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Abstract

Though very popular, it is well known that the EM for GMM algorithm suffers from
non-Gaussian distribution shapes, outliers and high-dimensionality. In this paper, we design
a new robust clustering algorithm that can efficiently deal with noise and outliers in diverse
data sets. As an EM-like algorithm, it is based on both estimations of clusters centers and co-
variances. In addition, using a semi-parametric paradigm, the method estimates an unknown
scale parameter per data-point. This allows the algorithm to accommodate for heavier tails
distributions and outliers without significantly loosing efficiency in various classical scenarios.
We first derive and analyze the proposed algorithm in the context of elliptical distributions,
showing in particular important insensitivity properties to the underlying data distributions.
We then study the convergence and accuracy of the algorithm by considering first synthetic
data. Then, we show that the proposed algorithm outperforms other classical unsupervised
methods of the literature such as k-means, the EM for Gaussian mixture models and its
recent modifications or spectral clustering when applied to real data sets as MNIST, NORB
and 20newsgroups.

Keywords
clustering, robust estimation, mixture models, semi-parametric model, high-dimensional data.

1 Introduction

The clustering task consists in arranging a set of elements into groups with homogeneous prop-
erties/features that capture some important structure of the whole set. As other unsupervised
learning tasks, clustering has become of great interest due to the considerable increase in the
amount of unlabeled data in the recent years. As the characteristics of real-life data—in geo-
metrical and statistical terms—are very diverse, an intensive research effort has been dedicated
to define various clustering algorithms which adapt to some particular features and structural
properties. We refer to Hennig [2015] and the clustering review by scikit-learn developers [2019],
for discussions on the different methods and on how to choose one depending on the settings.
Among the different types of clustering algorithms, the Expectation-Maximization (EM) pro-
cedure to estimate the parameters of an underlying Gaussian Mixture Model (GMM) [see for
instance the review work by McLachlan, 1982] is a very popular method as its model-based
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nature typically allows other algorithms to be outperformed when the data is low dimensional
and the clusters have elliptical shapes. This model represents the distribution of the data as
a random variable given by a mixture of Gaussian distributions. The corresponding clustering
criterion is simple: all points drawn from a given normal distribution are considered to belong
to the same cluster. The Expectation-Maximization algorithm (EM) [Dempster et al., 1977] is a
general statistical method used to estimate the parameters of a probabilistic model, based on the
maximization of the likelihood. It is an iterative algorithm with two main steps: the expectation
part and the maximization part. In particular for the GMM case, closed-form expressions exist
to obtain parameters estimations at the maximization step.

However, its performance decreases significantly in various scenarios of particular interest
for machine learning applications:

• When the data distribution has heavier (or lighter) tails than the Gaussian one and/or
in presence of outliers or noise as in Figure 1 [see for instance Fraley and Raftery, 2002].
This phenomenon can be simply explained by the non-robustness of the estimators that
are computed by the algorithm: means and sample covariance matrices [Maronna, 1976].

• The presence of different scales in the data might complicate the global ordering of the
observations around their closest centers (for instance through Mahalanobis distances).
The usual normalization procedure for the estimation of covariance matrices might be too
rigid to get satisfactory clustering results in the presence of significant variability intra and
inter-clusters [Garćıa-Escudero et al., 2008].

• When the dimension increases (even in the Gaussian case), the estimation of the covariance
matrix is crucially affected by the high-dimensionality as it has been shown by Bouveyron
and Brunet-Saumard [2014]. Some solutions in that direction include regularization and
parsimonious models that restrict the shape of the covariance matrix in order to decrease
the number of parameters to be estimated [Celeux and Govaert, 1995].

In order to improve the performance of the GMM-EM clustering algorithm in the context of
noisy and diverse data, two main strategies were contemplated. One consists in modifying the
model to take into account the noise and the other one is to keep the original model and replace
the estimators by others that are able to deal with outliers [McNicholas, 2016]. In that line of
research, several variations of the Gaussian mixture model have been developed. In particu-
lar, some variations target the problem of mixtures of more general distributions, which allow
to model a wider range of data, and possibly allowing for the presence of noise and outliers.
Regarding the use of non-Gaussian distributions, Peel and McLachlan [2000] proposed an im-
portant model defined as a mixture of multivariate t-distributions. In this work, the authors
suggested an algorithm (t-EM or EMMIX in the literature) to estimate the parameters of the
mixture with known and unknown degrees of freedom by maximizing the likelihood and ad-
dressed the clustering task. More recently, Wei et al. [2017], Browne and McNicholas [2015], Lee
and McLachlan [2014] considered hyperbolic and skew t-distributions.

