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Traffic Control via Fleets of Connected and
Automated Vehicles

Chiara Daini1, Maria Laura Delle Monache2, Paola Goatin3 and Antonella Ferrara4

Abstract—The foreseen deployment of Connected and Auto-
mated Vehicles (CAVs) on public roads opens the perspective
of reducing the social and environmental impacts of traffic
congestion using CAVs as optimal control actuators, operating
as moving bottlenecks on the surrounding flow. In this paper,
we propose three control strategies, based on different levels of
cooperation, to improve density dependent traffic performance
indexes, such as fuel consumption.

We rely on a multi-scale approach to model mixed traffic
composed of a small fleet of CAVs in the bulk flow. In particular,
CAVs are allowed to overtake (if on distinct lanes) or queuing
(if on the same lane). Controlling CAVs desired speeds allows to
act on the system to minimize the selected cost function. For the
proposed control strategies, we apply both global optimization
and a Model Predictive Control approach. In particular, we
perform numerical tests to investigate how the CAVs number
and positions impacts the result, showing that few, optimally
chosen vehicles are sufficient to significantly improve the selected
performance indexes, even using a decentralized control policy.
Simulation results support the attractive perspective of exploiting
a very small number of vehicles as endogenous control actuators
to regulate traffic flow on road networks, providing a flexible
alternative to traditional control methods. Moreover, we compare
the impact of the proposed control strategies (decentralized,
quasi-decentralized, centralized).

Index Terms—Traffic control, autonomous vehicles, multi-scale
traffic flow models, PDE-constraint optimal control.

I. INTRODUCTION

THE recent technological advances in connectivity and
automation for the automotive industry are transforming

the transportation sector and impacting the related socio-
economical aspects. In particular, Connected and Automated
Vehicles (CAVs), which are expected to dominate the ve-
hicle market in the next future, have raised the interest of
researchers for their potential impact on traffic flow, with
the aim of improving traffic conditions and safety. Several
studies have shown that CAVs can be employed to control the
overall traffic to mitigate congestion and improve throughput,
with a consequent reduction of pollutant emissions. This
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has been proved by model based theoretical results [1]–
[10], machine learning approaches [11], [12] and real world
experiments [13]. All these investigations show that even a
small number of automated vehicles among human-driven
vehicles can bring benefits to the whole system, by dissipating
stop-and-go waves, improving the throughput and reducing
traffic flow emissions and consumption. In this perspective,
CAV control can offer a valid, flexible and cheap alternative to
more traditional traffic management strategies, such as ramp
metering and variable speed limits [14]–[18], which require
specific infrastructures.

For traffic control applications, the idea of using multi-scale
models in the form of systems of strongly coupled differential
equations, representing CAVs as moving bottlenecks acting
as variable speed limits, was introduced in [6], [19] and [2].
Models consisting of Partial Differential Equations (PDEs),
describing the spatio-temporal evolution of bulk traffic, cou-
pled with Ordinary Differential Equations (ODEs) tracking
specific vehicles trajectories, were introduced in the literature
to describe the impact of some slow moving vehicles, like
buses or trucks, on the surrounding traffic flow [20]–[24].
In the targeted control scenario, multi-scale approaches allow
to mitigate the curse of dimensionality, which penalizes the
control design for microscopic models [25].

In this framework, CAV optimal control strategies have
been applied to the speed of single vehicles [2], [6], small
fleets [3], [5] or platoons [4], [8], [26] of CAVs, aiming to
improve the energy footprint of traffic by either dissipating
stop-and-go waves or reducing traffic congestion. A similar
goal is tackled by [27] using a different approach based on
a data-driven cruise control in a microscopic framework. We
remark that, even if some of the above works consider the
presence of several CAVs, no one allows overtaking among the
controlled moving bottlenecks. To our knowledge, before [28],
[29], moving bottleneck overtaking had been introduced only
in [30], but for different optimization purposes.

A. Contribution

In this work, following [28], [29], we develop a general
simulation environment modeling the interactions of CAVs and
human-driven traffic flow, which enables us to study different
CAV-based control strategies with the goal of reducing the
overall traffic emissions. To this end, we consider CAVs
distributed on different lanes, thus being allowed to queue (if
on the same lane) or to overtake (if on distinct lanes). We
note that, introducing the ability for the CAVs to interact adds
a degree of freedom that can be conveniently used to improve
the control performance.

