , T − 2, measuring the deviation between the value of the output at
t+ 1, yt+1 and the linear interpolation between yt and yt+2.

In vector form,

(2.3) Py(t) = D2yt, t = 1, . . . , T − 2,

where, the shift operator P is the following (T − 2)× T -matrix

(2.4) P :=


1 −2 1 . . . . . . 0
0 1 −2 1 . . . 0

. . . . . . . . . . . .
0 . . . . . . 1 −2 1

 .

The first term in (2.2) measures a goodness-of-fit by minimizing the devia-
tion between the potential output yt and the observation xt and the second
term is a measure of the degree-of-smoothness which penalizes decelera-
tions in growth rate of the trend component, by minimizing the deviation
between the value yt+1 and the linear interpolation between yt and yt+2.

The Hodrick-Prescott Multivariate filter (HPMV in short) seeks to esti-
mate the unobserved variable y as a solution to the following minimization
problem

(2.5) argmin
y

(||x− y||2 + α1||Py||2 + α2||ξ||2),

given the following dynamics:

(2.6)


x = y + u,

z := x∗ − dX = βy + ξ,

Py = v,

where, x∗ is another explanantory variable and X is an exogenous variable
affected by the parameter d. Moreover, the noise term u and the signal terms
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v and ξ are independent Gaussian vectors with mean zero and respective
covariance matrices σ2

uIT , σ
2
vIT−2 and σ2

ξIT , where, IT and IT−2 denote the
T × T and (T − 2)× (T − 2) identity matrices, respectively:

(2.7)

u
ξ
v

 ∼ N (0,Σ),

with covariance matrix

Σ :=

σ2
uIT 0 0
0 σ2

ξIT 0

0 0 σ2
vIT−2

 .

Since P is of rank T−2, the signal v = Py does not determine a unique y but
rather yields an orthogonal parameterization given by the set of solutions
y := {P ′(PP ′)−1v + Zγ; γ ∈ R2}, where, the T × 2-matrix Z satisfies

(2.8) PZ = 0, Z ′Z = I2.

In view of (2.6), the time series (x, z) can be represented in terms of (u, v, ξ)
as

(2.9)

{
x = u+ P ′(PP ′)−1v + Zγ,

z = ξ + βP ′(PP ′)−1v + βZγ,

for some γ ∈ R2.
Hence,

(2.10)

x
z
y

 ∼ N

 Z
βZ
Z

 γ,Σxzy

 ,

with covariance matrix

Σxzy =

σ2
uIT + σ2

vQ βσ2
vQ σ2

vQ
βσ2

vQ σ2
ξIT + β2σ2

vQ βσ2
vQ

σ2
vQ βσ2

vQ σ2
vQ

 ,

where, Q := P ′(PP ′)−1(PP ′)−1P is a symmetric matrix that together with
P and Z satisfies the following properties.

(2.11) P ′(PP ′)−1P + ZZ ′ = IT , QZ = 0, Z ′Z = IT ,
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and, for any λ > 0,

(2.12) Q[λIT +Q]−1 = [λIT +Q]−1Q.

This yields that

(2.13) Q[λIT +Q]−1Z = 0.

Moreover, the following identity holds.

(2.14) (IT + λP ′P )−1 = ZZ ′ +Q[λIT +Q]−1.

Since the matrix
(
(1 + α2β

2)IT + α1P
′P
)
is positive definite, the unique

solution ŷ := y((α1, α2, β), (x, z)) to Problem (2.5) is ŷ = a(IT +λP ′P )−1w,
or, using (2.14),

(2.15) ŷ = aZZ ′w + aQ[bIT +Q]−1w,

where, we have set a := 1/(1+α2β
2), b := α1/(1+α2β

2) and w := x+α2βz.

Equation (2.15) defines the descriptive filter that associates a trend y to
the time series (x, z) through w, depending on the smoothing parameters
α1, α2, the disturbance operator P and the parameter β.

2.1. A criterion to find the best smoothing parameters

Following Schlicht (Schlicht [15], Theorem 1), a way to estimate the
smoothing parameters α1 and α2 is to let the optimal solution ŷ in (2.15)
be the best predictor of any trend y given the time series (x, z), i.e.

(2.16) ŷ ≈ E[ y| (x, z)].

In other words, the conditional expectation E[ y| (x, z)] which is usually not
smooth, is ’equal’ to the smooth trend ŷ.

