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Some explicit solutions and bounds to the generalized Lyapunov matrix inequality

We review the generalized Lyapunov matrix inequality for both continuous-time and discrete-time cases and we provide a solution based on a modification of the Jordan normal form. The proposed construction allows to obtain explicit bounds to the decay rate and the inertia of the solution to the generalized Lyapunov matrix inequality.

Introduction

In this article, we study the solution to the generalized Lyapunov matrix inequality PA + A ⊤ P ⪯ 2αP, in which A is a given matrix (possibly non-Hurwitz), α is a real number, and P is an unknown symmetric matrix which may be non-positive definite. Such an inequality arises in many control problems and plays a fundamental role in p-dominance [START_REF] Forni | Differential dissipativity theory for dominance analysis[END_REF] and k-contraction theory [START_REF] Zoboli | LMI conditions for k-contraction analysis: a step towards design[END_REF][START_REF] Cecilia | Generalized Lyapunov conditions for k-contraction: analysis and feedback design[END_REF]. The generalized Lyapunov matrix inequality has been deeply studied and it is well-known that the inertia of P, namely the number of eigenvalues with positive, negative, and zero real part, is directly related to the inertia of the matrix (A -αI), see, for instance, [START_REF] Russell | The poincaré-bendixson theorem for certain differential equations of higher order[END_REF][START_REF] Lancaster | The theory of matrices: with applications[END_REF][START_REF] Stykel | Stability and inertia theorems for generalized lyapunov equations[END_REF][START_REF] Vandereycken | A riemannian optimization approach for computing low-rank solutions of lyapunov equations[END_REF]. In this work, which has been inspired by the approach proposed in [START_REF] Spirito | Explicit parameters of exponential stability and contractivity of globally Lipschitz semi-linear systems[END_REF], we provide a new explicit solution based on the solely algebraic properties of the matrix A, namely on its eigenvalues and (generalized) eigenvectors. The focus of this work is to show that in the case of non-diagonalizable matrices, we have limitations in the choices of α. In particular, we show that we cannot select α equal to an eigenvalue with non-unitary geometric multiplicity and that selecting α arbitrarily close to it provides a solution P which is ill-conditioned. These facts are provided thanks to a modified Jordan's normal form. A similar analysis is then developed in the case of the discrete generalized Lyapunov matrix inequality A ⊤ PA ⪯ ρP .

We believe that these new results allow to better understand the decay rate of stable systems possessing Jordan blocks of very large dimensions, e.g., in large-scale systems obtained via the spatial discretization of PDEs. The paper is structured as follows. In the next section, we introduce the preliminary concepts related to Jordan's normal form and the definition of the inertia of a matrix. Then, in Section 3, we introduce the modification of the Jordan block normal form as proposed in [START_REF] Spirito | Explicit parameters of exponential stability and contractivity of globally Lipschitz semi-linear systems[END_REF] for continuous and discrete time.

We then analyze in Section 4 the generalized Lyapunov inequality for continuous-time systems. In Section 5 we extend the analysis to generalized Lyapunov inequalities in discrete-time. The conclusions are then given in Section 6.

Preliminiaries

Notation

We denote with R (resp. C) the set of real (resp. complex) numbers, and with i the imaginary unit. Given s ∈ C, s = a + ib, we denote with ℜ{s} = a its real part. Given a matrix P ∈ R n×n , we denote by σ (P) its spectrum, by σ max (P) the largest eigenvalue and σ min (P) its smallest, while σ i (P) is the i-th eigenvalue of the matrix P. We recall the following definitions of inertia of a matrix, see [START_REF] Stykel | Stability and inertia theorems for generalized lyapunov equations[END_REF]. Definition 1. The inertia of a matrix P with respect to the imaginary axis (c-inertia) is defined by the triplet of integers In c (A) = {π -(P), π 0 (P), π + (P)} where π -(P), π 0 (P) and π + (P), denote the numbers of eigenvalues of P, counted with their algebraic multiplicities, with negative, zero, and positive real part, respectively. Definition 2. The inertia of a matrix P with respect to the unit circle (d-inertia) is defined by the triplet of integers

In d (A) = {π <1 (P), π 1 (P), π >1 (P)}
where π <1 (P), π 0 (P), and π >1 (P), denote the numbers of eigenvalues of P, counted with their algebraic multiplicities, which are inside, on, and outside the unit circle.

Given any n ∈ N we define the following matrices

J n := I n + N n =       1 1 . . . 0 0 1 . . . . . . . . . . . . 1 0 . . . 1       , N n =       0 1 . . . . . . . . . 1 0      
(1) where I n is the identity matrix of dimension n and N n is the matrix with ones on the upper diagonal and zeros everywhere else. Given a number ε ∈ R and a natural number n ∈ N, we denote

D n (ε) := diag(1, ε, . . . , ε n-1 ), if ε 0, I n , if ε = 0. (2)
Then, with the previous definition, the following identity

N n D n (ε) = εD n (ε)N n (3) 
holds for any ε ∈ R and n ∈ N. Similarly, for a matrix A ∈ R r×r we can define

D n (A) := diag(I r , A, . . . , A n-1 ), if A 0, I rn , if A = 0, (4) 
and in this case, the following identity can be verified

D n (A) -1 (N n ⊗ I r )D n (A) = N n ⊗ A . (5) 

Some explicit eigenvalues

From [6, Ex. 7.2.5], we recall that given a matrix A ∈ R n×n , with a 0 and c 0, of the form

