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Abstract: Much of convolutional neural network (CNN)’s success lies in translation invariance. The other part resides
in the fact that thanks to a judicious choice of architecture, the network is able to make decisions taking into
account the whole image. This work provides an alternative way to extend the pooling function, we named
rank-order pooling, capable of extracting texture descriptors from images. The rank-order pooling layers are
non parametric, independent of the geometric arrangement or sizes of the image regions, and can therefore
better tolerate rotations. Rank-order pooling functions produce images capable of emphasizing low/high fre-
quencies, contours, etc. We shows rank-order pooling leads to CNN models which can optimally exploit
information from their receptive field.

1 Introduction

Convolutional neural network (CNN) architecture is
augmented by multi-resolution (pyramidal) structures
which come from the idea that the network needs to
see different levels of (resolutions) to produce good
results. A CNN stacks four different processing lay-
ers: convolution, pooling, ReLU and fully-connected
[Goodfellow et al., 2016].

Placed between two convolutional layers, the
pooling layer receives several input feature maps.
Pooling (i) reduces the number of parameters in the
model (subsampling) and computations in the net-
work while preserving their important characteristics
(ii) improves the efficiency of the network (iii) avoids
over-learning.

Thus, the pooling layer makes the network less
sensitive to the position of features: the fact that an
object is a little higher or lower, or even that it has a
slightly different orientation should not cause a radi-
cal change in the classification of the image.

The max-pooling function, for example, down-
samples the input representation (image, hidden layer
output matrix, etc.), reducing its dimensionality.

Weaknesses of pooling functions are well iden-
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tified [Yu et al., 2014]: (i) they do not preserve all
spatial information (ii) the maximum chosen by the
max-pooling in the pixel grid is not the true maximum
(iii) average pooling assumes a single mode with a
single centroı̈d. The question is how (optimally) to
take into account the characteristics of the (input im-
age) regions being pooled into the pooling operation?
Part of the answer lies in the work of Lazebnik’s who
demonstrated the importance of the spatial structure
of pooling neighborhoods [Lazebnik et al., 2006]: in-
deed, local spatial variations of image pixel intensities
(called textures in popular image processing) char-
acterize an “organized area phenomenon” [Haralick,
1979] which cannot be captured in pooling layers.

This paper proposes a new pooling operation, in-
dependent of the geometric arrangement or sizes of
image regions, and can therefore better tolerate ro-
tations. It is based on the Savage definition of rank
order [Savage, 1956] and also simple to implement.

Notations

Throughout this paper small Latin letters a,b, . . . rep-
resent integers. Small bold letters a,b are put for
vectors and capital letters A,B for matrices or ten-
sor depending of the context. The dot product be-
tween two vectors is denoted < a,b >. We denote by
∥a∥ =√< a,a >, the ℓ2 norm of a vector. X1, . . . ,Xn
are non ordered variates, x1, . . . ,xn non ordered ob-
servations. ”Ordered statistics” means either p(1) ≤
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Figure 1: Example of 3×3 image neighborhood (P = 8 and R = 1).

. . .≤ p(n) (ordered variates) and p(1) ≤ . . .≤ p(n) (or-
dered observations). The extreme order statistics are
p(1) = min{x1,x2 . . . ,xn}, p(n) = max{x1,x2, . . . ,xn}.
The sample range is p(n)− p(1). The p(i) are neces-
sarily dependent because of the inequality relations
among them.

Definition 1 (Savage [Savage, 1956]). The rank order
corresponding to the n distinct numbers x1, . . . ,xn is
the vector r = (r1, . . . ,rn)

T where ri is the number of
x j’s≤ xi and i ̸= j.

The rank order r is always unambiguously defined
as a permutation of the first n integers.

