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Social influence: product adoption versus product usage*

Bary S. R. Pradelski�

This version: February 2, 2022

Abstract. Individual behavior such as choice of fashion, adoption of new products,
and selection of means of transport is influenced by taking account of others’ actions.
We study social influence in a heterogeneous population and analyze the behavior of
the dynamic processes. We distinguish between two information regimes: (i) agents are
influenced by the adoption ratio, (ii) agents are influenced by the usage history. We
identify the stable equilibria and long-run frequencies of the dynamics. We then show
that the two processes generate qualitatively different dynamics, leaving characteristic
‘footprints’. In particular, (ii) favors more extreme outcomes than (i).

JEL classifications: C62, C70, D70, D83, O33, Z13
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1 Introduction

A fundamental question about aggregate behavior of groups is how shifts between seem-
ingly stable states occur almost instantaneously after long lags of low fluctuation. Social
influence has been found to play an important role in such transitions. Social influence
describes the process in which individuals are influenced by the behaviors of others in a
group. For example, the emergence of fashions is well documented to be driven by social
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influence. Other examples include stock market rallies and opinion extremization and
polarization.

The purpose of this paper is to study two general families of dynamic processes of social
influence dependent on the nature of information available. Agents update their actions
at random points in time. Their decisions are influenced by the actions previously taken
by other members of their group, where the strength of this influence varies across agents
(heterogeneity). In some environments an agent chooses a durable action and adoption
statistics are observable or public information. For example, the proportion of Apple’s
iPhone versus Samsung’s smartphones can be obtained through publicly available sources.
In such cases an agent essentially considers the adoption ratio, that is, an agent considers
the proportion of iPhone versus Samsung smartphone owners. We denote this scenario by
Adoption Ratio and note that this model has been extensively studied in the literature.
In other environments, each agent chooses a non-durable action and the act of choosing
is the critical information. For example, the proportion of smartphone owners using
WhatsApp versus WeChat to communicate with each other depends on the repeated
choice, rather than the fact that they have a given application installed on their device.
Hence an agent considers the usage history, that is, an agent considers the historical
proportion of times he was contacted with WhatsApp versus WeChat. We shall thus
denote this scenario Usage History.1 To our knowledge the latter model has not been
considered in the literature.

Some environments are better described by one model and others by the other. Consider,
as another example, the use of bicycles for the daily commute to work. People have differ-
ent personal reasons to use a bicycle or another means of transport to commute to work,
for example, distance to work, personal fitness, income, or environmental considerations.
In addition, people are influenced by the behaviors of others and have a propensity to
conform. Our study explores this latter influence while maintaining the fact that players
are heterogeneous. On the one hand, the number of bicycle owners may be an important
factor for an agent’s decision (Adoption Ratio). On the other hand, the time series of
choices, that is, how often bicycles are seen to be used to commute to work may well be
an equally important factor (Usage History). Knowing which process is at work is rele-
vant for interventions. On the one hand, if the observed process follows Adoption Ratio
an incentive to purchase a bicycle would be the right intervention. Such an intervention
was used in London, UK, where the Cyclescheme allows employees to purchase bicycles
tax-free and thus save about half the cost. On the other hand, if the observed process
follows Usage History an incentive should aim at increasing the frequency of choices.
Again, such an intervention was used in London, UK, where the Boris Bikes2 (a public
bicycle hire scheme as found in many other cities) allows people to use public bicycles for
free for the first 30 minutes (with a small annual subscription fee). In order to choose the
most effective intervention it is instrumental to know which process of social influence,
Adoption Ratio or Usage History, is at work.

1Note that this differentiation has not gone unnoticed in marketing departments. On the one hand,
hardware providers such as Apple focus their reporting and marketing effort on the number of products
sold (Adoption Ratio). On the other hand, software providers, such as WhatsApp, focus their analysis
and messaging on the frequency of usage of their products (Usage History).

2Formally Santander Cycles.
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The contribution of this paper is twofold. First, we identify the equilibria of the Adoption
Ratio and Usage History process and study their stability in a stochastic environment.
(Again, note that the tools and results for the Adoption Ratio model are known and are
included for completeness, the novel contributions are with regard to the Usage History
model.) Second, we find that the long-run behavior of these seemingly similar processes
differs and we elaborate on the qualitative differences. We show that each process leaves
a characteristic footprint – Usage History favors more extreme outcomes than Adoption
Ratio. Thus, the neglect in the literature to differentiate between the two models (depen-
dent on the application at hand) is not only of formal interest but results in substantially
different predictions and possible policy implications.

2 Related literature

The discussion of social influence has a long history in economics, sociology and psychol-
ogy (see, for example, Le Bon 1895, Trotter 1916, Keynes 1936, Hamilton 1971, Schelling
1971, Shiller 2000, Fehr and Hoff 2011).3 Numerous applications have motivated the
study of social influence, for example, political and social movements (Schelling 1978,
Cabinet Office 2012), diffusion processes such as innovation adoption (Rogers 1962, Bass
1969, Meade and Islam 2006, Young 2009, Loeper et al. 2014, Newton and Sawa 2015),
and financial herding (Scharfstein and Stein 1990, Banerjee 1992, Bikhchandani et al.
1992, Devenow and Welch 1996, Bouchaud 2013). Consequently there is broad exper-
imental evidence for social influence. Asch (1955) conducted a series of enlightening
experiments showing that a considerable proportion of subjects trust the majority over
their own senses. More recently Salganik et al. (2006) show the effects of social influence
in a study on music taste. Other experimental studies include voting and opinion polls
(Cukierman 1991), human fertility (Bongaarts and Watkins 1996), diffusion of informa-
tion technologies (Teng et al. 2002), household energy consumption (Schultz et al. 2007),
mobile phones (de Silva et al. 2011), and bicycle usage for the work commute (Goetzke
and Rave 2011).