Other robust clustering approaches worth mentioning are models which add an extra term
to the usual Gaussian likelihood and algorithms with modifications inspired by usual robust
techniques as robust point estimators, robust scales, weights for observations and trimming
techniques. For instance, Banfield and Raftery [1993] considered the presence of a uniform noise
as background while Coretto and Hennig [2017] proposed RIMLE, a pseudo-likelihood based
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Figure 1: Clustering result of applying the classic EM for GMM in the presence of uniform noise.
The shape of each observation represents the real label (the cross represents the noise). The
color of each point represents the assigned label. The dashed ellipses represent the real clusters
and the solid ellipses represent the contours of the estimated distributions.

algorithm that filters the low density areas. Yu et al. [2015] replaced the usual mean and sample
covariance by the spatial median and the rank covariance matrix (RCM). Gonzalez et al. [2019]
introduced a robust scale that is used to define a k-means-like algorithm that can deal with
outliers. Furthermore, Gonzalez [2019] proposes a robust mixture of distributions estimation
based on robust functionals. Moreover, in the work of Campbell [1984], Tadjudin and Land-
grebe [2000] and Gebru et al. [2016] different weights for the observations were proposed where
small weights correspond, as usual in the robust literature, to observations that are far from the
cluster centers. Finally, trimming algorithms such as TCLUST [Garćıa-Escudero et al., 2008]
leave out a proportion of data points that are far from all the means in order to better estimate
the parameters in the M-step.

This article aims at defining an algorithm that can both outperform traditional ones un-
der an assumption of diverse data and be adaptive to a large class of underlying distributions.
Following the path of robust statistical approaches, we propose to complement it by using a
semi-parametric setting, allowing us to reach an important flexibility for the data distributions.
Our method is also inspired by the robust applications of the Elliptical Symmetric (ES) dis-
tributions [Boente et al., 2014, Ollila et al., 2012]. Of course, elliptical distributions have been
widely used in many applications where Gaussian distributions were not able to approximate the
underlying data distribution because of presence of heavy tails or outliers [Conte et al., 2002a,
Gini et al., 2000]. This general family includes, among others, the class of compound-Gaussian
distributions that contains Gaussian, t− and k− distributions [Gini and Farina, 2002, Conte
and Longo, 1987, Conte et al., 2002b] as well as the class of Multivariate Generalized Gaussian
Distributions [Pascal et al., 2013].
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In this paper, we present

• A general mixture model, involving one scale parameter per data point, leading to an
important flexibility in the resulting clustering algorithm. While not being parameters of
interest for the clustering task, those parameters are estimated and their estimators are
fully analyzed since they play an indirect role in the clustering algorithm;

• A clustering algorithm with the following characteristics: 1/ it follows the two steps ex-
pectation and maximization of EM algorithms, 2/ at the E-step, it provides estimated
conditional probabilities, robust in the sense that the expected conditional log-likelihood
leads to estimators independent of the distributions shapes 3/ at the M-step, it derives
estimations of clusters centers and covariance matrices which turn out to be robust.

There are hence two types of estimations. On the one hand, as all EM-like algorithms, we
perform an estimation of the parameters of interest: clusters proportions, means and covariance
matrices. On the other hand, we use the estimation of scale (or nuisance) parameters, (which
are not of direct interest) to improve the estimations of the parameters of interest as well as
robustify the estimation of the probability for an observation to belong to a given cluster. More
precisely, we show in this paper that, under mild assumptions, those probabilities estimates do
not depend on the shape of data distributions, making the algorithm generic, simple and robust.
It can be noticed that the scale/nuisance parameters could also be used for classification and
outlier detection purposes by discriminating data and helping data assignment [Roizman et al.,
2020] .

A key feature of the proposed algorithm is to be self-contained in the sense that no extra-
parameters need to be tuned as it is the case for aforementioned approaches (e.g., penalty
parameters, rejection thresholds,and other distribution parameters such as shapes or the de-
grees of freedom).

In the sequel, we include practical and theoretical studies that provide evidence about the
algorithm performance. In particular, we theoretically justify the efficiency of our algorithm
using various arguments:

1. When the underlying model belongs to the class of elliptical distributions, with different
means and dispersion matrix per cluster but with cluster-independent density generators
(even different ones within clusters) then the estimation of membership probabilities does
not depend on each specific density function. This is a consequence of the fact that those
probabilities estimations do not depend on the scale factors of the covariance matrix but
only on the scatter/dispersion matrices. Hence, the algorithm makes no mismatch error
when the density generator is unknown, whenever this assumption is fulfilled. This is
shown in Proposition 4

2. Even when the density function is different for every cluster, there are regimes, where the
mismatch error can be controlled. We give an example using t−distributions with various
degrees of freedom. See Proposition 5.