2 Texture coding

Most of image descriptors that encode local patterns
e.g. local binary patterns (LBP) (and its variants)
[Pietikinen et al., 2011, Ojala et al., 1996] depend on
(i) the size of the neighborhood (ii) the reading order
of the neighbors (iii) and the mathematical function
used to calculate the characteristic distance between
neighboring pixels. The new pixel value LP,R in the
image is an integer in the range of 0 to 255 (for a 8-bit
encoding) given by:

LR(P) =
P−1

∑
p=0

2p · t(gp−gc),with t(x) =

{
1 if x≥ 0
0 otherwise

,

(1)
where P counts the number of pixels in the neighbor-
hood (not including the central pixel), considering the
distance R between central pixel gc and the neighbor-
ing pixels {gp|p = 0, . . . ,P−1}. In Eq. 1, LBP com-
putes a pixel value from a 8−bit string from the 3×3
neighborhood by computing the Heaviside function
t(·) of the difference between the neighboring pixels
and the central pixel, (gi−gc) (see Fig. 1).

LBP-like texture descriptors have evolved into al-
most all areas of computer vision, because of their
robustness to monotonic gray-scale changes, illumi-
nation invariance and computational simplicity. In-
variance w.r.t. any monotone transformation of the
gray scale is obtained by considering in (1) the signs
of the differences t(gi− gc), i = 0, . . . ,P− 1. But the
independence of gc and {|g0 − gc|, . . . , |gP−1 − gc|}
is not guaranteed in practice. Moreover, under cer-
tain circumstances, LBP misses the local structure

as it does not consider the central pixel. The bi-
nary data produced by these descriptors are sensi-
tive to noise mainly in uniform regions although [Tan
and Triggs, 2007] have proposed a ternary encoding
g ∈ {−1,0,1} to reduce this noise sensitivity.

In the next section, an algorithm is proposed to
generate rank-order importance (ROI) image which
could be used in contour detection, segmentation or
image quantization.

3 Rank Order statistical model

Let A = {a1,a2, . . . ,an} be a set of alternatives, can-
didates, etc. with cardinality |A|= n and let V be a set
of voters, with |V |= m.

Each voter/judge k is assumed to have a
weak order or ranking r(k) of the alternatives
a1,a2, . . . ,an represented by a vector of integers r(k) =
(r(k)1 ,r(k)2 , . . . ,r(k)n )T , where r(k)1 ,r(k)2 , . . . represent the
rank of the alternatives.

The data are collected in a (n×m) table R= {r(k)i }
(see Figure 2.a). R represents either the ranking of the
n candidates assigned by the m voters as a total order,
i.e. r(k)i ̸= r(k)i′ , ∀i′ ̸= i [Brüggemann and Patil, 2011],
either the ranking of the n candidates in the form such
that a voter can give ex-aequo positions.

For ease of writing, in the following, rik = r(k)i .
The rank-aggregation problem consists in finding

a order ranking r∗ given by a virtual judge minimi-
zing the disagreement of the m judges’opinions,i.e.

r∗ = argmin
r

m

∑
k=1

d(r,r(k)), s.t. r ∈ Sn, (2)

where Sn is the symmetric group of the n! permuta-
tions [Benson, 2016] and the metric d : Sn×Sn→R+

is a distance function chosen a priori.
Eq. (2) defines a nonlinear optimization program

whose solution r∗ is the distribution of ranks that
could have been attributed to these n candidates by
a virtual voter V resuming the points of view of the
m voters [Yadav and Kumar, 2015]. One could also
stand the dual problem of the previous one, i.e. : is
there a distribution of ratings/values that could have
been attributed by the m voters to a virtual alternatives
a?



v(1), v(2), . . . , v(k) . . . , v(m) a1 a2 . . . a j . . . an
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(a) Total-order ranking matrix. (b) Permutation matrix for criterion k ∈ {1, . . . ,m}.
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a1
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...
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p(k)i j

Figure 2: Matrices used with disagreement distance resolution.

The first problem is linked to the idea of aggregat-
ing of points of view, the second to the idea of sum-
marizing behaviors.

