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We propose estimating the scale parameter (mean of the eigenvalues) of the scatter matrix of an unspecified elliptically symmetric distribution using weights obtained by solving Tyler's M-estimator of the scatter matrix. The proposed Tyler's weightsbased estimate (TWE) of scale is then used to construct an affine equivariant Tyler's M-estimator as a weighted sample covariance matrix using normalized Tyler's weights. We then develop a unified framework for estimating the unknown tail parameter of the elliptical distribution (such as the degrees of freedom (d.o.f.) ν of the multivariate t (MVT) distribution). Using the proposed TWE of scale, a new robust estimate of the d.o.f. parameter of MVT distribution is proposed with excellent performance in heavy-tailed scenarios, outperforming other competing methods. R-package is available that implements the proposed method.

I. INTRODUCTION

W E MODEL the observed p-variate observations x 1 , . . . , x n as independent and identically distributed (i.i.d.) random samples from an unspecified centered (i.e., symmetric around the origin) elliptically symmetric (ES) distribution [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF], [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF]. A continuous random vector x ∈ R p has centered ES distribution if it possesses a probability density function (pdf) of the form f (x) = C p,g |Σ| -1/2 g(x ⊤ Σ -1 x), where g : R ≥0 → R >0 is called the density generator, Σ ≻ 0 is the positive definite symmetric matrix parameter, called the scatter matrix, and C p,g is a normalizing constant ensuring that f (x) integrates to 1. We let x ∼ E p (0, Σ, g) to denote this case. For example, the centered multivariate normal (MVN) distribution N p (0, Σ) is obtained when g(t) = exp(-t/2) while the multivariate t (MVT) distribution with ν > 0 degrees of freedom (d.o.f.) is obtained when

g(t) = (1 + t/ν) -(p+ν)/2 . ( 1 
)
Parameter ν > 0 is a tail parameter of the density. For ν → ∞, the MVT distribution reduces to the MVN distribution, while ν = 1 corresponds to the multivariate Cauchy distribution. Also, many other subclasses of ES distributions are parametrized by a density generator indexed by an additional tail parameter that is unknown in practice and needs to be estimated. Learning this unknown parameter is also one of the goals of this paper.
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We are interested in estimating the scale parameter of the scatter matrix, defined as the mean of its eigenvalues,

η = tr(Σ) p = 1 p p i=1 λ i , (2) 
where

λ i > 0 denotes the ith eigenvalue of Σ. Formally, η ≡ η(Σ) is a scale parameter if it verifies η(I) = 1 and η(aΣ) = aη(Σ) for all a > 0 [3].
Tyler's M-estimator [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] is a popular robust M-estimator of the scatter matrix that has been extensively studied both in signal processing and statistics literature (e.g, [START_REF] Sun | Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms[END_REF]- [START_REF] Romanov | Tyler's and Maronna's Mestimators: Non-asymptotic concentration results[END_REF]). Tyler's M-estimator is defined as the solution to the fixedpoint equation

Σ = 1 n n i=1 p x ⊤ i Σ-1 x i x i x ⊤ i H( Σ; {x i }). (3) 
Note that me way also write the map H(•; •) in the form

H( Σ; {x i }) = 1 n n i=1 ŵi x i x ⊤ i with ŵi = p x ⊤ i Σ-1 x i ,
where ŵi , i = 1, . . . , n, are referred to as Tyler's weights.

Tyler's M-estimator is unique only up to a scaling factor, and therefore a common convention is to consider a solution that verifies tr( Σ) = p. Thus, Tyler's M-estimator is actually an estimator of a shape matrix (normalized scatter matrix) Λ, defined by Λ = Σ/η = pΣ/ tr(Σ), and verifying tr(Λ) = p.

In this paper, we propose an estimator of the scale η based on Tyler's weights ŵi . The proposed scale estimate along with Tyler's M-estimator Σ are then jointly used for constructing affine equivariant robust estimates of the scatter matrix Σ and the covariance matrix R = cov(x) (or their shrinkage versions). These developments are described in Section II. Then, in Section III, we propose a unified framework allowing to estimate the tail parameter of the elliptical distribution using the proposed scale statistic η. In the case of the MVT distribution, this leads to a new estimate of the d.o.f. parameter based on Tyler's weights. Finally, Section IV demonstrates the relevance of the proposed approach on simulated data, with concluding remarks in Section V. In the R package fitHeavyTail [START_REF] Palomar | fitHeavyTail: Mean and Covariance Matrix Estimation under Heavy Tails[END_REF], the function fit_Tyler implements this method.

