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Abstract

Previous genome-wide studies have reported South Asian (SA) ancestry in several Main-

land Southeast Asian (MSEA) populations; however, additional details concerning popula-

tion history, in particular the role of sex-specific aspects of the SA admixture in MSEA

populations can be addressed with uniparental markers. Here, we generated*2.3 mB

sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-

speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA)

genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai

(SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a

and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island

Southeast Asia and Oceania, suggesting interactions between MSEA and these regions.

SA prevalent mtDNA haplogroups were observed at frequencies of ~35–45% in the South-

ern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA)

speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent

haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed pub-

lished data from other MSEA populations and observed SA ancestry in some additional

MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-

speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the

opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and

sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental

markers can add to studies of genome-wide variation.
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Introduction

Located on the Malay Peninsula, Southern Thailand shares borders with Central Thailand to

the North, the Andaman Sea to the West, the Gulf of Thailand to the East and Malaysia to the

South. Most southern Thai people speak languages belonging to the Tai-Kadai (TK) and Aus-

tronesian (AN) language families. The KhonTai (TK) and ThaiMalay (AN) account for ~66%

and 33% of the population, respectively, whereas the Maniq, one of the minor groups in the

region, speak an Austroasiatic (AA) language. Maniq is one of the indigenous peoples of

Southeast Asia (SEA) and probably descend from mid-Holocene hunter-gatherers [1–3], since

they carry ancient genetic lineages [4, 5]. Overall, there is evidence of a long history of human

occupation of Southern Thailand [6], as attested by the diversification of population subsis-

tence patterns, cultural artifacts of Paleolithic hunter-gatherers associated with the Hòabı̀nhian

archaeological tradition dated to ~27–38 thousand years ago (kya) [7], and human remains at

Moh Khiew Cave in the Krabi Province (dated to ~26–8 kya) [8–10].

As in other areas of SEA, the shift from hunter-gatherer to farming lifestyles in the Malay

Peninsula probably happened during the Neolithic Period ~5–4 kya [11, 12]. An admixed

genetic portrait between the deeply diverged East Eurasian lineage and East Asians was pro-

posed for Neolithic people who had genetic connections with some contemporary SEA AA-

speaking populations [2, 13]. Therefore, AA languages probably were predominant in Main-

land Southeast Asia (MSEA) during the Neolithic Period, and subsequently fragmented due to

the influence of later expansions during the Bronze/Iron Age ~2.5–2 kya that are associated

with present-day TK and AN speakers. In addition to migrations from East Asia (EA) to

MSEA, vestiges of interactions between South Asia (SA) and MSEA are also found during the

late Bronze Age to Iron Age [11]. Maritime trade networks stretched from China through SEA

to India and the Mediterranean region, which allowed SEA people to adopt technological

knowledge and culture from both China and India [11, 14].

Previous genome-wide studies found evidence of SA genetic ancestry in several present-day

MSEA population [15, 16]. The SA ancestry in these populations ranged from 25% to 30% and

dated to*500 to 750 ya in one study [15], while another study estimated SA admixture pro-

portions ranging from ~4% to 12% and dates between ~450 to 1,600 [16]. Additional insights

into SA ancestry in SEA could come from analyses of the paternally-inherited male-specific

portions of the Y chromosome (MSY) and the maternally-inherited mitochondrial (mt) DNA

genome. These markers are able to reconstruct different aspects of the genetic history than

obtained from genome-wide data, especially sex-biased admixture, which frequently occurs in

human populations [17–20]. Contrasting patterns of MSY and mtDNA variation were

reported previously in some MSEA populations, especially the highlanders in Thailand and

Vietnam [21–25], and shown to be influenced mainly by postmarital residence patterns (i.e.,

matrilocality vs. patrilocality), genetic drift, and admixture with lowlanders.

Previous MSY and mtDNA studies reported the presence of haplogroups frequent in SA in

some Thai populations, e.g., mtDNA haplogroups W3a1b, M30 and M45 in central Thais and

Mon [26, 27] and MSY haplogroups R1a1 in Khmer, J2a in Nyahkur and J and R in Mon [23].

However, the role of sex-biased admixture related to SA ancestry in MSEA has not been stud-

ied, and moreover only a few groups from Southern Thailand have been investigated for

mtDNA and MSY variation [5, 28, 29]. Here, we generated new data, consisting of complete

mtDNA genome sequences from TK- and AN-speaking southern Thai populations, and *2.3

mB of MSY sequences from the southern Thai_TK. We explored maternally and paternally

genetic lineages and genetic relationships between southern Thais and other SA/SEA popula-

tions (Fig 1). We investigated SA genetic contribution in our newly-generated southern Thai
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populations as well as in published data from MSEA, and we find heterogeneity in SA admix-

ture and sex-biased admixture in MSEA populations.