3.1 Explicit resolution

The optimization problem consists to find a consen-
sus distribution of ranks r given by an unknown vir-
tual voter v minimizing the discordance of opinions
between the m voters, minimizing

m

∑
k=1

d(r,r(k)). (3)

The result will be a permutation from Sn. The dis-
tance d(r(k),r(k′)) between the ranking of voter k and
the ranking of voter k′ can be chosen for instance as
the disagreement distance ∑

n
i=1 sgn |rik− rik′ |, the dis-

tance of rank absolute deviation ∑
n
i=1 |rik − rik′ |, the

Euclidean distance between the ranks ∑
n
i=1(rik−rik′)

2

or the Condorcet distance ∑i ∑ j |p
(k)
i j − p(k

′)
i j | (Fig.

2.b), with p(k)i j = 1i< j where 1 denotes the indica-

tor matrix for which p(k)i j = 1 if the rank of the al-
ternative ai is less than the alternative a j and 0 oth-
erwise [Gehrlein and Lepelley, 2011]. The choice of
these metrics are motivated by a range of properties:
(a) they have an intuitive and plausible interpretation
as a number of pairwise choices. They provide the
best possible description of the process of ranking
items as performed by a human (b) their high rele-
vance due to their widespread use (c) they count rather
than measure (d) provide very good concordance in-
dicator. [Vigneron and Tomazeli Duarte, 2018] pro-
posed an explicit resolution method with linear pro-
gramming.

3.2 Euclidean distance (Spearman
distance)

When looking for the optimal consensus r∗ of m
voters who attributed the votes r(1),r(2), . . . ,r(m) to
the n candidates {a1,a2, . . . ,an}, we minimize the
Euclidean distance defined by ∑

m
k=1 ∑

n
i=1(r

∗
i − rik)

2,
where ri denotes the rank of the ith candidate. Note
that r∈ Sn, with Sn the symmetric group of the n! per-
mutations [Diaconis, 1988]. Hence the constraint r∗ ∈
Sn. The permutation r can be represented for a voter
k by a permutation matrix P(k) = {p(k)i j }n

i, j=1, p(k)i j ∈
{0,1}, with p(k)i j = 1 if the candidate i is positioned in
place j for the k−th voter as pictured in Figure 2.b.
Hence we can rewrite the constraint r∗ ∈ Sn as

n

∑
j=1

pi j =
n

∑
i=1

pi j = 1,∀i, j (4)

Example 1 (Condorcet rank-order coding). For in-
stance, the 4th column of matrix R below becomes
matrix P(4):

R=


5
3
2
4
1

−→P(4)=


0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0


We will show that replacing r with the matrix P

leads to an optimization function linear in pi j which
can be set as follows:

min
r

(
∑
i j

∑
k

c(k)i j pi j

)
, s.t.

n

∑
j=1

pi j =
n

∑
i=1

pi j = 1,∀i, j,

(5)
where ∑k c(k)i j corresponds to the affectation cost of the
candidate i in place j for all the voters; a cost which



depends of the metric and that is calculated in the fol-
lowing.

As r∗i = ∑
n
j=1 jpi j, the Euclidean function be-

comes
m

∑
k=1

n

∑
i=1

(
n

∑
j=1

jpi j− rik)
2 =

m

∑
k=1

n

∑
i=1

(
n

∑
j=1

( j− rik)
2 pi j). (6)

Hence the minimization problem is equivalent to:

min
P

(
n

∑
i=1

n

∑
j=1

φi j pi j

)
s.t. φi j =

n

∑
j=1

( j− rik)
2, (7)

n

∑
i=1

pi j =
n

∑
j=1

pi j = 1, and pi j ∈ {0,1}, (8)

where φi j is the cost of attribution alternative ai in
position j.

If the rk are total orders in Eq. (7), Eq. 6 can be
simplified in:

m

∑
k=1

n

∑
i=1

(r2
i −2ririk + r2

ik) =
m

∑
k=1

n

∑
i=1

(r2
i + r2

ik)︸ ︷︷ ︸
2p× sum of n first
integers

−
n

∑
i=1

(ri

m

∑
k=1

rik).

