
HAL Id: hal-04366836
https://hal.science/hal-04366836v1

Preprint submitted on 29 Dec 2023 (v1), last revised 3 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast interpolation of sparse multivariate polynomials
Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. Fast interpolation of sparse multivariate polynomials. 2023.
�hal-04366836v1�

https://hal.science/hal-04366836v1
https://hal.archives-ouvertes.fr

Fast interpolation of
sparse multivariate polynomials∗†

JORIS VAN DER HOEVENa, GRÉGOIRE LECERFb

Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)
CNRS, École polytechnique, Institut Polytechnique de Paris

Bâtiment Alan Turing, CS35003
1, rue Honoré d'Estienne d'Orves

91120 Palaiseau, France

a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr

Preliminary version of December 29, 2023

Consider a sparse multivariate polynomial f with integer coefficients. Assume that f
is represented as a “modular black box polynomial”, e.g. via an algorithm to evaluate f
at arbitrary integer points, modulo arbitrary positive integers. The problem of sparse
interpolation is to recover f in its usual sparse representation, as a sum of coefficients
times monomials. For the first time we present a quasi-optimal algorithm for this task.

1. INTRODUCTION

Consider a multivariate integer polynomial f ∈ℤ[x0, . . . ,xn−1]. Then f can uniquely be
written as a sum

f = c0xe0+ ⋅ ⋅ ⋅ + ct−1xet−1, (1.1)

where c0, . . . , ct−1∈ℤ≠≔{i∈ℤ: i≠0} and e0, . . . , et−1∈ℕn are pairwise distinct. Here we
understand that x𝛼≔x0

𝛼0 ⋅ ⋅ ⋅ xn−1
𝛼n−1 for any 𝛼=(𝛼0, . . . , 𝛼n−1)∈ℕn. We call (1.1) the sparse

representation of f .

In this paper, we assume that f is not explicitly given through its sparse representa-
tion and that we only have a program for evaluating f . The goal of sparse interpolation is
to recover the sparse representation of f .

Theoretically speaking, we could simply evaluate f at a single point a=(a0, . . . ,an−1)
with a0=2E, a1=2E2, . . . , an−1=2En

for some sufficiently large positive integer E. Then
the sparse representation of f can directly be read off from the binary digits of f (a).
However, the bit-complexity of this method is terrible, since the bit-size of f (a) typically
becomes huge.

∗. This work has partly been supported by the French ANR-22-CE48-0016 NODE project.

†. This article has been written using GNU TEXMACS [23].

1

https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016

In order to get a better grip on the bit-complexity to evaluate and then interpolate f ,
we will assume that we actually have a program to evaluate f modulom for any positive
integer modulus m. We denote by Cf(s) the cost to evaluate f for a modulus with m<2s
and we assume that the average cost per bit Af(s)≔Cf(s)/s is a non-decreasing function
that grows not too fast as a function of s. Since the blackbox function should at least read
its n input values, we also assume that n=O(Af(s)).

As in [15], for complexity estimates we use a random memory access (RAM) machine
over a finite alphabet along with the soft-Oh notation: f (z) = Õ(g(z)) means that
f (z)= g(z)(log (g(z)))O(1). Themachine is expected to have an instruction for generating
a random bit in constant time (see section 2 for the precise computational model and
hypotheses that we use). Assuming that we are given a bound S for the bit-size of f ,
the main result of this paper is the following:

THEOREM 1.1. There is a Monte Carlo algorithm that takes a modular blackbox representation
of a sparse polynomial f ∈ℤ[x0, . . . ,xn−1] of bit-size ⩽S as input and that interpolates f in time
Af(S) Õ(S) with a probability of success at least /1 2.

The problem of sparse interpolation has a long history and goes back to work by
Prony in the 18th century [40]. The first modern fast algorithm is due to Ben-Or and
Tiwari [6]. Their work spawned a new area of research in computer algebra together
with early implementations [11, 13, 19, 29, 32, 33, 36, 44]. We refer to [41] and [39, sec-
tion 3] for nice surveys.

Modern research on sparse interpolation has developed in two directions. The first
theoretical line of research has focused on rigorous and general complexity bounds [2, 3,
3, 4, 14, 17, 30]. The second direction concerns implementations, practical efficiency, and
applications of sparse interpolation [5, 18, 20, 22, 25, 26, 28, 31, 34, 35].

The present paper mainly falls in the first line of research, although we will briefly
discuss practical aspects in section 5. The proof of our main theorem relies on some
number theoretical facts about prime numbers that will be recalled in section 2.3. There
is actually a big discrepancy between empirical observations about prime numbers and
hard theorems that one is able to prove. Because of this, our algorithms involve con-
stant factors that are far more pessimistic than the ones that can be used in practice.
Our algorithms also involve a few technical complications in order to cover all possible
cases, including very large exponents that are unlikely to occur in practice.

Our paper borrows many techniques from [17, 39] that deal with the particular case
when f is a univariate polynomial. In principle, the multivariate case can be reduced to
this case: setting g(t)= f (t, tE,..., tEn−1) for a sufficiently large E∈ℕ, the interpolation of f
reduces to the interpolation of g. However, this reduction is optimal only if the entries of
the vector exponents ei∈ℕn are all approximately of the same bit-size. One interesting
case that is not well covered by this reduction is when the number of variables n is large
and when the exponent vectors ei are themselves sparse in the sense that only a few
entries are non-zero.

In order to cover sparse or unbalanced exponent vectors in a more efficient way, we
will introduce a new technique in section 3. The idea is to compress such exponent vec-
tors using random projections. With high probability, it will be possible to reconstruct
the actual exponent vectors from their projections. We regard this section as the central
technical contribution of our paper. Another difference with [17, 39] is that, in our main

2 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

theorem, the coefficients ci of f are allowed to wildly vary in bit-size. This is not as big
a problem as the one of unbalanced exponent vectors, but still needs to be dealt with
carefully, as we will do in section 4. Let us further mention that random projections of
the exponents were previously implemented in [4] in order to reduce the multivariate
case to the univariate one: monomial collisions were avoided in this way but the recon-
struction of the exponents needed linear algebra and could not really catch sparse or
unbalanced exponents. The proof of Theorem 1.1 will be completed at the end of sec-
tion 4. Section 5 will address the practical aspects of our new method. An important
inspiration behind the techniques from section 3 and its practical variants is the mystery
ball game from [22]; this connection will also be discussed in section 5.

Our paper focuses on the case when f has integer coefficients, but our algorithm
can be easily adapted to rational coefficients as well, essentially by appealing to rational
reconstruction [15, Chapter 5, section 5.10] during the proof of Lemma 4.8. However
when f has rational coefficients, its blackbox might include divisions and therefore raise
“division by zero” errors occasionally. This makes the probability analysis and the worst
case complexity bounds more difficult to analyze, so we preferred to postpone this study
to another paper.

Our algorithm should also be applicable to various other coefficient rings of charac-
teristic zero. However it remains an open challenge to develop similar algorithms for
coefficient rings of small positive characteristic.

Notation. Throughout this paper, we will use the following notation:

ℕ ≔ {0,1,2, . . . }
ℕ> ≔ {1,2,3, . . . }

For any k∈ℕ, we also define

ℕk ≔ {0, . . . ,k−1}
ℤk ≔ ℕk−� k−1

2 �.

We may use both ℕk and ℤk as sets of canonical representatives modulo k. Given i∈ℤ
and depending on the context, we write i rem k for the unique r∈ℕk or r∈ℤk with
i− r∈kℤ.

2. PRELIMINARIES

This section presents sparse data structures, computational models, and quantitative
results about prime distributions. At the end, an elementary fast algorithm is presented
for testing the divisibility of several integers by several prime numbers.

2.1. Sparse polynomials

We order ℕn lexicographically by <. Given formal indeterminates x0, . . . , xn−1 and an
exponent e=(e0, . . . , en−1)∈ℕn, we define xe≔ x0

e0 ⋅ ⋅ ⋅ xn−1
en−1. We define the bit-size of an

integer i∈ℕ as 𝜎i≔min {s∈ℕ: i<2s}. In particular, 𝜎0=0, 𝜎1=1, 𝜎2=2, etc. We define
the bit-size of an exponent tuple e∈ℕn by 𝜎e≔ e0+ ⋅⋅⋅+ en−1. We extend these definitions
to the cases when i∈ℤ and e∈ℤn by setting 𝜎i≔𝜎|i| and 𝜎e≔𝜎|e|, where |e|=(|e0|,..., |en−1|).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

Now consider a multivariate polynomial f ∈ℤ[x0, . . . ,xn−1]. Then f can uniquely be
written as a sum

f = c0xe0+ ⋅ ⋅ ⋅ + cT−1xeT−1,

where c0, . . . , cT−1∈ℤ≠ and e0, . . . , eT−1∈ℕn are such that e0< ⋅ ⋅ ⋅ < eT−1. We call this
the sparse representation of f . We call e0, . . . , eT−1 the exponents of f and c0, . . . , cT−1 the
corresponding coefficients. We also say that c0xe0,...,cT−1xeT−1 are the terms of f andwe call
supp f ≔{e0, . . . , eT−1} the support of f . Any non-zero ei, j with i∈ℕT and j∈ℕn is called
an individual exponent of f . We define 𝜎f ≔𝜎c0+𝜎e0+⋅⋅⋅+𝜎cT−1+𝜎eT−1 to be the bit-size of f .

Remark 2.1. For the complexity model we could have chosen a multi-tape Turing
machine, but this would have led to more tedious cost analyses. In fact on a Turing
tape, we would actually need to indicate the ends of numbers using adequate markers.
Using a liberal notion of “bit”, which allows for the storage of such markers in a single
bit, the Turing bit-size of an integer i∈ℕ then becomes 𝜎i∗≔𝜎i+1. For i∈ℕ>, we also
define 𝜎−i

∗ ≔𝜎i∗+1. Exponents e=(e0, . . . , en−1) can be stored by appending the repre-
sentations of e0, . . . , en−1, but this is suboptimal in the case when only a few entries of e
are non-zero. For such “sparse exponents”, one prefers to store the pairs (i, ei) for which
ei≠0, again using suitable markers. For this reason, the Turing bit-size of e becomes 𝜎e∗≔
min(𝜎0∗+ ⋅ ⋅ ⋅ +𝜎n−1

∗ ,∑ei≠0 (𝜎i
∗+𝜎ei∗))+1.

2.2. Modular blackbox polynomials

Throughout this paper, we will analyze bit complexities in the RAMmodel as in [15]. In
this model, it is known [21] that two n-bit integers can be multiplied in time O(n log n).
As a consequence, given an n-bit modulus m∈ℕ>, the ring operations in ℤ/mℤ can be
done with the same complexity [9, 15]. Inverses can be computed in time O(n log2 n),
whenever they exist [9, 15]. For randomized algorithms, we assume that we have an
instruction for generating a random bit in constant time.

Consider a polynomial f ∈ℤ[x0, . . . , xn−1]. A modular blackbox representation for f is
a program that takes a modulus m∈ℕ> and n integers a0, . . . , an−1∈{0, . . . ,m− 1} as
input, and that returns f (a0,...,an−1) remm∈ℕm. Amodular blackbox polynomial is a poly-
nomial f that is represented in this way. The cost (or, better, a cost function) of such
a polynomial is a function Cf such that Cf(s) yields an upper bound for the running
time if m has bit-size ⩽s. It will be convenient to always assume that the average cost
Af(s)≔Cf(s)/s per bit of the modulus is non-decreasing and that Af(ks)⩽kO(1)Af(s) for
any k⩾1. Since f should at least read its n input values, we also assume that n=O(Af(s)).