Materials and methods

Samples

The 46 genomic DNA samples (23 for southern Thai_TK and 23 for southern Thai_AN) were

from previous studies [15, 30]. For southern Thai_TK, there are 20 males and 3 females but all

23 southern Thai_AN donors are females. Samples were recruited during November 2019.

Sample donors were unrelated for at least two generations and provided buccal samples with

written informed consent, after the goals of the study were explained and all questions

answered. The rights and identity of all donors have been protected during the entire process

of this research, according to guidelines and regulations based on the protocol on human sub-

jects which was approved by the Khon Kaen University Ethic Committee (Protocol No.

HE622223). Genomic DNAs were extracted using the Gentra Puregene Buccal Cell Kit (Qia-

gen, Germany) according to the manufacturer’s instructions.

Fig 1. Map showing the locations of 88 populations from Southeast and South Asia that were analyzed for mtDNA (74 populations) and MSY (55

populations) variation. The map was generated using the Quantum GIS, QGIS Development Team (2023), QGIS Geographic Information System. Open

Source Geospatial Foundation (https://www.qgis.org) and boundaries were adapted and modified from https://public.opendatasoft.com/explore/dataset/

worldadministrative-boundaries/export/.

https://doi.org/10.1371/journal.pone.0291547.g001
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Sequencing

On December 2019, genomic libraries with double indices were prepared and enriched for

mtDNA as described previously [31, 32]. The libraries were sequenced on an Illumina Hiseq

2500 and mtDNA consensus sequences obtained as described by previous study [19] with

minor modifications. Bustard was used for Illumina standard base calling with 76 bp for read

length. Sequences were then manually checked and manipulated with Bioedit (www.mbio.

ncsu.edu/BioEdit/bioedit.html). The sequence alignment to the Reconstructed Sapiens Refer-

ence Sequence (RSRS) [33] was done by MAFFT 7.271 [34].

The same genomic libraries for 20 male samples of southernThai_TK were enriched for

*2.3 mB of the MSY via in-solution hybridization-capture using a previously designed probe

set [5, 23] and the Agilent Sure Select system (Agilent, CA). Sequencing was carried out on the

Illumina HiSeq 2500 platform with paired-end reads of 125-bp length. Bustard was used for

Illumina standard base calling, and leeHOM was used to trim Illumina adapters and merge

completely overlapping paired sequences [35]. Then, deML was used to demultiplex the

pooled sequencing data [36]. The alignment and post-processing pipeline of the sequencing

data was carried out as previously described [5].

Statistical analysis

The newly-generated 46 mtDNA sequences (S1 Table) were combined with 3,169 sequences

from 72 populations from SA and SEA to obtain a broader picture of population relationships

[24, 26, 37–47] for a total of 3,215 sequences belonging to 74 populations (S2 Table). Apart

from these 74 populations, another published 31 sequences of haplogroup Q3 and 71

sequences of haplogroup E1a1a1 from SEA and Near Oceania were included in the median-

joining network [48] of haplogroup Q3 [49–54] (S3 Table) and E1a1a1 [37, 55–57] (S4 Table).

The network was constructed with Network 10.2 (www.fluxus-engineering.com) without pre-

and post-processing steps, and all nucleotide position were weighted equally. For MSY, com-

bining the 20 new sequences of southern Thai_TK from this study (S5 Table) with 1,674

sequences from previous studies [23–25, 58–60] brings the total to 1,694 sequences from 55

populations (S6 Table). For mtDNA, haplogroup assignment was performed by Haplogrep

[61] with PhyloTree mtDNA tree Build 17 (http://www.phylotree.org) [62]. The mixture pro-

portions of mtDNA samples and most likely detected mitochondrial haplogroups for each

sample were estimated and identified by mixEMT software [63].