II. ESTIMATE OF SCALE, SCATTER, AND COVARIANCE

MATRIX BASED ON TYLER'S WEIGHTS Assuming that x ∼ E p (0, Σ, g) has finite 2nd-order moments, then its covariance matrix,

R = E[xx ⊤ ] satisfies R = θ • Σ for θ = E[r 2 ] p , (4) 
where r 2 = Σ -1/2 x 2 is the squared Mahalanobis distance of x w.r.t. Σ, whose pdf is given by

f r 2 (t) = Ct p/2-1 g(t), (5) 
where C = ∞ 0 t p/2-1 g(t)dt. Hence pdf of r 2 has a oneto-one correspondence with density generator g. From (4), we notice that the scatter matrix Σ is proportional to the covariance matrix R (assuming R exists). In the MVN case, θ = 1, while for the MVT distribution with density generator as in (1) one obtains θ = ν/(ν -2) for all ν > 2.

A. Estimate of scale

As mentioned earlier, Tyler's M-estimator Σ loses information of the scale η. However, it is yet possible to construct an estimate of η from Tyler's weights. Our Tyler's weights-based estimate (TWE) of scale is defined as the harmonic mean of reciprocal of weights, 1/ ŵi 's, that is,

ηTWE = 1 n n i=1 ŵi -1 = p n n i=1 [x ⊤ i Σ-1 x i ] -1 -1 . (6) 
One can esily verify that this is a proper scale estimate in the sense that if η * TWE is computed on scaled observations,

x * i = c • x i , i = 1, . . . , n, then η * TWE = c 2 • ηTWE . This follows because Tyler's M-estimator Σ in (3) with trace constraint is invariant to scaling the data, so Σ * = Σ.
The proposed estimate (6) can also be motivated from the following result derived in the high-dimensional random matrix theory (RMT) regime, where p, n → ∞ with n > p and their ratio tending to constant: p/n → c ∈ (0, 1). Namely, let Σ be Tyler's M-estimator in (3) verifying tr( Σ) = p. Then, it was shown in [START_REF] Zhang | Marčenko-pastur law for Tyler's M-estimator[END_REF], [START_REF] Romanov | Tyler's and Maronna's Mestimators: Non-asymptotic concentration results[END_REF] that max ℓ |η ŵℓ -1| → 0 almost surely. The authors in [START_REF] Zhang | Marčenko-pastur law for Tyler's M-estimator[END_REF] derived this result for the case that data is i.i.d. Gaussian N p (0, I) while [START_REF] Romanov | Tyler's and Maronna's Mestimators: Non-asymptotic concentration results[END_REF] extended these results for more general distributions. Thus since 1/ ŵi concentrate on η, (6) is a natural robust estimator of scale. Many other robust scale statistics could be constructed from 1/ ŵi 's, such as the median, trimmed mean, etc. In the next subsection, we illustrate why the proposed harmonic mean [START_REF] Pascal | Generalized robust shrinkage estimator and its application to STAP detection problem[END_REF] is the most natural.

B. Affine equivariant estimate of scatter matrix

Using the scale estimate ηTWE and Tyler's M-estimator Σ (with tr( Σ) = p), we can form an estimate of the scatter matrix

ΣTWE = ηTWE • Σ (7)
referred to as TWE of scatter matrix. Thus ηTWE is scale statistic derived from ΣTWE since ηTWE = tr( ΣTWE )/p. Equivalently, the trace of ΣTWE can be easily computed as the harmonic mean of Tyler's quadratic form:

tr( ΣTWE ) = 1 n n i=1 [x ⊤ i Σ-1 x i ] -1 -1
.