Remark 2.2. A popular type of modular blackboxes are straight-line programs
(SLPs) [10]. For an SLP of length L that only uses ring operations, the above average
cost function usually becomes Af(s)⩽CL log s, for some fixed constant C that does not
depend on f .

If the SLP also allows for divisions, then we rather obtain Af(s)⩽CL log2 s, but this is
out of the scope of this paper, due to the “division by zero” issue. In fact, computation
trees [10] are more suitable than SLPs in this context. For instance, the computation of
determinants using Gaussian elimination naturally fits in this setting, since the chosen
computation path may then depend on the modulus m.

4 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

However, although these bounds “usually” hold (i.e. for all common algebraic algo-
rithms that we are aware of, including the RAM model), they may fail in pathological
cases when the SLP randomly accesses data that are stored at very distant locations on
the Turing tape. For this reason, the blackbox cost model may be preferred in order to
study bit complexities. In this model, a suitable replacement for the length L of an SLP is
the average cost function Af(s), which typically involves only a logarithmic overhead in
the bit-length s.

2.3. Number theoretic reminders

All along this paper T will bound the number of terms of the polynomial to be interpo-
lated, and r and qwill denote random prime numbers that satisfy:

• T⩽ r=O(T),

• q∈ℕ r+1,

• q=O(r6).

The construction of r and qwill rely on the following number theoretic theorems, where
log stands for the natural logarithm, that is log e=1. Wewill also use log2 x≔log x/log 2.

THEOREM 2.3. [42, Equation (3.8)] For 𝜆⩾21, there exist at least 3
5 𝜆/log 𝜆 distinct prime

numbers in the open interval (𝜆,2𝜆).

THEOREM 2.4. Let 𝜌(x)≔ 1.538 log x
log log x if x⩾ee and 𝜌(x)≔1.538 e otherwise. For all N⩾1, the

number of prime divisors of N is bounded by 𝜌(N).

Proof. The function 𝜌(x) is increasing for x⩾ ee and 𝜌(ee)= 1.538 e. So it is always
non-decreasing and continuous. The number of prime divisor of any N⩽15 it at most
2⩽1.538 e. Let d(N) and 𝜔(N) respectively be the number of divisors and prime divi-
sors of N. Then clearly 2𝜔(N)⩽d(N). Now for all N⩾3 we know from [37] that

𝜔(N)⩽log2 d(N)⩽𝜌(N). □

We will need the following slightly modified version of [16, Theorem 2.1], which is
itself based on a result from [43].

THEOREM 2.5. There exists a Monte Carlo algorithm which, given 𝜀>0 and R⩾ 258

𝜀2 , produces
a triple (r,q,𝜔) that has the following properties with probability at least 1− 𝜀, and returns fail
otherwise:

a) r is uniformly distributed amongst the primes of (R, 2R);

b) there are at least R5/(24logR) primes in (2R,R6)∩(rℕ+1) and q is uniformly distributed
amongst them;

c) 𝜔 is a primitive r-th root of unity in 𝔽q.

Its worst-case bit complexity is (logR)O(1).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

Proof. In [16, Theorem 2.1] the statement (b) is replaced by the simpler condition that
q⩽R6. But by looking at step 2 of the algorithm on page 4 of [43], we observe that q is
actually uniformly distributed amongst the primes of (2R,R6)∩(rℕ+1) and that there
are at least R5/(24 logR) such primes with high probability ⩾1− 𝜀

4 . □

LEMMA 2.6. Let 𝜀 be a real number in (0,1) and let P⩾22 be such that P/logP>4n. There exists
a Monte Carlo algorithm that computes distinct random prime numbers p0, . . . ,pn−1 in (P, 2P)
in time

O(n(log n+log (𝜀−1)))(log P)O(1),

with a probability of success of at least 1−𝜀.

Proof. Theorem 2.3 asserts that there are at least 3
5 P/logP primes in the interval (P, 2P).

The probability to fetch a prime number in (P, 2P) while avoiding at most n fixed num-
bers is at least

3
5

P
log P −n
P ⩾

�3
5 −

1
4�

P
log P

P = 7
20 log P .

The probability of failure after k trials is at most �1− 7
20 log P�

k. By using the AKS algo-

rithm [1] each primality test takes time (logP)O(1). The probability of success for picking n
distinct prime numbers in this way is at least

((((((((((1−((((((((((1− 7
20 log P))))))))))

k

))))))))))
n
.

In order to guarantee this probability of success to be at least 1−𝜀, it suffices to take

k⩾−log (1− (1−𝜀)1/n)
−log �1− 7

20 log P�
.

The concavity of the log function yields x⩽−log(1−x)⩽ x
1−x for x∈(0,1), whence

−log (1−𝜀)
n ⩾ 𝜀

n⩾
𝜀
2n

1− 𝜀
2n

⩾−log �1− 𝜀
2n�,

and consequently,
−log (1− (1−𝜀)1/n)⩽−log � 𝜀

2n�.

On the other hand we have −log �1− 7
20 log P�⩾

7
20 log P . It therefore suffices to take

k≔�207 (log (2n)+log (𝜀−1)) log P�. □

2.4. Amortized determination of prime divisors in a fixed set
Let p0< ⋅ ⋅ ⋅ <pn−1 be prime numbers and let a0< ⋅ ⋅ ⋅ < aN−1 be strictly positive integers.
The aim of this subsection is to show that the set of pairs {(i,k) : i∈ℕn,k∈ℕN,pi |ak} can
be computed in quasi-linear time using the following algorithm named divisors.

6 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

Algorithm divisors
Input: non empty subsets ℐ⊆ℕn and 𝒦⊆ℕN.
Output: the set {(i,k)∈ℐ ×𝒦 :pi |ak}.

1. If |𝒦|=1, then return {(i,k)∈ℐ ×𝒦 :pi |ak}.
2. Let h≔⌊|𝒦|/2⌋, let 𝒦1 be a subset of 𝒦 of cardinality h, and let 𝒦2≔𝒦∖𝒦1.
3. Compute A1≔∏k∈𝒦1

ak and A2≔∏k∈𝒦2
ak.

4. Compute ℐ1≔{i∈ℐ :pi |A1} and ℐ2≔{i∈ℐ :pi |A2}.
5. Return divisors(ℐ1,𝒦1)∪divisors(ℐ2,𝒦2).

LEMMA 2.7. The algorithm divisors is correct and runs in time O(s log3 s), where
s≔log(p0 ⋅ ⋅ ⋅ pn−1a0 ⋅ ⋅ ⋅ aN−1).

Proof. Let 𝛼≔ log(∏k∈𝒦 ak) and 𝛽≔ log(∏i∈ℐ pi). Step 1 costs O((𝛼+𝛽) log2(𝛼+𝛽))
by using fast multi-remaindering [15, Chapter 10]. Using fast sub-product trees [15,
Chapter 10], step 3 takes O(𝛼 log2 𝛼). By means of fast multi-remaindering again, step 4
takes O((𝛼+𝛽) log2(𝛼+𝛽)).

Since the pi are distinct prime numbers, when entering step 5 we have

�
i∈ℐm

pi⩽ �
k∈𝒦m

ak for m=1,2.

Let T(𝛼) denote the cost of the recursive calls occurring during the execution of the algo-
rithm. So far we have shown that

T(𝛼)=T(logA1)+T(logA2)+O(𝛼 log2 𝛼).

Unrolling this inequality and taking into account that the depth of the recursion is
O(logN)=O(log(a0 ⋅ ⋅ ⋅ aN−1)), we deduce that T(𝛼)=O(𝛼 log3 𝛼). Finally the total cost
of the algorithm is obtained by adding the cost of the top level call, that is

T(𝛼)+O((𝛼+𝛽) log2(𝛼+𝛽))=O(s log3 s). □

3. PROBABILISTIC CODES FOR EXPONENTS

Consider a sparse polynomial f =∑e∈ℕn ce xe that we wish to interpolate. In the next
section, wewill describe amethod that allows us to efficiently computemost of the expo-
nents e in an encoded form 𝜙(e). The simplest codes 𝜙(e) are of the form

𝜙(e)= e0𝜇0+ ⋅ ⋅ ⋅ + en−1𝜇n−1. (3.1)

When supp f ⊆ℕE
n, themost common such encoding is theKronecker encoding, with 𝜇i=Ei

for all i∈ℕn. However, this encoding may incur large bit-size ≍n 𝜎E with respect to
the bit-size of e.

The aim of this section is to introduce more compact codes 𝜙(e). These codes will
be “probabilistic” in the sense that we will only be able to recover e from 𝜙(e) with high
probability, under suitable assumptions on e. Moreover, the recovery algorithm is only
efficient if we wish to simultaneously “bulk recover” T exponents from their codes.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

3.1. The exponent encoding
Throughout this section, the number of variables n∈ℕ> and the target number of expo-
nents T∈ℕ> are assumed to be given. We allow exponents to be vectors of arbitrary
integers in ℤn. Actual computations on exponents will be done modulo B𝜈 for a fixed
odd base B and a flexible B-adic precision 𝜈. We also fix a constant P⩾22 such that

2n log B<P⩽(2P)2<B (3.2)

and we note that this assumption implies

P
log P>4n (3.3)

and
B⩾1937 and 𝜎B⩾11. (3.4)

We finally assume 𝛾⩾1 to be a parameter that will be specified in section 4. The exponent
encoding will depend on one more parameter

1⩽m⩽n

that will be fixed in section 3.2 and flexible in section 3.3. We define

𝜆≔�𝛾 n
m�.

Our encoding also depends on the following random parameters:
• For each k∈ℕ𝜆, let ik,0, . . . , ik,m−1 be random elements inℕn and Ik≔{ik,0, . . . , ik,m−1}.
• Let p0, . . . , pn−1 be pairwise distinct random prime numbers in the interval (P, 2P);

such primes do exist thanks to Lemma 2.6 and (3.3).
Now consider an exponent e=(e0, . . . , en−1)∈ℤn. We encode e as

𝜙k(e) ≔ ((((((((((�
i∈Ik

pi ei)))))))))) rem B𝜈∈ℤB𝜈 for k∈ℕ𝜆

𝜙(e) ≔ (𝜙0(e), . . . ,𝜙𝜆−1(e))∈ℤB𝜈
𝜆 .

We will sometimes write 𝜙[𝜈,p,I] and 𝜙k
[𝜈,p,I] instead of 𝜙 and 𝜙k in order to make the

dependence on 𝜈, p and I explicit.

3.2. Guessing individual exponents of prescribed size
Given an exponent e=(e0, . . . , en−1)∈ℤn of f , our first aim is to determine the individual
exponents ei of small size. More precisely, assuming that

#e≔|{i∈ℕn : ei≠0}|⩽ n
m ,

we wish to determine all ei with 4P |ei|<B𝜈.
We say that 𝜙(e) is transparent if for each i∈ℕn with ei≠0, there exists a k∈ℕ𝜆 such

that {j∈ Ik : ej≠0}={i}. This property does only depend on the random choices of the Ik.

LEMMA 3.1. Assume that #e⩽n/m. Then, for random choices of I1,...,I𝜆, the probability that𝜙(e)
is transparent is at least 1− (n/m)e−𝛾/e.

8 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

Proof. Let ℐ≔{i∈ℕn : ei≠0} and #e=|ℐ|⩽n/m. Given k∈ℕ𝜆 and i∈ℐ , the probability
that Ik∩ℐ={i} is

m(n−#e)m−1

nm =m
n �1− #e

n �
m−1

⩾m
n �1− 1

m�
m−1

⩾e−1 m
n .