Using yHaplo [64], MSY haplogroups were assigned to the maximum depth possible given

the phylogeny of the ISOGG Y-DNA Haplogroup Tree 2015 (http://www.isogg.org/) and the

available genetic markers in our target region. Summary statistics of the genetic diversity

within populations and the matrix of pairwise genetic distances (Fst) were obtained with Arle-

quin 3.5.1.3 [65]. To visualize population relatedness, the R package (R Development Core

Team 2016) [66] was used to carry out nonparametric MDS analysis (based on the Fst distance

matrices for the MSY and mtDNA and using R function: isoMDS package: MASS) and to con-

struct heat plots of the Fst distance matrix and the matrix of shared haplotypes (R function:

ape, pegas, adegenet and ggplot2 packages). STATISTICA 13.0 (StatSoft, Inc., USA) was

used to carry out a correspondence analysis (CA) based on MSY and mtDNA haplogroup

frequencies.

Admix 2.0 was used to estimate admixture proportions [67, 68]. We used a simple admix-

ture model consisting of two parental groups: East and Southeast Asian (ESEA) and South

Asian (SA) (S2 and S6 Tables). Several analyses using 12 and 8 different parameters for

mtDNA and MSY, respectively, i.e., admixture times (2000, 1000, 500, and 0 ya) and mutation
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rates (0, 1.67 x 10−8 and 2.67 x 10−8 for mtDNA and 0 and 8.71 x 10−10 for MSY) were per-

formed (S7 Table) [69–71], with 10,000 bootstrap replicates.

To construct Bayesian skyline plots (BSP) per population, based on Bayesian Markov Chain

Monte Carlo (MCMC) analyses, we used BEAST 1.8.4 [72]. BEAST input files were created

with BEAUTi v1.8.2 after first running jModel test 2.1.7 in order to choose the most suitable

model of sequence evolution [73]. For mtDNA, we executed BSP analyses per population with

mutation rates of 1.708 × 10−8 and 9.883 × 10−8 for data partitioned between the coding and

noncoding regions, respectively [69]. For the MSY, we used an MSY mutation rate of

8.71 × 10−10 substitutions/bp/year [71], and the BEAST input files were modified by an in-

house script to add in the invariant sites found in our data set. Both strict and log normal

relaxed clock models were run, with marginal likelihood estimation [74, 75]. After each

BEAST run, the Bayes factor was computed from the log marginal likelihood of both models

to choose the best-fitting BSP tree. Tracer 1.6 was used to generate the BSP plot from the

BEAST results.

Results

Genetic diversity

We generated 46 complete mtDNA sequences from two populations, southernThai_TK and

southernThai_AN, with mean coverage ranging from 788x to 4022x (overall average coverage

2346x) (S1 Table). There were no missing sites in any of the sequences, and an analysis for

sample mixtures did not detect any evidence of multiple sequences in any sample. Compared

to other populations in Thailand and elsewhere in Asia (S2 Table), high genetic diversity values

for both populations were observed: haplotype diversity (h) = 1.00 for both southernThai_TK

and southern Thai_AN, mean number of pairwise difference (MPD) = 36.9 for south-

ernThai_TK and 34.7 for southern Thai_AN, Tajima’s D values = -2.18 (P< 0.01) for south-

ernThai_TK and -1.99 (P< 0.01) for southern Thai_AN. Both the high genetic diversities and

the significantly negative Tajima’s D values suggest recent maternal expansions in these two

groups.

The mean coverage for the 20 new MSY sequences, for the SouthernThai_TK, ranges from

11.42x to 22.62x (overall average coverage 15.87x) (S5 Table). Genetic diversity values

(h = 1.00, MPD = 98.8) indicate high genetic variation within this population compared to

other Thai and SA/SEA populations (S6 Table). The Tajima’s D value of -2.04 (P< 0.01) also

indicates a recent history of paternal population expansion.

Genetic lineages

We assigned haplogroups as prevalent in SEA/EA (found at high frequency in SEA/EA and

absent or nearly so in SA, e.g. B, F, M7, R*, and R9), prevalent in SA (e.g. M*(xM7), M8, M9

and M12), or other (found at low frequency in either or both regions, e.g. G, M12, and N*) (S1

Fig). Among a total of 22 mtDNA haplogroups detected in southernThai_TK, there were

39.13% SEA/EA prevalent haplogroups (B4a1a, F1a1a, F1f, M7b1a1 (+16192), M7c1a3,

R9c1b1) and 43.48% prevalent in SA (M3c1a, M17, M21b, M21b2, M22a, M24a, M26, M38,

M50, M77); other haplogroups, accounted for 17.39% (N, N8, M12a2, R11b1 and R11’B6)