(9)
As ∑

n
j=1 rik = pri·, where ri· is the mean rank of the

alternative i on the m rankings and as ri = ∑ j jpi j, Eq.
(9) becomes

2p
n(n+1)(2n+1)

6
−2p

n

∑
i=1

n

∑
j=1

jri·pi j. (10)

Minimize rank Spearman distance remains to maxi-
mize the term ∑

n
i=1 ∑

n
j=1 jri·pi j under the usual con-

straints of P(k) being a permutation matrix. Finding
the optimal permutation p∗i j consists to affect to the
alternative ai to the rank j the nearest as possible to
ri· in the Euclidean sense.

3.3 Rank absolute deviation distance

The problem of finding the virtual voter in the case
of the rank absolute deviation distance ∑

n
i=1 |rik− rik′ |

can be posed as the optimization problem

min
r∗∈Sn

(
m

∑
k=1

n

∑
i=1
|r∗i − rik|

)
, (11)

with the notations r∗i = ∑
n
j=1 jpi j, under the con-

straints ∑
n
j=1 pi j = 1, pi j ∈ {0,1}. The absolute

value in Eq. 11 can be rewriten as∣∣∣∣∣ n

∑
j=1

jpi j− rik

∣∣∣∣∣ =
∣∣∣∑n

j=1( j− rik)pi j

∣∣∣
= ∑

n
j=1 | j− rik| pi j. (12)

If we note φi j = ∑
n
j=1 | j− rik| the attribution cost

of alternative ai in position j, the minimization of the
consensus function for r∗ ∈ Sn consists to solve the
following linear program

min
P

(
n

∑
i=1

n

∑
j=1

φi j pi j

)
s.t. φi j =

n

∑
j=1
| j− rik| , (13)

n

∑
i=1

pi j =
n

∑
j=1

pi j = 1, and pi j ∈ {0,1}. (14)

4 Rank-order importance
components

4.1 Importance ranking

Several strategies have been proposed in the literature
to extract important variables or develop parsimo-
nious models and deal with the dimensionality. The
dimension of observed data geing generally higher
than their intrinsic dimension, it is theoretically pos-
sible to reduce the dimension without loosing infor-
mation.

Among the unsupervised tools, principal compo-
nent analysis (PCA) or factor analysis (FA) are cer-
tainly the most used techniques to optimize the under-
standing insight into of a data set. They aim to project
the data onto a lower dimensional subspace in which
axes are constructed either by maximizing the vari-
ance of the projected data or by explaining the overall
covariance structure.

PCA and FA are both linear tools. This means that
nonlinear dependencies are not taken into account.

The question is simply: can we extract a set of the
most decorrelated rank-order variables to each other
capable of capturing distinct information? The overall
framework for this objective suggests a rank-order de-
composition. The principle remains remarkably sim-
ple: it consists into a re-distributive effect of the rank
variables – similar to PCA – on a Hilbert space by
linear programming.

Lemma 1 (Vigneron and Duarte [Vigneron and
Duarte, 2017]). Consider a collection of rank-orders
R = {r1,r2, . . . ,rm} (data). It is always possible to
extract a total rank-order component gℓ with a mini-
mal distance to the data {r1,r2, . . . ,rm} and simulta-
neously with the maximal distance to the collection of
previously calculated ranks {g1, . . . ,gℓ−1}.

At stage ℓ, the search of the ℓth total order gℓ is
represented by the n× ℓ matrix Z(ℓ) = {z1, . . . ,zℓ}. In
the case of the rank absolute deviation distance (de-
veloped in section 3.3) the rank-order decomposition



reduced to solve the following linear program

max
Z(ℓ)

(
n

∑
i=1

n

∑
j=1

φi jz
(ℓ)
i j −

n

∑
i=1

n

∑
j=1

βi jz
(ℓ)
i j

)
s.t. zii = 0, z(ℓ)i j + z(ℓ)ji − z(ℓ)ik ≤ 1, i ̸= j ̸= k,

z(ℓ)i j ∈ {0,1}. (15)

where

φi j =
n

∑
j=1
| j− rik| , (16)

and

βi j =
ℓ−1

∑
k=1

z(k)i j , z(ℓ)i j + z(ℓ)ji = 1, i < j,

Algorithm 1 stops when ℓ = m and pro-
vide {g1, . . . ,gm} rank-order vectors such that gℓ
is the most decorrelated to the previous ranks
{g1, . . . ,gℓ−1}. Until now, on the contrary to PCA,
there is no index capable of indicating the quantity of
information captured by each vector gℓ.