The probability that Ik∩ℐ={i} for some k is therefore at least

1−�1−e−1 m
n �𝛾

n
m ⩾1−e−𝛾/e.

We conclude that the probability that this holds for all i∈ℐ is at least 1−(n/m)e−𝛾/e. □

We say that 𝜙(e) is faithful if for every k∈ℕ𝜆 and i∈ℕn such that 4P |ei| <B𝜈 and
pi |𝜙k(e), we have 𝜙k(e)=pi ei.

LEMMA 3.2. For random choices of p0, . . . ,pn−1, the code 𝜙(e) is faithful with probability at least

1− 16𝜆𝜈n2 log B
P .

Proof. Let 𝒫 be the set of all primes strictly between P and 2P. Let 𝒰 be the set of all
(p0, . . . ,pn−1)∈𝒫 n such that p0, . . . ,pn−1 are pairwise distinct. Let 𝒳 be the subset of 𝒰 of
all choices of p0, . . . ,pn−1 for which 𝜙(e) is not faithful.

Consider k∈ℕ𝜆, i∈ℕn, and (p0, . . . , pn−1)∈𝒰 be such that pi | 𝜙k(e), 4P |ei| <B𝜈 and
𝜙k(e)≠pi ei. Let Φ≔𝜙k(e)−pi ei≠0. For each q∈𝒫, let

pi→q≔(p0, . . . ,pi−1,q,pi+1, . . . ,pn−1)

and 𝜙[q]≔𝜙[𝜈,pi→q,I], so that 𝜙[pi]=𝜙. For each q∈𝒫, using 4P |ei|<B𝜈, we observe that

𝜙k
[q](e)=Φ+qei+𝜖B𝜈

necessarily holds with 𝜖∈{−1,0,1}.
Now consider the set 𝒬 i,k,p1, . . . ,pi−1,pi+1, . . . ,pn of q∈𝒫 such that 𝜙k

[q](e) is divisible by q.
Any such q is a divisor of eitherΦ−B𝜈, Φ, orΦ+B𝜈. Since B is odd we have

|𝜙k(e)|⩽
B𝜈−1

2 ,
and therefore

|Φ|⩽ |𝜙k(e)|+ |pi ei|⩽
B𝜈−1

2 + B𝜈

2 =B𝜈− 1
2.

It follows that Φ+𝜀B𝜈≠0. Consequently,

|𝒬 i,k,p1, . . . ,pi−1,pi+1, . . . ,pn| ⩽ 3⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈ log (2B
𝜈)

log P ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉
⩽ 3((((((((((log (2B

𝜈)
log P +1))))))))))

= 3((((((((((𝜈 log Blog P + log (2P)
log P))))))))))

⩽ 3((((((((((𝜈 log Blog P + log B
2 log P)))))))))) (by (3.2))

⩽ 9𝜈 log B
2 log P .

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

Now let
𝒳 i,k≔{(p0, . . . ,pn−1)∈𝒰 :pi∈𝒬 i,k,p0, . . . ,pi−1,pi+1, . . . ,pn−1},

so that 𝒳⊆⋃i,k 𝒳 i,k. By what precedes, we have

|𝒳 i,k|⩽
9
2 �

|𝒫|
n−1�

𝜈 log B
log P ,

whence
|𝒳|⩽ 9

2 𝜆𝜈n�
|𝒫|
n−1�

log B
log P .

From |𝒰|=�|𝒫|
n � we deduce that

|𝒳|
|𝒰| ⩽

9𝜆𝜈n2 log B
2(|𝒫|−n+1) log P .

From Theorem 2.3 we know that |𝒫|⩾ /3 5P/logP. This yields |𝒫|⩾ /9 16P/logP, as well as
|𝒫|⩾2n, thanks to (3.3). We conclude that

|𝒳|
|𝒰| ⩽

9𝜆𝜈n2 log B
|𝒫| log P ⩽ 16𝜆𝜈n2 log B

P . □

Given 𝜓∈ℤB𝜈
𝜆 and i∈ℕn, let k𝜓,i be the smallest index such that pi | 𝜓k𝜓,i≠ 0 and

4P |𝜓k𝜓,i|/pi<B𝜈. If no such k𝜓,i exists, then we let k𝜓,i≔⊥. We define k𝜓≔(k𝜓,0,...,k𝜓,n−1).
Assume that 𝜓=𝜙(e) is transparent and faithful for some e∈ℤn. Given i∈ℕn, let ẽi≔

𝜓k𝜓,i/pi if k𝜓,i≠⊥ and ẽi≔0 otherwise. Then the condition 4P |𝜓k𝜓,i|/pi<B𝜈 implies that
2pi |e ĩ| <B𝜈 always holds. Moreover, if 4P |ei|<B𝜈, then the definitions of “transparent”
and “faithful” imply that ei= e ĩ. In other words, these ei can efficiently be recovered
from 𝜓 and k𝜓.

LEMMA 3.3. Let (𝜓0, . . . ,𝜓T−1)∈(ℤB𝜈
𝜆)T, where T𝜈⩾m. Then we can compute (k𝜓0, . . . ,k𝜓T−1)

in time Õ(T𝜆𝜈 log B).

Proof. Note that the hypotheses T 𝜈 ⩾m and 𝛾 ⩾ 1 imply that n=O(T 𝜆 𝜈). Using
Lemma 2.7, we can compute all triples (j, i,k) with pi |𝜓k

j in time

Õ(T𝜆𝜈 log B+n log P)= Õ(T𝜆𝜈 log B),

thanks to (3.2). Using Õ(T 𝜆 𝜈 log B) further operations we can filter out the triples
(j, i, k) for which 4P �𝜓k

j�/pi<B𝜈. We next sort the resulting triples for the lexicograph-
ical ordering, which can again be done in time Õ(T 𝜆 𝜈 log B). For each pair (j, i), we
finally only retain the first triple of the form (j, i,k). This can once more be done in time
Õ(T𝜆𝜈 log B). Then the remaining triples are precisely those �j, i,k𝜓 j,i� with k𝜓 j,i≠⊥. □

The following combination of the preceding lemmas will be used in the sequel:

LEMMA 3.4. Let 𝒆= (e0, . . . , eT−1)∈ (ℤn)T and let 𝝍=(𝜓0, . . . , 𝜓T−1)∈ (ℤB𝜈
𝜆)T be the corre-

sponding values as above. Let J be the set of indices j∈ℕT such that 𝜓 j=𝜙(e j) and #e j⩽n/m.
Then there exists an algorithm that takes 𝝍 as input and that computes 𝒆̃=(ẽ0, . . . , ẽT−1)∈(ℤn)T

such that 2 pi �ẽi
j� <B𝜈 for all (i, j) ∈ℕn×ℕT and ẽi

j= ei
j for all j∈ J with 4 P �ei

j� < B𝜈. The
algorithm runs in time Õ(T𝜆𝜈 log B) and succeeds with probability at least

1−T n
m e−𝛾/e− 16𝜆𝜈Tn2 log B

P .

10 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

Proof. Lemmas 3.1 and 3.2 bound the probability of failure for the transparency and the
faithfulness of the random choices for each of the T terms. The complexity bound follows
from Lemma 3.3. □

3.3. Guessing exponents of prescribed size

Our next aim is to determine all exponents e j with 𝜎e j⩽Σ, for some fixed thresholdΣ. For
this, we will apply Lemma 3.4 several times, for different choices of 𝜙[𝜈,p,I]. Let

U≔⌈log2min(Σ,n)⌉+2.
For u=1, . . . ,U, let

𝜈 {u} ≔ � 5Σ
2U−u�

m{u} ≔ � n
2U−u�

𝜆{u} ≔ �𝛾 n
m{u}�.

We also choose p{u} and I {u} independently at random as explained in section 3.1, with
𝜈 {u}, m{u}, and 𝜆{u} in the roles of 𝜈, m, and 𝜆. We finally define

𝜙{u}≔𝜙[𝜈 {u},p{u},I {u}],
for u=1, . . . ,U.

Note that the above definitions imply

4min(Σ,n)⩽2U<8min(Σ,n) (3.5)

and 1⩽m{u}⩽n. The inequality m{u}<n/2U−u+1 implies

2U−u⩽ 2n
m{u} , whenever m{u}⩾2. (3.6)

If m{u}=1, then 2U−u⩽2U−1⩽4n=4n/m{u}, so, in general,

2U−u⩽ 4n
m{u} . (3.7)

By (3.5) we have 5Σ⩾2U−1, whence

𝜈 {1}<𝜈 {2}< ⋅ ⋅ ⋅ <𝜈 {U}. (3.8)

LEMMA 3.5. For u=1, . . . ,U, we have 𝜆{u}𝜈 {u}⩽18𝛾Σ.

Proof. From 𝛾⩾1, we get
𝜆{u}⩽⌈𝛾2U−u⌉⩽𝛾2U−u+1. (3.9)

Now

𝜆{u}𝜈 {u} < (((((((5Σ
2U−u +1)))))))𝛾2U−u+1 (by (3.9))

⩽ 𝛾(10Σ+2U−u+1)
⩽ 18𝛾Σ, (by (3.5))

which concludes the proof. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

THEOREM 3.6. Let 𝒆=(e0, . . . , eT−1)∈(ℤn)T and let 𝝍{u}=(𝜓{u,0}, . . . ,𝜓{u,T−1})∈�ℤB𝜈{u}
𝜆 �T for

i=1, . . . ,U be as above. Assume that TΣ⩾n. Let J be the set of indices j∈ℕT such that 𝜎e j⩽Σ
and 𝜓{u, j}=𝜙{u}(e j) for all u=1, . . . ,U. Then there exists an algorithm that takes 𝝍{1}, . . . ,𝝍{u}

as input and that computes 𝒆̂=(ê0, . . . , êT−1)∈(ℤn)T such that 𝜎ê j⩽Σ for all j∈ℕT and ê j= e j

for all j∈ J. The algorithm runs in time Õ(𝛾TΣlog B) and succeeds with probability at least

1−TnU e−𝛾/e− 288𝛾UΣTn2 log B
P .

Proof. We compute successive approximations 𝒆{0}, 𝒆{1}, . . . , 𝒆{U} of 𝒆 as follows. We start
with 𝒆{0}≔0. Assuming that 𝒆{u−1} is known, we compute

𝜓̇ j≔(𝜓{u, j}−𝜙{u}((e{u−1})j)) rem B𝜈 {u}∈ℤB𝜈{u}
𝜆

for all j∈ℕT, and then apply the algorithm underlying Lemma 3.4 to 𝒆̇≔𝒆− 𝒆{u−1} and
𝝍̇≔(𝜓̇0, . . . , 𝜓̇T−1). Note that for all j∈ J the equality 𝜓{u, j}=𝜙{u}(e j) implies

𝜓̇ j = (𝜙{u}(e j)−𝜙{u}((e{u−1})j)) rem B𝜈 {u}

= 𝜙{u}(e j− (e{u−1})j)
= 𝜙{u}(ė j).