(S1 Fig, S8 Table). For the 18 haplogroups in southernThai_AN, SEA/EA prevalent hap-

logroups (B4c1b2a2, B4c2, B5a1a, F1a1a1, F1f, M7c1c3) had a frequency of 39.13%; SA preva-

lent haplogroups (M17c, M21a, M24a, M50a, M51b, M72a and M74b2) accounted for 34.78%,

and other haplogroups (M12a, N9a6a, N22, Q3, E1a1a1) occurred with frequency 26.09%

(S1 Fig, S8 Table).
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Interestingly, there is one SouthernThai_AN individual with mtDNA haplogroup Q3,

which has never been reported in MSEA populations. We retrieved mtDNA genomes of hap-

logroup Q3 from previous studies [49–54] and constructed a median-joining network to inves-

tigate the mtDNA relationships within Q3. The SouthernThai_AN Q3 sequence differed from

all others but was closest to a sequence from East Timor (differing by 3 substitutions) and both

sequences were more distantly related to a sequence from an individual belonging to the non-

Austronesian-speaking Oro group from Papua New Guinea (S2 Fig). In addition, haplogroup

E1a1a1, which has not been reported in any other Thai populations, was observed in South-

ernThai_AN. The network constructed from mtDNA genomes of haplogroup E1a1a1 from

previous studies [37, 55–57, 76] showed a star-like structure that reflected lineage expansion of

this haplogroup. All E1a1a1 sequences branch off from the central haplotype, which is present

in individuals from the Philippines, and carry only a few distinct mutations (1 to 2), with the

exception of some haplotypes from Taiwan and one from Indonesia that are separated by four

to five mutations from the central node (S3 Fig).

In other MSEA groups, SA prevalent haplogroups were in very high frequency (greater

than 60%) in Burmese, three AN populations from Vietnam (Rhade, Jarai, Cham1) and Cam-

bodian Khmer_C1, while all southern Thais, almost all Mon groups (except Mon_N), Nyah-

kur, Suay, and two populations from Cambodia (KhmerLeou and AA_C) exhibited

moderately high levels of SA prevalent haplogroups (30–60%) (S4 Fig). All central Thai groups,

Mon_N, Thai Khmer (Khmer_T), and Cambodian Khmer (Khmer_C2) had percentages of

SA prevalent haplogroups ranging from 15–30%. The Correspondence Analysis (CA) based

on haplogroup frequencies further illustrates these results, as the Burmese, Khmer_C1, Rhade,

Jarai, and Cham1 are positioned closest to SA populations, and in general the MSEA AA-

speaking populations were closer to SA populations than other SEA/EA language groups; the

southern Thai_TK, differ notably from other TK groups in being closer to SA groups (S5 Fig).

There were 19 MSY haplogroups among the 20 newly generated sequences from the South-

ernThai_TK; the SEA/EA prevalent haplogroups O1 and O2 (O1a1a1a1a, O1b1a1a, O1b1a2a1,

O1b1a2b1, O2a1c1a1a1, O2a1c1a7, O2a2a1a2a1a, O2a2b1a1a3a, O2b1a) were the most fre-

quent at 40% (S6 Fig, S5 Table). SA prevalent haplogroups, identified as belonging to H*, J*,
L*, and R* (H1a1d2, L1a, R, R1a1a1b and R1a1a1b2a1b) had a frequency of 35%, and another

25% were other haplogroups (C, C2e2a1, Q1a2, K and N1c2) (S6 Fig, S9 Table). When other

MSEA were included, in contrast to mtDNA, the CA analysis based on MSY haplogroup fre-

quencies indicated that TK groups (including the SouthernThai_TK) were closer to the SA

populations than AA groups (other than the Mon) (S7 Fig). This contrasting pattern was also

observed in the AN-speaking Vietnamese groups. Specifically, SouthernThai_TK, the Cen-

tralThai_N, Mon_C and Mon_W had high percentages of SA prevalent haplogroups (greater

than 30%) while Rhade, Jarai, Suay, Khmer, Mon_NE and Nyahkur exhibited frequencies

lower than 15% (S8 Fig).

Genetic relationships among populations

Shared haplotypes within populations indicate smaller population size due to relatedness

among individuals, whereas shared haplotypes between populations could reflect recent shared

ancestry or contact. We observe some shared mtDNA haplotypes within the southernThai_AN

but not in southernThai_TK, but some sharing between southernThai_TK and Khmer from

Cambodia (Khmer_C2) (Fig 2a). No SA group shared mtDNA haplotypes with SEA/EA

groups (Fig 2a).

Genetic relationships between populations can be inferred by measuring genetic distances.