Our model follows Schelling (1978, Chapter 3) and Granovetter (1978). They describe
the class of critical mass models of social interaction. Schelling (1978) notes that “though
perhaps not in physical and chemical reactions, in social reactions it is typically the case
that the ‘critical number’ for one person differs from another’s.” Thus the tipping value
determines, for each player, the critical mass of the aggregate information about the
population’s actions at which a player will ‘tip over’ from playing one action to another.4

We shall study a threshold model where heterogeneous players repeatedly revise their
binary action. Our model is in discrete time with asynchronous updating.

The processes we consider are Markovian. On the one hand, we use the concept of
stochastic stability (see Foster and Young 1990, Kandori et al. 1993, Young 1993).5 The

3For further studies see Macy (1991), Dodds and Watts (2005), Horst and Scheinkman (2006),
Bramoulle (2007), Lopez-Pintado and Watts (2008), Baddeley (2010), Young (2011), Babichenko (2013),
Maes and Opp (2016).

4The heterogeneity of social influence has been confirmed in recent work, suggesting that cognitive
factors influence the propensity to herding behavior (Dohmen et al. 2012).

5Peski (2010) extended the model of Kandori et al. (1993) to general networks. Our work provides an
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idea is to study a perturbed version of the original process, such that the resulting Markov
process is irreducible and ergodic and therefore the process has a unique stationary dis-
tribution. By letting the level of noise approach zero one can identify those states that
will be observed in the long-run with a frequency bounded away from zero. On the other
hand, we also make use of recent work on reinforced random walks (Pinsky 2016). Pin-
sky analyzes a random walk on Z whose probability of moving left or right depends on
the recent history. By an appropriate translation we find the unique limit proportion of
play even though all states are stochastically stable and thus stochastic stability does not
allow any selection result.

3 The model

We shall first introduce the general framework for analyzing social influence. Let P =
{1, ..., p}, p ∈ N be the set of players. Let A = {0, 1} be the actions available to each
player i ∈ P .6 Let ui : [0, 1] × A → R be the utility of agent i ∈ P when observing the
aggregate statistic about the society s ∈ [0, 1] and playing action a ∈ A. We shall define
two specific functional forms for s later but for now it suffices to think of some aggregate
statistic about the players’ actions. Suppose that the utility of an action is separable into
a component arising from a player’s inherent preference for an action and a component
specifying the utility he derives from social conformity. After normalizing, let πi ∈ R
be player i’s direct utility difference when playing action 1 over action 0. Further let
ρi ∈ R+ be a player’s index of social conformity. Finally, suppose that the impact of
social influence is linear. A player’s utility from playing action a is then given by

ui(s, a) =

{
πi + ρis if a = 1,

ρi(1− s) if a = 0.
(1)

This is a coordination game when s is increasing in the number of players playing 1.

Note that a player is indifferent between the two actions when ui(s, 1) = ui(s, 0). That
is, agent i is indifferent if and only if

s =
ρi − πi

2ρi
=: µ(i) (2)

We shall call µ(i) player i’s tipping value. If s > µ(i) player i wants to play 1 and if
s < µ(i) he wants to play 0. A player with µ(i) ∈ (−∞, 0) always prefers to play action
1 and a player with µ(i) ∈ (1,∞) always prefers action 0. We shall make the simplifying
assumption that for all players i, µ(i) is not a multiple of 1/p which will ensure that
a player always has a unique best response.7 Given the list of different tipping values

extension of the stochastic stability framework to heterogeneous preferences as was pioneered by Myatt
and Wallace (2008a,b, 2009). The introduction of heterogeneous preferences is in a similar spirit to
Easley and Kleinberg (2010) and Neary (2012).

6To avoid unnecessary notation we name actions such that their sum indicates the average action
taken.

7With some foresight we note that this assumption will only be of use for the analysis of the Adoption
Ratio dynamic.
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µ1 < ... < µn (players may have the same tipping values, hence n ≤ p) let qj be the

fraction of players with tipping value µj, that is qj =
∑p

i=1 1µ(i)=µj

p
(for j = 1, . . . , n).

Let fi : R2 → [0, 1] be the response function for player i, specifying the probability to
play action 1 given his utilities ui(s, 1) ∈ R and ui(s, 0) ∈ R. Note that 1− fi(·, ·) is the
probability that i plays action 0. We shall initially consider a best-response model:

fi =


1 if s > µ(i),

0.5 if s = µ(i),

0 else.

(3)

We study a discrete time process where in each period t = 0, 1, 2, . . . a unique player gets
activated uniformly at random. In a given period t the activated player i will be called
active. Define

1t
i =

{
1 i is active in t,

0 else.
(4)

We write act(t) ∈ P for the player who is active in period t.

Let s(t) ∈ [0, 1] be the aggregate statistic about society at the beginning of period t. For
each player i, let ati be the action he plays at time t. Then for all i ∈ P

ati = 1t
i ·Bt[fi(ui(s(t), 1), ui(s(t), 0))] + (1− 1t

i) · at−1
i (5)

for all t ≥ 1, where (Bt)t∈N is a family of independent Bernoulli random variables taking
values in A.