0000–0000/00$00.00 © 2021 IEEE
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Our main contribution is to propose three levels of coopera-
tive driving, ranging from a centralized control scheme which
assumes the complete knowledge of the traffic conditions and
the simultaneous control of the CAV fleet trajectories, to a
fully decentralized strategy in which each CAV optimizes its
speed, depending on traffic conditions but without taking into
account the rest of the fleet. At an intermediate level, we
consider a realistic compromise assuming that CAVs optimize
their trajectories depending on traffic conditions and taking
into account the presence of other fleet items within a limited
radius. In the numerical tests, we perform both a global
optimization on the full time horizon considered, requiring
full knowledge of boundary inflow and outflow conditions,
and a Model Predictive Control (MPC) approach that could
realistically be implemented in practice. Both optimization
strategies show that, if CAV positions are suitably chosen, the
quasi-decentralized strategy performs as well as the centralized
one. Remarkably, for MPC all the proposed control approaches
reach the same performances. Moreover, for all strategies,
the gain increases with the number of CAVs, but tends to
stabilize quickly even for small fleet sizes. This shows that
few, optimally placed vehicles suffice to maximize the selected
performance index.

B. Outline
The paper is organized as follows. Section II details the

modeling framework, providing a mathematical description of
the fully coupled PDE-ODE model including bottleneck inter-
actions, and its numerical discretization. Section III formulates
the control problem and illustrates the proposed control strate-
gies, while Section IV describes the results of the numerical
experiments.

II. MIXED TRAFFIC AUTONOMY MODEL

In this section, we present the multi-scale model describing
the interaction of a small fleet of Connected and Automated
Vehicles with the surrounding traffic flow. Since we assume
the CAV penetration rate is small, they can be tracked one
by one because of their specific dynamics and for control
purposes. However, it is convenient to model the overall traffic
flow from a macroscopic point of view, describing the spatio-
temporal evolution of the traffic density. Compared to more
detailed microscopic approaches, macroscopic models (also
called hydrodynamic models for their similarity to fluid dy-
namics equations) results in a very reduced computational cost
and simpler calibration of (few) model parameters, especially
when considering large road networks. Still, they provide good
estimates of traffic performance indexes, such as average travel
times, amount of congestion, fuel consumption, etc.

The interaction dynamics between slow moving vehicles
and the surrounding bulk traffic has been studied by several
authors, see e.g. [2], [20], [22], [23], [31], [32]. Here we ex-
tend to several, possibly interacting CAVs, the model proposed
in [21] and then developed in [24], [33]. It consists of the clas-
sical Lighthill-Whitham-Richards (LWR) [34], [35] first order
macroscopic model accounting for the general evolution of the
traffic density, coupled with Ordinary Differential Equations
(ODEs) describing the CAVs trajectories.
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Fig. 1. Greenshields’ fundamental diagram.

A. Model definition

To describe the traffic flow on a stretch of highway, we con-
sider the LWR Partial Differential Equation (PDE). This is a
macroscopic first-order model based on the mass conservation
equation:

∂ρ

∂t
+
∂f(ρ)

∂x
= 0,

with x ∈ R and t ≥ 0. Above, ρ = ρ(t, x) is the traffic
density, defined as the number of vehicles per unit length of
the road (veh/km), and f(ρ) = ρv(ρ) is the flow, defined as
the number of vehicles passing the cross-section at location
x per unit time (veh/h). The phenomenological speed-density
relation v = v(ρ) provides the mean velocity, which is the
arithmetic mean speed of the vehicles passing the cross-section
per unit time (km/h), as a function of the traffic density.
Several speed laws have been proposed in the literature, see
e.g. [36], [37]. For simplicity, we consider here the linear speed
function proposed by Greenshields [38]

v(ρ) = V
(

1− ρ

R

)
, (1)

where V denotes the maximal free flow speed and R the max-
imal (bump-to-bump) density on the road. The corresponding
fundamental diagram is the quadratic function

f(ρ) = V ρ
(

1− ρ

R

)
,

attaining its maximum at ρcr = R/2 (see Fig. 1). Nevertheless,
our study can be extended to any fundamental diagram f :
[0, R]→ R+ with f(0) = f(R) = 0, which is concave in the
free-flow interval [0, ρcr].

To account for the presence of CAVs among traffic on a
given road segment, we consider the following fully coupled
PDE-ODE system:

∂

∂t
ρ (t, x) +

∂

∂x
f (ρ (t, x)) = 0, (2a)

ẏ`(t) = min{u`(t), v(ρ(t, y`(t)+))}, (2b)

f (ρ (t, y`(t)))− ẏ`(t)ρ (t, y`(t)) ≤
αR

4V
(V − ẏ`(t))2 , (2c)

together with initial conditions

ρ(0, x) = ρ0(x), (3a)

y`(0) = y0` , (3b)
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Fig. 2. Left: `-th CAV speed depending on downstream traffic density. Right:
reduced flow at `-th CAV position.