Pairwise Fst genetic distances based on mtDNA showed no significant differences between the
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Fig 2. Frequency of shared mtDNA (a) and MSY (b) haplotypes within and between populations. The font color of

the population name indicates language family and the colored bar at the top indicates geographic region; the heat plot

shows the frequency of shared types according to the key on the right. The new populations analyzed in this study are

indicated by stars.

https://doi.org/10.1371/journal.pone.0291547.g002
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two southern Thai populations, and between these and several other populations, such as

Mon_C, all central Thais and Shan from Thailand, Cham1, Hani, Thai and Kinh from Viet-

nam, Cambodian KhmerLeou, southern Chinese Han, and Laotian populations, as shown in

Fig 3a. In general, SA populations exhibited smaller genetic distances among them and larger

genetic distances to most populations from SEA. However, southern Thais, central Thais,

Mon, Burmese, Cambodian, and AN-speaking Rhade, Jarai, and Cham from Vietnam showed

smaller distances to SA groups than to other SEA populations (Fig 3a).

Interestingly, AN-speaking Amis and Atayal were genetically different from AN-speaking

groups from Vietnam and also from other SEA populations (Fig 3a). A multidimensional scal-

ing (MDS) plot was employed to visualize further genetic relationships based on the Fst dis-

tance matrix. The MDS plots based on three dimensions indicates genetic separation between

SA and SEA/EA populations with some SEA populations, i.e., southern Thais, some central

Thais and Mon groups in Thailand, Burmese, Cambodians and Cham1, Jarai and Rhade from

Vietnam between these two clusters, suggesting an admixed genetic structure (Fig 4a and 4b).

For the MSY, southernThai_TK shared haplotypes with centralThai_E, Lao Isan and AA-

speaking Blang from northern Thailand (Fig 2b). In general, we observed more shared haplo-

types between AA- and TK-speaking groups in Thailand than between any other groups. SA

populations shared more haplotypes among themselves than with SEA groups; only IndianTe-

lugu shared haplotypes with centralThai_C. The heat plot of Fst genetic distances also supports

non-significant differences between southernThai_TK and all central Thai populations (Fig

3b). In contrast to mtDNA, the southernThai_TK also exhibit genetic similarity with almost all

Mon populations, except Northeastern Thai Mon (Mon_NE), and two South Asian popula-

tions. The SA populations showed genetic similarities among themselves and all of them

differed significantly from SEA populations (except the two SA populations with the south-

ernThai_TK, as noted above). The MDS plots based on Fst values show genetic heterogeneity

of SEA Sino-Tibetan-speaking populations; they are also differentiated from a cloud of SA

populations and a cloud of other SEA populations. The southernThai_TK, some Mon and cen-

tral Thai populations, Burmese, Phula, Vietnamese Lahu and Thai Lahu are positioned closer

to the SA cloud than are other SEA populations (Fig 5a and 5b). In contrast to the mtDNA

results, Jarai and Rhade had more affinity with SEA AA-speaking groups than with SA groups.

The overall results from the genetic distance analyses indicate a contrasting pattern between

maternal and paternal lineages in some SEA populations. For example, SouthernThai_TK,

CentralThai_N, Nyahkur, and Mon_C tend to show paternal genetic relationships closer to SA

than do the maternal lineages in these groups (Fig 5), while Rhade, Jarai, and Mon_NE showed

the opposite pattern (Fig 4).

Genetic contribution of South Asian to Southeast Asian populations

The results based on genetic lineages and genetic distance analyses indicate that southern

Thais and several MSEA populations exhibit genetic relatedness to both SEA and SA popula-

tions, with some exhibiting contrasting mtDNA vs. MSY patterns, e.g. Mon, Nyahkur, Central

Thai, Khmer, Burmese, Cham, Jarai and Rhade. All results support SA genetic influences in

those groups that are consistent with genome-wide studies [15, 16]. Assuming that these

results are indeed indicative of admixture, we then used a model-based approach to estimate

the proportion of SA and SEA ancestry in these admixed groups. We used a simple admixture

model consisting of two parental groups, East and Southeast Asian (ESEA) and South Asian

(SA) (S2 and S6 Tables), using the coalescent-based method implemented in Admix 2.0 [67,

68]. The ESEA parental groups were chosen based on the SA admixture results from

previous studies, which reported no significant SA-related components [15, 16] and based on
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Fig 3. Heat plot of Fst values based on mtDNA (a) and MSY (b) haplotypes. The “*”symbol indicatesFst values that

are not significantly different from zero (P> 0.05). See legend of Fig 2 for other details.