A =        b a c b a . . . . . . . . . c b a c b        = bI n + aN n + cN ⊤ n , (6) 
an explicit formula for its eigenvalues λ i is given by

λ i = b + 2a c a cos π i n + 1 , i ∈ {1, . . . , n}.
For this paper, we only deal with the case c = a; leading to the explicit eigenvalues form, as also exploited in [START_REF] Baggio | Reachable volume of large-scale linear network systems: The single-input case[END_REF], given by

λ i = b + 2a cos π i n + 1 , i ∈ {1, . . . , n}. (7) 

Jordan normal form

Given a matrix A of dimensions n × n we suppose, without loss of generality, that its eigenvalues are ordered in decreasing order with respect to the real part, namely

ℜ{λ 1 } ≥ ℜ{λ 2 } ≥ . . . ≥ ℜ{λ n }.
Let m ≤ n be the total number of linearly independent (nongeneralized) eigenvectors T1 i 0 associated with an eigenvalue λi ∈ σ (A), i = 1, . . . , m, such that

AT 1 i = λi T 1 i ∀i = 1, . . . , m.
Definition 3 (Jordan blocks dimension). For each i ∈ {1, . . . , m}, we define the values g i ≥ 1 satisfying ∑ m i=1 g i = n, such that there exist g i -1 linearly independent generalized eigenvectors T k i 0, for k = 2, . . . , g i , associated to the corresponding eigenvalue λi and satisfying

(A -λi I)T k i = T k-1 i ∀k = 2, . . . , g i .
The introduced notation allows us to determine in advance the number of distinct Jordan blocks m and their relative dimensions g i , when the matrix A is transformed into its Jordan form J, see, e.g. [START_REF] Lancaster | The theory of matrices: with applications[END_REF].

Lemma 1.

Let A be a n × n matrix, let m be the number of distinct 1 eigenvalues λi with associated Jordan block dimension g i so that ∑ m i=1 g i = n. Then, there exists a T ∈ R n×n such that

T -1 AT = J,    J := blckdiag J λ1 , . . . , J λm , J λi := λi I g i + N g i , i = 1, . . . , m. (8) 
For complex eigenvalues, one can always consider a real Jordan form in which a Jordan block associated with a complex pair of eigenvalues λi,1/2 = a i ± ib i , with g i -1 pairs of associated generalized eigenvectors, is given by

J Λi := I g i ⊗ Λi + N g i ⊗ I 2 =        Λi I 2 0 . . . 0 0 Λi I 2 . . . 0 0 0 . . . . . . . . . Λi I 2 0 . . . 0 Λi        2g i ×2g i (9) where Λi is defined as Λi = a i b i -b i a i
and one can verify that σ ( Λi ) = {a + ib, a -ib}. Note also that Λi

+ Λ⊤ i = 2a i I 2 = 2ℜ{ λi,1/2 }I 2 . ( 10 
)

Modified Jordan Form

In this section, we present two modifications of the standard normal Jordan form that are instrumental for the following analysis. The two proposed forms refer to continuous-time and to the discrete-time dynamics, respectively.

Modified continuous-time Jordan normal form

Given a Hurwitz matrix A, one may ask if an identity Lyapunov matrix, i.e., P = I n , in the Jordan coordinates ( 8) is a solution to the Lyapunov matrix inequality, namely if J + J ⊤ ⪯ -αI for some α > 0. The answer is in general negative. Indeed, one can compute the eigenvalues of J + J ⊤ for each Jordan block form J λi applying [START_REF] Russell | The poincaré-bendixson theorem for certain differential equations of higher order[END_REF], which gives

σ max (J λi + J ⊤ λi ) = 2ℜ{ λi } + 2 cos π g i + 1
which is negative only for ℜ{λ i } ≤cos(π/(g i + 1)) ≤ -1.

As a consequence, we introduce now a modified Jordan form, denoted in this article as J. The main idea is to re-scale the Jordan blocks J λi using the property (3). In particular, for a nonzero eigenvalue λ 0 with associate Jordan block dimension g, we can use the matrix2 D g ( λ ) defined in (2) to obtain

D -1 g ( λ )J λ D g ( λ ) = λ J g (11) 
with the matrix J i defined according to [START_REF] Baggio | Reachable volume of large-scale linear network systems: The single-input case[END_REF]. Hence, by defining the matrix

D := blckdiag D g 1 ( λ1 ), . . . , D g m ( λm ) (12) 
we introduce the matrix J defined as

J := T -1 AT, T := T D, (13) 
in which T satisfies [START_REF] Spirito | Explicit parameters of exponential stability and contractivity of globally Lipschitz semi-linear systems[END_REF]. One can verify, using the property [START_REF] Zoboli | LMI conditions for k-contraction analysis: a step towards design[END_REF] that J as the following form

J = blckdiag λ1 J g 1 , . . . , λm J g m , (14) 
with the matrix J g i defined as in (1), for each i = 1, . . . , m. As we shall see in the next section, the matrix J is now in a more convenient form to study Lyapunov matrix inequalities. Note that in the case of complex eigenvalues, one has to define a slightly different change of coordinates in order to deal with the generalized Jordan block [START_REF] Stykel | Stability and inertia theorems for generalized lyapunov equations[END_REF]. In particular, by using the definition (4) one can verify the following identity

J g i ⊗ Λi = (I g i + N g i ) ⊗ Λi = D -1 g i ( Λi )J g i ( Λi )D g i ( Λi )
which gives

J g i ⊗ Λi =        Λi Λi 0 . . . 0 0 Λi Λi . . . 0 0 0 . . . . . . . . . Λi Λi 0 . . . 0 Λi        . ( 15 
)
We conclude this section by highlighting a certain number of properties of the matrix J n . To this end, recall that

cos(xπ) = -cos((1 -x)π), ∀x ∈ [0, π 2 ].
Lemma 2. For any n ≥ 1, the matrix J n satisfies the following properties.

