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Abstract—Air quality Low cost sensors (LCSs)
are cheap and can map extensive areas. They
alert people about pollution spikes in smart city
buildings (schools, universities, hospitals . . . ) or
industrial areas. Before using them for a specified
task, they must be calibrated to give accurate
readings, i.e. they must be aligned with a mea-
sure based on a reference machine. Unfortunately,
classic calibration is limited by interferences with
other pollutants or can be affected by atmosphere
constants in the case of uncontrolled environments.
This paper proposes a calibration solution based on
artificial neural networks (ANN).

Index Terms—Calibration, LCS, air pollutant,
regression, neural networks, SVR.

I. Introduction

Pollutant LCSs are used everywhere, at any time;
most are not resistant to critical situations, e.g. en-
vironment changes, instability outside lab conditions,
temperature, humidity, . . . [1]. Two sensors from the
same manufacturer could have different readings and
behaviors (slightly similar but still different). Hys-
teresis and time drift also affect sensor responses,
which requires permanent calibration. It is not the
case for reference instruments: their measurements are
accurate and provide real-time data. However, their
high cost remains a barrier to their use for daily tasks.

Calibration is here to rectify the LCSs response
concerning the reference machine response. For this
purpose, the reference instrument recording the (sup-
posedly accurate) pollutant’s concentration provides
the actual concentration value. The response of the
sensor to calibrate shall fit the reference value.

‡A CIFRE grant from ANRT supports A. Souani, number
2020/1127.

This work is not about pollutant concentration
forecasting but a calibration task.

Current pollutant sensor calibration methods usu-
ally make two assumptions : (i) The output of the sen-
sor is linearly related to the reference measurement.
(ii) The environmental conditions are under control.

Sensors may interfere with other pollutants (e.g.
O3 with NO2) or with temperature and (relative)
humidity. The most common approach to consider
interferences is linear regression (see Tab. I).

Mijling et al. [2] and Spinelle [3] propose to calibrate
simultaneously NO2 and O3 sensors. Pollutant sensor
responses are not necessarily linear, even if it is current
practice. In addition, these models are corrupted with
electronic noise.

Table I: Some multivariate linear calibration models
in the case of interferences [3], [4]. RS is the reference
measurement, a, b, c, d, e and βℓi, ℓ = 0, . . . , 3 are
parameters, T and H are temperature and humidity
respectively, and O3 is the ozone concentration.

Sensor name Multivariate linear model

NO2B4 NO2 = RS − bO3 − cT − dH − e

a

PMS5003 PMx = RS − β2iT − β3iH − β0i

β1i

Machine learning algorithms have been proposed
to improve the performance of air quality monitoring
sensors. Zimmerman et al. [5], and Malings [6], for
instance, explored and compared multivariate linear
regression (MLR), random forest (RF), and support
vector regressor (SVR).

Calibration data selection, collinearity, non-
normality, non-selectivity, and non-linearity are the



main calibration difficulties. For instance, coefficient
estimates of collinear independent variables would
be susceptible to the change in the model, even for
a tiny change. Collinearity will inflate the variance
and standard error of coefficient estimates. This, in
turn, will reduce the reliability of our model (see
Draper [7]). The variable selection can fix collinearity
issues by (a) Excluding variables that have high
variance inflation factor (VIF) value (see section
III-B) from our regression model. (b) Reducing the
input space dimensionality (with PCA for instance).

In the following, the efficiency of the neural network
calibration strategy is demonstrated on an accurate
dataset, introduced in section II. Section III presents
the methodology, and section IV compares several
models. A short conclusion concludes this work.

Notations: In this paper, small Latin letters a, b, . . .
represent integers. Small bold letters a, b are put
for vectors, and capital letters A, B for matrices or
tensors, depending on the context. The dot product
between two vectors is denoted < a, b >. We de-
note by ∥a∥ = √

< a, a >, the ℓ2 norm of a vector.
X1, . . . , Xn are variates, x1, . . . , xn observations. A hat̂will denote empirical estimates of model parameters.

II. Data
A. Experimental setup

This paper will focus on calibrating the pollutant
PM2.5 (particle matters under 2.5µm). The indoor
calibration needs completely controlled and very sta-
ble environmental conditions. We have prepared an
experimental setup to capture high-quality data for
PM2.5, which may vary and interfere with the out-
side climate changes. Kumar [8] has proven that in-
situ calibration is more interesting than performing
only the lab tests. Our setup was conducted using
12 different ECOMESURE optical partical counters
(OPCs) to capture PM2.5 concentrations1, alongside
with the reference machine 1405 TEOM which is a
precise continuous ambient particulate monitor that
can only measure one pollutant (see Tab. II).