Our choice of 𝜈 {u} andm{u}, the inequality (3.5), and the assumption TΣ⩾n successively
ensure that

m{u}

𝜈 {u} ⩽
n

2U−u +1
5Σ
2U−u

⩽ n+2U−1

5Σ ⩽ n
Σ ⩽T,

so we can actually apply Lemma 3.4.
Let J {u} be the set of indices j∈ℕT such that 𝜓̇ j=𝜙{u}(ė j) and #ė j⩽n/m{u}. Lemma 3.4

provides us with 𝒆̃=(ẽ0, . . . , ẽT−1)∈(ℤn)T such that 2pi �ẽi
j�<B𝜈 {u}

for all (i, j)∈ℕn×ℕT. In
addition ẽi

j= ėi
j holds whenever j∈ J {u} and 4P �ėi

j�<B𝜈 {u}
with probability at least

1−T n
m{u} e

−𝛾/e− 16𝜆𝜈 {u}Tn2 log B
P .

Now we set

𝒆{u}≔𝒆{u−1}+𝒆̃. (3.10)

At the end, we return 𝒆̂≔𝒆{U} as our guess for 𝒆. For the analysis of this algorithm, we
first assume that all applications of Lemma 3.4 succeed. Let us show by induction (and
with the above definitions of 𝝍̇ and 𝒆̇) that, for all i∈ℕn, j∈ J, and u=1, . . . ,U, we have:
i. #ė j⩽n/m{u};

ii. 2P �(e{u})i
j�<B𝜈 {u}

;

iii. (e{u})i
j= ei

j whenever 4P �ei
j�<B𝜈 {u}�1− 2

B�.

If u=1 andm{1}=1 then (i) clearly holds. If u=1 andm{1}⩾2, then (3.5) and (3.6) imply
n/m{1}⩾2U−2⩾min(Σ,n). Since j∈ J we have 𝜎e j⩽Σ. Now we clearly have #ė j⩽𝜎e j and
#ė j⩽n, so (i) holds.

12 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

If u⩾2, then let i∈ℕn be such that ėi
j≠0, so we have (e{u−1})i

j≠ ei
j. The induction

hypothesis (iii) and (3.4) yield

4P �ei
j�⩾B𝜈 {u−1}�1− 2

B�⩾
2
3 B

𝜈 {u−1},

whence 6P �ei
j�⩾B𝜈 {u−1}. Consequently,

log2 �ei
j� ⩾ 𝜈 {u−1} log2 B− log2(6P)

⩾ 𝜈 {u−1} log2
B
6P (since 𝜈 {u−1}⩾1)

⩾ 𝜈 {u−1} log2
B�
3 (by (3.2))

⩾ 𝜈 {u−1} (𝜎B−3)
2 (since B⩾2𝜎B−1)

⩾ 5Σ(𝜎B−3)
2U−u+2

⩾ 40Σ
2U−u+2 (by (3.4))

⩾ Σ
n/m{u} . (by (3.7))

Hence the total bit-size of all �ei
j� such that ėi

j≠0 is at least (#ė j)Σ/(n/m{u}) and at most Σ
by definition of J. This concludes the proof of (i). Now if j∈ J, then 𝜓{u, j}=𝜙{u}(e j)=𝜓̇ j,
so Lemma 3.4 and (i) imply that j∈ J {u}. In other words, we obtain an approximation 𝒆̃
of 𝒆̇ such that 2pi

{u} �ẽi
j�<B𝜈 {u}

for all (i, j)∈ℕn× J, and ẽi
j= ėi

j holds whenever 4P �ėi
j�<B𝜈 {u}

.
Let us prove (ii). If u=1, then 2P �(e{1})i

j�=2P �ẽi
j�<B𝜈 {u}. If u⩾2, then (3.10) yields

2P �(e{u})i
j� ⩽ 2P �(e{u−1})i

j�+2P �ẽi
j�

< B𝜈 {u−1}+2P �ẽi
j� (by induction hypothesis (ii))

⩽ B𝜈 {u−1}+ 2P
2pi

{u} B
𝜈 {u}

⩽ B𝜈 {u−1}+ P
P+1 B

𝜈 {u}
(since pi

{u}⩾P+1)

⩽ B𝜈 {u}

B + P
P+1 B

𝜈 {u} (by (3.8))

⩽ B𝜈 {u}

P+1 +
P

P+1 B
𝜈 {u} (by (3.2))

= B𝜈 {u}.

As to (iii), assume that 4P �ei
j�<B𝜈 {u}�1− 2

B�. If u=1, then (e{u})i
j= ėi

j= ei
j is immediate. If

u⩾2, then the induction hypothesis (ii) yields 2P �(e{u−1})i
j�<B𝜈 {u−1}

, whence

4P �ėi
j� ⩽ 4P �ei

j�+4P �(e{u−1})i
j�

< B𝜈 {u}
−2B𝜈 {u}−1+2B𝜈 {u−1}

⩽ B𝜈 {u}. (by (3.8))

We deduce that ẽi
j= ėi

j holds, hence (3.10) implies (iii). This completes our induction.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13

At the end of the induction, we have 𝜈 {U}=5Σ and, for all (i, j)∈ℕn× J,

5P �ei
j� ⩽ 5P2Σ (since 𝜎e j⩽Σ)
⩽ /5 2B1/22Σ (by (3.2))
= /5 2B𝜈 {U}/(5log2B)+1/2

⩽ /5 2B𝜈 {U}/50+1/2 (by (3.4))
⩽ B𝜈 {U}/50+3/4 (by (3.4))
⩽ B𝜈 {U}. (since 𝜈 {U}⩾1)

By (iii) and (3.4), this implies the correctness of the overall algorithm.
As to the complexity bound, Lemma 3.5 shows that 𝜆{u}𝜈 {u}=O(𝛾Σ), when applying

Lemma 3.4. Consequently, the cost of all these applications for u=1,... ,U is bounded by

Õ(((((((((((((((((((�u=1

U

𝜆{u}T𝜈 {u} log B)))))))))))))))))))= Õ(𝛾TΣU log B)= Õ(𝛾TΣlog B),

sinceU=O(logΣ). The cost of the evaluations of 𝜙{u}((e{u−1})j) and all further additions,
subtractions, and modular reductions is not more expensive.

The bound for the probability of success follows by induction from Lemmas 3.4
and 3.5, while using the fact that all p{u} and I {u} are chosen independently. □

4. SPARSE INTERPOLATION

Throughout this section, we assume that f is a modular blackbox polynomial in
ℤ[x1, . . . , xn] with at most T terms and of bit-size at most S⩾T. In order to simplify
the cost analyses, it will be convenient to assume that

S⩾max(n, 216).

Our main goal is to interpolate f . From now on # f will stand for the actual number of
non-zero terms in the sparse representation of f .

Our strategy is based on the computation of increasingly good approximations of the
interpolation of f , as in [3], for instance. The idea is to determine an approximation f̃
of f , such that f − f̃ contains roughly half the number of terms as f , and then to recur-
sively re-run the same algorithm for f − f̃ instead of f . Our first approximation will only
contain terms of small bit-size. During later iterations, we will include terms of larger
and larger bit-sizes.

Throughout this section, we set

𝛽≔26𝜎S2 and Σ≔⌊𝛽S/T⌋, (4.1)

so that at most T/𝛽 of the terms of f have size >Σ. Our main technical aim will be to
determine at least max (T/2−# f , 0) terms of f of size ⩽Σ, with high probability.

4.1. Cyclic modular projections
Our interpolation algorithm is based on an extension of the univariate approach from [17].
One first key ingredient is to homomorphically project the polynomial f to an element
of ℤ[t]/(tr− 1,M) for a suitable cycle length r∈ℕ> and a suitable modulus M (of the
form M=B𝜈, where B is as in the previous section and 𝜈∈ℕ>).

14 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

More precisely, we fix
R≔max(S, 258)𝛽2 (4.2)

and compute (r, q, 𝜔) as in Theorem 2.5. Now let 𝜏0, . . . , 𝜏n−1 be random elements of
{1, . . . , r−1}, and consider the map

Π𝜏,r:ℤ[x0, . . . ,xn−1] ⟶ ℤ[t]/(tr−1)
f ⟼ f (t𝜏0, . . . , t𝜏n−1)mod (tr−1).

We call Π𝜏,r a cyclic projection.

LEMMA 4.1. The bit-size of the product of the non-zero coefficients of Π𝜏,r(f) is at most 𝜎f .

Proof. Given A= a0+ ⋅ ⋅ ⋅ + ar−1 tr−1∈ℤ[t]/(tr− 1), let 𝜎A≔𝜎a0+ ⋅ ⋅ ⋅ +𝜎ar−1 and 𝜋(A)≔
∏ai≠0 ai. Note that 𝜎i+ j⩽𝜎i+𝜎j and 𝜎ij⩽𝜎i+𝜎j for any i, j∈ℤ. The first inequality yields
𝜎Π𝜏,r(f)⩽𝜎f , whereas the second one implies 𝜎𝜋(Π𝜏,r(f))⩽𝜎Π𝜏,r(f). □

Given a modulus M∈ℕ>, we also define

Π𝜏,r,M:ℤ[x0, . . . ,xn−1] ⟶ ℤ[t]/(tr−1,M)
f ⟼ f (t𝜏0, . . . , t𝜏n−1)mod (tr−1,M)

and call Π𝜏,r,M a cyclic modular projection.
If Π=Π𝜏,r, then we say that a term c xe of f and the corresponding exponent e are

Π- faithful if there is no other term c′ xe′ of f such that Π(xe) =Π�xe′�. If Π=Π𝜏,r,M,
then we define Π-faithfulness in the same way, while requiring in addition that c be
invertible modulo M. For any 𝜅⩾2, we note that cxe is Π𝜏,r,M-faithful if and only if cxe
is Π𝜏,r,M𝜅-faithful. We say that f is Π-faithful if all its terms are Π-faithful. In a sim-
ilar way, we say that f̄ ≔Π𝜏,r(f) is M-faithful if c remM is invertible for any non-zero
term c t ē of f̄ .

The first step of our interpolation algorithm is similar to the one from [17] and consists
of determining the exponents of f̄ ≔Π𝜏,r(f). Let q be a prime number. If f̄ is q-faithful,
then the exponents of f̄ are precisely those of f̄ rem q=Π𝜏,r,q(f).

LEMMA 4.2. We can compute Π𝜏,r,q(f) in time

Af(𝜎q) r𝜎q+nÕ(r log q).

Proof. We first precompute 1,𝜔,...,𝜔r−1 in time rÕ(log q). We compute 𝜋≔Π𝜏,r,q(f) by
evaluating 𝜋(𝜔i)= f (𝜔i𝜏0, . . . ,𝜔i𝜏n−1) for i=0, . . . , r−1. This takes Af(𝜎q)r𝜎q+nrÕ(log q)
bit-operations. We next retrieve 𝜋 from these values using an inverse discrete Fourier
transform (DFT) of order r. This takes Õ(r) further operations in 𝔽q, using Bluestein's
method [7]. □

Assuming that f̄ is q-faithful and that we knowΠ𝜏,r,q(f), consider the computation of
Π𝜏,r,q𝜈(f) for higher precisions 𝜈. Now f̄ is also q𝜈-faithful, so the exponents ofΠ𝜏,r,q𝜈(f)
andΠ𝜏,r,q(f) coincide. One crucial idea from [17] is to computeΠ𝜏,r,q𝜈(f) using only T′≔
#Π𝜏,r,q(f) instead of r evaluations of f modulo q𝜈. This is the purpose of the next lemma.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 15

LEMMA 4.3. Assume that f̄ is q-faithful and thatΠ𝜏,r,q(f) is known. Let T′≔#Π𝜏,r,q(f)⩽T and
let g(x)≔ f (𝛼x), where 𝛼=(𝛼0, . . . , 𝛼n−1)∈ℕq𝜈

n is such that 𝛼i rem q≠0 for all i∈ℕn. Then
we may compute Π𝜏,r,q𝜈(g) in time

Af(𝜈𝜎q)T′ 𝜈𝜎q+nÕ((T′+ log r)𝜈 log q).