3. Finally, though the estimation of covariance matrix becomes clearly challenging in high-
dimensional settings, estimations of the nuisance parameters get typically more accurate
and faster when the dimension grows large, using a simple law of large numbers in the
dimension. See Proposition 6.
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From a practical perspective, the induced clustering performance is largely improved com-
pared to k-means, the EM algorithm for GMM and HDBSCAN [Campello et al., 2015, McInnes
and Healy, 2017, McInnes et al., 2017] when applied to real data sets such as MNIST variations
[Lecun et al., 1998], NORB [LeCun and Bottou, 2004] and 20newsgroups [Mitchell, 1997]. In
agreement with the proposed results, previous works on classification of the MNIST dataset
suggest the non-gaussianity of the clusters [Liao and Couillet, 2017]. Compared to spectral clus-
tering and t-EM, TCLUST and RIMLE our algorithm performs similarly in classic cases and
much better in others. Furthermore, the proposed algorithm is able to provide accurate estima-
tions of location and dispersion parameters even in the presence of heavy tailed distributions
or additive noise as proved in simulations where our algorithm beats the other compared models.

The rest of the paper is organized as follows. In Section 2, after introducing in details the
models of interest, we present the clustering algorithm and discuss some of its important aspects,
notably by proving convergence results on the parameters estimation. Section 3 is devoted to the
experimental results, which allow us to show the improved performance of the proposed method
for different synthetic and real data sets in comparison with other commonly used methods.
Finally, conclusions and perspectives are stated in Section 4.

2 Model and Theoretical Justifications

In this section, we present a detailed description of the underlying theoretical model and the
proposed clustering algorithm. Given {xi}ni=1 a set of n data points in Rm, let us start by con-
sidering them as independent samples drawn from a mixture of distributions with the following
probability density function (pdf):

fi(x i) =
K∑
k=1

πkfi,θk(x i) with
K∑
k=1

πk = 1, (1)

where πk represents the proportion of the ith distribution associated with some parameters θk
in the mixture. The notation fi,θk is used for simplicity and stands for a pdf fi,k,θk that may
depend in principle on cluster k and in general on some “cluster parameters” grouped in θk as
well as on some extra nuisance parameter τik. We remark that the subscript i is used in fi,θk to
stress that distributions can be different from one observation to another.

Remark 1 Let us underline the level of generality of the model: the K clusters are only char-
acterized by parameters θk while the shape of the distributions can change from one observation
to another. We explain the relevance of such a general structure in the next paragraph, where
we fix a set of distributions for the fi,θk .

In the sequel, we consider a very large class of distributions in order to generalize the classical
Gaussian mixture model: the Elliptically Symmetric (ES) distributions. The pdf of an m-
dimensional random vector xi that is ES-distributed with mean µk and covariance matrix τikΣk

can be written as

fi,θk(x i) = Aik|Σk|−1/2τ
−m/2
ik gi,k

(
(x i − µk)

TΣ−1
k (x i − µk)

τik

)
(2)
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where Aik is a normalization constant, gi,k : [0,∞)→ [0,∞) is any function (called the density
generator) such that (2) defines a pdf. The matrix Σk reflects the structure of the covariance
matrix of x i. Note that the covariance matrix is equal to Σk up to a scale factor if the dis-
tribution has a finite second-order moment [see for details Ollila et al., 2012]. This is denoted
ES(µk, τikΣk, gi,k(.)). Note that the clustering parameter is θk = (πk,µk,Σk) while the nui-
sance parameter is τik. For convenience, we denote by θ = (θ1, . . . , θK) the set of all clustering
parameters.

At this stage, some comments have to be mentioned:

1. When gi,k = g, ∀i, k, then we retrieve a classic paradigm for clustering modelling. All the
points follow the same ES distribution but each class has a different mean and covariance
matrix. However, note that this model is much more general than a Gaussian mixtures
model as the class of ES distributions is much wider and includes in particular lighter and
heavier tails than Gaussian ones. An important aspect of our results is that our algorithm
is in that case insensitive to the function g, and hence allows to treat efficiently real data
sets where g is not known.

2. When gi,k = gi, ∀i, k, we obtain a much more general model than the previous one, where,
even if the distribution of the points do not depend on the classes except for their mean
and covariances, the data within a class might follow e.g., a mixture of ES distributions.
It has a practical importance since many data sets are compiled from different sources of
data with different characteristics. In that case again, our algorithm is still insensitive
to the functions gi giving a lot of modelling flexibility and mismatch robustness.

3. When gi,k = gk, ∀i, k, then we consider one different ES distribution per class of data.
For this non-standard settings, the clustering results do depend on gk which can be
a practical obstacle to get sound results. However, we show that our method can
alleviate this dependence leading to good performance in some regimes.