Recalling [START_REF] Pascal | Generalized robust shrinkage estimator and its application to STAP detection problem[END_REF] we can write [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF] in the following more intuitive form:

ΣTWE = 1 n n i=1 vi x i x ⊤ i , (8a) vi = ŵi 1 n n ℓ=1 ŵℓ = [x ⊤ i Σ-1 x i ] -1 1 n n ℓ=1 [x ⊤ ℓ Σ-1 x ℓ ] -1 (8b)
where v1 , . . . , vn are normalized Tyler's weights that verify

1 n n i=1 vi = 1.
Eq. ( 8a) and (8b) illustrate that ΣTWE is a weighted sample covariance matrix (SCM) with weights vi .

Finally, we draw the parallel of Tyler's M-estimating equation and our estimator [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF]. First, note that Tyler's M-estimating equation ( 3) verifies broader invariance than just invariance with respect to scaling of the data matrix. Namely, denoting the unit-norm normalized data by xi = x i / x i , i = 1, . . . , n, one can easily verify that the fixed-point equation in (3) can be rewritten as Σ = H( Σ; {x i }), so based on normalized data. Furthermore, since tr( Σ) = p, one has:

tr( Σ) = 1 n n i=1 p x⊤ i Σ-1 xi tr xi x⊤ i = p, or equivalently 1 n n i=1 [x ⊤ i Σ-1 xi ] -1 = 1 since tr xi x⊤ i = 1.
It follows that Tyler's M-estimator Σ with tr( Σ) = p is the solution to the following fixed-point equation:

Σ = 1 n n i=1 wi xi x⊤ i with wi = p [x ⊤ i Σ-1 xi ] -1 1 n n ℓ=1 [x ⊤ ℓ Σ-1 xℓ ] -1 , (9) 
where wℓ 's are the normalized Tyler's weights computed on normalized (unit norm) observations xi 's. Thus, while Tyler's M-estimator Σ can be interpreted as a weighted SCM based on normalized data {x i } as shown in [START_REF] Couillet | Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators[END_REF], TWE of scatter ΣTWE in (8) can be viewed as weighted SCM of actual (nonnormalized) data {x i }.

It is worthwhile to point out that most robust estimators of scatter are affine equivariant in the sense that an affine transformation on the data x i → Ax i , i = 1, . . . , n, induces following transformation on the estimate:

Σ({Ax i }) = A Σ({x i })A ⊤ , ∀A ∈ R p×p invertible. ( 10 
)
For example, robust Maronna's [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF] M-estimators, Sestimators [START_REF] Davies | Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices[END_REF], or MM-estimators [START_REF] Tatsuoka | On the uniqueness of S-functionals and M-functionals under nonelliptical distributions[END_REF] are affine equivariant. However, Tyler's scatter matrix Σ is not affine equivariant since [START_REF] Soloveychik | Performance analysis of Tyler's covariance estimator[END_REF] only holds up to multiplicative scalar factor as shown in [START_REF] Zhang | Marčenko-pastur law for Tyler's M-estimator[END_REF]. Affine equivariance is desirable since if x ∼ E p (0, Σ, g), then Ax ∼ E p (0, AΣA ⊤ , g). Hence the transformed data shares the same elliptical distribution, but the scatter matrix parameter is mapped to AΣA ⊤ . Thus a natural requirement to be imposed on any scatter matrix estimator is that it should verify this same equivariance principle under transformations x i → Ax i . This is shown next.

Lemma 1. TWE of scatter matrix ΣTWE is affine equivariant: ΣTWE ({Ax

i }) = A Σ({x i })A ⊤ , ∀ invertible A ∈ R p×p .
Proof. It is straightforward to verify that Tyler's M-estimator (with tr( Σ) = p) is equivariant in the sense that if

Σ * = Σ({x * i }) denotes Tyler's M-estimator (verifying tr( Σ * ) = p) computed on data x * i = Ax i , i = 1, . . . , n, then Σ * = cA ΣA ⊤ , c = p tr(A ΣA ⊤ ) (11) 
for all invertible A ∈ R p×p . Now let ŵ * i , i = 1, . . . , n denote the corresponding Tyler's weights. Then the scale estimate (6) computed as the harmonic mean of reciprocals of weights