Each PM measurement is accompanied by temper-
ature and relative humidity measures. 45-day data
were collected from May 30th to July 14th, 2022. It
totalizes 58,887 measures.

1The 12 sensors can also measure PM
1

and PM
10

.

Table II: PM measurement devices used in the cam-
paign.

Device Pollutant Freq. (Hz)
™ECOMESURE OPC PMx

a 0.016
1405 TEOM PM2.5 0.00027

aIncludes PM
1
, PM

2.5
, PM

10

The reference machine gives concentration levels
based on a 1-hour average. Hence, our procedure also
considers the averaged measurements of PM2.5 on one
hour.

Figure 1: The experimental setup containing the 12
sensors (framed by green) and reference instrument
measurement (sampling PM2.5 framed by red).

III. Methods
A. Calibration model description

Suppose we have a set of calibration data with a
rapid measurement vector x = (x1, . . . , xd)T and a
reference measurement y taken on each N sample.
xi, i = 1, . . . , d are independent variables.

Multivariate calibration can usually not be han-
dled by multi-linear regression based on the ordi-
nary least square (OLS) regression because of near-
multicollinearity among the variables in the matrix
X. When the variables are multicollinear, the matrix
XT X is singular, and the OLS solution becomes not
unique.

1) Multivariate linear regression: the target value y
is expected to be a linear combination of the features
x, i.e. ŷ = x+T w, where x+ and w are vectors of size
(d + 1) to include the bias. The estimated parameter
vector is ŵ = arg minw ∥x+T w − y∥2

2.



However, when (XT X)−1 is nearly singular, w be-
comes sensitive to errors, resulting in overfitting. We
can avoid it by giving a penalty to w. This gives birth
to ridge, lasso, and elastic-net regression.

2) Long-short term memory: Hochreiter et al. [9]
introduced a particular memory cell capable of retain-
ing information for long periods. The long-short term
memory (LSTM) can read and write to its memory.
More importantly, this memory never goes through an
activation function. This effectively combats the trail-
ing gradient problem [10] and makes the formation of
this pattern very stable.

The original LSTM works with a series of input
signals xt. It has a so-called hidden state ht and cell
state ct of the same size as xt. The cell state ct is the
model’s memory. The hidden state ht is the model’s
prediction of xt.

The LSTM equations are defined by the following
set of matrix equations;

A = ht∥1xt (1)
f t = σ(Wf A + bf ) (2)
it = σ(WiA + bi) (3)
ot = σ(WOA + bO) (4)
dt = tanh(WdA + bd) (5)

ct+1 = f t ◦ ct + it ◦ dt (6)
ht+1 = ot ◦ tanh (ct+1) (7)

where ∥1 is the concatenation operator, ◦ is put for
the Hadamar product, σ is the logistic function, W
are weight matrices, and b biases. The basic idea is
that the model takes the input xt and the previous
prediction of the current input ht , updates its internal
memory ct to ct+1 and then makes a new prediction
ht+1 based on ct+1, ht and xt.

3) Support vector regressor: uses the same principle
as SVM for regression problems [11]. We have the
following objective for regression

min
w,b

1
2

∥w∥2+C
d∑

i=1
ξi s.t. |yT

i −w+T x)| ≤ ϵ−ξi, (8)

where ξi ≥ 0, i = 1, . . . , d is the observation distance
from their correct decision boundary. the SVR tries
to fit the best line within a threshold value, the ϵ-
tube. Support vectors are data points closer to the
hyperplane that influence the position and orientation
of the hyperplane.

4) Shallow networks: can be viewed as misspecified
nonlinear regression models simply taking the regres-
sion function as the output of a multi-layer perceptron
(MLP). It concatenates 2 mappings: the first maps the
data xt into a regression vector ϕt = ϕ(xt) of fixed
dimension, the second mapping, parameterized with θ
maps the regression vector ϕt onto the output yt:

yt = f(ϕt, θ), t = 1, . . . , N. (9)

A useful choice of ϕ(xt) could be ϕt = (x(t−∆t), x(t−
2∆t), . . . , x(t − k∆t))T where k sets the observation
horizon and ∆t is the sampling period. The esti-
mation problem’s complexity depends on the model
structure’s character f(·), usually chosen as a known
continuous function on a compact θ of Euclidean
space.

The choice of approximation for the mapping f(·)
is called the model selection.

The parameter vector θ is estimated by minimizing
the least mean square error (LMSE):

L2(y, ŷ) = 1
2N

N∑
i=1

∥yi − ŷi∥2. (10)

which measures the quality of the approximation on
the training set. L2 is convex but returns large values
when outliers are present.

The non-linear functions in the hidden and the
output layers can be chosen as sigmoid or ReLU func-
tions, the latter being given by ReLU(x) = max(0, x).
The parameters in the network are the weights that
connect two consecutive layers.