In the algorithm 1, LP is put for the optimal reso-
lution of the linear program Eq. 15.

Algorithm 1 Rank-order decomposition Algorithm.

Require: P(1), . . . ,P(m) ← {r1,r2, . . . ,rm}
{Permutation matrices P(k) = {p(k)i j }}∨ stack
A = /0 {contain the re-ranked components}

Ensure: {g1, . . . ,gm} {Postcondition}
1: for ℓ= 1 to m do
2: Compute φi j = ∑

n
j=1 | j− rik|,

3: Compute βi j = ∑
ℓ−1
k=1 z(k)i j

4: Ψ = {φi j},B = {βi j}
5: LP(Ψ,B,Z(ℓ)) under constraints (15) {solve

linear program}
6: gℓ← zℓ
7: end for
8: return {g1,g2, . . . ,gm}

4.2 Experimental setup

Example 2 (Top 10 french companies CAC 40). The
composition of the CAC 40 index is based on the rank-
ing on the top 100 companies. By way of illustra-
tion, Table 1 shows the data matrix R = {r(k)i } formed
with the ranking often company names are listed and
ranked according to 4 criteria: turnover induced by
innovation (TII), size (SIZ), level of capitalization on
the knowledge transferred (CAP), impact of R& D
collaborations (IMP) [Vigneron and Petit, 2008].

Company BOURSORAMA ranks
turnover size capital impact

TOTAL 1 4 3 10
LOREAL 2 2 1 2
SANOFI 3 1 2 1
LVMH 4 6 4 3
BNP PARIBAS 5 5 7 5
DANONE 6 3 6 4
AXA 7 8 5 6
VINCI 8 7 8 9
AIRBUS 9 10 10 8
ORANGE 10 9 9 7

Table 1: Ten CAC 40 company rankings according to 4 cri-
teria:turnover induced by innovation (TII), size (SIZ), level
of capitalization on the knowledge transferred (CAP), im-
pact of R& D collaborations (IMP).

Table 3 shows two full order ranking consensus,
proposed by a virtual judge, minimising the disagree-
ments between the voters (criteria).

Company aggregated ranks
Spearman (Eq. 7) rank abs. dev. (Eq. 13)

TOTAL 3 3
LOREAL 2 2
SANOFI 1 1
LVMH 4 4
BNP PARIBAS 5 6
DANONE 6 5
AXA 7 7
VINCI 8 8
AIRBUS 10 10
ORANGE 9 9

Table 2: Left: Ten CAC 40 company rankings according to
4 criteria: innovation induced turnover, size, level of cap-
italization on transferred knowledge, impact of R& D col-
laborations. Right: The two proposed ranking using dis-
agreement and Condorcet distances.

For instance, in the case of dD, the companies are
ranked this way: ➀ SANOFI ➁ LOREAL ➂ TOTAL ➃

LVMH ➄ BNP PARIBAS ➅ DANONE ➆ AXA ➇ VINCI ➈

ORANGE ➉ AIRBUS.
The 2 rankings are concordant except for items 5

and 6. Applying Algorithm 1 to table 1 gives the rank
decomposition proposed in table 3 in which the first
column is more important or explanatory that the sec-
ond one, itself more explanatory that the third, etc.

Company Rank-order decomposition
comp 1 comp 2 comp 3 comp4

TOTAL 4 5 6 5
LOREAL 1 3 1 4
SANOFI 2 2 2 2
LVMH 3 6 3 7
BNP PARIBAS 6 1 10 1
DANONE 5 4 7 3
AXA 7 7 5 9
VINCI 8 8 8 8
AIRBUS 10 9 9 6
ORANGE 9 10 4 10

Table 3: Rank order of the 4 first principal components of
ten CAC-40 companies obtained using algorithm 1.