Let āt =
∑p

i=1 a
t
i/p ∈ [0, 1

p
, . . . , 1] be the population’s average action in period t. We

consider two processes of social influence, arising from responding to different observations
about society as discussed in the introduction:

� Adoption Ratio. The state at the beginning of a given period t is given by the
action profile at−1 = (at−1

i )i∈P . An active player responds to the Adoption Ratio:

sAR(t) = āt−1 (6)

� Usage History. The state at the beginning of a given period t is given by the last
k actions, that is, (at−k

act(t−k), ..., a
t−1
act(t−1)). An active player responds to the Usage

History in the past k (constant) periods:8,9

sUH(t) =

∑t−1
v=t−k a

v
act(v)

k
(7)

8For Usage History, we need to define s(t) differently for t < k. We can simply assume the average
of the past t actions.

9Note that s(t) includes the active player’s action. This is reasonable when players are presented with
the aggregate statistic, but the analysis also carries through if one excludes the active player’s action
from s(t).

5



When unambiguous we shall sometimes omit the specification of the time period. Note
that the two processes are at two ends of the following spectrum: On the one hand, in
Adoption Ratio the recency of actions is not taken into account at all. On the other hand,
in Usage History the focus is on the recent actions and players are assumed to not take
any ‘double counting’ into account. We limit our analysis to these two dynamics to gain
analytical tractability and focus on the key differences arising.

To illustrate the two dynamics, suppose there are four players. Player 1 initially plays
1 and all other players play 0. Suppose we are in time step t = 7 and play unfolded as
shown in table 1. For Adoption Ratio the observation in period t = 7 of prior adopters of

Table 1: Actions up to t = 6

time step t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

active player – player 2 player 1 player 4 player 1 player 2 player 2

player 1 1 1 1

player 2 0 1 1 1

player 3 0

player 4 0 0

Relevant actions for sAR(7) circled, relevant actions for sUH(7) boxed (k = 5).

action 1 is sAR(7) = 50% (the relevant actions are circled in Table 1). For Usage History
(with k = 5) the observation in period t = 7 of the frequency of choices of action 1 is
sUH(7) = 80% (the relevant actions are boxed in Table 1). Note that in our example
player 3’s previous actions have no influence on the observed time series while player 1
and 2’s are counted twice.

Initially we will study the unperturbed best-response dynamic. We then consider a
uniform action tremble. That is, there exists a small probability ε > 0 such that an
activated player picks an action uniformly at random. The response function for player
i then is

fi =


1− ε

2
if s > µ(i),

0.5 if s = µ(i),
ε
2

else.

(8)

Another prominent error model in the literature (see, for example, Young 1998) is an
error arising from a third variant of the aggregate statistic about the society, s. It is
assumed that a sample (a fixed proportion) of agents is taken and the average action of
the sample is calculated. This is in the same spirit as the Adoption Ratio model. Given
that our focus is on introducing new techniques associated with the previously unstudied
Usage History we shall omit analyzing this model in detail but note that for growing
sample sizes it has qualitatively similar features as Adoption Ratio.
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4 Analysis

We shall first state a definition and a simple lemma, the proof of which can be found in
Appendix A.

Definition 1. Given the population’s average action ā, let Agg give the share of players
for whom 1 is a best-response when observing ā ∈ [0, 1]:

Agg : [0, 1] →
{
0,

1

p
,
2

p
, . . . , 1

}
(9)

Agg(ā) =
1

p

p∑
i=1

1µ(i)<ā (10)

Lemma 2. Agg has at least one fixed point. If x∗ is a fixed point of Agg all players of
the same type have the same best response in the associated game state and hence play
the same action. Formally, let q̄k :=

∑k
j=1 qj. Then

x∗ ∈ {q̄k : µk < q̄k < µk+1 for some k ∈ {1, . . . , n}} .10 (11)

We denote by a∗
α ∈ {a∗

1, . . . , a
∗
l } the action profiles where all players play a best response

and ā(a∗
α) = x∗

α and x∗
α ∈ {x∗

1, ..., x
∗
l } is a fixed point of Agg (in increasing order).

4.1 Adoption Ratio

In this section we shall consider the social influence process Adoption Ratio. An active
player bases his decision on the number of current adopters (see Equation (6)).

sAR(t) = āt−1 =

∑
i∈P at−1

i

p

Since the proofs of the results in this section are standard when one is familiar with
stochastic stability analysis, they are relegated to Appendix B.

Theorem 3. The recurrent classes (absorbing states) of the unperturbed Adoption Ratio
dynamic coincide with the fixed points of Agg and each absorbing state is associated with
exactly one fixed point of Agg and vice versa. There exists at least one such absorbing
state and there are no other (non-singleton) recurrent classes. The set of absorbing states
that can be reached is dependent on the initial state (when multiple absorbing states exist).

Theorem 3 is closely related to the convergence result in Babichenko (2013). His model, in
our language, allows for negative social influence. He shows convergence to approximate
Nash equilibrium if the observation of society is discretized, that is

⌊
sAR

⌋
δ
for some δ > 0.

Babichenko (2013) also shows that his dynamic converges in O(n log n) time steps.