and boundary conditions

f(ρ(t, 0)) = fin(t), (4a)

f(ρ(t, L)) = fout(t). (4b)

In (2)-(4), x ∈ [0, L], L > 0 being the length of the considered
road segment, t ∈ [0, Tf ], with Tf the time horizon and ρ0
the initial traffic density on the road. The CAV trajectories
are denoted by y`(t), ` = 1, . . . , N , with N the size of
the fleet. The CAV desired speeds are the controlled time
dependent variables u` : [0, Tf ] → [0, V ], ` = 1, . . . , N .
Equation (2b) states that each moving bottleneck moves at
the prescribed speed u`(t) if the downstream traffic density
ρ(t, y`(t)+) allows it. Otherwise, it adapts to the local traffic
velocity if it is lower than u`(t) (Fig. 2, left). Besides, the
inequalities (2c) account for the moving capacity constraints
exerted by CAVs, where α ∈ ]0, 1[ is the reduction rate of the
road capacity due to the presence of a CAV, which can be
set to α = (M − 1)/M for all vehicles, where M ∈ N is
the number of lanes on the road. When active, the constraint
induces the formation of a non-classical discontinuity in the
traffic density, moving with speed u`(t). The upstream density
value is denoted ρ̂u`(t) and downstream density ρ̌u`(t) (see
Fig. 2, right).

B. Moving Bottlenecks Interactions

To account for interactions between the CAVs, we consider
yi(t̄) = yj(t̄), for some i, j = 1, . . . , N , i 6= j and t̄ ∈ [0, Tf ].
For simplicity, in this work we assume that CAVs stay always
in the same lane and are not allowed to change lane to overtake
other cars. However, they can overtake other CAVs if they are
on different lanes. We can therefore distinguish two situations:

• Same lane. If the vehicles are on the same lane, the
upstream vehicle travelling with higher speed will adapt
to the preceding vehicle and follow it: we get yi(t) =
yj(t) and ui(t) = uj(t) for t ≥ t̄.

• Different lanes. If the vehicles are on different lanes, the
faster simply overtakes the slower.

Besides, the constraints (2c) continue to act after the interac-
tion, see Fig. 3. We refer to [29] for a detailed mathematical
description of the different interaction dynamics.
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Fig. 3. Examples of interacting CAV trajectories (bold lines). Left: same lane.
Right: different lanes.

C. Model discretization

The approximation scheme used to compute the solutions
of the coupled PDE-ODE model (2)-(4) consists of two
components: the finite volume discretization of the PDE (2a)
with the constraint (2c) and the numerical approximation of
the ODEs (2b).

1) Numerical scheme for PDE (2a) with constraint (2c):
To approximate the constrained LWR model, we use the
reconstruction scheme introduced in [39]. It relies on any con-
servative finite volume scheme for hyperbolic PDEs, coupled
with a flux reconstruction technique at the constraint locations.
Let ∆x and ∆t be the fixed space and time steps satisfying
the Courant-Friedrichs-Lewy (CFL) condition [40]:

V∆t = 0.9 ∆x,

and set xj−1/2 = j∆x, xj = (j + 1/2)∆x for j = 0, . . . , J ,
with x−1/2 = 0, xJ+1/2 = L, and tn = n∆t for n =
0, . . . , bTf/∆tc. The algorithm consists of the following steps:

1) Approximate the initial data ρ0 by piece-wise constant
functions ρn0 = {ρn0,j}Jj=0 s.t.

ρn0,j :=
1

∆x

∫ xj+1/2

xj−1/2

ρ0(x) dx,

for j = 0, . . . , J , and boundary data

fnin =
1

∆t

∫ n+1

tn
fin(t) dt,

fnout =
1

∆t

∫ n+1

tn
fout(t) dt,

un` = u`(t
n),

for n = 0, . . . , bTf/∆tc.
2) Locate the cell position Cm`

of the `-th CAV at time tn,
such that yn` ∈ Cm`

, ` = 1, . . . , N .
3) Compute the Godunov numerical fluxes [41] at the cell

interfaces Fn
j+ 1

2

= F (ρnj , ρ
n
j+1), which are given by the

supply-demand formula

F (ρnj , ρ
n
j+1) = min{D(ρnj ), S(ρnj+1)}, (5)

where

D(ρ) = f(min{ρ, ρcr}), S(ρ) = f(max{ρ, ρcr})

(see the Cell Transmission Model [42]).
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4) For ` = 1, . . . , N , if the constraint (2c) is not satisfied by
the classical Riemann solution corresponding to ρnm`−1,
ρnm`+1, then a moving bottleneck is located at x̄m`

=

xm`−1/2 + dnm`
∆x ∈ Cm`

with dnm`
=
ρ̌un

`
− ρnm`

ρ̌un
`
− ρ̂un

`

and

we move to Step 5.
If the constraint (2c) is satisfied, we move to Step 6.