Proof of orthogonality can be checked with pair-
wise Kendall’s rank correlation coefficients between
the columns of table 3:

K(2) =

1.0 0.5556 0.5556 0.3333
1.0 0.1111 0.4478

1.0 −0.1111
1.0


all lower than the Kendall’s coefficients1 of the rank
matrix in table 1:

K(1) =

1.0 0.6000 0.7333 0.3778
1.0 0.6889 0.5111

1.0 0.4667
1.0


The Kendall correlations τi j between two columns

i and j will be high when observations have a similar
(or identical for a correlation of 1) rank (i.e. relative
position label of the observations within the variable:
1st, 2nd, 3rd, etc.) between the two variables, and
low when observations have a dissimilar (or fully dif-
ferent for a correlation of -1) rank between the two
variables.

So the CAC data were indeed reordered to be the
more uncorrelated as possible, as expected.

Example 3 (Application of ROI to textured image).
Consider now the neighborhood of a pixel ’p’ in a
image I, i.e. the set of pixels that touch it. The neigh-
borhood of a pixel can have a maximum of 8 pixels as
shown in Fig. 3a. The colored pixels in Fig. 3b are
8-connected to p.

For instance, the 4×4 image I in Fig. 4a. can be
decomposed using the 8-connectivity into the 16×8
matrix R = {r1,r2, . . . ,r8} (Fig. 4b where r1 denotes
the column of pixel 1 (clock-wise ordering), r2 de-
notes the column of pixel 2, and so on. The same prin-
ciple as for LBP is mimic, but with the transformation
given in Eq. (15). The 8 neighbors around the central
pixel can be seen as ”voters” from whom we expect a
total rank-order.

1The Kendall’s coefficient is a statistic used to measure
the ordinal association between two measured quantities.
As the correlation coefficient value goes towards 0, the re-
lationship between the two variables will be weaker.

LBP weights
1 2 3
8 4
7 6 5

(a) Neighbor pix-
els ordering.

(b) The orange pixels form the neighborhood of the
pixel ’p’.

Figure 3

1 2 3 4
1 4 8 20 18
2 17 12 17 17
3 6 1 17 17
4 4 6 5 14

(a) 4×4 image I.

center
pixel

r0 r1 r2 r3 r4 r5 r6 r7

12 4 8 20 17 17 1 6 17
17 8 20 18 17 17 17 1 6
1 17 12 17 17 5 6 4 6
17 12 17 17 17 14 5 6 1

(b) 8-connectivity matrix R.

center
pixel

r0 r1 r2 r3 r4 r5 r6 r7

12 1 1 4 1 4 1 3 4
17 1 4 3 2 3 4 1 3
1 4 2 2 3 1 3 2 2
17 3 3 1 4 2 2 4 1

(c) Rank matrix R.

Figure 4

The 8-connectivity matrix R is transformed into
ranks by simple ordering on which we can apply algo-
rithm 1. Concerning on peripheral pixels, the spatial
area is enlarged by adding borders of zeros. In gen-
eral, if our image is of size n× n, and we examine a
neighborhood of f × f , then the size of the resulting
output is (n− f +1)× (n− f +1). With n = 4, f = 3,



indeed, this gives us a 2× 2 output channel. For a
n× n image, the encoding values are between 1 and
n2. The generalization to larger images is straightfor-
ward.

a question that might arise is how to choose the
ranks for the tied values? it was shown in [Vigneron
and Tomazeli Duarte, 2018] that the encoding is in-
sensitive to ties.

As an illustration LBP is applied to Lena’s origi-
nal picture 5a and provides the texture representation
given in Figure 5b. From the figure 5a, we obtained a
new decomposition (Figures 5c-5f). Visually, the 1st
plot is more informative than the 2nd one, which itself
is nore informative than the 3rd, and so on.

(a) Original (b) Classic LBP

(c) ROI comp. 1 (d) ROI comp. 2

(e) ROI comp. 3 (f) ROI comp. 8

Figure 5: Lena’ original (a) is compared to classic LBP rep-
resentation (b) and with the 1st, 2nd, 3rd and eighth rank-
order components obtained from Algorithm 1. The eighth
component is apparently the less informative component.

