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Affine equivariant Tyler’s M-estimator applied to

tail parameter learning of elliptical distributions
Esa Ollila, Senior Member, IEEE, Daniel P. Palomar, Fellow, IEEE, and Frédéric Pascal Senior Member, IEEE

Abstract—We propose estimating the scale parameter (mean of
the eigenvalues) of the scatter matrix of an unspecified elliptically
symmetric distribution using weights obtained by solving Tyler’s
M-estimator of the scatter matrix. The proposed Tyler’s weights-
based estimate (TWE) of scale is then used to construct an affine
equivariant Tyler’s M-estimator as a weighted sample covariance
matrix using normalized Tyler’s weights. We then develop a
unified framework for estimating the unknown tail parameter of
the elliptical distribution (such as the degrees of freedom (d.o.f.)
ν of the multivariate t (MVT) distribution). Using the proposed
TWE of scale, a new robust estimate of the d.o.f. parameter
of MVT distribution is proposed with excellent performance in
heavy-tailed scenarios, outperforming other competing methods.
R-package is available that implements the proposed method.

Index Terms—Tyler’s M-estimator, scatter matrix, covariance
matrix, elliptical distributions

I. INTRODUCTION

WE MODEL the observed p-variate observations

x1, . . . ,xn as independent and identically distributed

(i.i.d.) random samples from an unspecified centered (i.e.,

symmetric around the origin) elliptically symmetric (ES) dis-

tribution [1], [2]. A continuous random vector x ∈ R
p has

centered ES distribution if it possesses a probability density

function (pdf) of the form

f(x) = Cp,g|Σ|−1/2g(x⊤
Σ

−1
x),

where g : R≥0 → R>0 is called the density generator, Σ ≻ 0
is the positive definite symmetric matrix parameter, called the

scatter matrix, and Cp,g is a normalizing constant ensuring that

f(x) integrates to 1. We let x ∼ Ep(0,Σ, g) to denote this

case. For example, the centered multivariate normal (MVN)

distribution Np(0,Σ) is obtained when g(t) = exp(−t/2)
while the multivariate t (MVT) distribution with ν > 0 degrees

of freedom (d.o.f.) is obtained when

g(t) = (1 + t/ν)−(p+ν)/2. (1)

Parameter ν > 0 is a tail parameter of the density. For ν → ∞,

the MVT distribution reduces to the MVN distribution, while

ν = 1 corresponds to the multivariate Cauchy distribu-

tion. Also, many other subclasses of ES distributions are

parametrized by a density generator indexed by an additional

tail parameter that is unknown in practice and needs to be

estimated. Learning this unknown parameter is also one of

the goals of this paper.
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esa.ollila@aalto.fi). Daniel P. Palomar is with the Hong Kong University
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Pascal is with the CNRS Université Paris-Saclay, CentraleSupélec, 91190 Gif-
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We are interested in estimating the scale parameter of the

scatter matrix, defined as the mean of its eigenvalues,

η =
tr(Σ)

p
=

1

p

p
∑

i=1

λi, (2)

where λi > 0 denotes the ith eigenvalue of Σ. Formally, η ≡
η(Σ) is a scale parameter if it verifies η(I) = 1 and η(aΣ) =
aη(Σ) for all a > 0 [3].

Tyler’s M-estimator [4] is a popular robust M-estimator

of the scatter matrix that has been extensively studied both

in signal processing and statistics literature (e.g, [5]–[13]).

Tyler’s M-estimator is defined as the solution to the fixed-

point equation

Σ̂ =
1

n

n
∑

i=1

p

x⊤
i Σ̂

−1
xi

xix
⊤
i , H(Σ̂; {xi}). (3)

Note that me way also write the map H(·; ·) in the form

H(Σ̂; {xi}) =
1

n

n
∑

i=1

ŵixix
⊤
i with ŵi =

p

x⊤
i Σ̂

−1
xi

,

where ŵi, i = 1, . . . , n, are referred to as Tyler’s weights.

Tyler’s M-estimator is unique only up to a scaling factor, and

therefore a common convention is to consider a solution that

verifies tr(Σ̂) = p. Thus, Tyler’s M-estimator is actually an

estimator of a shape matrix (normalized scatter matrix) Λ,

defined by Λ = Σ/η = pΣ/ tr(Σ), and verifying tr(Λ) = p.