5) If 0 ≤ dnm`
≤ 1, then

• Set ∆tnm`
=

1− dnm`

un`
, ∆x.

• Replace Fn
m`− 1

2

and Fn
m`+

1
2

by

Fn
m`− 1

2

= F (ρnm`−1, ρ̂un
`
) and

∆tFn
m`+

1
2

= min (∆tnm`
,∆t)f(ρ̌un

`
) +

max (∆t−∆tnm`
, 0)f(ρ̂un

`
).

6) For j = 0, . . . , J , update the density with the conservative
formula

ρn+1
j = ρnj −

∆t

∆x

(
Fnj+ 1

2
− Fnj− 1

2

)
, (6)

where the boundary numerical fluxes Fn− 1
2

and Fn
J+ 1

2

are
computed setting D(ρn−1) = fnin and S(ρnJ+1) = fnout
in (5).

Notice that, when they are located in the same cell, the
moving bottlenecks are processed sequentially one after the
other, first those that are not active (i.e. satisfy (2c)), followed
by the active ones (violating (2c)).

2) Numerical scheme for the ODEs (2b): To track the CAV
trajectories, at each time step, we update the position yn` of the
`-th CAV using an explicit Euler scheme: for ` = 1, . . . , N ,
• yn+1

` = yn` +un` ∆tn if the constraint (2c) is not satisfied
in step 4) above;

• yn+1
` = yn` + v(ρnm`

)∆tn if (2c) is satisfied.

III. TRAFFIC CONTROL PROBLEM

In this section, we describe the control strategies applied
to the traffic system described above. The control goal is
to determine the appropriate CAV velocities, on the basis of
the traffic flow conditions, in order to minimize a selected
performance index (the cost function).
To this end, in this paper we rely on a Model Predictive
Control (MPC) approach. MPC is a well-established technique
to control dynamical systems, subject to constraints on the
state and the control variables, in an optimized way. Following
a long history of success in the process industries, in recent
years MPC is rapidly expanding in several other domains, such
as in the automotive and aerospace industries, smart energy
grids, and financial engineering. MPC has also been applied
to single-scale (i.e. macroscopic) traffic control, as discussed
in [43], [44].
The MPC control algorithm is based on the solution of the
optimization problem at each time step of size ∆τ > 0, taking
into account static and dynamic constrains. It is usually im-
plemented relying on the so-called Receding Horizon Control
(RHC) concept. This means that, at each time step, the optimal
control sequence is determined by solving the optimization
problem for the pre-specified prediction horizon ∆T > ∆τ ;

Fig. 4. Plots of the fuel consumption rate function K(v) given by (7)
(left) and the corresponding total fuel consumption rate function FC(ρ) =
ρK(v(ρ)) (right), given by the speed-density function (1).

then, only the first sample of the optimal control sequence is
applied to the plant and the procedure is repeated at each time
step. In this paper, MPC is applied to realize three control
solutions that treat the CAVs immersed in the macroscopic
traffic differently. They can be classified as centralized, decen-
tralized and quasi-decentralized controls, respectively. In the
next sections, we will describe each control strategy separately.

A. The cost function

Road transport is one of the main source of air pollu-
tion [45]. In particular, vehicular traffic consumption and
pollutant emissions are strictly related to the congestion phase,
when vehicles accelerate and stop repeatedly [46]. Since in
this work we refer to a first order macroscopic model, thus
neglecting the traffic acceleration component, we can consider
consumption models based on the average speed of vehicles.
The cost functional will therefore provide local emission
factors, describing average fuel consumption or emissions in
kg (or liters) per meter, volume or mass of consumed fuel
or emitted pollutant per kilometer and per vehicle [47]. In
particular, we will focus on the consumption model derived
in [19], which is based on the fuel consumption efficiency
data (Liters/km) for four types of vehicles (Ford Explorer,
Ford Focus, Honda Civic, and Honda Accord), as functions
of the vehicle speed, presented in [48]. Multiplying the fuel
consumption efficiency by the vehicle speed yields the fuel
consumption rate (Liters/hr). The average fuel consumption
rate as a function of the speed derived in [19] is given by

K(v) = 5.7 · 10−12 · v6 − 3.6 · 10−9 · v5 + 7.6 · 10−7 · v4

− 6.1 · 10−5 · v3 + 1.9 · 10−3 · v2 + 1.6 · 10−2 · v + 0.99,
(7)

see Fig. 4, left. Replacing v in (7) by the speed-density law (1),
we recover the fuel consumption rate as a function of the traffic
density ρ,