Data normalization is mandatory when learning
with shallow networks. This normalization considers
the observations as normally distributed random vari-
ables with zero mean and diagonal covariance matrix.
If X is the data matrix (observations in rows, variables
in columns), then:

X̃ = Σ−1/2(X − 1µT ) (11)

where 1 is a N−vector of 1, µ,Σ resp. the mean vector
and the variance-covariance of the data, calculated
from Σ = (X − 1x̄T )T (X − 1x̄T )/(N − 1).

Simulations were realized using Pytorch optimizer
Adam2 which was first introduced in [12].

2ADAM=Adaptive Moment Estimation.



B. Variable selection

The data are issued from reference and non-
calibrated pollutant sensors. Both provide time series.
To remove collinearity, we can exclude independent
variables with high VIF values from our regression
model, which, for the variable i, is written:

V IFi = 1/(1 − R2
i ), (12)

with R2
i is the squared correlation coefficient between

x(i) and the regression predictor x̂i. The VIF directly
measures how much the variance of each coefficient is
inflated as compared to a situation with uncorrelated
explication variables.

The variable selection method results in a stable
and reliable calibration equation based on the less
multicollinear variables. Many methods have been
reported in the literature to select useful variables
[13], such as, for instance, the discrete auto-correlation
function Γxx:

Γxx(τ) =
∑T

i=τ+1(x(i) − x)(x(i − τ) − x)/(T − τ)∑T
i=1(x(i) − x)2/T

, (13)

where T in the time horizon, x is the sample mean of
x, x(t−τ) =

∑T
i=τ+1 x(t−τ)/(T −τ), τ is the discrete

time-lag, can help with evaluating lag variables (see
Fig. 2). The closer neighboring data observations are
to each other, the higher degree of correlation they
have.

Figure 2: Half auto-correlation function for PM2.5

signal.

To exclude the strongly linearly related data, the
Pearson correlation coefficient between pairs of vari-
ables is calculated and presented in a matrix format
Fig. 3. PM1, PM2.5 and PM10 are highly correlated

Figure 3: Correlation matrix of the different available
variables.

(r >0.95), excluding the option taking all these vari-
ables as input variables for neural network calibration.

Algorithm 1 proposes to select the lagged variables
used in the model. Suppose we have already deter-
mined a series of p lag periods t1, t2, . . . , tp. To add a
new lag period, tp+1 is chosen such that xt−tp+1 have a
high degree of correlation to xt while a low degree of
correlation to xt−t1 , xt−t2 , . . . . Algorithm 1 details how
to obtain a series of lag periods with these objectives
in mind.

Algorithm 1: Time lag determination.
Result: a series of lag periods
initialization: Set upper limit of lag period N .
Let t1 = 1 and p = 1;

Γxx(k) given in Eq. (13)
while tp < N do

tp+1 = argk max
( |ΓXX(k)|∑p

i=1 |ΓXX(k) − ti|

)
,

k = tp + 1, tp + 2, . . . , N ;
p = p + 1;

end

The approach is data-driven in that there is no
a priori assumption about the models for the time
series under study. It is beneficial for many practical
problems because it is often easier to have data than
to have good theoretical guesses about the underly-
ing laws governing the systems from which data are
generated.

Several tests were proposed in the literature for



choosing the number of input variables: for feed-
forward networks, the explainable variables (in our
case, temperature and humidity) are duplicated in
as many as the primary measure. For example, if we
choose to have p inputs for PM2.5, the perfect fit is to
have p coinciding inputs of temperature and p inputs
of humidity.

C. Data preparation
This consists of the following steps:

1) Choose the size of the entries of the model.
2) Generate the N × (d + 1) data matrix M from

the original time-series. Each line is an observa-
tion. Mathematically, M0 = (m1, . . . , mN )T , and
mk = (xk, . . . , xk+d−1).

3) Normalize the variables (standardization).
4) Shuffle the previous observations all together with

a random permutation {σ(1), . . . , σ(N)}. Hence,
M1 = (mσ(1) , . . . , mσ(N))T keep them in memory
to recuperate the right order of the signal when-
ever we want.

5) Split then the data into training, validation, and
test sets.

Note that the generalization of this process to more
than one time series (i.e. several pollutants) is trivial.

D. Criterion that should be used for comparing models
To compare two losses with the same number p of

variables, it is generally reasonable to compare the
residual sum of squares (RSS) or R2 – the smaller
the value, the better the fit. The RSS is the average
measure of the goodness of fit of the line to the data to
get a predicted value ŷi: RSS=

∑N
i=1 ∥yi − ŷi∥2. The

best loss with p + 1 variable is usually smaller than
the best one with p. So using RSS inevitably leads to
a model with too many variables, but not necessarily
to improved predictions.