In this paper, we propose an estimator of the scale η based

on Tyler’s weights ŵi. The proposed scale estimate along with

Tyler’s M-estimator Σ̂ are then jointly used for constructing

affine equivariant robust estimates of the scatter matrix Σ

and the covariance matrix R = cov(x) (or their shrinkage

versions). These developments are described in Section II.

Then, in Section III, we propose a unified framework allowing

to estimate the tail parameter of the elliptical distribution

using the proposed scale statistic η̂. In the case of the MVT

distribution, this leads to a new estimate of the d.o.f. parameter

based on Tyler’s weights. Finally, Section IV demonstrates

the relevance of the proposed approach on simulated data,

with concluding remarks in Section V. In the R package

fitHeavyTail [14], the function fit_Tyler implements

this method.

II. ESTIMATE OF SCALE, SCATTER, AND COVARIANCE

MATRIX BASED ON TYLER’S WEIGHTS

Assuming that x ∼ Ep(0,Σ, g) has finite 2nd-order mo-

ments, then its covariance matrix, R = E[xx⊤] satisfies

R = θ ·Σ for θ =
E[r2]

p
, (4)

http://arxiv.org/abs/2305.04330v1
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where r2 = ‖Σ−1/2
x‖2 is the squared Mahalanobis distance

of x w.r.t. Σ, whose pdf is given by

fr2(t) = Ctp/2−1g(t), (5)

where C =
∫∞

0
tp/2−1g(t)dt. Hence pdf of r2 has a one-

to-one correspondence with density generator g. From (4),

we notice that the scatter matrix Σ is proportional to the

covariance matrix R (assuming R exists). In the MVN case,

θ = 1, while for the MVT distribution with density generator

as in (1) one obtains θ = ν/(ν − 2) for all ν > 2.

A. Estimate of scale

As mentioned earlier, Tyler’s M-estimator Σ̂ loses informa-

tion of the scale η. However, it is yet possible to construct an

estimate of η from Tyler’s weights. Our Tyler’s weights-based

estimate (TWE) of scale is defined as the harmonic mean of

reciprocal of weights, 1/ŵi’s, that is,

η̂TWE =

(

1

n

n
∑

i=1

ŵi

)−1

=

(

p

n

n
∑

i=1

[x⊤
i Σ̂

−1
xi]

−1

)−1

. (6)

One can esily verify that this is a proper scale estimate in

the sense that if η̂∗TWE is computed on scaled observations,

x
∗
i = c ·xi, i = 1, . . . , n, then η̂∗TWE = c2 · η̂TWE. This follows

because Tyler’s M-estimator Σ̂ in (3) with trace constraint is

invariant to scaling the data, so Σ̂
∗
= Σ̂.

The proposed estimate (6) can also be motivated from

the following result derived in the high-dimensional random

matrix theory (RMT) regime, where p, n → ∞ with n > p and

their ratio tending to constant: p/n → c ∈ (0, 1). Namely, let

Σ̂ be Tyler’s M-estimator in (3) verifying tr(Σ̂) = p. Then, it

was shown in [11], [13] that maxℓ |ηŵℓ−1| → 0 almost surely.

The authors in [11] derived this result for the case that data

is i.i.d. Gaussian Np(0, I) while [13] extended these results

for more general distributions. Thus since 1/ŵi concentrate

on η, (6) is a natural robust estimator of scale. Many other

robust scale statistics could be constructed from 1/ŵi’s, such

as the median, trimmed mean, etc. In the next subsection, we

illustrate why the proposed harmonic mean (6) is the most

natural.

B. Affine equivariant estimate of scatter matrix

Using the scale estimate η̂TWE and Tyler’s M-estimator Σ̂

(with tr(Σ̂) = p), we can form an estimate of the scatter

matrix

Σ̂TWE = η̂TWE · Σ̂ (7)

referred to as TWE of scatter matrix. Thus η̂TWE is scale

statistic derived from Σ̂TWE since η̂TWE = tr(Σ̂TWE)/p.

Equivalently, the trace of Σ̂TWE can be easily computed as

the harmonic mean of Tyler’s quadratic form:

tr(Σ̂TWE) =

(

1

n

n
∑

i=1

[x⊤
i Σ̂

−1
xi]

−1

)−1

.