K̃(ρ) = K(v(ρ)), (8)

which represents the fuel consumption rate of one vehicles as
a function of the traffic density at the vehicle’s position. The
total fuel consumption rate FC(ρ) is therefore obtained by
setting FC(ρ) = ρK(v(ρ)) and is depicted in Fig. 4, right.
Lastly, the total fuel consumption of the road stretch [a, b] in
the selected time interval [t1, t2] is given by:

TFC(a, b; t1, t2) =

∫ t2

t1

∫ b

a

FC(ρ(t, x)) dx dt. (9)
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Consider that fuel consumption and greenhouse gas emissions
are strictly related: on average, a litre of unleaded petrol
produces 2.3 kgs of CO2. As such, reducing the fuel consump-
tion associated with the overall traffic means correspondingly
reducing pollutant emissions [49].

B. Centralized control

Assuming an external controller, a centralized control strat-
egy implemented at time t = t̂ ∈ [0, Tf ] on a time horizon
∆T takes as input the vector composed by all the controlled
CAV positions y`(t̂), ` = 1, . . . , N , the current traffic density
ρ(t̂, x), x ∈ [0, L] and the foreseen inflow fin(t) and outflow
fout(t), t ∈ [t̂, t̂ + ∆T ], and computes the optimal control
u∗ = (u∗1, . . . , u

∗
N ) = [t̂, t̂ + ∆T ] → RN minimizing

the selected cost function (here the total fuel consumption
TFC(0, L; t̂, t̂+ ∆T )). The situation is represented in Fig. 5.
In principle, this is the most effective strategy, since the control
computation is based on the complete information about the
CAVs and the macroscopic traffic state, as well as on the
knowledge of the inflow and outflow affecting the traffic
system in the considered time horizon.

In an MPC perspective, at the k-th iteration step, we
compute the optimal (constant) speed value u∗` (k) for each
CAV, ` = 1, . . . , N , taking the current density value ρ(tk, ·) as
the initial datum in (3a) over a fixed time horizon [tk, tk+∆T ]:

u∗(k) = arg minTFC(0, L; tk, tk + ∆T ), (10)

subject to (2) and the prescribed constraints

umin ≤ u`(k) ≤ umax, ` = 1, . . . , N. (11)

We observe that the considered cost functional
TFC(0, L; tk, tk + ∆T ) is non-linear and non-convex.
To avoid local minima, the constrained optimization
problem (10)-(11) have been solved using the MATLAB
function fmincon, a gradient-based method that is designed
for non-linear constrained problems, initialized with the
optimal velocities computed by bayesopt, a Bayesian
optimizer which uses a Gaussian process model to minimize
the objective function, thus better exploring the admissible
control domain. We refer to Algorithm 1 for an overview of
the steps.

Fig. 5. Schematic representation of the centralized control framework.

C. Decentralized control

Decentralized control strategies aim at controlling a com-
plex multivariable system by decomposing it into simpler

Data: Input initial traffic density ρ0, CAV posi-
tions y0` and velocities u`(0), inflow fin
and outflow fout, time horizon Tf , opti-
mization time interval ∆T , simulation time
interval ∆τ

Result: CAV optimal velocities u∗` (k)
while tk ≤ Tf do

for t ∈ [tk, tk + ∆T ] do

• Solve (10) - (2) with function
bayesopt for optimal solution
u∗bayes(k) = (u∗1,bayes(k) . . . , u∗N,bayes(k))

• Taking as initial point u∗bayes(k), solve (10)
- (2) with function fmincon for optimal
solution u∗(k) = (u∗1(k), . . . , u∗N (k))

end
for t ∈ [tk, tk + ∆τ ] do

Apply (2) with the optimal solution u` ←
u∗` (k), ` = 0, . . . , N

end
tk ← tk + ∆τ and update the traffic variables
ρ(tk, ·) and y`(tk), ` = 0, . . . , N

end
Algorithm 1: Centralized control algorithm

subsystems. The latter are controlled by relying only on local
information. In the present case, any individual CAV can be
regarded as a subsystem. As such, at the k-th iteration step,
we compute separately the `-th CAV optimal (constant) speed
value u∗` (k), as it were the only controlled vehicle on the road,
taking as input the selected CAV position y`(t̂), the current
traffic density ρ(t̂, x), x ∈ [0, L] and the foreseen inflow
fin(t) and outflow fout(t), t ∈ [t̂, t̂ + ∆T ]. For this reason,
this control approach can be seen as fully decoupled. The
concept is schematized in Fig. 6 and we refer to Algorithm 2
for an overview of the steps. We notice that, compared to
the centralized algorithm, the optimization loop has been
inserted in another loop, which splits the different vehicles
and processes them separately.