5 ROI-pooling operator

In CNNs maximum pooling operator is defined
mathematically for a volume V : A → R, A =
{(i1, i2, . . . , iN)|ik ∈ [1, . . . ,nk],k ∈ [1, . . . ,N]} and a
set B = {(i1, i2, . . . , iN−1,0)|ib ∈ [−Kb, . . . ,Kb],b ∈
[1, . . . ,N− 1]} called window where either Kb = Kb

or Kb = Kb−1 with Kb ∈ N as follows:

maxpool = max
y∈B

f (x−y). (17)

The operation in Eq. 17 looks for the maximum in a
neighborhood given by B along the image axis. Un-
like the convolution operator, the pixel values in this
neighborhood are not combined. Often the maximum
pooling operation is used for downsampling the vol-
ume by restricting x (striding) with stride s ∈N and A
is restricted to A′ = {(i1, i2, . . . , iN)|ik ∈ [1,1+ s,1+
2s, . . . ,1+nss],ns = ⌈nk/s⌉−1,k ∈ [1 . . .N]} with the
ceiling function ⌈·⌉. The strided maximum pooling
operation is then:

x′ = 1+ sx, maxpool = max
y∈B

f (x′−y) (18)

where B is simply a binary mask. The strided max-
imum pooling reduces the size of the input image
by only considering every s−th entry along all im-
age axes and discarding all others. ROI-pooling can
easily replace maximum polling in CNN:

ROI pooling( f ,B) = ROI f (xy). (19)

In Eq. 19, y is put for the neighborhood in which
x is selected. As maximum pooling, ROI pooling is
parameter free.

To answer to the question if could ROI pool-
ing perform as well as max-pooling in 19, different
grouping operations were performed in a categoriza-
tion context.
Example 4 (ROI pooling for automatic lesion seg-
mentation of stroke patient). Lack of expertise or time
for interpreting a brain magnetic resonance imag-
ing (MRI) in the case of stroke increases the risk of
death and disability. This study aims to enable rapid
and accurate assessment of the damage caused by hy-
peracute ischemic stroke (< 4.5h) by quantifying the
volume of ischemia. By reducing the variability of
interpretation, it enables a more standardized stroke
diagnosis, and facilitates rapid and consistent treat-
ment decisions by health professionals regardless of
their experience or expertise.

MRI provides information about damage to the
brain. Combined with medical knowledge on blood
flow in the human brain, MRI makes it possible to
identify the thrombus causing the problems and to de-
cide on the treatment of endovascular recanalization
(single or double thrombolysis, thrombectomy).



(a) Maximum intensity projection of a patient with mid-
dle carotid artery (MCA) occlusion.

(b) Intensity of injury comparable to that of normal tis-
sue.

Figure 6: Development of a lesion visualized on diffusion
imaging (DWI). (a) The artery stops abruptly at the point
of occlusion (1) (b) Most of the publications deal only with
well developed lesions which take advantage of the high
intensity boundaries. In the hyperacute phase, these borders
are weak or zero and weak intensities complicate the task of
segmentation.

The stroke dataset was provided with the support
of the neurology group of the Center Hospitalier Sud
Francilien (see [Kobold et al., 2019] for a full de-
scription of the dataset). It contains the cranial MRI
of 65 stroke patients. The MRI modalities available
for this data set are DWI B0 ADC FLAIR ToF and the
corresponding phase modalities. 61 of the patients
show a lesion on DWI, but some exams lack the phase
image.

Thus there are only 58 patients with a visible le-

sion on DWI where all terms are available. The 65
patients all have a visible lesion. MRIs were acquired
from a 1.5 T and 3 T General Electrics MRI machine.
DWI B0 and ADC share the same resolution, as they
are from the same acquisition.