1/ ŵ * i = [x * i ] ⊤ ( Σ * ) -1 x * i is η * TWE = 1 n n i=1 ŵ * i -1 = p n n i=1 [x ⊤ i A ⊤ ( Σ * ) -1 Ax i ] -1 -1 = c -1 p n n i=1 [x ⊤ i Σ-1 x i ] -1 -1 = c -1 ηTWE (12) 
where in the 2nd to last identity we simply utilized [START_REF] Zhang | Marčenko-pastur law for Tyler's M-estimator[END_REF]. Thus it follows that

Σ * TWE = η * TWE • Σ * = c -1 ηTWE • cA ΣA ⊤ = A(η TWE Σ)A ⊤ = A ΣTWE A ⊤ .
In the case of large dimensional data, one can also consider a shrinkage Tyler's M-estimator of the scatter matrix as

ΣTWE,β = β ΣTWE + (1 -β)η TWE I, (13) 
where the data adaptive shrinkage parameter β ∈ [0, 1] is computed as described in [18, Sect. IV.C]. However, unlike the estimator in [START_REF] Ollila | Shrinking the eigenvalues of M-estimators of covariance matrix[END_REF], the shrinkage TWE in [START_REF] Romanov | Tyler's and Maronna's Mestimators: Non-asymptotic concentration results[END_REF] provides an estimator of scatter instead of shape matrix.

C. An estimator of covariance matrix

If the density generator g (and hence the underlying ES distribution) is specified, then the value of θ in (4) can be determined, and we can use relationship (4) to obtain a covariance matrix estimator as RTWE = θ • ΣTWE . For example, if the data has an MVN distribution, then θ = 1 while θ = ν/(ν -2) in the case of an MVT distribution with ν d.o.f. However, often the underlying parametric family is known, but the underlying tail parameter, say ν, indexing the density generator is unknown. As is shown in Section III, we can form an estimate of ν, denoted νTWE , using Tyler's weights. Since θ = h(ν) (cf. Eq. ( 15) below), a TWE of covariance matrix can be computed as RTWE = θTWE • ΣTWE , where θTWE = h(ν TWE ).

III. ESTIMATING THE TAIL PARAMETER OF ES DISTRIBUTION

From (4) we can induce the following relationship between the scale parameter η cov = p -1 tr(R) of the covariance matrix and scale η = p -1 tr(Σ) of the scatter matrix:

η cov = θη ⇔ θ = η cov /η. ( 14 
)
Note that a natural estimate of η cov is p -1 tr(S), where S = 1 n n i=1 x i x ⊤ i denotes the sample covariance matrix (SCM). On the other hand, if density generator g is specified up to unknown tail parameter ν, thus indexed by g ν (•), then θ in (4) is a following function of the tail parameter ν:

θ = ∞ 0 tf r 2 (t; ν)dt h(ν) (15) 
where the pdf f r 2 (•), defined in [START_REF] Sun | Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms[END_REF], is one-to-one with g ν (•). We do not need numerical integration in most practical cases as often closed-form expression for h(ν) can be derived. Then, after solving the inverse mapping, ν = h -1 (θ) = h -1 (η cov /η), Algorithm 1 offers a unified approach for estimating the tail parameter of an ES distribution:

Algorithm 1: Distribution tail parameter learning Input:

Data {x i } n i=1
Output: Estimated tail parameter ν 1. Compute Tyler's M-estimator Σ and weights ŵi 's in (3); 2. Compute ηTWE in ( 6), and set θTWE = p -1 tr(S)/η TWE ; 3. Using [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF], estimate ν as νTWE = h -1 ( θTWE ).

As an example, if x follows an MVT distribution with ν > 2 d.o.f., one has that θ = h(ν) = ν ν-2 , which unfolds the relation:

ν = h -1 (θ) = 2θ θ -1 for θ > 1. (16) 
Note that ν > 2 is required for the covariance matrix R to exist. The obtained estimator νTWE is closely related to estimator in [18, Alg. 1], referred to as OPP estimator for short. OPP is an iterative approach that iteratively (re-)computes the maximum likelihood estimator (MLE) Σ of the MVT distribution with ν given by the current estimate of d.o.f. parameter ν (k) . It then computes θ = tr(S)/ tr( Σ) which provides an update ν (k+1) = h -1 ( θ) via [START_REF] Davies | Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices[END_REF]. The algorithm iterates for k = 0, 1, 2 . . . until convergence, starting from an initial start ν (0) = νkurt , where νkurt is an estimate of ν based on elliptical kurtosis, proposed in [START_REF] Ollila | Shrinking the eigenvalues of M-estimators of covariance matrix[END_REF], and referred to as kurtosis estimator. We also proposed an improved version of OPP estimator in [START_REF] Pascal | Improved estimation of the degree of freedom parameter of multivariate t-distribution[END_REF], which, however, is impractical for large n and p. ML estimation of ν via the Expectation-Maximization (EM) approach is considered in [START_REF] Liu | ML estimation of the t-distribution using EM and its extensions, ECM and ECME[END_REF]. This method is unfortunately rather unstable [START_REF] Fernandez | Multivariate Student-t regression models: Pitfalls and inference[END_REF].

IV. SIMULATION STUDIES

We first consider the case where scatter matrix Σ has an autoregressive model (AR(1)) structure, (Σ) ij = η̺ |i-j| , where η = tr(Σ)/p is the scale parameter and ̺ is the correlation parameter, ̺ ∈ (-1, 1). Since Tyler's M-estimator Σ is invariant to the data scaling, we can set η = 1 without favoring any estimator over the other. The number of Monte-Carlo runs is 5,000, and samples are generated from an MVT distribution with different choices of d.o.f. parameter ν.

First, we investigate how the TWE of d.o.f. parameter ν compares against OPP and kurtosis estimators. Figure 1 displays the boxplots in the case that p = 100 and varying sample lengths when ν = 5 or ν = 3. As can be noted, the proposed TWE attains the best accuracy as well as the smallest variability. Moreover, for ν = 5, its median values are right on the spot. The kurtosis estimator obviously performs poorly when ν = 3 since the 4th-order moment does not exist in this case. Figure 2 shows the average mean squared error (MSE), (ν -ν) 2 , which further illustrates the benefits and high accuracy of the proposed TWE against its competitors. Figure 3 displays the boxplots of different estimates of scale η. Here we compare ηTWE to OPP estimate of scale, defined as ηOPP = tr( Σ)/p, where Σ is the MLE of scatter based on ν = νOPP . We also compare with the scale estimate provided by the SCM, defined as ηcov = tr(S)/p, but multiplied by θ -1 = (ν -2)/ν to obtain an estimate of η; recall [START_REF] Palomar | fitHeavyTail: Mean and Covariance Matrix Estimation under Heavy Tails[END_REF]. We can notice from Figure 3 that TWE slightly underestimates the true scale while OPP is overestimating. We also notice that the SCM estimator is clearly unbiased for ν = 5, but has huge variability. Figure 4 displays the median values of ν for range of ν values when n = 150 (and p = 100 and ̺ = 0.6 as earlier). The proposed TWE estimator significantly outperforms the other estimators for all d.o.f. ν ∈ [START_REF] Paindaveine | A canonical definition of shape[END_REF][START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF]. We now consider an example based on stock market data. We generate synthetic data (p = 100 assets) with heavy tails following MVT distribution with d.o.f. ν = 4 and covariance matrix as measured from stocks of S&P 500 index. Figure 5 compares the estimated value of ν versus the number of observations for the following methods: kurtosis estimator, OPP estimator [START_REF] Ollila | Shrinking the eigenvalues of M-estimators of covariance matrix[END_REF], and the proposed estimator, with the latter being clearly superior, illustrating its promising performance for real-world financial data.

V. CONCLUDING REMARKS

We proposed a new robust estimator of scale parameter of an elliptical distribution based on the weights from Tyler's M-estimator, which was further used to construct an affine equivariant Tyler's M-estimator. We then proposed a unified framework to estimate the tail parameter of an elliptical distribution. Finally, it should be noted that this method generalizes to complex-valued data in a straightforward manner.
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 123 Fig. 1: Boxplots d.o.f. estimates ν as a function of n when ν = 5 (top) and ν = 3 (bottom); p = 100, ρ = 0.6.
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 45 Fig. 4: Estimated values of ν; p = 100, ρ = 0.6, n = 150. The black line indicates the true value.