Elliptical distributions have been used in many applications where one has to deal with
the presence of heavy tails or outliers [Conte et al., 2002a, Gini et al., 2000]. This general
family includes Gaussian, t− and k− distributions, among others [Gini and Farina, 2002, Conte
and Longo, 1987, Conte et al., 2002b] . Such modelling admits a Stochastic Representation
Theorem. A vector xi ∼ ES(µk, τikΣk, gi,k(.)) if and only if it admits the following stochastic
representation [Yao, 1973]

xi
d
= µk +

√
Qik
√
τikAkui, (3)

where the non-negative real random variable Qik, called the modular variate, is independent
of the random vector ui that is uniformly distributed on the unit m-sphere and AkA

T
k is a

factorization of Σk while τik is a deterministic but unknown nuisance parameter.

Note that, in this work, one considers that Cik = τik Σk can also depend on the ith obser-
vation, through the nuisance parameter. Now, for identifiability purposes, we assume that the
distributions at hand have a second-order moment and that Cik is the covariance matrix. This
assumption implies the particular normalization on Qik, that is

E[Qik] = rank(Cik) (= rank(Σk)) = m, when Σk is full rank,

6



following for instance Ollila and Tyler [2012]. In the sequel, we hence call Cik the covariance
matrix and Σk the scatter matrix.

Finally, an ambiguity remains in the scatter matrix Σk. Indeed, for any positive real number
c, (τik,Σk) and (τik/c, cΣk) lead to the same covariance matrix Cik. In this work, we choose to
fix the trace of Σk to m. Other normalizations could have been chosen instead as for instance
imposing a unit-determinant for Σk without affecting the clustering results.

Ollila and Tyler [2012] showed in the complex case that, given random sample from xi ∼
CES(0m, τikΣk, gi,k(.)), the estimation of τik using Maximum Likelihood Estimation (MLE)
is decoupled from the estimation of Σk. Furthermore, the authors proved that the maximum
likelihood estimator for Σk is the Tyler’s estimator, regardless the functions gi. This is a
remarkable result, underlying the universal character of the Tyler estimator in this class of
distributions. We will build on this distribution-free property of the Tyler’s estimator which
turns out to be central for our results.

2.1 The M-step: Parameter Estimation for the Mixture Model

Similarly to the EM for GMM, we extend the model with n discrete variables Zi (with i = 1 . . . n),
that are not observed (corresponding to the so-called latent variables), representing the cluster
label of each observation xi. We compute the label for each observation and cluster in the
E-step, while in the M-step we estimate the parameters of interest θ = (θk)

K
k=1.

Given a sample x = (xT1 , ...,x
T
n )T , a set of parameters θ, and the latent variables Z =

(Z1, ..., Zn)T . The expected conditional log-likelihood of the model is

EZ|x ,θ∗ [l(Z,x ; θ)] =
n∑
i=1

K∑
k=1

Pi,θ∗(Zi = k|xi = x i) log(πkfi,θk(x i)) (4)

=
n∑
i=1

K∑
k=1

pik

[
log(πk) + log(Aik) + log

(
|Cik|−1/2gi((x i − µk)

TC−1
ik (x i − µk))

)]
,

where, pik = Pi,θ∗(Zi = k|xi = x i) with
K∑
k=1

pik = 1 and Cik = τikΣk.

We now include two propositions that summarize the derivation of the estimators for all
the parameters of the model. As underlined previously, a key step using the ideas in Ollila
and Tyler [2012], consists in factorizing the likelihood into two factors which further allows to
describe fundamental properties of the estimators in the E and M steps. In Proposition 1, we
derive the estimator for the τ parameters. Then, in Proposition 2, we derive the rest of the
parameters of the model.

Proposition 1 Suppose x1, ...,xn an independent sample with xi ∼ ES(µk, τikΣk, gi,k(.)) for
some k ∈ {1, ...,K}. Suppose

∫
tm/2gi,k(t)dt <∞, ∀i, k. Then, the derivation of the maximum

likelihood estimation of the τik parameters is decoupled from the one of the rest of the estimators.
For fixed parameters Σk and µk, the τik’s estimators are computed as

τ̂ik =
(xi − µk)

TΣ−1
k (xi − µk)

aik
, ∀1 ≤ i ≤ n and ∀1 ≤ k ≤ K, (5)
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with aik = arg sup
t
{tm/2gi,k(t)}.

Proof 1 See Appendix A.1.

We now describe the ML estimators for θ.