For models with various numbers of parameters, it is
not. Mallow proposes to penalize additional variables
by using Cp [14], which is defined by:

Cp = RSS
σ̂2 + 2p − N, (14)

where σ̂2 estimates the corrected residual variance
of the model, p is the number of variables. Cp is a
particular case of the Akaike Information Criterion,
which may be used for choosing between statistical
models in a more general setting. Good models will
give small values of Cp [15]. Mallows has suggested

that good models have a Cp value close to p. F-tests
are also often used for comparing models of different
sizes; if one of the models is a sub-model of the other
[7].

R-squared (also known as the coefficient of determi-
nation) is a statistical measure of how close the data
fit the regression line:

R2 = SSE
SST

= SST − RSS
SST

= 1 −
∑N

i=1(Ŷi − Ȳ )2∑N
i=1(Yi − Ȳ )2

, (15)

where SST, the total variance, is the sum of the
variance explained by the regression SSE and the
mean of the squares of the residuals RSS. In the case
of the perfect fit, R2 = 1.

The mean absolute error (MAE) measures the av-
erage of the absolute values of the differences between
predicted and reference measurement:

MAE(Y, Ŷ ) = 1
N

N∑
i=1

|Yi − Ŷi|. (16)

A traditional grid search for hyperparameters tune-
up was pursued to find the best SVR that fits into
training data. The best kernel found and used for this
study is radial basis functions (RBFs) for the best
SVR.

IV. Results

The models used in this section are described in
section III. Table III summarizes the model’s archi-
tecture. For instance, the 3-25-25-1 ANNs means
3 input variables, 2 hidden layers composed each of
25 neurons, and a single output neuron with a linear
activation function. As for LSTM, the components are
LSTM cells. A summary of the number of estimated
parameters is also given in Tab. III to compare the
models’ complexity.

PM2.5, temperature and humidity feed the MLR,
SVR, MLP Model1 and LSTM. But MLP-2 takes 9
inputs (3 of each PM2.5, temperature, and humidity).
These 3 inputs were chosen with a lag computed from
the auto-correlation function in Fig 2).

To test the performance of the proposed calibration
models, they were applied to the testing data never
seen during the training.

Fig 4 shows the calibration marks on four different
instances from the test set. MLR remains the weakest
model studied as it does not include the various re-
lationships of the feature space. The other algorithms



Table III: Model’s structure for calibration with at-
mospheric conditions.

Models Structure # of params Inp. var

MLR ND 4 3

MLP 1 3-25-25-1 800 3

MLP 2 9-25-25-1 950 9

LSTM 1 3-25-25-1 8,226 3

LSTM 2 9-25-25-1 8,826 9

Table IV: Error metrics for calibration results.

Model | Scores MSE MAE R2

MLR 7.46 2.73 0.53

SVR 1.78 0.76 0.89

MLP 1 3.53 1.44 0.77

MLP 2 1.42 0.90 0.91

LSTM 1 1.98 1.04 0.88

LSTM 2 1.47 0.91 0.91

have comparable results that can be discerned by the
metrics values, detailed in Tab. IV. The reference
signal of PM2.5 is too fluctuating, and the sensor’s
response is not learned at all standards (otherwise,
the R2 score will be 1). This also happens when the
training data is not well sampled or not sufficient to
contain all the needed information.

We should consider that even if results are good
for a model, some technical constraints can not be
valid every time in a deployability aim. The MLP2
has good performances but needs a 50-hour horizon,
i.e. {x(t − 3000), x(t1000), x(t)} (time expressed in
minutes). The SVR shall be better in these conditions,
even if it does not outperform in this study. LSTM
should be considered as the potential main algorithm
for learning the sensor’s historical dependence on time,
which is not the case for other models. Its response
strongly follows the reference time series under the
presented time intervals. Furthermore, some artifacts
are seen in Fig. 4. They are due to a lack of learning
time, as we did not train it for the needed number of
epochs.

One may also consider hybrid models, as proposed
by Zimmerman et al. [5], to overcome too much
complexity in "simple" cases.

V. Conclusion

This study demonstrates that ANNss and SVRs
are many better-calibrating sensors than multivariate
linear models due to their non-linearities. However,
there are still some issues to be addressed, the effects
of which can be seen in the result figures. In the
majority of our experiments, the peak amplitudes
are underestimated, the prediction of which could be
improved by developing new metrics with constraints
on high amplitudes.

How to choose suitable models? The data structure,
including the choice of inputs and lags,requires many
observations. Sampling could reduce the complexity
of the system. Another amelioration to consider is the
design of LSTM architectures: LSTM has almost the
same results as MLP with many more parameters.
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