In the macroeconomic literature dealing with the HPMV filter such as
Laxton and Tetlow [11], Richardson et al. [14], Boone [4] and
Chagny and Lemoine [5], it is suggested that the best smoothing param-
eters are the noise-to-signal ratios αe

1 = σ2
u/σ

2
v and αe

2 = σ2
u/σ

2
ξ . Applying

Schlicht’s criterion to this filter we will show in Proposition 2.1 below, that
there is a whole family of best smoothing parameters to which belong αe

1

and αe
2.
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Since ŷ is a (linear) function of w, adapting Schlicht’s criterion, the best
smoothing parameters of the HPMV filter, given a realization of (x, z), are
those positive parameters α∗

1 and α∗
2 for which

(2.17) ŷ − Zγ̂ = E[ y|w]− Zγ,

where, γ̂ is the maximum likelihood estimator of γ which we determine
using observations from w = x+ α2βz:

γ̂ = argmin
γ

(w − E(w))′Σ−1
w (w − E(w))

Since, E(w) = Zγ/a and Σw = σ2
v

a2
[cIT +Q], we get,

(2.18) γ̂ = aZ ′w.

In view of (2.10), we have

(2.19) E[ y|w] = Zγ + aQ[cIT +Q]−1(w − Zγ),

where, c :=
σ2
u+α2

2β
2σ2

ξ

(1+α2β2)2σ2
v
. From (2.15) and (2.19) we get

ŷ − E[ y|w] = Z(aZ ′w − γ) + aQ{[bIT +Q]−1

− [cIT +Q]−1(w − Zγ)}.(2.20)

Hence, by Eq. (2.17), the best smoothing parameters are those positive

α∗
1 and α∗

2 for which b = c, which yields α∗
1 =

σ2
u+α∗2

2 β2σ2
ξ

(1+α∗
2β

2)σ2
v
, or, α∗

1/α
e
1 =

1 + α∗
2β

2 (α∗
2/α

e
2 − α∗

1/α
e
1) , where, α

e
1 = σ2

u/σ
2
v and αe

2 = σ2
u/σ

2
ξ .

Furthermore,

(2.21) ŷ∗ − E[ y|w] = Z(aZ ′w − γ),

where, ŷ∗ := y((α∗
1, α

∗
2), (x, z)).

We have proved the following proposition

Proposition 2.1. The best smoothing parameters of the HPMV filter
according to the criterion (2.17) are those positive parameters α∗

1 and α∗
2

for which

(2.22) α∗
1/α

e
1 = 1 + α∗

2β
2 (α∗

2/α
e
2 − α∗

1/α
e
1) ,

where, αe
1 = σ2

u/σ
2
v and αe

2 = σ2
u/σ

2
ξ .

In particular,
(1) α∗

1 = αe
1 if and only if α∗

2 = αe
2.

(2) If α∗
1/α

e
1 < 1, then necessarily α∗

2/α
e
2 < α∗

1/α
e
1.

(3) If α∗
1/α

e
1 > 1, then necessarily α∗

2/α
e
2 > α∗

1/α
e
1.
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2.2. Optimality of the best smoothing parameters

In the main result of this section, Theorem 2.2, we will show that the best
smoothing parameters α∗

1 and α∗
2 given in Proposition 2.1 minimize the gap

between the descriptive HPMV filter ŷ:=y((α1, α2), (x, z)) and the best pre-
dictor of the trend y given w, E[y|w], i.e. (α∗

1, α
∗
2) = arg minα1>0,α2>0∥ŷ −

E[y|w]∥, and give an explicit formula for the expected value of the optimal
quadratic gap. In particular, it follows that the noise-to-signal ratios αe

1

and αe
2 are optimal.

Theorem 2.2. We have

(2.23) (α∗
1, α

∗
2) = arg minα1>0,α2>0∥ŷ −E[ y|w]∥,

Moreover, the optimal gap ŷ∗ −E[ y|w] = Z(aZ ′w− γ) is a centered Gaus-
sian vector with covariance matrix cov (Z (aZ ′w − γ)) = ρZZ ′. where, ŷ∗ :=
y((α∗

1, α
∗
2), (x, z)) and ρ := (σ2

u + α∗2
2 β2σ2

ξ )/(1 + α∗
2β

2)2.

In particular, E[∥ŷ∗ − E[ y|x]∥2] = E[∥Z(γ − Z ′x)∥2] = ρ trace(ZZ ′).