Recalling (6) we can write (7) in the following more

intuitive form:

Σ̂TWE =
1

n

n
∑

i=1

v̂ixix
⊤
i , (8a)

v̂i =
ŵi

1
n

∑n
ℓ=1 ŵℓ

=
[x⊤

i Σ̂
−1

xi]
−1

1
n

∑n
ℓ=1[x

⊤
ℓ Σ̂

−1
xℓ]−1

(8b)

where v̂1, . . . , v̂n are normalized Tyler’s weights that verify
1
n

∑n
i=1 v̂i = 1. Eq. (8a) and (8b) illustrate that Σ̂TWE is a

weighted sample covariance matrix (SCM) with weights v̂i.
Finally, we draw the parallel of Tyler’s M-estimating equa-

tion and our estimator (8). First, note that Tyler’s M-estimating

equation (3) verifies broader invariance than just invariance

with respect to scaling of the data matrix. Namely, denoting

the unit-norm normalized data by x̃i = xi/‖xi‖, i = 1, . . . , n,

one can easily verify that the fixed-point equation in (3) can be

rewritten as Σ̂ = H(Σ̂; {x̃i}), so based on normalized data.

Furthermore, since tr(Σ̂) = p, one has:

tr(Σ̂) =
1

n

n
∑

i=1

p

x̃⊤
i Σ̂

−1
x̃i

tr
(

x̃ix̃
⊤
i

)

= p,

or equivalently 1
n

∑n
i=1[x̃

⊤
i Σ̂

−1
x̃i]

−1 = 1 since tr
(

x̃ix̃
⊤
i

)

=

1. It follows that Tyler’s M-estimator Σ̂ with tr(Σ̂) = p is the

solution to the following fixed-point equation:

Σ̂ =
1

n

n
∑

i=1

w̃ix̃ix̃
⊤
i with w̃i =

p [x̃⊤
i Σ̂

−1
x̃i]

−1

1
n

∑n
ℓ=1[x̃

⊤
ℓ Σ̂

−1
x̃ℓ]−1

,

(9)

where w̃ℓ’s are the normalized Tyler’s weights computed on

normalized (unit norm) observations x̃i’s. Thus, while Tyler’s

M-estimator Σ̂ can be interpreted as a weighted SCM based

on normalized data {x̃i} as shown in (9), TWE of scatter

Σ̂TWE in (8) can be viewed as weighted SCM of actual (non-

normalized) data {xi}.

It is worthwhile to point out that most robust estimators

of scatter are affine equivariant in the sense that an affine

transformation on the data xi 7→ Axi, i = 1, . . . , n, induces

following transformation on the estimate:

Σ̂({Axi}) = AΣ̂({xi})A
⊤, ∀A ∈ R

p×p invertible. (10)

For example, robust Maronna’s [15] M-estimators, S-

estimators [16], or MM-estimators [17] are affine equivariant.

However, Tyler’s scatter matrix Σ̂ is not affine equivari-

ant since (10) only holds up to multiplicative scalar factor

as shown in (11). Affine equivariance is desirable since if

x ∼ Ep(0,Σ, g), then Ax ∼ Ep(0,AΣA
⊤, g). Hence the

transformed data shares the same elliptical distribution, but the

scatter matrix parameter is mapped to AΣA
⊤. Thus a natural

requirement to be imposed on any scatter matrix estimator is

that it should verify this same equivariance principle under

transformations xi 7→ Axi. This is shown next.

Lemma 1. TWE of scatter matrix Σ̂TWE is affine equivariant:

Σ̂TWE({Axi}) = AΣ̂({xi})A⊤, ∀ invertible A ∈ R
p×p.