Fig. 6. Schematic representation of the decentralized control framework,
where each CAV is treated separately. Its speed is optimized as if it were
the only actuator on the road.

D. Quasi-decentralized control

As an intermediate, more viable approach, we consider a
partially decentralized control strategy: as in the decentral-
ized control described in Section III-C, we optimize each
CAV velocity separately, but considering the system evolution
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Data: Input initial traffic density ρ0, CAV posi-
tions y0` and velocities u`(0), inflow fin
and outflow fout, time horizon Tf , opti-
mization time interval ∆T , simulation time
interval ∆τ

Result: CAV optimal velocities u∗` (k)
while tk ≤ Tf do

for ` = 1, . . . , N do
Take as inputs ρk(tk, ·) and y`(tk)

for t ∈ [tk, tk + ∆T ] do

• Solve (10) - (2) with function bayesopt
for optimal solution u∗bayes(k)

• Taking as initial point u∗bayes(k), solve (10)
- (2) with function fmincon for optimal
solution u∗(k)

end
end
for t ∈ [tk, tk + ∆τ ] do

Apply (2) with the optimal solution u` ←
u∗` (k), ` = 0, . . . , N

end
tk ← tk + ∆τ and update the traffic variables
ρ(tk, ·) and y`(tk), ` = 0, . . . , N

end
Algorithm 2: Decentralized control algorithm

knowing the positions and velocities of the other CAVs in a
given radius r, acting as moving bottlenecks. More precisely,
for any l = 1, . . . , N , let us consider all m` ∈ {1, . . . , N}\{`}
such that

|ym`
(tk)− y`(tk)| ≤ r (12)

to define the set of `-neighbors N`. We then perform a
centralized optimization as in Section III-B, but considering
only the CAVs corresponding to the selected neighbor indexes
N`, and we keep the optimal velocity u∗` for the originally
selected `-th vehicle.

In Fig. 7, a scheme of the control action is presented.
Vehicle A detects other two CAVs within its sensing radius,
hence the optimization of its velocity takes into account their
presence. On the other hand, vehicle B is too far from other
CAVs, thus acting as a fully decentralized controlled vehicle.
The optimization procedure is described in Algorithm 3.

Fig. 7. Schematic representation of the quasi-decentralized control framework.

Data: Input initial traffic density ρ0, CAV posi-
tions y0` and velocities u`(0), inflow fin
and outflow fout, time horizon Tf , opti-
mization time interval ∆T , simulation time
interval ∆τ

Result: CAV optimal velocities u∗` (k)
while tk ≤ Tf do

for ` = 1, . . . , N do
N` = ∅

for m = 1, . . . , N , do
If (12) holds, m ∈ N`

end
for t ∈ [tk, tk + ∆T ] do

• Solve (10) - (2) with function bayesOpt
for optimal solutions u∗m,bayes(k), m ∈ N`

• Taking as input u∗m,bayes(k), solve (10) - (2)
with function fmincon for optimal solu-
tions u∗m(k), m ∈ N`

end
end
for t ∈ [tk, tk + ∆τ ] do

Apply (2) with the optimal solution u` ←
u∗` (k), ` = 0, . . . , N

end
tk ← tk + ∆τ and update the traffic variables
ρ(tk, ·) and y`(tk), ` = 1, . . . , N

end
Algorithm 3: Quasi-decentralized control algorithm

IV. SIMULATIONS AND NUMERICAL RESULTS

The following tests are aimed at investigating the impact
of the different control strategies proposed in Section III. The
model framework in which the experiments have been carried
out is characterized by a freeway section of length L = 50 km
with M = 3 lanes (corresponding to α = 0.6), uniform road
conditions with no on- or off-ramps. The maximum speed and
maximum density parameters are set to V = 140 km/hr and
R = 400 veh/km, respectively. Considering an average vehicle
length of 5 m and a safety distance of 2.5 m, the maximum
density is given by [19]:

R =
]lanes

(2.5 + 5) m
=

3

7.5 m
= 400 veh/km. (13)

As initial condition, we consider an oscillating density

ρ0(x) = 0.3R (sin(0.2πx) + 1) ,

mimicking the presence of stop-and-go waves (see Fig. 9,
bottom), while the boundary conditions are given by

fin(t) =

{
fmax if t ≤ 0.5Tf ,

0 if t > 0.5Tf ,
(14)

fout(t) = 0.5 fmax ∀t ∈ [0, Tf ], (15)

on a time horizon Tf = 1 hr, where we have set fmax =
maxρ∈[0,R] f(ρ) = V R/4 = 14 000 veh/hr the capacity of the
road. Condition (15) mimics the presence of a fixed bottleneck
reducing by half the capacity at the end of the road, due for
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example to an accident or construction works, and inducing
a backward moving congestion whose effects need to be
mitigated.