10Set µn+1 = 1 for completeness.
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4.1.1 Perturbed dynamics

We now consider the perturbed process with a uniform error rate as introduced in Equa-
tion (8).

Theorem 4. Suppose players have uniform action trembles in the Adoption Ratio dy-
namic. The stochastically stable states are those states in a∗

α ∈ {a∗
1, . . . ,a

∗
l } which are

associated with x∗
α ∈ {x∗

1, ..., x
∗
l } of Agg that minimize

a∗
α : γa∗α = min

β=1,...,l
γa∗β (12)

where γa∗α is the stochastic potential:

γa∗α =
α−1∑
β=1

rx∗
β ,x

∗
β+1

+
l∑

β=α+1

rx∗
β ,x

∗
β−1

(13)

with

rx∗
β ,x

∗
β+1

= max
x∈[x∗

β ,x
∗
β+1]

{x− Agg(x)} · p+ 1 (14)

rx∗
β+1,x

∗
β

= max
x∈[x∗

β ,x
∗
β+1]

{Agg(x)− x} · p+ 1 (15)

For generic games there exists a unique long-term stable state.

The former two equations describe the maximal number of trembles (that is non-best
responses) needed to exit the basin of attraction of a given fixed point x∗

β and to enter
the basin of attraction of the neighboring fixed point x∗

β+1.

4.2 Usage History

In this section we shall consider the social influence process Usage History. An active
player bases his decision on the time series of choices (see Equation (7)):

sUH(t) =

∑t−1
v=t−k a

v
act(v)

k

Theorem 5. For the unperturbed Usage History dynamic:

(i) If the best response of all players is independent of social influence (that is, ∀i ∈ P ,
µ(i) /∈ [0, 1]), then the unique recurrent class (absorbing state) is the unique fixed
point of Agg.

(ii) Else, if there are no players for whom the best response is 0 and/or 1 independently
of social influence (that is, ∀i ∈ P , µ(i) ≤ 1 or µ(i) ≥ 0), then all 0 and/or all 1
are the unique recurrent classes (in particular, absorbing states).
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(iii) Else, if there exist players for whom the best response independently of social in-
fluence is 0, there exist players for whom the best response independently of social
influence is 1, and there exists players for whom the best response is dependent
on social influence (that is, ∃i ∈ P , µ(i) > 1, ∃i ∈ P , µ(i) < 0, and ∃i ∈ P ,
µ(i) ∈ [0, 1]), then there exists a unique recurrent class comprising all states where
all players i with µ(i) /∈ [0, 1] plays the action she prefers and the other players play
either action.

Proof. i. If the best response of any player is independent of social influence there clearly
exists an absorbing state, namely the state where every player plays the action he prefers
(independent of social influence) which thus constitutes the unique fixed point of Agg.
It is easy to see that this constitutes the unique recurrent class since any other state is
transient and leads to the above described state.

ii. We shall show that if 0 (or 1) is a fixed point of Agg the corresponding state is
absorbing. Suppose that 0 is a fixed point. Then there exists an observation s∗ below
which all players want to play 0. Suppose that sUH(t) < s∗ in period t. Now independent
of who is selected in subsequent periods he plays action 0 and thus for all T ≥ 0, sUH(t+
T ) ≤ sUH(t) < s∗. Hence all 0 is an absorbing state of the dynamic. If 1 is a fixed point
a similar argument applies. Any other state is transient since, with positive probability
one can create a sequence arriving at all 0 (respectively all 1

iii. By similar arguments as in (i) any recurrent state has to be such that those players
who always prefer 0 play 0 and those who always prefer 1 play 1 (we call this Property
A). We shall thus show how to move from any state where the latter holds to any other
state where the latter holds. In particular we shall show how to change a single player i’s
action (given µ(i) ∈ [0, 1]). Suppose, for example, player i is currently playing action 0.
Given that he is prawn to social influence he will be convinced to play 1 if a high enough
proportion of the population plays 1. Then, with positive probability enough players who
currently wish to play 1 are selected successively changing the historic action profile such
that when i is next selected his best response is 1. Applying this argument iteratively we
can move between any two states where Property A holds, thus proving the statement.

4.2.1 Perturbed dynamics

We now consider the perturbed process with a uniform error rate as introduced in Equa-
tion (8). Recall that qj is the fraction of players with tipping value µj.

Theorem 6. Suppose players have uniform action trembles in the Usage History dy-
namic.

(i) If the unperturbed dynamic has an absorbing state 0 (1) is stochastically stable if
r0,1 ≥ r1,0 (r1,0 ≥ r0,1).

(ii) Else, all states as described in Theorem 5(iii) are stochastically stable. Let q̄k =∑k
j=1 qj. For an action profile a∗

α ∈ {a∗
1, . . . ,a

∗
l } associated with fixed point x∗

α ∈

9



{x∗
1, ..., x

∗
l } (in increasing order), let

argmax
j∈{1,...,n}:µj<q̄j<µj+1

1

q̄
µj

j (1− q̄j)1−µj

j∏
k=2

(
q̄k−1

1− q̄k−1

)µk−µk−1

= {j1, . . . , j∆} (16)

Then the limit proportion of play of action 1 is given by

lim
k→∞

lim
t→∞

lim
ε→0

∑t
v=0 a

v
act(v)

t
=

∑∆
δ=1

1
1−q̄jδ

· qjδ∑∆
δ=1

1
1−q̄jδ

(17)

For generic games there exists a unique maximizer of Equation (16), say j∗. The
latter formula then reduces to:

lim
k→∞

lim
t→∞

lim
ε→0

∑t
v=0 a

v
act(v)

t
= qj∗ (18)

In Equations (17) and (18) the limit with respect to ε can be taken either before,
between, or after the limits with respect to t and k.