Proposition 2 Given an independent random sample x1, ...,xn, the latent variables Zi, and
expected conditional log-likelihood of the model stated before, the maximization w.r.t. θk for
k = 1, . . . ,K, leads to the following equations that the estimators have to fulfill. The closed
equations

π̂k =
1

n

n∑
i=1

pik (6)

for the proportion of each distribution,

µ̂k =
n∑
i=1

cik xi with cik =

pik

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k)
n∑
l=1

plk

(xl − µ̂k)
T Σ̂
−1

k (xl − µ̂k)

, (7)

for the mean of each distribution, and

Σ̂k = m
n∑
i=1

wik(xi − µ̂k)(xi − µ̂k)
T

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k)
with wik =

pik
n∑
l=1

plk

, (8)

for the scatter matrices.

Proof 2 See Appendix A.2.

It follows from the derivation of Proposition 2 that there is a system of two fixed-point
equations given by

µ̂k =

n∑
i=1

pikxi

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k)
n∑
i=1

pik

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k)

(9)

and

Σ̂k = m
n∑
i=1

wik(xi − µ̂k)(xi − µ̂k)
T

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k)
, (10)

that hold for the estimators of µk and Σk, with wik defined in Eq. (8). In order to obtain these
linked estimators, this system is iteratively solved as explained in Section 2.5.

We can now prove a fundamental property of the algorithm which is the monotonicity of the
likelihood of the model. We later illustrate this property with simulations in Section 2.5. To
establish more precise guarantees of convergence we would need a data-driven approach as it
was developed for instance in [Wu et al., 2016]. We leave this analysis for future work.
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Proposition 3 Given the expected log-likelihood in (4), the observed likelihood

l(x; θ) =

n∑
i=1

log

K∑
k=1

πkfi,θk(xi),

and assuming the convergence of the fixed-point equations system derived in Proposition 2, the
steps defined by the estimator updates from Propositions 1 and 2 lead to a succession {θt}Nt=1

with an increasing likelihood.

Proof 3 See Appendix A.3.

It is important to notice that the derivation of estimators in our model results in usual robust
estimators for the mean and covariance matrices. More specifically, both can be assimilated to
M -estimators with a certain u function [Maronna, 1976]. Actually, both the expressions for the
mean and the scatter matrix estimators are very close to the corresponding Tyler’s M -estimator
[see Tyler, 1987, Frontera-Pons et al., 2016, for more details]. Main differences arise from the
mixture model that leads to different weights involved by the different distributions. However,
in case of clusters with equal probability, i.e., pik = 1/K for k = 1, . . . ,K and i = 1, . . . , n,
one retrieves exactly the Tyler’s M -estimator for the scatter matrix while the mean estimator
differs only from the square-root at the denominator (see the explanation later on). Although
our estimators are derived as usual MLE (but) for parametrized (thanks to the τik) elliptical
distributions, they are intrinsically robust. Indeed, as detailed in [Bilodeau and Brenner, 1999],
Tyler’s and Maronna’s M -estimators can either be obtained through MLE approaches for par-
ticular models (e.g., Student-t M -estimators) or directly from other cost functions (e.g., Huber
M -estimators) and all those estimators are by definition robust.

Thus, this approach can be seen as a generalization of Tyler’s M -estimators to the mixture
case. Indeed, one has for µ̂k

1

n

n∑
i=1

u1

(
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)
)

(xi − µ̂k) = 0, with u1(t) =
pik
t
,

while Σ̂k can be written as

Σ̂k =
1

n

n∑
i=1

u2

(
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)
)

(xi − µ̂k)(xi − µ̂k)
T

with u2(t) =
mwik

t
where wik =

n pik∑n
l=1 plk

.

This similarity to classical Tyler’s estimators explains the robust character of our proposal.
Indeed, the difference lies in the weights terms pik and wik appearing in the uj(.) functions
traditionally introduced in the robust statistics literature. These naturally implies that those
u1(.) and u2(.) functions continue to respect Tyler’s conditions (although Tyler [1987] used
u1(t1/2) instead of u1(t), see Bilodeau and Brenner [1999] for more details).

The convergence of the fixed-point equations defining the M -estimators has been shown in
Maronna [1976] but under a restrictive assumption on the u function, which is not fulfilled in
our case. On the other hand, Kent proved in Kent et al. [1991] that for fixed mean, there is
convergence of the fixed-point equation for the covariance estimator under a normalization con-
straint. Finally, he also showed that for some u function, the joint mean covariance estimations

9



boil down to a constrained covariance estimation. Unfortunately, this trick does not work in our
case. Hence, the case of joint convergence of the fixed-point equations for the Tyler’s estimators
is still an open-problem in statistics even in the case of one distribution (no mixture).

We later perform analysis and simulations that confirm the robustness of the algorithm in
practice. In particular, the setups in Section 3.1 include distributions with heavy tails, different
distributions and noise.

2.2 The E-step: Computing the Conditional Probabilities

In contrast to the estimators derived in Proposition 2, (5) shows that the estimation of the τik
parameters are linked to the functions gi,k that characterizes the corresponding Elliptical Sym-
metric distribution. We now give a central result for our algorithm. The following proposition
shows that the pik’s estimators do not depend on density generators when gi,k = gi.