Proof. Recall that, by (2.20), we have ŷ − E[ y|w] = Z(aZ ′w − γ) +
aQ{[bIT +Q]−1−[cIT +Q]−1}. Now, since Z ′Q = 0, we also have (Z(aZ ′w−
γ))′aQ{[bIT +Q]−1− [cIT +Q]−1} = 0. Hence, ∥ŷ−E[ y|x]∥2 = ∥Z(aZ ′w−
γ)∥2 + ∥aQ{[bIT +Q]−1 − [cIT +Q]−1}x∥2. This yields, using (2.21), ∥ŷ −
E[ y|x]∥ ≥ ∥ŷ∗ −E[ y|x]∥ = ∥Z(γ −Z ′x)∥, for all positive α1 and α2. Thus
α∗
1 and α∗

2 are optimal.
The rest of the proofs is straightforward. �

3. Estimation of the noise-to-signal ratios

In this section we propose consistent estimators of the noise-to-signal
ratios αe

1 = σ2
u/σ

2
v and αe

2 = σ2
u/σ

2
ξ , and the parameter β as ratios of

explicit unbiased consistent estimators of the variances σ2
u, σ

2
v and σ2

ξ . To

this end, we follow Dermoune et al. [7], Section 3.2, to estimate σ2
u, σ

2
v ,

using the fact that

(3.1) Px = v + Pu ∼ N (0, σ2
vIT−2 + σ2

uPP ′).

We get the following unbiased consistant estimates of σ2
u and σ2

v .

(3.2) σ̂2
u = − 1

4(T − 3)

T−3∑
j=1

Px(j)Px(j + 1).
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and

(3.3) σ̂2
v =

1

T − 2

T−2∑
j=1

Px(j)2 +
3

2(T − 3)

T−3∑
j=1

Px(j)Px(j + 1).

Similarily, to estimate σ2
ξ , we use the fact that the time series

(3.4) Pz ∼ N (0, β2σ2
vIT−2 + σ2

ξPP ′).

is Gaussian and stationary, with the following covariance matrix (V (i, j))ij :

V (i, j) = β2σ2
vδ

j
i + σ2

ξ (PP ′)ij = r|i−j|, where,

(3.5) rk =


β2σ2

v + 6σ2
ξ , if k = 0;

−4σ2
ξ , if k = 1;

σ2
ξ , if k = 2;

0, otherwise,

whose unbiased consistent estimator is explicitly given by

r̂k =
1

(T − 2)− k

T−2−k∑
j=1

Pz(j)Pz(j + k), k = 0, 1, 2.

From that we derive the following consistent unbiased estimator of σ2
ξ

(3.6) σ̂2
ξ = −1

4
r̂1 = − 1

4(T − 3)

T−3∑
j=1

Pz(j)Pz(j + 1).

Finally, in view of (3.5), combining (3.2), (3.3) and (3.6), we get the follow-
ing consistent estimators of αe

1, α
e
2 and β.

Theorem 3.1. The following statistics

α̂e
1 = −1

4

(
3

2
+

(T − 3)
∑T−2

j=1 Px(j)2

(T − 2)
∑T−3

j=1 Px(j)Px(j + 1)

)−1

,(3.7)

α̂e
2 =

∑T−3
j=1 Px(j)Px(j + 1)∑T−3
j=1 Pz(j)Pz(j + 1)

,(3.8)
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and
(3.9)

β̂ =

(
2(T − 3)

∑T−2
j=1 Pz(j)2 + 3(T − 2)

∑T−3
j=1 Pz(j)Pz(j + 1)

2(T − 3)
∑T−2

j=1 Px(j)2 + 3(T − 2)
∑T−3

j=1 Px(j)Px(j + 1)

)1/2

,

based on the time series of observations Px and Pz, are consistent estima-
tors of the smoothing parameters αe

1, α
e
2 and the parameter β.

4. Simulation and calibration

4.1. Numerical examples

To illustrate the performance of the estimators α̂e
1, α̂

e
2 and β̂, we give a

numerical example based on simulations drawn from the distributions of
Px and Pz for different values of the time horizon T , and specified values
of αe

1, α
e
2 and β.

The estimator α̂e
1 of α

e
1 is exactly the one obtained inDermoune et al.

[7] for the standard HP filter, thus suffering from the same deficiency in the
sense that it may not be good enough to estimate values of αe

1 larger than
1. Therefore, we restrict our simulation exercise, reported in the numerical
example below, to the case αe

1 ≤ 1.
In Tables 1, 2 and 3, we report on the performance of different estimates

of the statistics α̂e
1, α̂

e
2 and β̂, based on 1000 simulations drawn from the

distributions of Px and Pz for the values of T − 2 (the dimension of the
matrix PP ′) ranging from 500 to 5000, and for the following sets of true
values of the parameters; (αe

1 = 1, αe
2 = 1, β = 0.5), (αe

1 = 1, αe
2 = 0.5,

β = 2) and (αe
1 = 1, αe

2 = 16, β = 0.2), where, the last set of values is used
in Boone [4].