https://doi.org/10.1371/journal.pone.0291547.g003
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Fig 4. The three-dimensional MDS plot based on the Fst distance matrix of 74 populations for mtDNA. The stress value is 0.1196.

https://doi.org/10.1371/journal.pone.0291547.g004
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Fig 5. The three-dimensional MDS plot based on theFst distance matrix of 55 populations for MSY sequences. The stress value is 0.1095.

https://doi.org/10.1371/journal.pone.0291547.g005
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haplogroup distributions ESEA surrogates harbor very few SA lineages and SA source has very

few (if any) ESEA lineages (S4 and S8 Figs). According to historical records and archaeological

evidence as well as recent ancient DNA studies [77], the interaction between SA and MSEA

started at most 2 kya; we therefore considered admixture times starting 2 kya. We performed

several analyses using different parameters, i.e., admixture times (2000, 1000, 500, and 0 ya)

and mutation rates (0, 1.67 x 10−8 and 2.67 x 10−8 for mtDNA and 0 and 8.71 x 10−10 for MSY)

(S7 Table) [69–71]. Because admixture results were consistent in all analyses (S10 and S11

Tables), we consider admixture results at 2,000 years since the admixture event occurred with

mutation rates of 1.67 x 10−8 for mtDNA and 8.71 x 10−10 for the MSY.

The maternal contribution from SA to SEA was highest in Burmese (61.4%), Rhade

(50.0%), and Jarai (49.3%), while levels of SA ancestry in SouthernThai_TK, South-

ernThai_AN, Mon_C, CentralThai_N, AA_C and Vietnamese Cham1 ranged from ~15–30%.

Other populations showed SA contributions lower than 15%, and no SA contribution was

detected in Khmer_C2, Cham2, Nyahkur and Mon_W (Fig 6a). For the MSY (Fig 6b), Bur-

mese and SouthernThai_TK had the highest estimated SA ancestry (59.4% and 54.32%) while

Mon_W had 38.83% SA-related ancestry. Mon_N, Mon_C, Nyahkur, and all Central Thai

populations exhibited SA admixture ranging from ~15% to ~30%. The Jarai, Rhade and

Mon_NE had low levels of SA admixture (~2–10%) while Suay and Khmer showed no detect-

able SA admixture. As discussed in more detail below, we thus find contrasting patterns of

Fig 6. Pie charts of South Asian ancestry in Southeast Asian populations. (a) mtDNA, 22 populations; (b) MSY, 15 populations. The map was generated

using the Quantum GIS, QGIS Development Team (2023), QGIS Geographic Information System. Open Source Geospatial Foundation (https://www.qgis.

org) and was not taken from another source. and boundaries were adapted and modified from https://public.opendatasoft.com/explore/dataset/

worldadministrative-boundaries/export/.

https://doi.org/10.1371/journal.pone.0291547.g006
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mtDNA vs MSY SA admixture in practically all populations, except for Burmese, who have the

highest level of SA ancestry for both markers.

The effective population size change over time

The Bayesian skyline plots (BSPs) of population size change (Ne) over time based on mtDNA

exhibit similar patterns for both Southern Thai populations newly sequenced here: Ne

increased from 45 kya to 30 kya and then was stable until the present day (Fig 7a and 7b). For

the MSY, the Ne of SouthernThai_TK increased from 25 kya until ~7.5 kya, and then remained

constant until a slight increase is observed at ~2.5 kya (Fig 7c). The pattern of mtDNA Ne of

Southern Thai groups is similar to other Central Thai populations [27], whereas the MSY Ne of

southernThai_TK was unique in that no reduction in population size was detected throughout

their demographic history, while for all TK groups a population size decline was observed

between ~5–2.5 kya [23]. However, the size increase in SouthernThai_TK ~3–2 kya, is charac-

teristic of other TK populations [23].

Discussion

Previous studies based on autosomal markers revealed unique aspects of southern Thai

populations compared to other Thai populations; in particular, the presence of South

Fig 7. The BSPs based on mtDNA for the SouthernThai_TK (a) and SouthernThai_AN (b), and based on MSY for the SouthernThai_TK (c). Blue

lines are the median estimated effective population size (y axis) through time from the present in years (x axis). The 95% highest posterior density limits are

indicated by light grey shading.

https://doi.org/10.1371/journal.pone.0291547.g007
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Asian–associated ancestry [15]. Although sex-biased admixture of the human populations can

be revealed by genomic data based on comparing X chromosomal and autosomal variation