Proposition 4 Given an independent random sample xi ∼ ES(µk, τikΣk, gi(.)) for some k ∈
1, ...,K, the resulting estimated conditional probabilities p̂ik = P̂θk(Zi = k|xi = xi) have the
following expression for all i = 1, . . . , n and k = 1, . . . ,K:

p̂ik =
π̂k

(
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)
)−m/2

|Σ̂k|−1/2

K∑
j=1

π̂j

(
(xi − µ̂j)

T Σ̂
−1

j (xi − µ̂j)
)−m/2

|Σ̂j |−1/2

, (11)

where π̂k, µ̂k and Σ̂k are given in Proposition 2.

Proof 4 See Appendix A.4.

Remark 2

• Result of Proposition 4 is of utmost importance since it allows to derive the conditional
probabilities required in the E-step independently of the distributions gi’s and of the τik’s
parameters. In other words, for any independent ES-distributed observation xi with mean
µk and covariance matrix τikΣk, a unique EM algorithm is derived that does not depend
on the shapes of the various involved distributions. This is essential because the absence
of precise knowledge on the specific data distribution is the most usual situation in a real
life applications, while estimating it might degrade significantly the performance.

• Secondly, it evidences the fact that the particular normalization of the Σ estimator does
not affect the probability computation in the E-step. In other words, the normalization
of the scatter matrices are not relevant for the clustering results. On the other hand, the
normalization of Σ̂ does affect the scale of the τik parameters. Thus, using them to classify
points or reject outliers needs to be treated with care and is out of the scope of this paper.

• The particular case where the data points arise from a mixture of one ES distribution,
gi = g, ∀1 ≤ i ≤ n, is contained in Proposition 4. We remark the particular example,
included in this case, when all the distributions are Gaussian. If xi ∼ N (µk, τikΣk)
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then the corresponding density generator is g(t) = e−t/2. The corresponding maximizer is
arg sup

t
{tm/2g(t)} = m, consequently the estimator is, as derived in (5), as follows:

τ̂ik =
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)

m
. (12)

• The case where gi = gk cannot be directly handled as a particular case of Proposition 4.
Indeed, assuming each class is drawn by a common ES distribution gk implies in general
that extra-parameters, such as, for instance, the degree of freedom νk for t-distributions, the
shape parameters for the K-distributions and for the generalized Gaussian distributions,
depend on k. Those parameters have to be estimated in the M-step. We give an example
in the next section in the particular case of mixture of t-distributions.

2.3 Different Density Generator per Class

When the density generator depends on the class, our computations show that the pik do depend
on the gk, as opposed to the previous case.

When the density generators are known (which is quite unrealistic in practice), this assump-
tion naturally increases the clustering performance since extra a priori information is added to
the model. On the contrary, it implies a performance loss when the real data distribution is not
the assumed one.

To illustrate the type of dependence reached in that case, we derive the E-step for the
particular case of a mixture of multivariate t−distributions with different degrees of freedom νk.
That is, the case where there are K different gk functions, one for each cluster. The probability
density function of each distribution is given by

fi,θk(x i) =
Γ(νk+m

2 )

Γ(νk2 )|Σk|1/2
(νkπτik)

−m/2

[
1 +

(x i − µk)
TΣ−1

k (x i − µk)

τikνk

]−(νk+m)/2

.

The next proposition states a quantitative approximation of the estimated conditional prob-
abilities in terms of the “Gaussian value” (i.e. the value obtained for class independent gi),
when the νk parameters and m grow at the same rate.

Proposition 5 Given an independent sample of a mixture of K t−distributions, with xi ∼ tνk ,
νk being the degrees of freedom. If for each k, νk

m ≈ ck, then

p̂ik =
π̂kL̂0ik

√
ck

1+ck

K∑
j=1

π̂jL̂0ij

√
cj

1+cj

+O

(
1

m

)

Proof 5 See Appendix A.5.
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This scenario includes of course the case where all the νk are equal (See Remark 2). Addi-
tionally, it includes when the degrees of freedom are large, with fixed dimension m, the Gaussian
case as detailed in the proof. Finally, the other intermediate situations where all the ν parame-
ters do not differ much from the dimension m, are hence shown to be very close to the Gaussian
computation. If neither of these conditions apply, an ad hoc estimation of the νk is of course
possible and it has to be performed in the M-step.