Proof. i. First, suppose the unperturbed dynamic has an absorbing state. If the un-
perturbed dynamic has only one absorbing state the result is trivial since the set of
stochastically stable states is a subset of the set of recurrent classes which exactly con-
stitutes the absorbing states (there are no non-unitary absorbing sets). Next we consider
the case where the dynamic has two absorbing states, namely all 0 and all 1. Note that
from any state where there exists at least one player whose best response is 0 and one
player whose best response is 1 there exists a positive probability (independent of ε) to
go to any other state. This holds since any value for sUH occurs with strictly positive
probability. To reach such a state from all 0 (all 1), r0,1 (r1,0) trembles are needed. Hence
the minimizer is stochastically stable. This proves the first case of the theorem.

ii. Now, suppose the unperturbed dynamic has no absorbing state. It follows that there
is at least one player playing action 0 and one player playing action 1 independent of
social influence and by the proof of the first case we thus have that the process is ergodic
independently of ε being positive or 0. This implies that all states aer stochastically
stable. Thus the uniform error does not change the limiting behavior of the dynamic and
we can therefore set ε = 0. This also proves the final statement of the Theorem that
the limit with respect to ε can be moved around. Now the result will follow from Pinsky
(2016, Theorem 4). He studies a random walk on Z which at each point in time either
takes one step to the right or one step to the left. Initially the probability of jumping
one step to the right is q̄1 and of jumping to the left 1− q̄1. If the proportion of jumps to
the right in the last k moves is greater or equal to µj (and smaller than µj+1) then the
probability of jumping to the right is q̄j and of jumping to the left 1− q̄j. Pinsky studies
the ‘speed’ of the process s̃ = limt→∞

Xt

t
where Xt is the position on Z of the random

walk at time t when starting at Xt = 0. He finds results according to the theorem above.

At time t, s̃(·)·t is the number of times the process stepped to the right minus the number
of times the process stepped to the left. Thus in t − t · s̃(·) steps the process stepped
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equally often right as left. Hence the number of steps to the right is given by

s̃ · t+ t− s̃ · t
2

=
s̃ · t+ t

2
=

t∑
v=0

avact(v) (19)

We thus have
s̃(·) + 1

2
= lim

t→∞

∑t
v=0 a

v
act(v)

t
. (20)

4.3 Comparison: Adoption Ratio versus Usage History

We shall now compare the two different regimes from Sections 4.1 and 4.2. The differences
for the unperturbed dynamics are apparent from comparing Theorems 3 and 5. The set
of fixed points coincides if and only if 0 and/or 1 are fixed points (and there are no other
fixed points) or the best reply of any player is independent of social influence. On the
other hand, for the perturbed dynamics the comparison is less evident (Theorem 4 versus
Theorem 6).

Definition 7. For two fixed points, x∗
α, x

∗
β, say that x∗

α is more mixed ( less mixed) than
x∗
β if |x∗

α − 0.5| < |x∗
β − 0.5| (|x∗

α − 0.5| > |x∗
β − 0.5|).

Theorem 8. Suppose Agg has multiple fixed points. Then, for generic instances, the per-
turbed Usage History dynamics favors more extreme outcomes. That is, ceteris paribus, a
more mixed fixed point is less stable than a less mixed fixed point under perturbed Usage
History. Under perturbed Adoption Ratio, ceteris paribus, the stability does not depend
on whether a state is more or less mixed.

Proof. Theorem 4 identifies the stochastically stable states for the perturbed Adoption
Ratio dynamic. On the other hand, Theorem 6 finds the limit proportion of play for the
perturbed Usage History dynamic (as all states are stochastically stable a finer selection is
necessary). Note that, if the stochastically stable state is unique for Adoption Ratio, then
the associated fixed point is equal to the limit proportion of play. For Usage History,
given that we consider generic games, Equation (18) identifies the limit proportion of
play which coincides with a unique fixed point of Agg. The latter qualifications allow us
to compare the two dynamics in terms of their limit proportion of play.

Under perturbed Adoption Ratio the shift from one fixed point to another is governed
by the erroneous behavior of players currently not playing the innovation (action 1).
Equation (13) states that the stochastic potential of a state a∗

α associated with fixed
point x∗

α has stochastic potential:

γa∗
α
=

α−1∑
β=1

rx∗
β ,x

∗
β+1

+
l∑

β=α+1

rx∗
β ,x

∗
β−1

Thus, the stability of a state depends on the sum of the resistances that govern the moves
between neighboring fixed points of Agg. In particular these resistances are independent
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of where any two given fixed points lie. Thus under Adoption Ratio, ceteris paribus, the
stability of a fixed point is independent of whether it is more or less mixed than another
fixed point.

In contrast, under perturbed Usage History the shift from one fixed point to another is
governed by higher frequency of choices. Thus, the stability of a fixed point is higher for
less mixed states, when all else is equal. This is the case since it is less likely for a very
small number of users to use a product often enough to ‘skew’ the observation compared
to a more mixed state. This can be seen from Equation (16) which is increasing for
|xj − 1

2
| increasing, that is, for less mixed fixed points.