[78–80], there are some limitations of using genome-wide data to infer sex-biased admixture,

e.g. when there is an extremely low ancestry proportion, low number of X chromosomal SNPs,

and potential differences in ascertainment bias between the X chromosomal and autosomal

SNPs on a genotyping array [78]. Studies of mtDNA and MSY variation provide a direct

assessment of sex-biased admixture, and moreover these uniparental markers can also provide

additional information on specific or new genetic lineages. Here, we analyze new complete

mtDNA genomes and*2.3 mB of the MSY in two southern Thai populations to reveal genetic

lineages, demographic changes and their genetic structure based on sequencing data, and we

additionally analyze sex-biased admixture involving South Asian ancestry in several other

MSEA populations, including two southern Thai groups, that have evidence of South Asian

ancestry in genome-wide data [15, 16].

While all of the MSY lineages found in our study have been found previously in MSEA, we

did find two novel mtDNA haplogroups, E1a1a1 and Q3, in SouthernThai_AN; these two hap-

logroups have not been reported in MSEA. Haplogroup Q3 is particularly interesting, as the

origin of haplogroup Q and sublineages has been placed in Northern Sahul (highland and

coastal New Guinea and Near Oceania) [54], and it has not been reported previously from

MSEA or western ISEA. The network of haplogroup Q3 sequences showed that the most

closely related sequence to the southernThai_AN Q3 sequence comes from East Timor (S2

Fig). A recent study of ancient DNA from Wallacea found evidence for contact between

MSEA and the Nusa Tenggara Islands of southern Wallacea (which include East Timor) [81];

while it is tempting to speculate that the Q3 sequence may also reflect such contact, it could

also reflect other episodes of contact, as the Timor area was suggested to be a secondary

pathway that modern humans used to travel between Sundaland and Sahul after initial coloni-

zation [82].

Haplogroup E1a1a1 that is abundant in Taiwan and ISEA [37, 83]. The network of hap-

logroup E1a1a1 sequences showed a star-like structure (S3 Fig), suggesting lineage expansion

of E1a1a1 in the ISEA that is probably associated with the spread of Austronesian languages.

In addition, some of the SEA/EA mtDNA haplogroups in Southern Thais, e.g., B4a1a and

M7c1c3 are present elsewhere mainly in aboriginal Taiwanese and ISEA populations [84]. The

sharing of these recent sublineages indicates contact between MSEA and ISEA, which has not

been observed previously from Thai/Lao mtDNA data [23, 24, 26]. However, the AN-speaking

southern Thai from this study exhibited closer genetic relatedness to MSEA populations than

to the AN-speaking Amis and Atayal from Taiwan (Fig 3a). While the AN-speaking Cham

populations from Vietnam and Cambodia are similar to SouthernThai_AN in their relation-

ships with other populations (Fig 3a), the AN-speaking Jarai and Rhade from Vietnam exhibit

a distinct maternal genetic structure. The ancestors of AN and TK groups were thought to

originate in Southeast China ~6–5 kya and then they split. TK ancestors moved southward to

MSEA whereas AN ancestors entered Taiwan and spread out of Taiwan to ISEA ~4–3 kya,

thus Taiwan is likely the original home for AN groups [37, 85, 86]. Previous mtDNA studies of

AN speaking Cham, Jarai and Rhade suggested that cultural diffusion played an important

role in shaping the genetic structure of those groups [25, 38, 39], while a genome-wide study

supported both migration and cultural diffusion [87]. Here, we suggest that the Southern

Thai_AN language was introduced largely by cultural diffusion, but the mtDNA haplogroup

profile does indicate some links with AN-speaking people from ISEA or alternatively, the

southernThai_AN might reflect a migration of AN speakers to southern Thailand, followed by

extensive admixture with local populations.
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Interactions between SA and MSEA probably occurred since the late Bronze Age to Iron

Age and influenced the formation of early states or civilizations, e.g. Pyu, Funan, Champa,

Dvaravati, and Langkasuka [11, 14]; a recent ancient DNA study documented a high genetic

contribution (~40–50%) from South Asia in prehistoric people who lived during the early

period of Funan, one of the earliest states in MSEA in present-day Cambodia [77]. The later

expansion of Indian culture in SEA might further be continued through the historical period

by the activity of additional Indian immigrants [88], which could affect the overall demo-

graphic structure of MSEA populations. Previous genetic dating of the SA admixture in most

present-day MSEA populations ranged during the historical period from ~400 to ~800 ya [15,

16] with the older dates in Nyahkur, Khmer, Jarai and Rhade [16]; these results support signifi-

cant historical South Asian interaction in MSEA. Although both autosomal DNA studies of

ancient samples and present-day people provided new information on the level of SA admix-

ture in MSEA population and admixture dates that started since the Iron Age through the

historical period, sex-specific demographic histories are more difficult to explore with autoso-

mal SNPs.