2.4 High-Dimensional Regime and estimation of τik

2.4.1 Gaussian data

Related to Proposition 5 that considers the case where m and νk grow at the same rate, we study
in this section how the estimation of the nuisance parameters behaves when the dimension grows.
Of course, it is well-known that the breakdown-point of the Σ estimator gets smaller when the
dimension grows. Nevertheless, an underlying law of large numbers allows to show that the
larger the dimension m, the better the τ estimation performance. For Gaussian data and under
mild assumptions, if we take xi drawn from the cluster k, we can show that the τ̂ik estimator
converges to the true value of τik when m grows with n. This is more rigorously stated in the
following proposition.

Proposition 6 Suppose that
xi = µk +

√
τikAkqi,

with a deterministic τik ≥ 0, AT
kAk = Σk, rank(Σk) = m and qi ∼ N (0, Im). Assume that there

exists a sequence of random variables (ti)i∈N that converges in distribution such that, for α ≥ 0,
nαµ̂Tk µ̂k ≤ tn and that µ̂k converges in probability to µk. Then, (τ̂ik−τik) ∼ N (0, 2τ2

ik/m) when

m and n are large enough and fulfill the inequality n > m(2m− 1).

Proof 6 See Appendix A.6 .

Remark 3

• First, in the case where the mean parameter is known, recent Random Matrix Theory
results [Couillet et al., 2014, Couillet et al., 2015, Zhang et al., 2016] are in agreement
with this phenomenon and prove results for Maronna’s and Tyler’s M -estimators when m
and n grow together at a fixed rate, i.e., m/n→ γ ∈ [0, 1].

• Secondly, Proposition 6 gives theoretical justification for obtaining better results in high-
dimensional settings since in such cases τik’s parameters will be more accurately estimated.

2.4.2 Non-Gaussian data

In the case of more general elliptic distributions, one looses in general the convergence (in m) of
τ̂ik to a deterministic value. Still, τ̂ik converges under mild assumptions towards a limit which
can be used in principle to handle outliers detections via confidence intervals. As it is not the
main topic of this paper, we just state a result for compound Gaussian distributions, illustrating
the effect of the large dimension and the type of research that could be fostered in future work.
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Proposition 7 Suppose that
xi = µk +

√
ηi τikAkqi,

with a deterministic τik ≥ 0, AT
kA = Σk, rank(Σk) = m, qi ∼ N (0, Im), and ηi a positive

random variable independent of qi. Assume further the consistence of µ̂k, Σ̂k and that

arg sup
t
{tm/2gi(t)}/m→ 1 when m→∞.

Then
τ̂ik

prob.−−−−→
m→∞

τik ηi.

Proof 7 The Proof follows the same lines as the proof of Proposition A.6 and is omitted.

Remark 4 Note that as usual in ML estimation, one can find counter examples where arg sup
t
{tm/2gi(t)}

is not equivalent to m when m grows large. This is however a quite pathological situation and
the assumption of the proposition is fulfilled for most practical cases.

2.5 Implementation Details and Numerical Considerations

The general structure of the proposed algorithm is the same as the one of the classical EM for
GMM. The differences between both algorithms lie in the p̂ij expression and the recursive update
equations for the parameter estimations. We design slightly different variations of the M-step
and study the convergence, precision and speed. We do this considering that the estimators for µ
and Σ are weighted versions of the classic estimators. More precisely, based on equations (9) and
(10), we propose four alternatives thinking in accelerating the convergence speed. These versions
depend on two different aspects. One aspect consists in using the just computed estimation of
the mean or the estimator from the previous iteration of the loop. The other facet is proposed
to emphasize the weights of the data points in the computation of the estimators based on the
Tyler’s estimator. In Section 2, we mention that the location and scatter estimators are close
to Tyler’s up to the square root of the Mahalanobis distance when the location is unknown. We
propose to modify the weights by adding this square root in order to mimic Tyler’s estimator.
The different versions are defined as follows:

1. Version 1: the parameter µ used to compute the estimator Σ is the one obtained in the
same iteration of the fixed-point loop.

2. Version 2: the µ-parameter is the one obtained in the previous iteration.

3. Version 3: we propose an accelerated method where the quadratic forms

(xi − µ̂k)
T Σ̂
−1

k (xi − µ̂k) in the denominators of the fixed-point µ equations are replaced
by their square root, corresponding to the original Tyler’s M -estimators.

4. Version 4: we implement the same acceleration procedure on top of the algorithm of
Version 2.

For concreteness, in Algorithm 1 we describe the complete algorithm in Versions 1 (left) and
4 (right). In the particular case described in Section 2.3, where all gik functions are known, the
pik should be computed with the Bayes expression as in (21).
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Algorithm 1: Scheme of the F-EM algorithm. The Version 1 of the M-step is on the
left and the Version 4 is on the right. The differences are highlighted in red in the
Version 4.