Proof. It is straightforward to verify that Tyler’s M-estimator

(with tr(Σ̂) = p) is equivariant in the sense that if Σ̂
∗
=
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Σ̂({x∗
i }) denotes Tyler’s M-estimator (verifying tr(Σ̂

∗
) = p)

computed on data x
∗
i = Axi, i = 1, . . . , n, then

Σ̂
∗
= cAΣ̂A

⊤, c =
p

tr(AΣ̂A⊤)
(11)

for all invertible A ∈ R
p×p. Now let ŵ∗

i , i = 1, . . . , n denote

the corresponding Tyler’s weights. Then the scale estimate

(6) computed as the harmonic mean of reciprocals of weights

1/ŵ∗
i = [x∗

i ]
⊤(Σ̂

∗
)−1

x
∗
i is

η̂∗TWE =
( 1

n

n
∑

i=1

ŵ∗
i

)−1

=

(

p

n

n
∑

i=1

[x⊤
i A

⊤(Σ̂
∗
)−1

Axi]
−1

)−1

= c−1

(

p

n

n
∑

i=1

[x⊤
i Σ̂

−1
xi]

−1

)−1

= c−1η̂TWE (12)

where in the 2nd to last identity we simply utilized (11). Thus

it follows that

Σ̂
∗

TWE = η̂∗TWE · Σ̂
∗
= c−1η̂TWE · cAΣ̂A

⊤

= A(η̂TWEΣ̂)A⊤ = AΣ̂TWEA
⊤.

In the case of large dimensional data, one can also consider

a shrinkage Tyler’s M-estimator of the scatter matrix as

Σ̂TWE,β = βΣ̂TWE + (1 − β)η̂TWEI, (13)

where the data adaptive shrinkage parameter β ∈ [0, 1] is

computed as described in [18, Sect. IV.C]. However, unlike

the estimator in [18], the shrinkage TWE in (13) provides an

estimator of scatter instead of shape matrix.

C. An estimator of covariance matrix

If the density generator g (and hence the underlying ES

distribution) is specified, then the value of θ in (4) can

be determined, and we can use relationship (4) to obtain

a covariance matrix estimator as R̂TWE = θ · Σ̂TWE. For

example, if the data has an MVN distribution, then θ = 1 while

θ = ν/(ν−2) in the case of an MVT distribution with ν d.o.f.

However, often the underlying parametric family is known,

but the underlying tail parameter, say ν, indexing the density

generator is unknown. As is shown in Section III, we can form

an estimate of ν, denoted ν̂TWE, using Tyler’s weights. Since

θ = h(ν) (cf. Eq. (15) below), a TWE of covariance matrix can

be computed as R̂TWE = θ̂TWE·Σ̂TWE, where θ̂TWE = h(ν̂TWE).

III. ESTIMATING THE TAIL PARAMETER OF ES

DISTRIBUTION

From (4) we can induce the following relationship between

the scale parameter ηcov = p−1 tr(R) of the covariance matrix

and scale η = p−1 tr(Σ) of the scatter matrix:

ηcov = θη ⇔ θ = ηcov/η. (14)

Note that a natural estimate of ηcov is p−1 tr(S), where S =
1
n

∑n
i=1 xix

⊤
i denotes the sample covariance matrix (SCM).

On the other hand, if density generator g is specified up to

unknown tail parameter ν, thus indexed by gν(·), then θ in

(4) is a following function of the tail parameter ν:

θ =

∫ ∞

0

tfr2(t; ν)dt , h(ν) (15)

where the pdf fr2(·), defined in (5), is one-to-one with gν(·).
We do not need numerical integration in most practical cases

as often closed-form expression for h(ν) can be derived. Then,

after solving the inverse mapping, ν = h−1(θ) = h−1(ηcov/η),
Algorithm 1 offers a unified approach for estimating the tail

parameter of an ES distribution:

Algorithm 1: Distribution tail parameter learning

Input: Data {xi}ni=1

Output: Estimated tail parameter ν
1. Compute Tyler’s M-estimator Σ̂ and weights ŵi’s in (3);

2. Compute η̂TWE in (6), and set θ̂TWE = p−1 tr(S)/η̂TWE;

3. Using (15), estimate ν as ν̂TWE = h−1(θ̂TWE).

As an example, if x follows an MVT distribution with ν >
2 d.o.f., one has that θ = h(ν) = ν

ν−2 , which unfolds the

relation:

ν = h−1(θ) =
2θ

θ − 1
for θ > 1. (16)

Note that ν > 2 is required for the covariance matrix R

to exist. The obtained estimator ν̂TWE is closely related to

estimator in [18, Alg. 1], referred to as OPP estimator

for short. OPP is an iterative approach that iteratively (re-

)computes the maximum likelihood estimator (MLE) Σ̂ of the

MVT distribution with ν given by the current estimate of d.o.f.