A. Cost functional sensitivity analysis

To better understand the cost functional considered in (9),
we analyze its dependency on constant CAV desired speed
ū ∈ [20, 140] and initial position y0 ∈ [2, 50], considering
a single CAV on the road. Fig. 8 represents the TFC as a
function of ū and y0. The global minimum is close to ū = 55
km/h and y0 = 5 km, while several other local minima are
present. In particular, fixing ū = 55 km/h, we observe that
the TFC has an increasing trend with respect to the initial
position, with local minima located just downstream the higher
density regions (x = 5, 15, 25, 35, 45 km), see Fig. 9.
This suggests that vehicles starting farther away from the
congestion have a greater impact in reducing the total fuel
consumption, subject to local traffic conditions. These local
minima are good candidates to be the initial CAV positions in
the optimization tests described in Section IV-C.

Fig. 8. TFC dependence on the speed ū ∈ [20, 140] km/h of a single CAV
starting at y0 ∈ [2, 50] km.

B. Environment setup

The tests have been realized on fleets of up to N = 10
vehicles, distributed on the road starting from the points of
local minima observed in Fig. 9; we take y01 = 5 km and
y0` = y0`−1 + 10 km, ` = 2, . . . , 5, then y6 = 2.5 km and
y0` = y0`−1 + 10 km, ` = 7, . . . , 10, see Fig. 9, bottom. We
assign CAVs sequentially to the different lanes 1 to 3, see
Fig. 10.

For each control strategy described in Section III, we
implemented the following two setups:

1) Global optimization on the whole time interval [0, Tf ].
Both the optimization horizon ∆T and the simulation
interval ∆τ are set equal to Tf = 1 hr. In this way,
only one (global) optimization is performed, to compute
the (constant) optimal control values u∗ = (u∗1, . . . , u

∗
N ).

Fig. 9. Top: TFC dependence on the initial position y0 ∈ [2, 50] of a
single CAV with desired speed ū = 55 km/h. Local minima are located
at x = 5, 15, 25, 35, 45 km.
Bottom: Initial traffic density ρ0 and CAV initial positions (dashed lines
indicate the location of TFC local minima).

Fig. 10. CAVs’ distribution on the road at time t = 0.

This assumes global knowledge of boundary flow condi-
tions since the initial time t = 0.

2) Model Predictive Control with ∆T = 6 min and
∆τ = 5 min. In the perspective of applying this strategy
to real environments, the optimization is performed at 4 th
minute of the current system evolution interval, to account
for the computational time needed to obtain the next con-
trol N -tuple. In this way, we guarantee the availability of
the newly computed optimal controls for implementation
before the end of the current implementation interval.

In all cases, controls will be constrained to the interval
[umin, umax] = [30, 100] km/hr, see (11). Moreover, for the
quasi-decentralized strategy, we fix the radius r = 11 km
in (12), aiming at including at least the preceding and fol-
lowing CAVs.

For each control, the comparison will be made with the
uncontrolled case, where no CAV acts on the traffic flow, see
Fig. 11. In this case, the total fuel consumption is TFC =
2.7329 · 104 liters.

Notice that, because of the computational costs of the
optimization routines, in particular for large fleet sizes, we
do not compute time-dependent optimal controls, but we
limit our study to optimal velocities which are constant in
the optimization horizon ∆T . Further efforts are needed to
optimize and possibly parallelize the simulation code and the
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Fig. 11. Spatio-temporal evolution of traffic density in the uncontrolled case.

optimization routines to reduce the overall computational costs
of finer optimization procedures.

C. Numerical results

In this section, we present and analyze the results of the
performed tests. Fig. 12 reports the trends of the global
optimization applied to the centralized, decentralized and
quasi-decentralized control strategies. We observe that, for
all strategies, the TFC reduction improves for increasing
fleet sizes up to 5 vehicles, placed at the optimal positions.
Moreover, the quasi-decentralized control is as effective as the
centralized one, followed by the fully decentralized. We recall
that the centralized control has a global and complete view of
the traffic evolution, hence it can compute simultaneously the
optimal velocities of all CAVs in the fleet. Instead, the fully
decentralized control strategy shows the worst results, because
each optimizer/actuator ignores the presence and action of the
others CAVs. Placing the vehicles at optimal positions, the
quasi-decentralized control reaches the same performance as
the centralized, despite having an overview of the traffic flow
only locally around each controlled vehicle. We remark that,
in this configuration, adding more than five vehicles doesn’t
diminish the fuel consumption. The curves drawn in Fig. 12
are polynomial interpolations of the computed discrete TFC
values, meant to capture the TFC trend as a function of the
CAV fleet size. Table I displays the total fuel consumption and
its reduction rate with respect to the non-controlled dynamics,
for each control strategy applied with N = 1, 5, 10 CAVs.