4.2. Calibration

The data used are from U.S. Department of Commerce, Bureau of Eco-
nomic Analysis.

• The quarterly US real GDP (output) under the period January 1,
2002 – March 31, 2009 for the time series x.

• The quaterly US Inflation under the period January 1, 2002 – March
31, 2009 for the time series z.
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T-2 500 1000 5000

(mean(α̂e
1), std(α̂

e
1)) (1.13, 0.61) (1.05, 0.33) (1.00,0.11)

(mean(α̂e
2), std(α̂

e
2)) (1.01, 0.16) (1.00, 0.11) (1.00, 0.05)

(mean(β̂), std(β̂)) (0.47, 0.29) (0.47, 0.22) (0.49, 0.08)

Table 1: Performance of different estimates of the statistics on αe
1 = 1, αe

2 = 1
and β = 0.5 based on 1000 simulations.

T-2 500 1000 5000

(mean(α̂e
1), std(α̂

e
1)) (1.13, 0.61) (1.05, 0.33) (1.00,0.11)

(mean(α̂e
2), std(α̂

e
2)) (0.50, 0.09) (0.50, 0.06) (0.50, 0.02)

(mean(β̂), std(β̂)) (2.06, 0.43) (2.01, 0.23) (2.00, 0.10)

Table 2: Performance of different estimates of the statistics on αe
1 = 1, αe

2 = 0.5
and β = 2 based on 1000 simulations.

T-2 500 1000 5000

(mean(α̂e
1), std(α̂

e
1)) (1.13, 0.61) (1.05, 0.33) (1.00,0.11)

(mean(α̂e
2), std(α̂

e
2)) (16.30, 2.73) (16.14, 1.84) (15.96, 0.84)

(mean(β̂), std(β̂)) (0.19, 0.05) (0.20, 0.03) (0.19, 0.01)

Table 3: Performance of different estimates of the statistics on αe
1 = 1, αe

2 = 16
and β = 0.2 based on 1000 simulations.

In the sequel, we first estimate the potential output, y, with ŷ and then
the output gap, u, which is the difference between the actual output, x, and
potential output, ŷ.

4.2.1 Calibration of the potential output

In Table 4, we collect the estimated values of the statistics ,αe
1, α

e
2 and

β based on our estimators

α̂e
1 α̂e

2 β̂

0.1708 53872.09 -0.231

Table 4: Estimated values of αe
1, α

e
2 and β.
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As shown in Figure 1, we get a quite good fit of the trend by our method
of the considered US real GNP time series. We note, in particular, that at
the end of the sample our estimator is performant. The behavior of the
HP(1600) filter under the period 2008Q4-2009Q1 is dramatic.

4.2.2 Calibration of the output gap
Figure 2 shows estimates of the output gap corresponding to the classical

HP filter with α = 1600, while Figure 3 displays estimates of the output
gap obtained using our estimates of (αe

1, α
e
2, β). It appears clearly that

our output gap estimator does significantly better in predicting important
turning points of inflation and is more compatible and correlated with the
inflation rate.

5. Conclusion

The HPMV filter is an alternative way of estimating unobserved vari-
ables.This method stems from the use of the standard HP filter augmented
by relevant economic information. Intuitively, the estimation based on the
HPMV filter is not only a simple average going through the observed se-
ries, but also allows for input from economic relationships. According to
Basistha and Nelson [1] in the same spirit, we can use the Keynesian
Phillips curve to estimate the smoothing parameters or another added eco-
nomic condition. We can also use the state-space model as in Harvey et
al. [9] to estimate the parameters by maximum likelihood method. In this
paper we suggest an optimality criterion for the smoothing parameters and
explicit consistent estimators of the HPMV filter. We show that this crite-
rion admits a whole set of optimal smoothing parameters to which belong
the widely used noise-to-signal ratios and devices a rule to fix the choice
of these parameters by estimating the noise-to-signal ratios which in turn
yields a new performant method to estimate the potential output and the
output gap.
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Figure 1: Potential Output Estimation.

Figure 2: Potential Output Estimation.
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Figure 3: Multivariate Output Gap Estimation.
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