1. The eigenvalues of J n + J ⊤ n satisfies

σ i (J n + J ⊤ n ) = 2 1 + cos π i n + 1 , i = {1, . . . , n}.
2. The matrix J n + J ⊤ n satisfies

2 1 + cos π n n+1 I n ⪯ J n + J ⊤ n ⪯ 2 1 + cos π n+1 I n .
3. For any real number ε ∈ (0, 1], the following holds

2 1 + ε cos π n n+1 ⪯ D n (ε) -1 J n + J ⊤ n D n (ε) ⪯ 2 1 + ε cos π n+1 4. The spectrum of J ⊤ n J n satisfies σ (J ⊤ n J n ) ⊂ σ (J 2n + J ⊤ 2n ). 5. J ⊤ n J n ⪯ J n + J n . Proof.
The explicit formula of the eigenvalues of J + J ⊤ follows from [START_REF] Russell | The poincaré-bendixson theorem for certain differential equations of higher order[END_REF], showing items 1 and 2.

We show now item 3. By property 3, we have

D n (ε) -1 J n + J ⊤ n D n (ε) = 2I n + ε(N n + N ⊤ n ),
and by ( 7) we have

2 1 + ε cos π n n+1 ⪯ D n (ε) -1 J n + J ⊤ n D n (ε) ⪯ 2 1 + ε cos π n+1 .
We show now item 4. Let W n be the anti-diagonal matrix of dimension n, namely

W n =    0 1 . . . 1 0    .
Note that W -1 n = W n . Then, the following idenitity can be verified from the definition of J i :

J 2n + J ⊤ 2n = J n + J ⊤ n W n (I n -N ⊤ n N n ) (I n -N n N ⊤ n )W ⊤ n J n + J ⊤ n .
Applying the change of coordinates

R = W n 0 W ⊤ n I n , R -1 = W n 0 -W ⊤ I n one can verify that R(J 2n + J ⊤ 2n )R -1 = J n + J ⊤ n -N ⊤ n N n E 1 0 E 2 for some matrices E 1 , E 2 .
Using the identity

J n + J ⊤ n -N ⊤ n N n = J ⊤ n J n
and the previous block diagonal form we immediately obtain

σ (J 2n + J ⊤ 2n ) = σ (J ⊤ n J n ) ∪ σ (E 2 )
concluding the proof. Finally, for item 5 we note that N ⊤ n N n ≤ I n . Hence

(I n + N n ) ⊤ (I n + N n ) ⪯ I n + N ⊤ n + N n + N ⊤ n N n ⪯ 2I n + N ⊤ n + N n = J ⊤ n + J n .

Modified discrete-time Jordan normal form

Similarly to the continuous-time case, one can ask if the idenity matrix is a suitable solution to the discrete-time Lyapunov matrix inequality for a Schur matrix A in the Jordan normal form (or in the new modified Jordan normal form), namely if one the following J ⊤ J -I ⪯ ρI or J ⊤ J -I ⪯ ρI holds for some ρ ∈ (0, 1). And in both cases, the answer is in general negative, see the later discussion in Section 5. Actually, it can be verified that the second inequality (i.e. concerning the modified Jordan normal form J) holds if all the eigenvalues have a modulo smaller or equal3 to 1 2 . For this reason, we introduce a second modification of the Jordan form. In particular, for a block J g (λ ) associated with an eigenvalue λ with associate Jordan block dimension g, we use the following identity

D g 1-|λ | 3 -1 J g (λ )D g 1-|λ | 3 = λ I g + 1-|λ | 3 N g .
So by defining the matrix

D := blckdiag D g 1 1-| λ1 | 3 , . . . , D g m 1-| λm | 3
we give the second modified Jordan form

J := T -1 AT , T := T D, (16) 
in which T satisfies [START_REF] Spirito | Explicit parameters of exponential stability and contractivity of globally Lipschitz semi-linear systems[END_REF]. The resulting matrix J has the following form

J = blckdiag J g 1 ( λ1 ), . . . , J g m ( λm ) , J g i ( λi ) = λi I g i + 1 3 (1 -| λi | 2 )N g i . (17) 
Equivalently for the real matrix realization in the case of complex conjugate eigenvalues, considering for λi1,2 = a i ± ib i we define

Λi = a j b j -b j a j , Λi = 1 3 (1 -a 2 i -b 2 i )I 2 , (18) 
then the change of coordinates modifies by defining

D g i Λi = blckdiag I 2 , Λi , . . . , Λg i -1 i
and thus the blocks of J associated with complex conjugate eigenvalues will read as

J g i ( λi ) = I g i ⊗ Λi + N g i ⊗ Λi =        Λi Λi 0 . . . 0 0 Λi Λi . . . 0 0 0 . . . . . . . . . Λi Λi 0 . . . 0 Λi        . ( 19 
)
In Section 5 we will show how this new form can be employed to find suitable solutions to the generalized discrete Lyapunov matrix inequality.

Continuous-time generalized Lyapunov inequality

Given a matrix A of c-inertia {nq, 0, q}, we are interested in studying the solutions to the generalized Lyapunov matrix inequality

PA + A ⊤ P ⪯ 2αP, α ∈ R , P = P ⊤ , (20) 
in which α ∈ R may be a positive or negative real number and P is a symmetric matrix of some c-inertia. We recall the following result.