Proof. We first Hensel lift the primitive r-th root of unity 𝜔 in 𝔽q to a principal r-th root
of unity 𝜔̃ in ℤ/q𝜈ℤ in time Õ(𝜈 log q log r), as detailed in [17, section 2.2]. We next
compute 𝜔̃𝜏0, . . . , 𝜔̃𝜏n−1 in time nÕ(𝜈 log q log r), using binary powering. We pursue with
the evaluations vi≔ f (𝛼0 𝜔̃i𝜏0, . . . ,𝛼n−1 𝜔̃i𝜏n−1) for i=0, . . . ,T′−1. This can be done in time

Af(𝜈𝜎q)T′ 𝜈𝜎q+nT′ Õ(𝜈 log q).

Now the exponents e0, . . . ,eT′∈ℕr ofΠ𝜏,r,q𝜈(g) are known, since they coincide with those
of Π𝜏,r,q(f), and we have the relation

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

(1 1 ⋅ ⋅ ⋅ 1
𝜔̃e0 𝜔̃e1 ⋅ ⋅ ⋅ 𝜔̃eT ′−1

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
𝜔̃(T′−1)e0 𝜔̃(T′−1)e1 ⋅ ⋅ ⋅ 𝜔̃(T′−1)eT ′−1)))))))))))))))))

)))))))))))))))))
))))))))))))))

)

)

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

(c0
c1
⋅⋅⋅

cT′−1)))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)
=

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

(v0
v1
⋅⋅⋅

vT′−1)))))))))))))))
)))))))))))))))))
))))))))))))))))

)

)
,

where ci denotes the coefficient of tei inΠ𝜏,r,q𝜈(g), for i=0,...,T′−1. It is well known that
this linear system can be solved in quasi-linear time Õ(T′ 𝜈 log q): in fact this problem
reduces to the usual interpolation problem thanks to the transposition principle [8, 33];
see for instance [24, section 5.1]. □

4.2. Probability of faithfulness
The next lemma is devoted to bounding the probability of picking up random prime
moduli that yield q-faithful projections.

LEMMA 4.4. Let N (resp. N∗) be the number of terms (resp.Π𝜏,r,q-faithful terms) of f of size⩽Σ.
Let the cycle length r and the modulus q be given as described in Theorem 2.5. If the 𝜏0, . . . ,𝜏n−1

are uniformly and independently taken at random {1, . . . , r−1}, then, with probability ⩾1− 3
𝛽�
,

the projection f̄ is q-faithful and

N∗⩾(((((((((((((((((1−
3
𝛽�)))))))))))))))))N− T

𝛽.

Proof. We let 𝜀≔1/𝛽 and R⩾258/𝜀2 as in (4.2), which allows us to apply Theorem 2.5.
Let f =∑e cex

e and E≔{e∈ℕn : ce≠0∧𝜎ce+𝜎e⩽Σ}. For any e∈ℤn, let

𝜋e≔�
ei≠0

|ei|.

Given e∈E, consider 𝜋e′ ≔𝜋e∏e′∈E∖{e} 𝜋e′−e and note that 𝜋e′ < 2|E|Σ. We say that e is
admissible if e rem r≠0 and (e′− e) rem r≠0 for all e′∈E∖{e}. This is the case if and only
if 𝜋e′ is not divisible by r. Now 𝜋e′ is divisible by at most 𝜌(2|E|Σ) distinct prime numbers,
by Theorem 2.4. Since there are at least

3
5 R/logR⩾ 3

5 𝛽
2S/log (𝛽2S)

16 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

prime numbers in (R, 2R), by Theorem 2.3, the probability that 𝜋e is divisible by r is at
most

𝜌(2|E|Σ)
3
5 𝛽

2S/log (𝛽2S)
.

From (4.1) we obtain Σ⩾𝛽⩾64, whence 2|E|Σ⩾ee. It follows that
𝜌(2|E|Σ)

3
5 𝛽

2S/log (𝛽2S)
⩽ 1.538 log(2|E|Σ)/log (log (2|E|Σ))

0.6𝛽2S/log (𝛽2S)

⩽ 1.538 |E|Σ/log (|E|Σ)
0.6𝛽2S/log (𝛽2S)

⩽ 1.538 |E|Σ/log (|E|Σ)
0.6𝛽2S/log (𝛽2S2)

= 1.538 |E|Σ/log (|E|Σ)
0.3𝛽2S/log (𝛽S)

⩽ 5.127
𝛽

ΣT/log (ΣT)
𝛽S/log (𝛽S) (since |E|⩽T)

⩽ 5.127
𝛽 , (4.3)

since 𝛽S⩾ΣT from (4.1). Now consider two admissible exponents e≠ e′ in E and let
i∈ℕn with (ei− ei′) rem r≠0. For fixed values of 𝜏j with j≠ i, there is a single choice
of 𝜏i∈{1, . . . , r− 1} with 𝜏 ⋅ (e− e′) rem r=0. Hence the probability that this happens
with random 𝜏0, . . . , 𝜏n−1 is 1/(r−1). Consequently, for fixed e∈E, the probability that
𝜏 ⋅ (e− e′) rem r=0 for some e′∈E∖{e} is at most

|E|
r−1 ⩽

|E|
R ⩽ |E|

𝛽2S
⩽ |E|
𝛽ΣT⩽ 1

𝛽Σ ⩽ 1
64𝛽, (4.4)

thanks to (4.1).
Assuming now that r is fixed, let us examine the probability that f̄ is q-faithful. Let 𝜋

be the product of all non-zero coefficients of f̄ . Then f̄ is q faithful if and only if q does
not divide 𝜋. Now the bit-size of the product 𝜋 is bounded by 𝜎f ⩽S, by Lemma 4.1.
Hence 𝜋 is divisible by at most 1.538S/log S prime numbers, by Theorem 2.4 and our
assumption that S⩾216. With probability at least

1− 1
𝛽, (4.5)

there are at least R5/(24logR) prime numbers amongst which q is chosen at random, by
Theorem 2.5(b). Assuming this, f̄ is not q-faithful with probability at most

1.538S/log S
R5/(24 logR)

⩽ 37
R4 ⩽

1
10𝛽, (4.6)

since R⩾S⩾216, by (4.2).
Let E′ be the set of e∈E such that ce rem q≠0 and 𝜏 ⋅(e−e′) rem r≠0 for all e′∈E∖{e}.

Altogether, the bounds (4.3), (4.4), (4.5), and (4.6) imply that the probability that
a given e∈ E belongs to E′ is at least 1− 9 𝜀. It follows that the expectation of |E′| is
at least (1−9𝜀) |E|. For

𝛿≔ 9𝜀� = 3
𝛽�
,

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17

this further implies that the probability that |E′|< (1− 9 𝜀/𝛿) |E| cannot exceed 𝛿: other-
wise the expectation of |E′| would be <𝛿(1−9𝜀/𝛿) |E|+(1−𝛿) |E|=(1−9𝜀) |E|.

We finally observe that e∈E′ is Π𝜏,r,q-faithful whenever 𝜏 ⋅ (e− e′) rem r≠0 for all
e′∈supp f such that 𝜎ce′+𝜎e′>Σ. Now for every e′with 𝜎ce′+𝜎e′>Σ, there is at most one
e∈E′ with 𝜏 ⋅ (e− e′) rem r=0: if 𝜏 ⋅ (ẽ− e′) rem r=0 for ẽ∈E′, then 𝜏 ⋅ (ẽ− e) rem r=0,
whence ẽ=e. By (4.1), there are at most T/𝛽 exponents e′with 𝜎ce′+𝜎e′>Σ. We conclude
that N∗⩾(1−9𝜀/𝛿)N−T/𝛽, whenever |E′|⩾(1−9𝜀/𝛿) |E|. □

4.3. Computing probabilistic codes for the exponents
Lemma 4.3 allows us to compute the coefficients ofΠ𝜏,r,q𝜈(f (𝛼x))with good complexity.
In the univariate case, it turns out that the exponents of Π𝜏,r,q-faithful terms of f can be
recovered as quotients of matching terms ofΠ𝜏,r,q2𝜈((1+q𝜈) f) andΠ𝜏,r,q2𝜈(f) by taking 𝜈
sufficiently large.

In the multivariate case, this idea still works, for a suitable Kronecker-style choice
of 𝜏. However, we only reach a suboptimal complexity when the exponents of f are
themselves sparse and/or of unequal magnitudes. The remedy is to generalize the “quo-
tient trick” from the univariate case, by combining it with the algorithms from section 3:
the quotients will now yield the exponents in encoded form.

Let us now specify the remaining parameters from section 3. First of all, we take
B≔q𝜇, where

𝜇≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈6 log S+4log n+52log 2
log q ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉.

Consequently,
252n4S6⩽B<252n4S6q. (4.7)

We also take P≔� B� /2� and 𝛾≔⌈6e log S⌉. Since B is odd, the inequalities (3.2) hold.
We compute U and 𝜈 {u},p{u}, I {u} for u=1, . . . ,U as in section 3.3.

For u=1, . . . ,U, k∈ℕ𝜆{u}, and i∈ℕn, let

Π{u} ≔ Π𝜏,r,B2𝜈{u}

𝛼k,i
{u} ≔ {{{{{{{{{{{{{{{{{{{{{{{{{{{{ 1+pi

{u}B𝜈 {u} if i∈ Ik
{u}

1 otherwise.

For any term cxe with c∈ℤ and e∈ℕn, note that

Π{u}(cxe) = c t𝜏⋅e

Π{u}�c�𝛼k
{u}x�e� = �1+𝜙k

{u}(e)B𝜈 {u}� c t𝜏⋅e.

Whenever c rem q≠0, it follows that 𝜙k
{u}(e) can be read off modulo B𝜈 {u} from the quo-

tient of Π{u}�c�𝛼k
{u}x�e� and Π{u}(cxe).

LEMMA 4.5. Let n, S, 𝛽, Σ, R be as in (4.1), (4.2) and let (r,q,𝜔) be as in Theorem 2.5. Then
we can compute the random parameters Ik

{u}, p{u} (u=1, . . . ,U, k∈ℕ𝜆{u}) and 𝜏0, . . . , 𝜏n−1 in
time nÕ(S) and with a probability of success ⩾1−1/S.

Proof. The cost to generate n random elements 𝜏0, . . . , 𝜏n−1 in {1, . . . , r−1} is

O(n𝜎r)=O(S log S),

18 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

since we assumed S⩾n. The generation of I0
{u}, . . . , I𝜆{u}−1

{u} can be done in time

O(𝜆{u}m{u}𝜎n)=O(𝛾n𝜎n)= Õ(S).

For u=1,...,U, we compute p{u} using Lemma 2.6 with 𝜀≔1/(SU+1). The computation
of a single p{u} takes time

O(n(log n+log(𝜀−1)))(log P)O(1)= Õ(S)

and succeeds with probability at least 1−𝜀. The probability of success for all u=1, . . . ,U
is at least (1−𝜀)U⩾1−1/S, because

log(1−𝜀)⩾ −𝜀
1−𝜀 =

−1
SU⩾ log(1−1/S)

U .