Appendix C elaborates on the characteristic footprints in the distribution of sAR and
sUH for the perturbed dynamics. It turns out that sAR is not binomially distributed
but sUH is. In addition the variance of the two processes are, in general, different. This
enables us to empirically discriminate which process is at work and thus to inform policy
interventions or marketing campaigns.

5 Example

We shall now formalize our example introduced in the introduction. Consider bicycle
usage and suppose that some commuters use the bicycle irrespective of its popularity,
say innovators. Further assume that there is an early and late majority who may use the
bicycle if enough others use it. Finally there are some non-adopters who will never use
a bicycle for their daily commute. In particular assume the following population shares
and thresholds:

� 5% innovators, always us the bicycle for their commute to work (action 1), that
is, they play the innovation independent of social influence and hence their tipping
value is ‘negative’ (µinnovators < 0),

� 45% early majority, who use the bicycle if at least ‘few’ use it
(e.g., µearly majority = 25%),

� 40% late majority, who use the bicycle if at least ‘many’ use it
(e.g., µlate majority = 75%),

� 10% non-adopters, who never play the innovation (µnon-adopters > 1).

Figure 1 shows the function Agg and the fixed points x∗
1, x

∗
2, x

∗
3. We invite the reader to

verify that the fixed points of Agg are x∗
1 = 5%, x∗

2 = 50%, x∗
3 = 90%.

We compute the long-run stable state under Adoption Ratio according to Theorem 4.
One finds the following resistances:11

rx∗
1,x

∗
2
= 0.2, rx∗

2,x
∗
3
= 0.25, rx∗

2,x
∗
1
= 0.25, rx∗

3,x
∗
2
= 0.15

and the stochastic potentials

γx∗
1
= 0.4, γx∗

2
= 0.35, γx∗

3
= 0.45.

11Note that to be precise we need to define the population size and add resistance one to each of the
formulas below. But this does not change the result.
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Figure 1: Agg: x-axis shows µ(i), y-axis shows Agg
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Thus the (unique) stochastically stable state is x∗
2 since it uniquely minimizes stochastic

potential.

Next, we compute the long-run stable state under Usage History according to Theorem
6. The rounded results of Equation (16) are:

x∗
1 : 1.05, x∗

2 : 0.96, x∗
3 : 0.92.

Thus the long-run observed frequency of action 1 is given by x∗
1.

This further shows, by example, that the two different processes Adoption Ratio and Us-
age History may yield significantly different outcomes. Note that the example is generic in
the following sense: We can define “close-by” distributions with the same outcome.

To further build intuition for Theorem 8 consider fixed point x∗
1 = 5%. In order to reach

the basin of attraction of x∗
2 the time series of choices (over the last k periods) needs to

be at least 25%. That is, in the last k periods, players for whom 1 is currently the best
response (5% of the population) need to be activated at least 25% · k times. That is, on
average such a player needs to be activated at least 5 times as often as players whose
best response is currently 0. On the other hand, suppose we are currently in x∗

2 = 50%.
In order to reach the basin of attraction of x∗

1 the time series of choices (over the last
k periods) needs to be at most 25%. That is, in the last k periods, players for whom
0 is currently the best response (50% of the population) need to be activated at least
(100%− 25%) · k times. That is, on average such a player needs to be activated at least
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1.5 times as often as players whose best response is currently 1.12 Since 1.5 is less than
5 it follows that the latter transition is more likely than the former.

6 Conclusion

In this paper we have studied the dynamics of social influence. We considered two different
processes of social influence. On the one hand, social influence arises from the Adoption
Ratio of the agents’ actions. On the other hand, social influence arises from the Usage
History of choices. We first identified the equilibria of the two processes and studied
their stability in stochastic environments. We then showed that the outcomes may be
very different. The reason being that one process is driven by fluctuations of non-adopters
while the other process is driven by fluctuations of adopters. In particular, ceteris paribus,
Usage History leads to more extreme outcomes than Adoption Ratio. Thus one needs to
carefully examine the specific process of social influence at hand in order to be able to
predict outcomes and design interventions. Returning to our example on bicycle usage
discussed in the introduction the knowledge of which process is at hand may inform
whether an intervention to promote the purchase of a bicycle (e.g., Cyclescheme) or an
intervention to promote the usage of bicycles (e.g., Boris Bikes) is more apt.
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A Proof of Lemma 2

Proof of Lemma 2. We shall first show that there exists a fixed point. If Agg(1) = 1 then
1 is a fixed point and similarly if Agg(0) = 0, 0 is a fixed point. Thus we still have to
consider the case where 0 < Agg(0) < Agg(1) < 1 since Agg is increasing. Define the
function:

g : [0, 1] → [0, 1] (21)

g(x) = Agg(x)− x (22)

It suffices to prove that there exists x such that g (x) = 0. Since Agg(0) > 0 we have
g (0) ̸= 0 and thus g (0) > 0. Also Agg (1) < 1 and thus g (1) < 0. Hence there must
eventually be a change from positive to negative sign with increasing x. Remember that
Agg is a non-decreasing step function. Thus by monotonicity of Agg, for every x < 1,

g
(
x+ 1

p

)
≥ g (x)− 1

p
, that is, the function g decreases at most in steps of 1

p
. Therefore

there exists x∗ such that g(x∗) = 0 and thus f(x∗) = x∗.