Lemma 3. Given a matrix A ∈ R n×n , a real constant µ ∈ R, and an integer q ∈ {0, . . . , n}, the following statements are equivalent.

1. A has q eigenvalues with real part larger than µ and nq eigenvalues with real part smaller than µ. 2. The matrix A -µI has inertia {nq, 0, q}, 3. There exists a symmetric matrix P ∈ R n×n with c-inertia {q, 0, n -q} satisfying

A ⊤ P + PA ≺ 2µP (21)
4. Given a symmetric positive definite matrix Q ≻ 0 there exists a symmetric matrix P ∈ R n×n with c-inertia {q, 0, n -q} satisfying

(A -µI) ⊤ P + P (A -µI) = -Q.
Proof. The eigenvalues of A -αI are the shifted eigenvalues λ 1µ, . . ., λ nµ, where we recall that λ i are order such that

ℜ(λ 1 ) ≥ ℜ(λ 2 ) ≥ . . . ≥ ℜ(λ n ).
If A has inertia {nq, 0, q}, it implies that ℜ(λ q+1 )α < 0. This shows that (1) ⇔ (2). The implication (3) ⇔ (1) is due to [7, Lemma 1, Section 3]. The implication (2) ⇔ (4) is due to [9, Theorem 2.5]. Finally, we have that (4) ⇒ (3). Indeed, (4) implies

A ⊤ P + PA = -2µP -Q ≺ -2µP because Q is positive definite.
The objective of this article is to better characterize the admissible set of solution to (21), characterizing both c-inertia of P and admissible values of µ based on the solely algebraic properties of A. Furthermore, quasi-explicit solutions based on the aformentioned Jordan forms will be provided. We highlight that our results are of particular interest in the presence of nontrivial Jordan blocks, where the characterization of µ is more difficult due to polynomial behaviour of solutions.

Solutions fixing the inertia

In this section, we are interested in providing a constructive solution and explicit bounds for the inequality (20) characterizing the admissible values of α and c-inertia of P. In particular, we show that if the matrix A possesses a c-inertia {n-q, 0, q}, then the inequality (20) admits a solution P of inertia {q, 0, n -q} and we characterize the set of admissible values for α. The first result is based on the modified continuous-time Jordan normal form introduced in Section 3.1.

Proposition 1.

Let A be a matrix with c-inertia {nq, 0, q}, where q ∈ N is the number of eigenvalues with positive real part, namely

ℜ{λ 1 } ≥ . . . ≥ ℜ{λ q } > 0 > ℜ{λ q+1 } ≥ . . . ≥ ℜ{λ n },
and define m q ∈ {0, . . . , m} the number of eigenvalues λi with positive real part, i.e. ℜ{ λi } > 0 for all i = 1, . . . , m q . Then, the matrix P with c-inertia {q, 0, n -q} defined as P := T -⊤ IT -1 , I := blckdiag -I q , I n-q , with T defined as in (13), is a solution to the generalized Lyapunov matrix inequality (20) for any α ∈ [α, α] with

α := min i∈{1,...,m q } ℜ{ λi } 1 + cos π g i g i + 1 , α := max i∈{m q +1,...,m} ℜ{ λi } 1 + cos π g i g i + 1 , (22) 
where g i are the associate Jordan block dimension, of the eigenvalue λi .

Proof. First, note that P has the same inertia of I. For simplicity, this proof we consider only real eigenvalues, but the proof can be easily generalized using the modified real Jordan block as explained in Section 3.1. Consider inequality (20) and pre and post-multiply by T ⊤ and T. We obtain

T ⊤ (PA + A ⊤ P -2αP)T ⪯ 0 , T ⊤ T -⊤ IT -1 AT + T ⊤ A ⊤ T -⊤ IT -⊤ T -2αI ⪯ 0 , IJ + J ⊤ I -2αI ⪯ 0 .
Due to the block diagonal structure of J and I, the previous inequality gives a set of m independent inequalities

-λi (J g i + J ⊤ g i ) + 2αI g i ⪯ 0, i = 1, . . . , m q , λi (J g i + J ⊤ g i ) -2αI g i ⪯ 0, i = m q + 1, . . . , m, (23) 
where m ≤ n is the number of Jordan blocks, and 0 ≤ m q ≤ m is the number of Jordan blocks associated to a positive eigenvalue.

For the first m q inequalities in (23), positiveness of λi yields

2αI g i ⪯ λi (J g i + J ⊤ g i ) ⇒ α ≤ 1 2 ℜ{ λi }σ min (J g i + J ⊤ g i ),
for i = 1, . . . , m q , which gives, by using item 1 of Lemma 2, α ≤ α, with α defined in (22). Conversely, since ℜ{ λi } < 0 for i = m q + 1, . . . , m, the remaining mm q inequalities in (23) are verified with λi (J

g i + J ⊤ g i ) ⪯ 2αI g i ⇒ α ≥ 1 2 ℜ{ λi }σ min (J g i + J ⊤ g i )
which gives, by using again item 1 of Lemma 2, α ≥ α, with α defined in (22) thus concluding the proof. Note that for a complex pair of eigenvalues we can use the definition of the complex Jodan block in (15). As a consequence, the corresponding inequality in (23) is modified as 2αI 2g i ⪯ Λi ⊗ (J g i + J ⊤ g i ) or Λi ⊗ (J g i + J ⊤ g i ) ⪯ 2αI 2g i which gives the same bounds in view of [START_REF] Vandereycken | A riemannian optimization approach for computing low-rank solutions of lyapunov equations[END_REF].