We conclude with the observation that logU=O(log S). □

LEMMA 4.6. Assume that f̄ is q-faithful and that Π𝜏,r,q(f) is known. Let T′≔#Π𝜏,r,q(f)⩽T.
Then we can compute Π{u}(f) and Π{u}� f �𝛼k

{u}x�� for all u∈{1, . . . ,U} and k∈ℕ𝜆{u} in time

Af(S) Õ(𝛽𝛾S).

Proof. For a fixed u∈ {1, . . . ,U}, we can compute Π{u}(f) and Π{u}� f �𝛼k
{u} x�� for all

k∈ℕ𝜆{u} in time

2𝜆{u}Af(2𝜈 {u}𝜇𝜎q)T′ 𝜈 {u}𝜇𝜎q+𝜆{u}nÕ((T′+ log r)𝜈 {u}𝜇log q)

by Lemma 4.3. From Lemma 3.5 and 𝜇𝜎q=O(log S), we get

𝜆{u}𝜈 {u}𝜇𝜎q⩽18𝛾𝜇𝜎qΣ=O(𝛾Σlog S).

By definition of R and 𝛽, we have log r=log S+log 𝛽=O(log S). By (4.1) we also have
Σ=O(S log2 S). Hence the cost for computing Π{u}(f) and Π{u}� f �𝛼k

{u}x�� simplifies to

Af(𝜈 {u}𝜇𝜎q)O(T′𝛾Σlog S)+nÕ((T′+ log r)𝛾Σlog S)
= Af(Σ+log n log S) Õ(𝛾𝛽S)+nÕ(𝛾𝛽S) (by (4.1))
= (Af(S)+n) Õ(𝛽𝛾S)
= Af(S) Õ(𝛽𝛾S). (since n=O(Af(S)))

Since U=O(logmin(Σ,n))=O(log S), the total computation time for u=1, . . . ,U is also
bounded by Af(S) Õ(𝛽𝛾S). □

Consider a family of numbers𝜓u,k,i∈ℤB𝜈{u}, where u=1,...,U, k∈ℕ𝜆{u}, and i∈ℕT′. We
say that (𝜓u,k,i) is a faithful exponent encoding for f if we have 𝜓u,k,i=𝜙k

{u}(e) whenever e
is a Π𝜏,r,B2𝜈{u}-faithful exponent of f with t ēi=Π𝜏,r,B2𝜈{u}(xe). We require nothing for the
remaining numbers 𝜓u,k,i, which should be considered as garbage.

COROLLARY 4.7. Assume that f̄ is q-faithful and thatΠ𝜏,r,q(f) is known. Then we may compute
a faithful exponent encoding for f in time Af(S) Õ(𝛽𝛾S).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19

Proof. We compute allΠ{u}(f) andΠ{u}� f �𝛼k
{u}x�� using Lemma 4.6. Let cu,i and cu,k,i be

the coefficients of t ēi inΠ{u}(f) andΠ{u}� f �𝛼k
{u}x��. Then we take 𝜓u,k,i≔ cu,k,i/cu,i if cu,k,i

is divisible by cu,i and 𝜓u,k,i≔0 if not. For a fixed u∈{1, . . . ,U} all these divisions take
Õ(𝛽 𝛾 S) bit-operations, using a similar reasoning as in the proof of Lemma 4.6. Since
U=O(log S), the result follows. □

4.4. Sparse interpolation

Let f =∑e cex
e. We say that f̃ =∑e c̃ex

e∈ℤ[x1, . . . ,xn] is a T-approximation of f if # f̃ ⩽# f
and #(f − f̃)⩽ T

2 .

LEMMA 4.8. Let (r, q, 𝜔) be as in Theorem 2.5, with R as in (4.2). There is a Monte Carlo
algorithm that computes a T-approximation of f in time Af(S)Õ(𝛽𝛾S) and which succeeds with
probability at least 1− 3

𝛽�
− 17

S .

Proof. We first compute the required random parameters as in Lemma 4.5. This takes
time n Õ(S) and succeeds with probability at least 1− 1/S. We next compute Π𝜏,r,q(f)
using Lemma 4.2, which can be done in time

Af(𝜎q) r log q+nÕ(r log q)=Af(S)O(R logR)+nÕ(R)=(Af(S)+n) Õ(S).

We next apply Corollary 4.7 and compute a faithful exponent encoding for f , in time
Af(S)Õ(𝛽𝛾S). By Lemma 4.4, this computation fails with probability at most 3

𝛽�
. More-

over, in case of success, we haveN∗⩾�1− 3
𝛽�
�N− T

𝛽 , still with the notation of Lemma 4.4.

From (4.1) and S⩾T, we get TΣ>𝛽S−T⩾(𝛽−1)S⩾S⩾n. This allows us to apply
Theorem 3.6 to the faithful exponent encoding for f . Let ē0, . . . , ēT′−1 be the exponents of
Π𝜏,r,q(f). Given i∈ℕT ′ such that there exists aΠ𝜏,r,q-faithful term cxe of f withΠ𝜏,r,q(xe)=
t ēi and 𝜎e⩽Σ, let us write ei≔ e. For every such i, Theorem 3.6 produces a guess for
ei, and with probability at least

1−TnU e−𝛾/e− 288𝛾UΣTn2 log B
P

these guesses are all correct. The running time of this step is bounded by

Õ(𝛾TΣlog B)= Õ(𝛽𝛾S),

since log q=O(log S), S⩾n, and (4.7) imply log B=O(log S).
Below we will show that

TnU e−𝛾/e+ 288𝛾UΣTn2 log B
P ⩽ 16

S . (4.8)

Let 𝜈 be the smallest integer such that q𝜈⩾2Σ+1. We finally compute Π𝜏,r,q𝜈(f) using
Lemma 4.3, which can be done in time

Af(𝜈𝜎q)T′ 𝜈𝜎q+nÕ((T′+ log r)𝜈 log q)=(Af(S)+n) Õ(𝛽S)=Af(S) Õ(𝛽S).

Let c0, . . . , cT′−1∈ℤq𝜈 be such that

Π𝜏,r,q𝜈(f)=(c0 t ē0+ ⋅ ⋅ ⋅ + cT′−1 t ēT ′−1)mod q𝜈.

20 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

For every Π𝜏,r,q-faithful term cxe of f withΠ𝜏,r,q(xe)= t ēi and 𝜎c<Σ, we have

Π𝜏,r,q𝜈(cxe)=(cimod q𝜈) t ēi,

so we can recover c= ci∈ℤq𝜈 from Π𝜏,r,q𝜈(f).
With a probability at least 1− 3

𝛽�
− 17

S , all the above steps succeed. In that case, we

clearly have # f̃ =T′⩽T=# f . Let f = f #+ f ♭, where f # (resp. f ♭) is the sum of the terms
of bit-size >Σ (resp. ⩽Σ), so that N=# f ♭. Then # f #⩽ T

𝛽 and

#(f ♭− f̃)⩽N−N∗+ T
𝛽 ⩽ 3

𝛽�
N+ 2T

𝛽 .

Consequently,

#(f − f̃)⩽ 3
𝛽�
N+ 3T

𝛽 ⩽ T
2 ,

which means that f̃ ≔ c0xe0+ ⋅ ⋅ ⋅ + cT′−1xeT ′−1 is a T-approximation of f .
In order to conclude, it remains to prove the claimed inequality (4.8). Using the def-

inition of 𝛾 and the inequalities T⩽S, n⩽S, U⩽log2 S+2⩽S, we have

TnU e−𝛾/e⩽ TnU
S6 ⩽ 1

S3 . (4.9)

From (4.7) we have B⩾252 and therefore B� /(2P) ⩽ B� /� B� +2�⩽ 1+ 2−25. So the
inequality ΣT⩽𝛽S yields

288𝛾UΣTn2 log B
P ⩽ 577𝛽𝛾Un2S log B

B�
. (4.10)

Let us analyze the right-hand side of (4.10). Without further mention, wewill frequently
use that S⩾216. First of all, we have

𝜎s ⩽ log2 S+1⩽(1/log 2+1/log(216)) log S⩽1.54 log S
𝛽 = 64𝜎S2⩽152 log2 S,
𝛾 = ⌈6e log S⌉⩽(16.31+1/log (216)) log S⩽17log S,
U ⩽ log2Σ+3⩽log2 𝛽+log2 S+3

= 2log2 𝜎S+log2 S+9⩽2log2 (log2 S+1)+log2 S+9⩽3log S.

It follows that
577𝛽𝛾U⩽577×152×17×3 log4 S⩽223 log4 S. (4.11)

Now the function x↦(log2 x)4/x is decreasing for x⩾e4. Consequently,

𝜎S4
S ⩽ 2(log2(2S))4

2S ⩽ 174

216
⩽2.

Similarly, 𝜎S4/S2⩽174/232⩽2−15. Hence,

R = max(S, 258)𝛽2=max(212S𝜎S4, 270𝜎S4)⩽255S2

q ⩽ R6⩽2330S12

B ⩽ 252n4S6q⩽252S10q⩽2382S22. (by (4.7))

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 21

This yields
log B⩽22log S+382 log 2⩽46 log S. (4.12)

Combining (4.11), (4.12), and (4.7), we deduce that

577𝛽𝛾Un2S log B
B�

⩽ 46×223n2S log5 S
B�

⩽ 46×223n2S log5 S
226n2S3 ⩽ 6log5 S

S2 . (4.13)

The inequalities (4.9), (4.10), and (4.13) finally yield the claimed bound:

TnU e−𝛾/e+ 288𝛾UΣTn2 log B
P ⩽ 1

S3 +
6log5 S

S2 =
1
S2 +

6 log5 S
S

S ⩽ 16
S . □

We are now ready to complete the proof of our main result.

Proof of Theorem 1.1. By definition of R and thanks to Theorem 2.5, we may compute
the triple (r, q, 𝜔) in time O((log R)O(1))=O((log S)O(1)), with probability of success at
least 1−𝜀, where 𝜀≔1/𝛽.

Let J≔⌈log2 T⌉ + 1. Let T⟨j⟩≔⌈T/2 j⌉ and Σ⟨j⟩≔⌊𝛽 S/T⟨j⟩⌋ for j=0, . . . , J. Starting
with f ⟨0⟩≔0, we compute a sequence f ⟨0⟩, f ⟨1⟩, . . . , f ⟨J⟩ of successive approximations of f .
Assuming that f ⟨j⟩ is known for some j< J, we apply Lemma 4.8 with f − f ⟨j⟩ and T⟨j⟩ in
the roles of f and T. With high probability, this yields a T⟨j⟩-approximation 𝛿 ⟨j⟩ of f − f ⟨j⟩

and we set f ⟨j+1⟩≔ f ⟨j⟩+𝛿⟨j⟩.
In addition, for the evaluations of f ⟨j⟩ on geometric sequences, we use fast multi-

point evaluation. In the complexity bounds of Lemmas 4.3, 4.6, 4.8 and Corollary 4.7, one
may verify that this allows us to replace Af− f ⟨j⟩(s) by Af(s)+O((log s)O(1)) for all s⩾Σ⟨j⟩.

The total running time is bounded by

J (Af(S)+n) Õ(𝛽𝛾S)=(Af(S)+n) Õ(S).

Using the inequalities J⩽𝜎S+1 and S⩾216, the probability of failure is bounded by

J(((((((((((((((((
1
𝛽 + 3

𝛽�
+ 17

S)))))))))))))))))⩽(𝜎S+1)((((((((((((1
26𝜎S2

+ 3
8𝜎S

+ 17
S))))))))))))⩽ 1

2.