Manual lesion segmentations are available. All
lesions were segmented by at least two neurolo-
gists. Inter-observer agreement, measured in terms
of Dice’s coefficient, was 0.69±0.15. The median le-
sion size in the data set is approximately 2,920 voxels:
the MRI is taken in the hyperacute phase of the stroke,
which means that the lesion is growing, may be small
and does not have a well-defined border. This makes
it a more difficult task than the cases that have already
been studied in the literature.

Data augmentation is used because the training
set is too small to generate a model that generalizes
well. Random crops linked to plot sampling works as
follows: the plots are sampled at a size larger than
the intended size for training. For example, the model
is trained on 64×64 then the patches are sampled at
74×74. Then, during training, a 64×64 image is cut
from the 74×74 patch in a random location, but in
such a way that the 64×64 image is entirely contained
in the 74×74 image. The number of possible random
crops for a patch is determined by the patch size dif-
ference and the size of the training image. Once data
is co-registered and normalized, automatic lesion seg-
mentation is performed.

The most common evaluation metric for evaluat-
ing biomedical image segmentations is Dice’s coef-
ficient which measures the overlap of two segmen-
tations but also takes into account their cardinality.
This dependence on cardinality makes it difficult to
tell which value of Dice’s coefficient indicates a good
segmentation result. A perfect segmentation is identi-
cal to the ground truth and gives a Dice’s coefficient
of 1. If there is no overlap, then the dice is 0.

The first method tried is 2d U-Net, trained on
64×64 patches using enhanced lesion image with
DWI (see Fig. 7). 3d U-net, CNN and improved U-
net with ROI were tested.

The segmentation results of the four networks are
given in the table 4. The 3D U-Net again suffers from
the small training set whereas the U-Net generally
learns to detect the lesion but fails in some cases.

The fewer false positive number is found with U-
Net with Spearman ROI. Upon manual inspection,
it turns out that these are very close to the main le-
sion and may even be part of the lesion, depending on
the definition. It is therefore an almost perfect result.
Since the false positives were an insignificant amount
of voxels anyway, the Dice coefficient only changes at
the fourth digit after the decimal indicate. This result



Model Dice FP FP Size FN FN Size Dr
U-Net 0.65 3.3 29.6 0.39 239.5 0.93

3D U-Net 0.56 229.7 215 1.48 643.5 1.0
CNN 0.53 208.3 83.8 0.25 263.9 0.89

U-Net+Spearman ROI 0.8 133.6 94.0 0.14 353.8 0.96
U-Net+ absolute rank ROI 0.76 29.8 76.3 0.25 121.1 1.0

Table 4: Segmentation results for the thrombus. The columns are the Dice coefficient, the mean number of false positive
objects FP and the average ”FP Size”, the mean number of false negative objects FN and their average size ”FN Size” and
the detection rate Dr.

Figure 7: An example of lesion development in the hyperacute phase of stroke (left). The lesion is currently growing and has
no clearly defined borders but instead shows gradients towards normal tissue. The image in the center shows the ground truth
and the one on the right the probability of injury given by the model. Please note that our algorithm correctly identified the
contralateral artifact.

is therefore a segmentation of the lesion at the hu-
man level. It is in particular the first lesion segmenta-
tion that achieves this performance and a better result
cannot be achieved on this type of database. Figure 7
shows the gradual contours of the developing lesion
and contralateral artifacts that only trained experts
can identify as such.

6 Conclusion

The rank-order pooling layers are non parametric, in-
dependent of the geometric arrangement or sizes of
the image regions, and can therefore better tolerate
rotations. An other asset of the rank-order pooling
lies in the number of rank-order components gℓ that
the algorithm 1 can generate, which are uncorrelated
from each other and which guarantees optimal (inde-
pendent) feature extraction performance.

When should we pool and when should we not?
The answer depends upon the following considera-
tions, in descending order of importance: (i) if there is
an inadequate number of observations in each of two
(or more) subgroups, which would usually necessitate
pooling (ii) common sense, necessity, etc.

In statistics, ”pooling” means gathering together
small sets of data that are assumed to have the same
value of a characteristic. ROI pooling is transform-
ing convolution features into a new representation that
preserves important information while ignoring irrel-
evant details.
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