Note that in the case of a matrix A with inertia {n, 0, 0}, namely with all eigenvalues with negative real part, inequality (20) boils down to the standard Lyapunov matrix inequality which has a solution P positive definite if and only if (A -αI n ) is Hurwitz. Thanks to the modified continuous-time Jordan form defined in (13), it can be shown that the Lyapunov matrix admits as a solution of the form P = T -⊤ T -1 .

Corollary 1. Suppose that A is Hurwitz and let m be the number of distinct Jordan blocks. Then, inequality (20) is satisfied with a P of c-inertia {0, 0, n} defined as

P := T -⊤ T -1 , α := min i∈{1,...,m} ℜ{ λi } 1 + cos π g i g i + 1
(24) in which T is defined in (13).

We remark that Proposition 1 (or equivalently Corollary 1 for Hurwitz matrices) establishes that a quasi-identity matrix (namely containing only +1 or -1 values in the diagonal) is always a solution to the generalized Lyapunov matrix inequality for a matrix expressed in the modified Jordan normal form.

However, such a choice doesn't necessarily optimize the selection of α. In particular, if one wants to select α as close as possible to the convergence rate, e.g. as close as possible to the slowest stable eigenvalue of the matrix A in the Hurwitz case, one needs to modify the previous selection of P. In particular, it is shown that α can be chosen arbitrarily close to λ q or λ q+1 at the price of obtaining ill-conditioned solutions P. The following theorem mostly relies on the property of item 3 in Lemma 2.

Theorem 1. Let A be a matrix with c-inertia {nq, 0, q}, and let q ∈ N the number of eigenvalues with positive real part, namely

ℜ{λ 1 } ≥ . . . ≥ ℜ{λ q } > 0 > ℜ{λ q+1 } ≥ . . . ≥ ℜ{λ n },
and define m q ∈ {0, . . . , m} the number of eigenvalues λi with positive real part, i.e. ℜ{ λi } > 0 for all i = 1, . . . , m q . For any arbitrarily small δ ∈ (0, 1) there exists ε * > 0 such that, for any ε ∈ (0, ε * ), the following P with c-inertia {q, 0, n -q}

P := T -⊤ ID -2 ε T -1 , I := blckdiag -I q , I n-q , D ε := blckdiag D g 1 (ε), . . . , D g m (ε) ,
where T is defined as in (13) and g i is the associate Jordan block dimension of the eigenvalue λi , is a solution to the generalized Lyapunov matrix inequality (20) for any α ∈ R satisfying

(1 -δ )ℜ{λ q+1 } ≤ α ≤ (1 -δ )ℜ{λ q }. ( 25 
)
Proof. Following the same steps performed in the proof of Theorem 1 one obtains from

D ε T ⊤ (PA + A ⊤ P -2αP)TD ε ⪯ 0 the following set of inequalities -λi D -1 g i (ε) J g i + J ⊤ g i D g i (ε) + 2αI g i ⪯ 0 , i = 1, . . . , m q , λi D -1 g i (ε) J g i + J ⊤ g i D g i (ε) -2αI g i ⪯ 0 , i = m q + 1, . . . , m. (26) 
Using item 3 of Lemma 2, it is readily seen that the inequalities (26) are satisfied for all i if α is chosen such that α ε ≤ α ≤ α ε with

α ε ≤ min i∈{1,...,m q } 1 + ε cos π g i g i +1 ℜ{ λi } , α ε ≤ max i∈{m q +1,...,m} 1 + ε cos π g i g i +1 ℜ{ λi } .
As a consequence, by selecting ε * = min{ε * + , ε * -}, with

ε * + = min i∈{1,...,m q } cos π g i g i +1 -1 |ℜ{λ q }| |ℜ{ λi }| (1 -δ ) -1 , ε * -= min i∈{m q +1,...,m} cos π g i g i +1 -1 |ℜ{λ q+1 }| |ℜ{ λi }| (1 -δ ) -1 ,
one can verify that

α ε ≤ (1 -δ )ℜ{λ q }, α ε ≤ (1 -δ )ℜ{λ q+1 },
for any ε ∈ (0, ε * ] thus concluding the proof. For complex eigenvalues, similar bounds are obtained following the same steps of the proof of Theorem 1.

The previous theorem provides an explicit solution to the generalized Lyapunov matrix inequality which can be optimized in the set of admissible values for α. We don't claim however that our choice is the optimal one in terms of conditioning number σ max (P)/σ min (P) of P, because of the presence of ε that may be very small. For instance, one could improve the previous design by selecting a different ε i for each Jordan block. In Section 4.3, numerical tests compare the proposed solution with the one obtained by a standard optimization algorithm.