If none of the steps fail, then #(f − f ⟨j+1⟩)⩽ T⟨j⟩

2 ⩽T⟨j+1⟩ for j=0,. . . , J−1, by induction. In

particular, #(f − f ⟨J⟩)⩽ �T/2⌈log2T⌉�
2 = 1

2 , so f = f ⟨J⟩. □

5. PRACTICAL VARIANTS

For practical purposes, the choice of R⩾258𝛽2 is not realistic. The high constant 258 is
due to the fact that we rely on [43] for unconditional proofs for the existence of prime
numbers with the desirable properties from Theorem 2.5. Such unconditional number
theoretic proofs are typically very hard and lead to pessimistic constants. Numerical
evidence shows that a much smaller constant would do in practice: see [16, section 4]
and [39, section 2.2.2]. For the univariate case the complexity of the sparse interpolation
algorithm in [39] is made precise in term of the logarithmic factors.

22 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

The exposition so far has also been optimized for simplicity of presentation rather
than practical efficiency: some of the other constant factors might be sharpened further
and some of the logarithmic factors in the complexity boundsmight be removed. In prac-
tical implementations, onemay simply squeeze all thresholds until the error rate becomes
unacceptably high. Here one may exploit the “auto-correcting” properties of the algo-
rithm. For instance, although the T⟨j⟩-approximation 𝛿 ⟨j⟩ from the proof of Theorem 1.1
may contain incorrect terms, most of these terms will be removed at the next iteration.

Our exposition so far has also been optimized for full generality. For applications,
a high number of, say 10000, variables may be useful, but the bit-size of individual expo-
nents rarely exceeds the machine precision. In fact, most multivariate polynomials f of
practical interest are of low or moderately large total degree. A lot of the technical diffi-
culties from the previous sections disappear in that case. In this section we will describe
some practical variants of our sparse interpolation algorithm, with a main focus on this
special case.

5.1. Conducting most computations in double precision
In practice, the evaluation of our modular blackbox polynomial is typically an order of
magnitude faster if the modulus fits into a double precision number (e.g. 53 bits if we
rely on floating point arithmetic and 64 bits when using integer arithmetic). In this sub-
section, we describe some techniques that can be used to minimize the use of multiple
precision arithmetic.

Chinese remaindering. If the individual exponents of f are small, but its coefficients are
allowed to be large, then it is classical to proceed in two phases. We first determine the
exponents using double precision arithmetic only. Knowing these exponents, we next
determine the coefficients usingmodular arithmetic and the Chinese remainder theorem:
modulo any small prime q, we may efficiently compute f rem q using only # f evalua-
tions of f modulo q on a geometric progression, followed by [24, section 5.1]. Doing this
for enough small primes, we may then reconstruct the coefficients of f using Chinese
remaindering. Only the Chinese remaindering step involves a limited but unavoidable
amount of multi-precision arithmetic. By determining only the coefficients of size ⩽Σ,
where Σ is repeatedly doubled until we reach S, the whole second phase can be accom-
plished in time Af(O(1))O(S log S)+O(S log3 S).

Tangent numbers. One important trick that was used in section 4.3was to encode𝜙k
{u}(e)

inside an integer 1+𝜙k
{u}(e)B𝜈 {u} modulo B2𝜈 {u} of doubled precision 2 𝜈 {u}𝜎B instead of

𝜈 {u}𝜎B. In practice, this often leads us to exceed the machine precision. An alternative
approach (which is reminiscent of the ones from [18, 30]) is to work with tangent num-
bers: let us now take

Π{u} ≔ Π𝜏,r,B𝜈{u}

𝛼k,i
{u} ≔ {{{{{{{{{{{{{{{{{{{{{{{{{{{{ 1+pi

{u}𝜖 if i∈ Ik
{u}

1 otherwise

where Π{u} is extended to ℤ[x0, . . . ,xn−1][𝜖]/(𝜖2) and where 𝛼k,i
{u}∈ℤB𝜈{u}[𝜖]/(𝜖2). Then,

for any term cxe, we have

Π{u}(cxe) = c t𝜏⋅e

Π{u}�c�𝛼k
{u}x�e� = �1+𝜙k

{u}(e)𝜖� c t𝜏⋅e,

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23

sowemay again obtain𝜙k
{u}(e) fromΠ{u}�c�𝛼k

{u}x�e� andΠ{u}(cxe) using one division. Of
course, this requires our ability to evaluate f at elements of ((ℤ/B𝜈 {𝜇}

ℤ)[𝜀]/(𝜀2))n, which
is indeed the case if f is given by an SLP. Note that arithmetic in (ℤ/B𝜈 {𝜇}

ℤ)[𝜀]/(𝜀2)
is about three times as expensive as arithmetic in ℤ/B𝜈 {𝜇}

ℤ.
Small prime divisors. Although the algorithm divisors from section 2.4 is asymptoti-
cally efficient, it relies heavily on multiple precision arithmetic. If all pi and ak fit within
machine numbers and min (n,N) is not too large, then we expect it to be more effi-
cient to simply compute all remainders ak rem pi. After the computation of pre-inverses
for pi, such remainders can be computed using only a few hardware instructions, and
these computations can easily be vectorized [27]. As a consequence, we only expect the
asymptotically faster algorithm divisors to become interesting for very large sizes like
min (n,N) > 1000. Of course, we may easily modify divisors to fall back on the naive
algorithm below a certain threshold (recursive calls included); vectorization can still be
beneficial even for moderate sizes [12].
Chinese remaindering, bis. As explained above, if f has only small exponents, then
multiple precision arithmetic is only needed during the Chinese remaindering step that
recovers the coefficients frommodular projections. If f actually does contain some expo-
nents that exceed machine precision, is it still possible to avoid most of the multiple
precision arithmetic?

Let (r,q,𝜔) be a triple as in Theorem 2.5. In order to avoid evaluations of f modulo
large integers of the form q𝜈, we wish to use Chinese remaindering. Let (r, q1, 𝜔1), . . . ,
(r, q𝜈, 𝜔𝜈) be 𝜈 triples as in Theorem 2.5 with q1 ⋅ ⋅ ⋅ q𝜈> q𝜈, the qi pairwise distinct, and
where r is shared by all triples. Since there are many primes r for which (2R,R6) ∩
(rℕ+1) contains at least R5/(24 logR), such triples can still be found with high proba-
bility. In practice, (2R,10R(log 𝜈)2)∩(rℕ+1) already contains enough prime numbers.

Evaluations of f modulo q𝜈 are now replaced by separate evaluationsmodulo q1,...,q𝜈
after which we can reconstruct evaluations modulo q1 ⋅ ⋅ ⋅ q𝜈 using Chinese remaindering.
However, one crucial additional idea that we used in Lemma 4.3 is that f̄ is automati-
cally q𝜈-faithful as soon as it is q-faithful. In the multi-modular setting, if f̄ is q1-faithful,
then it is still true that the exponents of f̄ rem qi are contained in the exponents of f̄ rem q1
for i=1, . . . , 𝜈. This is sufficient for Lemma 4.3 to generalize.

5.2. The mystery exponent game
Let d0, . . . , dn−1 be bounds for the degree of f in x0, . . . , xn−1, let V be a bound for the
maximal number of variables that can occur in a term of f , and let p0, . . . ,pn−1 the prime
numbers from section 3.1.

Assume that our polynomial f has only nonnegative “moderately large exponents”
in the sense that Vmax (d0p0, . . . , dn−1pn−1) fits into a machine number. Then we may
simplify the setup from section 3.1 by taking

m ≔ ⌈n/V⌉
𝜆 ≔ ⌈𝛾V⌉
P ≔ ⌈𝜂n log n⌉

𝜙k(e) ≔ �
i∈Ik

pi ei∈ℕ

𝜙(e) ≔ (𝜙0(e), . . . ,𝜙𝜆−1(e))∈ℕ𝜆,

24 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

where 𝛾⩾2 and 𝜂⩾2 are small constants and where we forget about B and 𝜈. For any
𝜓=(𝜓0, . . . , 𝜓𝜆−1)∈ℕ𝜆, let #𝜓≔ |{k∈ℕ𝜆 : 𝜓k≠0}|. In this simplified setup, one may use
the following algorithm to retrieve e from 𝜙(e):

Algorithm 5.1
Input: 𝜙∈ℕ𝜆.
Output: e with 𝜙(e)=𝜓 or failed.

Let e≔0, 𝜓≔𝜙, and 𝒳≔∅.
While there exist k∈ℕ𝜆 and i∈ℕn with pi |𝜓k≠0 and (k, i)∉𝒳 do:

Let q≔𝜓k/pi.
Let 𝛿≔𝜙�0, . . .(i−1)×, 0,q, 0, . . . , 0�.
If 𝜓j<𝛿j for some j∈ℕ𝜆 or #(𝜓−𝛿)⩾#𝜓, then let 𝒳≔𝒳∪{(k, i)}.
Otherwise, update ei≔ ei+q, 𝜓≔𝜓−𝛿, and 𝒳≔∅.

If 𝜓=0, then return e.
Otherwise, return failed.

The probability of success is non-trivial to analyze due to the interplay of the choices
of p0, . . . , pn−1 and the updates of 𝜓. For this reason, we consider the algorithm to be
heuristic. Nevertheless, returned values are always correct:

PROPOSITION 5.1. Algorithm 5.1 is correct.

Proof. By construction, we have the loop invariant that 𝜙(e)+𝜓=𝜙, so the answer is
clearly correct in case of success. The set of “problematic pairs” 𝒳 was introduced in
order to guarantee progress and avoid infinite loops. Indeed, #𝜓 strictly decreases at
every update of 𝜓. For definiteness, we also ensured that 𝜓 remains in ℕ𝜆 throughout
the algorithm. (One may actually release this restriction, since incorrect decisions may
be corrected later during the execution.) □

Remark 5.2. Algorithm 5.1 has one interesting advantage with respect to the method
from section 3: the correct determination of some of the ei leads to a simplification of 𝜓,
which diminishes the number of collisions (i.e. entries 𝜓k=∑i∈Ik pi ẽi such that the sum
contains at least two non-zero terms). This allows the algorithm to discover more coeffi-
cients ej that might have beenmissedwithout the updates of 𝜓. As a result, the algorithm
may succeed for lower values of 𝛾 and 𝜆, e.g. for a more compressed encoding of e.

Remark 5.3. From a complexity perspective, some adaptations are needed to make it
run in quasi-linear time. Firstly, one carefully has to represent the sets Ik so as to make
the updates 𝜓≔𝜓− 𝛿 efficient. Secondly, from a theoretical point of view, it is better to
collect pairs (k, i)with pi |𝜓k≠0 in one big pass (thereby benefiting from Lemma 2.7) and
perform the updates during a second pass. However, this second “optimization” is only
useful in practice when n becomes very large (i.e. n>10000), as explained in the previous
subsection.

Algorithm 5.1 is very similar to the mystery ball game algorithm from [22]. This
analogy suggests to choose the random sets Ik in a slightly different way: let 𝜉0, 𝜉1, 𝜉2:
ℕn→ℕ𝜒 be random maps, where 𝜒≔⌈𝛾n/3⌉ and 𝜆≔3𝜒=3⌈𝛾n/3⌉, and take

Ij𝜒+k≔𝜉j−1({k}), j∈ℕ3,k∈ℕ𝜒.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 25

Assuming for simplicity that ei=𝜓i/pi whenever pi | 𝜓k in our algorithm, the probability
of success was analyzed in [22]. It turns out that there is a phase change around 𝛾crit≈
1.22179 (and 𝛾crit/3≈0.407265). For any 𝛾>𝛾crit and 𝜀>0, numeric evidence suggests
that the probability of success exceeds 1−𝜀 for sufficiently large n.