For the second part of the lemma note that if x∗ is a fixed point of Agg all players of the
same type necessarily play the same action. It remains to show that for any fixed point
q̄k we have µk < q̄k < µk+1. By contradiction, suppose there exists a fixed point q̄k < µk.
Then for the share of players qj with j ≥ k it is optimal to play 0 when observing q̄k,
given that their tipping value is greater or equal than µk and thus q̄k is not a fixed point.
A similar argument applies for q̄k > µk+1.
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B Proof of Theorems 3 and 4

Proof of Theorem 3. We shall first show that if a state of the dynamic process coincides
with a fixed point of Agg then it is absorbing (hence is a recurrent class). Second, we
show that any state of the dynamic that does not coincide with a fixed point of Agg is
transient and thus there are no non-singleton recurrent classes. Finally, we shall aruge
that the process is not ergodic and thus depends on the initial state.

First, by Lemma 2 Agg has at least one fixed point. For a given fixed point x∗ we can
assign an action to each player such that the action profile is an absorbing state. We
simply order the players by their tipping values (from small to large) and assign action 1
successively to players until the proportion x∗ is reached.

Second, by contradiction, suppose there exists a recurrent state a∗ with x∗ ∈ [0, 1] such
that x∗ is not a fixed point of Agg. Suppose x∗ > Agg(x∗) (the other case is analogous).
That is, the number of players playing 1 is x∗, however the number of players for whom
it is desirable to play 1 is Agg(x∗) which is strictly smaller than x∗. Hence there exists
at least one player i playing 1 for whom µ(i) > x∗ and if i is activated in a given period
he will change his action from 1 to 0. On the other hand, there are no players who will
change their action from 0 to 1. Given x∗ > Agg(x∗) the share of players playing action
1 is thus decreasing (up to a state that coincides with a fixed point of Agg). Thus a∗ is
transient.

Finally, note that the dynamic is not ergodic if multiple absorbing states exist and there-
fore the absorbing states attainable depend on the initial state a0.

In order to prove Theorem 4 we shall first introduce stochastic stability analysis:

B.1 Stochastic stability

Consider the stochastic process governing the change of ā. The process is Markovian and
its recurrent classes are characterized by the fixed points of Agg. It is a regular perturbed
Markov process and we can therefore use stochastic stability analysis (Foster and Young
1990, Kandori et al. 1993, Young 1993). We consider the long-run behavior of the process
when ε becomes small. Note that the perturbed process is ergodic for ε > 0 and thus has
a unique stationary distribution, say Πε over the state space [0, 1

p
, . . . , 1]. We thus study

limε→0Πε = Π0.

Definition 9. A state ā ∈ [0, 1
p
, . . . , 1] is stochastically stable if Π0(ā) > 0. Denote the

set of stochastically stable states by S.

For a given parameter ε denote the probability of transiting from ā to ā′ in one period by
Pε[ā, ā

′]. The resistance of a transition ā → ā′ is the unique real number r(ā, ā′) ≥ 0 such
that 0 < limε→0 Pε[ā, ā

′]/εr(ā,ā
′) < ∞. For completeness let r(ā, ā′) = ∞ if Pε[ā, ā

′] = 0.
Hence a transition with resistance r has probability of the order O(εr). We shall call a
transition (possibly in multiple periods) ā → ā′ a least cost transition if it exhibits the
lowest order of resistance. That is, let ā, ā1, . . . , āk = ā′ (k finite) be a path of one-period
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transitions from ā to ā′. Then a least-cost transition minimizes
∑k−1

l=0 r(āl, āl+1) over all

such paths. By abuse of notation we write r(ā, ā′) =
∑k−1

l=0 r(āl, āl+1).

Young (1993) shows that the computation of the stochastically stable states can be re-
duced to an analysis of rooted trees on the set of recurrent classes of the unperturbed
dynamic. Identify the recurrent classes with the nodes of a graph. Given a node ā, a
collection of directed edges T forms an ā-tree if from every node ā′ ̸= ā there exists a
unique outgoing edge in T , the graph has no cycles.

Definition 10. The resistance r(T ) of a ā-tree T is the sum of the resistances of its
edges. The stochastic potential of ā, γ(ā), is given by

γ(ā) = min{r(T ) : T is an ā-tree}. (23)

Theorem 4 in Young (1993) states that the stochastically stable states are precisely those
states where γ is minimized.

Proof of Theorem 4. Let x∗
1, ..., x

∗
l (in increasing order) be the fixed points of Agg. In

order to pass from one to another one needs to pass through all the fixed points in
between. The process governing the change of ā has a linear transition structure, namely,
to go from state α

p
to β

p
one has to pass through all the states α+1

p
, . . . , β−1

p
for α < β and

similarly through all the states α−1
p
, . . . , β+1

p
for α > β. To find the least resistant paths

between two recurrent classes it suffices to calculate the resistance between neighboring
recurrent classes.