Solutions fixing the rate of convergence

In the previous section we characterized a solution to the inequality (20) by fixing the c-inertia of the matrix P and providing a set of admissibility for α. Now, we investigate the opposite, namely we fix a value for α and we characterize the admissible values of the c-inertia for P focusing on a degenerate case in which α is selected exactly equal to the real part of an eigenvalue of A. To this end, we focus to the case in which A is Hurwitz and α is selected equal to real part of the first eigenvalue. The result can be easily generalized by shifting the matrix A. Now, recalling that the eigenvalues are ordered in decreasing order, namely

0 ≥ ℜ{λ 1 } ≥ . . . ≥ ℜ{λ n }.
we denote with S 1 the set of eigenvalues λi with real part equal to ℜ(λ 1 ) and with k 1 the cardinality of S 1 . Then, we denote with g i the dimension of the i-th Jordan block associated with any (complex) eigenvalue in S 1 , and we let k be the sum of all dimensions of the relative Jordan blocks, i.e., k = ∑ k 1 i=1 g i . Proposition 2. Let A ∈ R n×n be a Hurwitz matrix. Then, selecting α = ℜ{λ 1 }, inequality (20) admits solutions P of any c-inertia of the form {ℓ -

j, k -ℓ, n -(k -ℓ) -(ℓ -j)}, with ℓ = ∑ k 1 i=1 ℓ i and j = ∑ k 1 i=1 j i where ℓ i ∈ {0, 1} and ℓ i -j i ≥ 0, i = 1, . . . , k 1 .
Proof. For simplicity in the proof, we suppose that A has only real eigenvalues and moreover that the associate Jordan block dimension of the first eigenvalue λ1 is g 1 = n. The general proof follows by similar arguments. Let T be the transformation defined in ( 8) associated with the Jordan form. Pre and postmultiplying inequality (20) by T ⊤ and T respectively, yields

T ⊤ PT T -1 AT + T ⊤ A ⊤ T -⊤ T ⊤ PT ⪯ 2αT ⊤ PT P ′ g 1 J + J ⊤ P ′ g 1 ⪯ 2αP ′ with P ′ g 1 = T ⊤ PT ∈ R g 1 ×g 1 being a positive definite symmetric matrix. Recalling that J g 1 = λ 1 I g 1 + N g 1 , if one selects α = -λ 1 one obtains P ′ g 1 N g 1 + N ⊤ g 1 P ′ g 1 ⪯ 0 (27)
which has solution P ′ g 1 with inertia {ℓ 1j 1 , g 1 -ℓ 1 , j 1 }, with ℓ 1 ∈ {0, 1} being a degree of freedom for this block and j 1 is chosen accordingly, satisfying the inequality ℓ 1j 1 ≥ 0. This inertia choice is also valid for g 1 = 1, in particular, any ℓ 1 ∈ {0, 1} allows us to choice any desired inertia for the relative P ′ block, i.e., because P ′ g 1 is multiplied by zero it can have any inertia of the form {1, 0, 0}, {0, 1, 0} or {0, 0, 1}, and the inequality is preserved. The generalization to any other particular case is just a simple extension of the above reasoning and some simple algebra provides the formulae in the proposition.

Note that whenever A is a diagonalizable matrix, we have the following trivial result.

Corollary 2. Let A be a diagonalizable Hurwitz matrix. Let S 1 be the set of eigenvalues with real part equal to ℜ{λ 1 } and k 1 the cardinality of S 1 . Then, selecting α = ℜ{λ 1 }, inequality (20) admits solutions P of any c-inertia of the form {ℓ

-j, k 1 - ℓ, n-k 1 + j)}, with ℓ = ∑ k 1 i=1 ℓ i and j = ∑ k 1 i=1 j i where ℓ i ∈ {0, 1} and ℓ i -j i ≥ 0, i = 1, . . . , k 1 .
Proof. The proof follows from a variation of the previous Proposition 2. In particular, following the same steps, the inequality in (27) boils down to 0 * P ′ g 1 ⪯ 0, where P ′ g 1 is a scalar value, varying the overall inertia according to such a choice. Such a value can be either positive, negative, or zero. The same arguments apply to any other eigenvalue with the same real part. Note that, when A is Hurwitz, and its largest real part eigenvalue λ 1 has an associated Jordan Block which is non-trivial, one cannot obtain α = λ 1 , if its associate Jordan block dimension is strictly larger than 1, as shown in the following "trivial" lemma.

Corollary 3. Let A be a Hurwitz matrix and suppose that at least one of the eigenvalues with the largest real part has different algebraic and geometric multiplicities4 . Then, the solution P to (20) has c-inertia {0, 0, n} if and only if α > ℜ{λ 1 }.

Numerical tests

We consider as numerical test a matrix A with dimension 9 with 3 distinct eigenvalues λ , i.e., {-0.5, -2, -4} with associated Jordan block dimensions (g 1 , g 2 , g 3 ) = (3, 5, 1). That is, according to the value convergence rate formula (24) we have α = -0.5 1 + cos 3 4 π ≈ -0.1464

with P = T -⊤ T -1
, thus the condition number of P is equivalent to the condition number of T. By comparing the solution P LMI of LMI solver (getlmis()) implemented in the Robust Control Toolbox ™ of Matlab version R2022a with the given α = α, we get approximatively, over 5000 comparisons, 99% of the times a better condition number of T than that of P LMI . The numerical testing details are summarized in Table 1. Moreover, with α = -0.45, we get, over 5000 comparisons, 100% of the times a better condition number of TD ε than that of P LMI . The numerical testing details are summarized in Table 2. 

Discrete-time generalized Lyapunov inequality

Given a matrix A with d-inertia {nq, 0, q}, we consider in this section the generalized discrete-time Lyapunov matrix inequality

A ⊤ PA ⪯ ρP , ρ ∈ (0, ∞) , (28) 
where the matrix P has c-inertia {q, 0, n -q}. One may think of using the same kind of modified Jordan Block form J approach exploited for the continuous time case. In the following lemma, we show that actually, this form has strong limitations for the discrete-time case and that we need to exploit a different modified Jordan Block form as introduced in Section 3.2.