This should be compared with our original choice of the Ik, for which the mere prob-
ability that a given index i∈ℕn belongs to none of the Ik is roughly �1− 1

V�
𝛾V≈e−𝛾. We

clearly will not be able to determine ei whenever this happens. Moreover, the probability
that this does not happen for any i∈ℕn is roughly 1− n e−𝛾. In order to ensure that
1−ne−𝛾⩾1− 1

1000 , say, this requires us to take 𝛾⩾log n+7.

5.3. The Ben-Or–Tiwari encoding
Ben-Or and Tiwari's seminal algorithm for sparse interpolation [6] contained another
way to encode multivariate exponents, based on the prime factorization of integers:
given n pairwise distinct prime numbers p0, . . . , pn−1, we encode an exponent
e=(e0, . . . , en−1)∈ℕn as 𝜙bt(e)≔ p0

e0 ⋅ ⋅ ⋅ pn−1
en−1. Ben-Or and Tiwari simply chose pi to be

the (i+1)-th prime number. For our purposes, it is better to pick n pairwise distinct small
random primes P/log P⩽p0, . . . ,pn−1⩽Pwith P=O(n log n). Using (a further extension
of) Lemma 2.7, wemay efficiently bulk retrieve e from 𝜙bt(e) for large sets of exponents e.

The Ben-Or–Tiwari encoding can also be used in combination with the ideas from
section 4.3. The idea is to compute both Π𝜏,r,q(f) and Π𝜏,r,q(g) with g(x)≔ f (p x)=
f (p0x0, . . . ,pn−1xn−1). For monomials cxe, we have

Π𝜏,r,q(cxe) = c t𝜏⋅e

Π𝜏,r,q(c (px)e) = c𝜙(e) t𝜏⋅e,

so we can again compute 𝜙bt(e) as the quotient of Π𝜏,r,q(c (px)e) and Π𝜏,r,q(cxe).
If the total degree of f is bounded by a small number D, then the Ben-Or–Tiwari

encoding is very compact. In that case, all exponents e of f indeed satisfy 𝜙bt(e)⩽PD,
whence 𝜎𝜙bt(e)⩽D𝜎P. However, ifD is a bit larger (say n=100 andD=10), then PDmight
not fit into a machine integer and there is no obvious way to break the encoding 𝜙bt(e)
up in smaller parts that would fit into machine integers.

By contrast, the encoding 𝜙 from the previous subsection uses a vector of numbers
that do fit intomachine integers, under mild conditions. Another difference is that 𝜎𝜙(e)⩽
⌈𝛾V⌉ (𝜎m+𝜎D+𝜎2P) only grows linearly with V instead of D, and only logarithmically
with D. As soon as n is large and D not very small, this encoding should therefore be
more efficient for practical purposes.

BIBLIOGRAPHY

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. Math., 160(2):781–793, 2004.
[2] A. Arnold, M. Giesbrecht, and D. S. Roche. Sparse interpolation over finite fields via low-order roots

of unity. In ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation, pages 27–34. New York, NY, USA, 2014. ACM Press.

[3] A. Arnold, M. Giesbrecht, and D. S. Roche. Faster sparse multivariate polynomial interpolation of
straight-line programs. J. Symb. Comput., 75:4–24, 2016.

[4] A. Arnold and D. S. Roche. Multivariate sparse interpolation using randomized Kronecker substi-
tutions. In ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computa-
tion, pages 35–42. New York, NY, USA, 2014. ACM Press.

26 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

[5] M. Asadi, A. Brandt, R. Moir, and M. Moreno Maza. Sparse polynomial arithmetic with the BPAS
library. In V. Gerdt, W. Koepf, W. Seiler, and E. Vorozhtsov, editors, Computer Algebra in Scientific
Computing. CASC 2018, volume 11077 of Lect. Notes Comput. Sci., pages 32–50. Springer, Cham, 2018.

[6] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation.
In STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 301–309.
ACM Press, 1988.

[7] L. I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE
Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

[8] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In Hoon Hong, editor, Proceed-
ings of the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC '03, pages 37–44.
New York, NY, USA, 2003. ACM Press.

[9] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2010.
[10] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-Verlag, Berlin,

1997.
[11] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations faster.

In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation,
pages 121–128. New York, NY, USA, 1989. ACM Press.

[12] J. Doliskani, P. Giorgi, R. Lebreton, and É. Schost. Simultaneous conversions with the residue number
system using linear algebra. ACM Trans. Math. Softw., 44(3), 2018.

[13] T. S. Freeman, G. M. Imirzian, E. Kaltofen, and Y. Lakshman. DAGWOOD: a system for manipulating
polynomials given by straight-line programs. ACM Trans. Math. Software, 14:218–240, 1988.

[14] S. Garg and É. Schost. Interpolation of polynomials given by straight-line programs. Theor. Comput.
Sci., 410(27-29):2659–2662, 2009.

[15] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York,
3rd edition, 2013.

[16] P. Giorgi, B. Grenet, A. Perret Du Cray, and D. S. Roche. Random primes in arithmetic progressions.
Technical Report https://arxiv.org/abs/2202.05955, Arxiv, 2022.

[17] P. Giorgi, B. Grenet, A. Perret du Cray, and D. S. Roche. Sparse polynomial interpolation and division
in soft-linear time. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC '22, pages 459–468. New York, NY, USA, 2022. ACM Press.

[18] B. Grenet, J. van der Hoeven, and G. Lecerf. Randomized root finding over finite fields using tangent
Graeffe transforms. In ISSAC '15: Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation, pages 197–204. New York, NY, USA, 2015. ACM Press.

[19] D. Y. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse multivariate poly-
nomial interpolation over finite fields. SIAM J. Comput., 19(6):1059–1063, 1990.

[20] A. W. Groves and D. S. Roche. Sparse polynomials in FLINT. ACM Commun. Comput. Algebra.,
50(3):105–108, 2016.

[21] D.Harvey and J. van der Hoeven. Integermultiplication in timeO(n log n). Ann. Math., 193(2):563–617,
2021.

[22] J. van der Hoeven. Probably faster multiplication of sparse polynomials. Technical Report, HAL,
2020. https://hal.archives-ouvertes.fr/hal-02473830.

[23] J. van der Hoeven. The Jolly Writer. Your Guide to GNU TeXmacs. Scypress, 2020.
[24] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication. J. Sym-

bolic Comput., 50:227–254, 2013.
[25] J. van der Hoeven and G. Lecerf. Sparse polynomial interpolation in practice. ACMCommun. Comput.

Algebra, 48(3/4):187–191, 2015.
[26] J. van der Hoeven and G. Lecerf. Sparse polynomial interpolation. Exploring fast heuristic algorithms

over finite fields. Technical Report, HAL, 2019. https://hal.science/hal-02382117v1.
[27] J. van der Hoeven, G. Lecerf, and G. Quintin. Modular SIMD arithmetic in Mathemagix. ACM Trans.

Math. Softw., 43(1):5–1, 2016.
[28] J. Hu and M. B. Monagan. A fast parallel sparse polynomial GCD algorithm. In S. A. Abramov,

E. V. Zima, and X.-S. Gao, editors, ISSAC '16: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, pages 271–278. New York, NY, USA, 2016. ACM Press.

[29] M. A. Huang and A. J. Rao. Interpolation of sparse multivariate polynomials over large finite fields
with applications. In SODA '96: Proceedings of the seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 508–517. Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathe-
matics.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 27

https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://arxiv.org/abs/2202.05955
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.archives-ouvertes.fr/hal-02473830
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1
https://hal.science/hal-02382117v1

[30] Q.-L. Huang. Sparse polynomial interpolation over fields with large or zero characteristic. In ISSAC '19:
Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, pages 219–226.
New York, NY, USA, 2019. ACM Press.

[31] M. Javadi and M. Monagan. Parallel sparse polynomial interpolation over finite fields. In M. Moreno
Maza and J.-L. Roch, editors, PASCO '10: Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation, pages 160–168. New York, NY, USA, 2010. ACM Press.

[32] E. Kaltofen, Y. N. Lakshman, and J.-M.Wiley. Modular rational sparse multivariate polynomial inter-
polation. In ISSAC '90: Proceedings of the International Symposium on Symbolic and Algebraic Computation,
pages 135–139. New York, NY, USA, 1990. ACM Press.

[33] E. Kaltofen and L. Yagati. Improved sparse multivariate polynomial interpolation algorithms. In
P. M. Gianni, editor, ISSAC '88: Proceedings of the International Symposium on Symbolic and Algebraic
Computation, volume 358 of Lect. Notes Comput. Sci., pages 467–474. Springer-Verlag, Berlin, Hei-
delberg, 1988.

[34] M. Monagan and B. Tuncer. Using sparse interpolation to solve multivariate diophantine equations.
ACM Comm. Computer Algebra, 49(3):94–97, 2015.

[35] M.Monagan and B. Tuncer. Sparsemultivariate Hensel lifting: a high-performance design and imple-
mentation. In J. Davenport, M. Kauers, G. Labahn, and J. Urban, editors,Mathematical Software – ICMS
2018, volume 10931 of Lect. Notes Comput. Sci., pages 359–368. Springer, Cham, 2018.

[36] H. Murao and T. Fujise. Modular algorithm for sparse multivariate polynomial interpolation and its
parallel implementation. J. Symb. Comput., 21:377–396, 1996.

[37] J.-L. Nicolas and G. Robin. Majorations explicites pour le nombre de diviseurs de n. Canad. Math.
Bull., 26:485–492, 1983.

[38] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[39] A. Perret du Cray. Algorithmes pour les polynômes creux : interpolation, arithmétique, test d'identité. PhD

thesis, Université de Montpellier (France), 2023.
[40] R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur

celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures.
J. de l'École Polytechnique Floréal et Plairial, an III, 1(cahier 22):24–76, 1795.

[41] D. S. Roche. What can (and can't) we do with sparse polynomials? In C. Arreche, editor, Proceedings
of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC '18, pages 25–30.
New York, NY, USA, 2018. ACM Press.

[42] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J.
Math., 6(1):64–94, 1962.

[43] A. Sedunova. A partial Bombieri–Vinogradov theorem with explicit constants. Publications mathéma-
tiques de Besançon. Algèbre et théorie des nombres, pages 101–110, 2018.

[44] K. Werther. The complexity of sparse polynomial interpolation over finite fields. Appl. Algebra Engrg.
Comm. Comput., 5(2):91–103, 1994.

28 FAST INTERPOLATION OF SPARSE MULTIVARIATE POLYNOMIALS

	1. Introduction
	Notation.

	2. Preliminaries
	2.1. Sparse polynomials
	2.2. Modular blackbox polynomials
	2.3. Number theoretic reminders
	2.4. Amortized determination of prime divisors in a fixed set

	3. Probabilistic codes for exponents
	3.1. The exponent encoding
	3.2. Guessing individual exponents of prescribed size
	3.3. Guessing exponents of prescribed size

	4. Sparse interpolation
	4.1. Cyclic modular projections
	4.2. Probability of faithfulness
	4.3. Computing probabilistic codes for the exponents
	4.4. Sparse interpolation

	5. Practical variants
	5.1. Conducting most computations in double precision
	Chinese remaindering.
	Tangent numbers.
	Small prime divisors.
	Chinese remaindering, bis.

	5.2. The mystery exponent game
	5.3. The Ben-Or–Tiwari encoding

	Bibliography