Several analyses based on haplogroup frequency (S4–S8 Figs), and genetic distance (Figs 3–

5) indicated the SA ancestry in several Thai and MSEA populations for both mtDNA and

MSY. Admixture analysis based on model-based estimates also supported SA proportions in

these MSEA populations (S10 and S11 Tables) with heterogeneous patterns of sex-biased

admixtures that were detected among groups (Fig 6). We find less sex-biased admixture in

Burmese and they have high SA proportions (~60%) for both mtDNA and MSY (Fig 6). Myan-

mar shares a border with India to the West, which would allow multiple migrations and pro-

mote substantial gene flow. The other MSEA groups exhibited stronger sex-biased admixtures.

In general, based on mtDNA, almost all of the AA- and AN- speaking groups are genetically

closer to SA than TK groups, and the SouthernThai_TK was notably different from Cen-

tralThai groups in being closer to SA groups (Fig 4, S4 and S5 Figs). The AA-speaking

Mon_W is an exception since they have no mtDNA SA ancestry but elevated MSY SA ancestry

(~40%) (S10 Table). SA admixture in Mon would have resulted from Mon-Burmese interac-

tions. Mon, Burmese and Karen have been reported to share a mutation in the G6PD gene

[89], which supports their close genetic affinities.

However, there are heterogenous sex-biased admixture patterns among Mon populations

in Thailand. Historically, multiple (at least nine) migrations of the Mon groups from Myanmar

to Thailand occurred during the 16th to 19th centuries A.D. [90, 91]; different spatial and tem-

poral migrations could promote various interactions between either Mon and TK groups or

new Mon and old settled Mon groups, which then led to heterogenous sex-biased admixture

patterns and contrasting maternal and paternal genetic variation [17, 24, 25].

Interestingly, the AN-speaking groups in Vietnam (e.g. Jarai and Rhade) also exhibited a

strong sex-biased SA admixture pattern. The Jarai and Rhade showed almost 50% SA maternal

ancestry, but less than 10% SA paternal ancestry (Fig 6 and S10 and S11 Tables). Jarai and

Rhade live in the highland area and are matrilocal, but some sources indicate a previous con-

nection with Cham, the neighboring lowland population in Vietnam [92]. This connection is

also supported by the results from a recent genome-wide data analysis [87]. There is evidence

that the ancestors of Vietnamese AN groups might have had matrilineal societies [93] and

might have interacted with each other and also with other MSEA groups, e.g., Khmer, Jarai

and Rhade probably received SA components from other lowland populations and subse-

quently other factors, e.g., residence pattern (matrilocal in this case) could have influenced pat-

terns of genetic variation.

In conclusion, we have expanded the study of high-resolution mtDNA and MSY

sequences in MSEA with new data from Southern Thai populations, although a limitation
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of our study is that the sample sizes are relatively small. However, the overall agreement with

previous studies suggests that our results are indeed representative of Southern Thais. We

explored additional insights into the genetic histories of MSEA populations; the mtDNA hap-

logroups E1a1a1, Q3, B4a1a and M7c1c3 that were found in Southern Thai populations

reflect MSEA and ISEA connections. Both southern Thai populations exhibited close genetic

relatedness with AA-speaking Mon and Central Thais, and SA ancestry was one of the shared

characteristics. Consistent with previous autosomal DNA studies, evidence of SA ancestry

was found in some Thai and other MSEA groups based on analyses of specific lineages, hap-

logroup frequencies, and genetic distance analyses. The model-based estimates of admixture

proportions confirm these results for both mtDNA and MSY. However, patterns of sex-

biased admixture vary greatly among groups. Burmese show little sex bias and have elevated

SA ancestries for both mtDNA and MSY and this probably reflects their close position to

India. The other groups exhibit strong sex bias–for example, Jarai and Rhade in Vietnam,

which exhibit more SA mtDNA than MSY ancestry, probably influenced by population inter-

actions and cultural practices. In sum, new mtDNA genetic lineages (e.g., Q3 and E1a1a1)

and evidence for sex-biased South Asian admixture in several MSEA populations from our

study support the usefulness of high-resolution uni-parental markers to reconstruct aspects

of the genetic history of populations that have not been previously revealed by autosomal

markers.
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