Lemma 4. Let A be a Schur stable matrix and m the total number of Jordan blocks, associated with eigenvalues λ ordered in decreasing modulo order, and suppose in addition that all the eigenvalues have modulo smaller than 1/2, namely

1 2 ≥ |λ 1 | ≥ . . . ≥ |λ n | > 0.
Then, inequality (28) is satisfied with

P := T -⊤ T -1 , ρ := max i∈{1,...,m} | λi | 2 1 + cos π 2g i + 1
(29) with T defined as in (13), and moreover ρ < 1.

Proof. With the choice of P = T -⊤ T -1 , inequality (28) gives

T ⊤ AT -⊤ T -1 AT ≤ ρI n , J ⊤ J ≤ ρI n ,
further yielding to

| λi | 2 J ⊤ g i J g i ≤ ρI g i , i = 1, . . . , m.
Applying item 5 and 2 of Lemma 2 show that the previous set of inequality is always satisfied with ρ selected as in (29). Next, noting that

2| λi | 2 1 + cos π 2g i + 1 < 4| λi | 2
for any g i ≥ 1, we are guaranteed to obtain ρ < 1 only if | λi | < 1 2 for any i = 1, . . . , m.

Motivated, thus, by the restrictive conditions of the previous lemma, we develop the modified Jordan form for the discretetime case J that can be obtained via the transformation matrix T , previously introduced. We state the following general result.

Theorem 2. Let A be a matrix with d-inertia {nq, 0, q} and let q ∈ N the number of eigenvalues outside the unit circle, namely

|λ 1 | ≥ . . . ≥ |λ q | > 1 > |λ q+1 | ≥ . . . ≥ |λ n | > 0.
and define m q the number of eigenvalues λi outside the unit circle, with i ∈ {1, . . . , m}. Then, the matrix P with c-inertia {q, 0, n -q} defined as P = T -⊤ IT -1 , I = blckdiag -I q , I n-q , with T defined as in (16), verifies the generalized Lyapunov matrix inequality (28) for any ρ ∈ [ρ, ρ] with ρ = 1 9 min i∈{1,...,m q } 9 λ 2 i -6( λ 2 i -1) cos

π g i + 1 ρ = 1 9 max i∈{m q +1,...,m} 8 λ 2 i + 6(1 -λ 2 i ) cos π g i + 1 . (30) 
Proof. First, note that P has the same inertia of I. For simplicity, this proof we consider only real eigenvalues, but the proof can be easily generalized using the modified real Jordan block as explained in Section 3.2. Consider inequality (28) and pre and post-multiply by T ⊤ and T . We obtain

T ⊤ A ⊤ T -⊤ IT -1 AT ⪯ ρT ⊤ T -⊤ IT -1 T J ⊤ IJ ⪯ ρI
Using the block triangular structure of J , which is preserved in the multiplication of the left term, one obtains a set of m independent inequalities

-J ⊤ i J i + ρI g i ⪯ 0, i = 1, . . . , m q , J ⊤ i J i -ρI g i ⪯ 0, i = m q + 1, . . . , m.
Thus, for the first case, we have

ρI g i ⪯ J ⊤ i J i ⇒ ρ ≤ σ min (J ⊤ i J i )
for i = 1, . . . , m q , and the generic modified Jordan block associated with λi , whose | λi | > 1, for Discrete time system have the form

J ⊤ i J i = λ 2 i I - λ 2 i -1 3 (N ⊤ + N) + (λ 2 -1) 2 9 N ⊤ N ≥ λ 2 i I - λ 2 -1 3 (N ⊤ + N) =: M
and the eigenvalues of M can be compute explicitly as in [START_REF] Russell | The poincaré-bendixson theorem for certain differential equations of higher order[END_REF], i.e.,

σ k (M) = λ 2 i - 2 3 ( λ 2 i -1) cos π g i + 1
, k = 1, . . . , g i from which we can determine the minimum eigenvalue as considered in the first line of (30). For the second case, instead, we have

J ⊤ i J i ⪯ ρI g i ⇒ ρ ≥ σ max (J ⊤ i J i )
for i = m q + 1, . . . , m, and the generic modified Jordan block associated with λi , whose | λi | < 1, for Discrete time system have the form

J ⊤ i J i = λ 2 i I + 1 -λ 2 i 3 (N ⊤ + N) + (1 -λ 2 i ) 2 9 N ⊤ N = λ 2 i I + 1 -λ 2 i 3 (N ⊤ + N) + (1 -λ 2 i ) 2 9 I - (1 -λ 2 i ) 2 9 diag(1, 0, . . . , 0) ≤ λ 2 i + 1 -λ 2 i 9 I + 1 -λ 2 i 3 (N ⊤ + N) =: M
and the eigenvalues of M can be compute explicitly as in [START_REF] Russell | The poincaré-bendixson theorem for certain differential equations of higher order[END_REF], i.e.,

σ k (M) = 1 9 8 λ 2 i + 1 + 2 3 (1 -λ 2 i ) cos π g i + 1
, k = 1, . . . , g i from which we can determine in closed form the maximum eigenvalues as involved in the second line of (30).

We can obtain a parallel result as the one presented in Corollary 1. As in the continuous-time case, we show now that it is always possible to construct a matrix P, by slightly modifying the one given in Theorem 2, so that to obtain ρ, resp. ρ, as close as desired to the slowest unstable eigenvalue |λ q |, resp. the slowest stable eigenvalue |λ q+1 |. For Schur stable system, we have the following corollary.