TFC 1 hour opt. TFC reduction
[liters/h] %

Uncontrolled 2.7329 ·104 0
1 CAV - centralized 2.6318 ·104 3.69
1 CAV - decentralized 2.6319 ·104 3.69
1 CAV - quasi-decentralized 2.6319 ·104 3.69
5 CAVs - centralized 2.5650 ·104 6.14
5 CAVs - decentralized 2.5922 ·104 5.14
5 CAVs - quasi-decentralized 2.5657 ·104 6.11
10 CAVs - centralized 2.5687 ·104 6.101
10 CAVs - decentralized 2.6020 ·104 4.79
10 CAVs - quasi-decentralized 2.5660 ·104 6.11

TABLE I
1 HOUR OPTIMIZATION TFC VALUES AND GAINS FOR DIFFERENT CAV

FLEET SIZES, FOR THE THREE CONTROL STRATEGIES.

On the other hand, Fig. 13 plots the results of MPC op-
timization corresponding to the three control strategies. Even
if the gain is obviously smaller, the trends are similar to the
global optimization output reported in Fig. 12: all the strategies
improve when increasing the fleet size up to five vehicles,
while adding more vehicles in this case seems to deteriorate
the result. We notice that with MPC the performances of the
three control strategies are practically the same, indicating
that the simpler fully decentralized control can be applied as
standard procedure. The TFC values and the reduction rates
for N = 1, 5, 10, are reported in Table II.

TFC with MPC TFC reduction
[liters/h] %

Uncontrolled 2.7329 ·104 0
1 CAV - centralized 2.6933 ·104 1.44
1 CAV - decentralized 2.6934 ·104 1.44
1 CAV - quasi-decentralized 2.6978 ·104 1.28
5 CAVs - centralized 2.6285 ·104 3.82
5 CAVs - decentralized 2.6314 ·104 3.71
5 CAVs - quasi-decentralized 2.6320 ·104 3.69
10 CAVs - centralized 2.6431 ·104 3.29
10 CAVs - decentralized 2.6507 ·104 3.01
10 CAVs - quasi-decentralized 2.6346 ·104 3.30

TABLE II
MPC TFC VALUES AND GAINS FOR DIFFERENT CAV FLEET SIZES, FOR

THE THREE CONTROL STRATEGIES.

In Figure 14, we show two examples of the space-time
traffic density evolution and the corresponding optimal CAV
trajectories for a fleet of N = 10 vehicles following the quasi-
decentralized strategy for 1 hour optimization and MPC, re-
spectively. The red area corresponds to the congestion induced
by the downstream bottleneck, while orange zones are local
slowdowns generated by the presence of CAVs, which act
as moving variable speed limits, delaying upstream flow in
reaching the congestion. In particular, we can observe both
overtaking and queuing among CAVs, before they reach the
congested zone where they all run at the same speed as the
sourrounding traffic.

Fig. 12. TFC values resulting form 1 hour global optimization, depending on
the number of controlled vehicles: comparison between the different control
strategies proposed in Section III.

V. CONCLUSIONS

In this work, we propose three strategies for traffic flow
control, which rely on the use of small fleets of Connected and
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Fig. 13. TFC values resulting form MPC optimization, depending on the
number of controlled vehicles: comparison between the different control
strategies proposed in Section III.

Fig. 14. Traffic density and CAVs trajectories for the quasi-decentralized
strategy with a fleet of 10 CAVs and radius r = 11 km: 1 hour (top) and
MPC (bottom) optimizations.

Automated Vehicles as actuators, corresponding to different
levels of cooperation: centralized, decentralized and quasi-
decentralized. We show that a small number of well placed
CAVs suffices to consistently reduce the fuel consumption of
the entire flow and hence to decrease the pollutant emission.
The proposed multi-scale modeling approach is numerically
efficient and general enough to allow for CAV interactions
(overtaking and queuing), and the optimization procedures
(global and MPC based) can be applied to improve any traffic
index dependent on aggregated traffic quantities (density, mean
velocity, flow). Our results support the perspective of testing
and validating CAV based cooperative traffic control strategies
in real scenarios.

Possible improvements could be offered by further inves-
tigation on CAV optimal number and placement depending
on traffic conditions. Also, second order models could be

employed to better capture some traffic characteristics that
would allow to consider a wider class of cost functionals,
possibly depending on traffic acceleration.
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