parameter ν(k). It then computes θ̂ = tr(S)/ tr(Σ̂) which

provides an update ν(k+1) = h−1(θ̂) via (16). The algorithm

iterates for k = 0, 1, 2 . . . until convergence, starting from

an initial start ν(0) = ν̂kurt, where ν̂kurt is an estimate of ν
based on elliptical kurtosis, proposed in [18], and referred to

as kurtosis estimator. We also proposed an improved version

of OPP estimator in [19], which, however, is impractical for

large n and p. ML estimation of ν via the Expectation-

Maximization (EM) approach is considered in [20]. This

method is unfortunately rather unstable [21].

IV. SIMULATION STUDIES

We first consider the case where scatter matrix Σ has

an autoregressive model (AR(1)) structure, (Σ)ij = η̺|i−j|,

where η = tr(Σ)/p is the scale parameter and ̺ is the

correlation parameter, ̺ ∈ (−1, 1). Since Tyler’s M-estimator

Σ̂ is invariant to the data scaling, we can set η = 1 without

favoring any estimator over the other. The number of Monte-

Carlo runs is 5,000, and samples are generated from an MVT

distribution with different choices of d.o.f. parameter ν.

First, we investigate how the TWE of d.o.f. parameter

ν compares against OPP and kurtosis estimators. Figure 1

displays the boxplots in the case that p = 100 and varying

sample lengths when ν = 5 or ν = 3. As can be noted,

the proposed TWE attains the best accuracy as well as the

smallest variability. Moreover, for ν = 5, its median values are

right on the spot. The kurtosis estimator obviously performs
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Fig. 1: Boxplots d.o.f. estimates ν̂ as a function of n when

ν = 5 (top) and ν = 3 (bottom); p = 100, ρ = 0.6.
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Fig. 3: Estimation errors of scale estimates η̂ as a function of

n when ν = 5 (top) and ν = 3 (bottom); p = 100, ρ = 0.6.

poorly when ν = 3 since the 4th-order moment does not exist

in this case. Figure 2 shows the average mean squared error

(MSE), (ν̂−ν)2, which further illustrates the benefits and high

accuracy of the proposed TWE against its competitors.

Figure 3 displays the boxplots of different estimates of scale

η. Here we compare η̂TWE to OPP estimate of scale, defined

as η̂OPP = tr(Σ̂)/p, where Σ̂ is the MLE of scatter based on

ν = ν̂OPP. We also compare with the scale estimate provided

by the SCM, defined as η̂cov = tr(S)/p, but multiplied by

3 4 5 6 7 8

4

6

8

10

ν

ν̂

kurtosis

OPP

proposed

Fig. 4: Estimated values of ν; p = 100, ρ = 0.6, n = 150.

The black line indicates the true value.
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Fig. 5: Estimated values of ν for synthetic stock market data;

p = 100, ν = 4.

θ−1 = (ν − 2)/ν to obtain an estimate of η; recall (14). We

can notice from Figure 3 that TWE slightly underestimates

the true scale while OPP is overestimating. We also notice

that the SCM estimator is clearly unbiased for ν = 5, but

has huge variability. Figure 4 displays the median values of

ν̂ for range of ν values when n = 150 (and p = 100 and

̺ = 0.6 as earlier). The proposed TWE estimator significantly

outperforms the other estimators for all d.o.f. ν ∈ [3, 8].
We now consider an example based on stock market data.

We generate synthetic data (p = 100 assets) with heavy tails

following MVT distribution with d.o.f. ν = 4 and covariance

matrix as measured from stocks of S&P 500 index. Figure

5 compares the estimated value of ν versus the number of

observations for the following methods: kurtosis estimator,

OPP estimator [18], and the proposed estimator, with the latter

being clearly superior, illustrating its promising performance

for real-world financial data.

V. CONCLUDING REMARKS

We proposed a new robust estimator of scale parameter of

an elliptical distribution based on the weights from Tyler’s

M-estimator, which was further used to construct an affine

equivariant Tyler’s M-estimator. We then proposed a unified

framework to estimate the tail parameter of an elliptical distri-

bution. Finally, it should be noted that this method generalizes

to complex-valued data in a straightforward manner.
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