We shall give the argument for rx∗
α,x

∗
α+1

, the one for rx∗
α+1,x

∗
α
is analogous. We define

several groups of players. Let P+
1 be the set of players who played 1 in the last period

and for whom 1 is currently a best reply and let P−
1 be the set of players who played 1 in

the last period and for whom 0 is currently the best reply. Define P+
0 and P−

0 analogously.
Since we consider the resistance between two absorbing states we have for the starting
state that P−

1 = P−
0 = 0. Given that x∗

α < x∗
α+1 we have that in x∗

α+1 more players
play 1. Suppose that we construct a path such that only players who currently play 0
switch to 1. Then any such switch is erroneous behavior as long as x > Agg(x). Once
x < Agg(x) further transitions have resistance zero. For any given x with x > Agg(x)
one needs at least (x − Agg(x)) · p + 1 errors to enter a region where x∗

α+1 becomes an
attractor. (Note that x− Agg(x) = x− x∗

α for x∗
α ≤ x < x∗

α+1.) Since this must hold for
all x with x > Agg(x) we have

rx∗
α,x

∗
α+1

= max
x∈[x∗

α,x
∗
α+1]

{x− Agg(x)} · p+ 1. (24)

This is sufficient since after this many trembles there exists a zero resistance path moving
to the neighboring absorbing state associated with x∗

α+1. This proves the claim.

We can now conclude that the stochastic potential of a fixed point is given by

γx∗
α
=

α−1∑
β=1

rxβ ,xβ+1
+

l∑
β=α+1

rxβ ,xβ−1
. (25)
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The first summand gives the resistances of passing from the rightmost fixed point to x∗
α,

the second the resistance from passing from the leftmost fixed point to x∗
α. Now by Young

(1993) we have that the stochastically stable states are precisely those states which have
minimal stochastic potential.

C Empirically discriminating between Adoption Ra-

tio and Usage History

We here show characteristic footprints in the distribution of sAR and sUH for the perturbed
dynamics that can be used to empirically discriminate which process is at work (as long
as x∗ = 0.5 is currently not the observed fixed point and sUH has no absorbing states in
the unperturbed process). We analyze the behavior of sAR and sUH around an interior
fixed point x∗ of the dynamic. We shall study the distribution of sAR and sUH conditional
on remaining in the basin of attraction of x∗.

Distribution of sAR. Suppose that ε is fixed to a value greater than zero. Note that
within a basin of attraction a player’s best response remains constant. Then a player’s
action, when activated to revise, is picked independently of the other players’ actions.
Given his response function fi, he plays his best response with probability 1 − ε

2
and

the other action with probability ε
2
(Bernoulli trial). That is, p · x∗ players play 1 with

probability fi = 1− ε/2 and 0 otherwise, and p · (1−x∗) players play 1 with probability
fi = ε/2 and 0 otherwise. We thus have for sAR:

sAR ∼ 1

p

 ∑
i∈P :fi=1−ε/2

B(1, 1− ε

2
) +

∑
i∈P :fi=ε/2

B(1,
ε

2
)

 (26)

∼ 1

p

(
p · x∗ ·B(1, 1− ε

2
) + p · (1− x∗) ·B(1,

ε

2
)
)

(27)

∼ 1

p

(
B(p · x∗, 1− ε

2
) +B(p · (1− x∗),

ε

2
)
)

(28)

where Equation (28) holds since the sum of iid binomials is again binomial with the same
parameter. As shown by Butler and Stephens (1993) there is no closed form for the
distribution of a sum of binomials with different parameters, but they derive a recursive
formula. In particular for the reduced form in Equation (26) of two binomials one easily
finds for the mean of sAR:

E(sAR) = x∗ · (1− ε

2
) + (1− x∗) · ε

2
(29)

= x∗ + (1− 2x∗) · ε
2

(30)

and for the variance of sAR:

V ar(sAR) = x∗ · (1− ε

2
) · ε

2
+ (1− x∗) · ε

2
· (1− ε

2
) (31)

=
ε

2
· (1− ε

2
) (32)
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Distribution of sUH. As before, within a basin of attraction a player’s best response
remains constant. Since we consider the case where the unperturbed process has no
absorbing states we can assume that ε = 0. Then the next action (by the player activated
in the next period) is given by a binomial distribution with parameter x∗ (since players
best respond with probability 1). The intuition, that sUH follows the sum of k binomial
distributions with parameter x∗ is wrong, since the order of occurrence matters and thus
sUH(t) is correlated with sUH(t+i) for all i = 1, . . . , k−1. By considering non-overlapping
windows of length k we can recover independence and thus have that for j = 1, 2, 3, . . .
sUH(k · j) are independent Bernoulli trials with parameter x∗. Thus sUH(k · t) is binomial
distributed with parameter x∗ and one finds for the mean of sUH :

E[sUH(k · t)] = x∗ (33)

and for the variance of sUH :

V ar(sUH(k · t)) = x∗ · (1− x∗) (34)

To summarize sAR is not binomially distributed (for x∗ ̸= 0.5) and sUH is binomially
distributed. Further the variances of the two processes are, in general, different. Thus we
can employ standard statistical tests to identify which process, Adoption Ratio or Usage
History, is underlying a given sample of the aggregate observation data. Note that it
is not necessary to have any additional information, in particular it is not necessary to
know the players’ thresholds or order of activation. The first test we can use is whether
the observed data is binomially distributed. If this yields a statistically significant result
we are done. But if ε is very small it may be that the result of this test is not statistically
significant. Then a second test can be used. The variance of Usage History is dependent
on the fixed point (that is the mean) and we can therefore use this fact to discriminate
between the two processes. In particular, if the fixed point is not too close to all − m
or all − d we can use this test. Finally, if data of the behavior around two fixed points
is available a third test can be performed. For Adoption Ratio the variance is the same
around all fixed points whereas the variance for Usage History differs around each fixed
point.
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