Corollary 4. Suppose that A is Shur and let m be the number of distinct Jordan blocks. Then, inequality (28) is satisfied with

P = T -⊤ T -1 , and 
ρ = min i∈{1,...,m} 8| λi | 2 + 1 9 + 2 3 (1 -| λi | 2 ) cos π g i + 1 , (31 
) in which T is defined in (16), and moreover ρ < 1.

Note that this corollary is just a particular case of Theorem 2, thus its proof is omitted. Theorem 3. Let A be a matrix with d-inertia {nq, 0, q}, let q ∈ N the number of eigenvalues outside the unit circle, namely

|λ 1 | ≥ . . . ≥ |λ q | > 1 > |λ q+1 | ≥ . . . ≥ |λ n | > 0.
and define m q the number of eigenvalues λi outside the unit circle, with i ∈ {1, . . . , m}. For any δ ∈ (0, 1) there exists ε * > 0 such that, for any ε ∈ (0, ε * ), the following P with c-inertia {q, 0, n -q}

P = T -⊤ ID -2 ε T -1 , I = blckdiag -I q , I n-q , D ε = blckdiag D g 1 (ε), . . . , D g m (ε) ,
with T defined as in (16), is a solution to the generalized Lyapunov matrix inequality (28) for any ρ ∈ (0, ∞) satisfying Now, following the same steps of the proof of Theorem 2, we obtain the following set of inequalities -J ⊤ g i D -2 g i (ε)J g i + ρ 2 D -2 g i (ε) ⪯ 0, i = 1, . . . , m q , J ⊤ g i D -2 g i (ε)J g iρ 2 D -2 g i (ε) ⪯ 0, i = m q + 1, . . . , m.

(33) Consider the first set of inequalities in (33). Using the same arguments used in the proof of Theorem 2 we obtain D g i (ε)J ⊤ g i D -2 g i (ε)J g i D g i (ε) ⪰ 9 λ 2 i -2 3 ε( λ 2 i -1) cos(

π g i + 1
)

With the selected ε * , we can verify that 9 λ 2 i -2 3 ε( λ 2 i -1) cos

π g i + 1 ≥ λ 2 m q (1 -δ )
for any ε ∈ (0, ε ⋆ ] because | λi | ≥ | λm q | for any i ∈ {1, . . . , m q }. Therefore, the first set of inequalities in (33) is verified for any ρ satisfying (32). Consider now the second set of inequalities in (33). Using Theorem 2 yields

D g i (ε) λ 2 i J ⊤ g i D -2 g i (ε)J g i D g i (ε) ≤ 8 9 λ 2 i + 2 3 (1-λ 2 i )ε cos π g i + 1
and therefore, thanks to the choice of ε * , we have that 8 9

λ 2 i + 2 3 (1 -λ 2 i )ε cos π g i + 1 ≤ λ 2 m q +1 (1 -δ )
for any ε ∈ (0, ε * ] because | λm q +1 | ≥ | λi | for any i ∈ {m q + 1, . . . , m}. This shows that the second set of inequalities in (33) is satisfied for any ρ satisfying (32).

As in the continuous-time case, we showed the existence of a solution to the generalized discrete-time Lyapunov matrix inequality in which the bound ρ can be taken arbitrarily close to the value of the slowest unstable/stable eigenvalue.

Conclusions

In this work, we use modifications of the Jordan Block normal form to obtain an explicit solution of the generalized Lyapunov inequalities. In particular, with the defined transformations we show that we can obtain concurrently a solution for the inequality and the relative convergence rate. We analyze both continuous and discrete-time cases of this inequality. Moreover, we show that the proposed solution of the inequality preserves its matrix inertia when selecting a desired convergence rate to be arbitrary to either the slowest unstable or the slowest stable eigenvalue, with the price of worsening the condition number of the proposed solution if those eigenvalues have geometric multiplicity larger than one. By exploiting this method, we were also able to show that for a Hurwitz matrix, the inertia of the related inequality solution can always be taken with some degrees of freedom, whenever the chosen convergence rate equals the real part of the slowest eigenvalue.

( 1 -

 1 δ )|λ q+1 | ≤ ρ ≤ (1δ )|λ q |. (32) Proof. Select ε * = min{ε * >1 , ε * <1 } where

Table 1 :

 1 Numerical results

	# tests	%	average µ(T ⊤ T) average µ(P LMI )
	5000	99%	1.4839e + 03	1.0417e + 06

Table 2 :

 2 Numerical results

	# tests	%	average µ(D ε T ⊤ TD ε ) average µ(P LMI )
	5000	100%	6.2556e + 03	1.3463e + 16
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Distinct in the sense that they have distinct Jordan blocks. Eigenvalues in the standard sense are always denoted as λ .

We remark that the change of coordinates[START_REF] Zoboli | LMI conditions for k-contraction analysis: a step towards design[END_REF] has the same form as in high-gain observers theory, see, e.g.,[START_REF] Hassan | High-gain observers in nonlinear feedback control[END_REF].

It is somehow bizarre to notice the parallelism with the continuous-time case in which J + J ⊤ ⪯ 0 if ℜ{λ i } ≤ -1, i = 1, . . . , n.

This implies that (at least) one of the Jordan blocks corresponding to these eigenvalues has dimension larger than one. Note that this statement includes the case of multiple complex eigenvalues with the same real part and different imaginary parts.
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Appendix A. Matlab code related to the example

The following Matlab code, that exploits the LMI Toolbox of Matlab to get the solution of (20), has been exploited to compare the condition numbers of the solution solutions.