Input : Data {x i}ni=1, K the number of clusters
Output: Clustering labels Z = {zi}ni=1

1 Set initial random values θ(0);
2 l← 1;
3 while not convergence do

4 E-step: Compute p
(l−1)
ik = Pi,θ(l−1)(Zi = k|xi = xi) for each 1 ≤ k ≤ K

5

p
(l)
ik =

π
(l−1)
k

(
(x i − µ

(l−1)
k )T (Σ

(l−1)
k )−1(x i − µ

(l−1)
k )

)−m/2
|Σ(l−1)

k |−1/2

K∑
j=1

π
(l−1)
j

(
(x i − µ

(l−1)
j )T (Σ

(l−1)
j )−1(x i − µ

(l−1)
j )

)−m/2
|Σ(l−1)

j |−1/2

6 M-step:
7 For each 1 ≤ k ≤ K:

8 Update π
(l)
k = 1

n

∑n
i=1 p

(l)
ik and compute w

(l)
ik =

p
(l)
ik∑n

l=1 p
(l)
lk

;

9 Set µ
′
k = µ

(l−1)
k and Σ

′
k = Σ

(l−1)
k ;

10 while not convergence do
11

µ
′′
k =

n∑
i=1

p
(l)
ik xi

(xi − µ
′
k)
T (Σ

′
k)
−1(xi − µ

′
k)

n∑
i=1

p
(l)
ik

(xi − µ
′
k)
T (Σ

′
k)
−1(xi − µ

′
k)

Σ
′′
k = m

n∑
i=1

w
(l)
ik (xi − µ

′
k)(x i − µ

′
k)
T

(xi − µ
′
k)
T (Σ

′
k)
−1(xi − µ

′
k)

µ
′′
k =

n∑
i=1

p
(l)
ik xi[

(xi − µ
′
k)
T (Σ

′
k)
−1(xi − µ

′
k)
]

1/2

n∑
i=1

p
(l)
ik[

(xi − µ
′
k)
T (Σ

′
k)
−1(xi − µ

′
k)
]

1/2

Σ
′′
k = m

n∑
i=1

w
(l)
ik (xi − µ

′′
k)(xi − µ

′′
k)T

(xi − µ
′′
k)T (Σ

′
k)
−1(xi − µ

′′
k)

12

13 end

14 Update µ
(l)
k = µ

′′
k and Σ

(l)
k = Σ

′′
k and τ

(l)
ik :

15 l← l + 1;

16 end
17 Set zi as the index k that has the maximum pik value;
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The plots in Figure 2 show the convergence of the fixed-point equations for the estimation of
µ and Σ for the different versions of the algorithm in two different setups with two distributions
each. We separately study the two parameters in order to see if the variations differently affect
each convergence. The first one is a simple case with two well-separated Gaussian distributions
in dimension m = 10 (means equal to 0m and 2*1m, and covariance matrices are the identity
Im and a diagonal matrix with elements 0.25, 3.5, 0.25, 0.75, 1.5, 0.5, 1, 0.25, 1, 1). The second
one is a mixture of two t-distributions with heavy tails and the same parameter (ν1 = ν2 = 3).
As one can see in both cases, the convergence is reached for all versions of the algorithm after
approximately twenty iterations of the fixed-point loop. We see in Figure 2 that the speed
of convergence is improved for Versions 3 and 4, as expected. On the other hand, we study
in Figure 3 the evolution of the log-likelihood in these two different scenarios. In the case of
the multivariate t-distributions, we computed the likelihood with the true degrees of freedom
(νk = 3). This Figure shows an increasing likelihood in all cases and a faster convergence of the
Version 1 of the model because the correct values for the mean/scatter estimators are reached
faster even though its computation takes a bit longer than for Versions 3 and 4. The estimation
accuracy of Versions 1 and 2 are by construction (ML-based) better than for Versions 3 and 4.
Based on these figures and previous studies about fixed-point fast convergence [see e.g., Pascal
et al., 2008], Version 1 is kept since it follows the original proposal, and although slightly slower
than Version 2 for the fixed-point loop, it is faster for the convergence of the algorithm. Fur-
thermore, we fixed the number of iterations to 20 in all the experiments. Notice that increasing
this number does not result in a significant increase in terms of clustering performance.

Let us now discuss initialization and thresholds used in the proposed algorithm. The mean
parameters are initialized as the means resulting of the k-means algorithm. In the case where
k-means outputs clusters of only one point, we run k-means again leaving out the isolated points.
Due to singularity problems, we take the initial scatter matrix as the identity matrix. We set
the initial value of all τ parameters to one. For the convergence flag, we consider 10−6 for
the threshold of the l2-norm difference of consecutive estimators, and the maximum number of
iterations of the fixed-point loop length is set to 20 based on previous discussion. Using the
initialization described above, we obtain the same final clustering results for each run. In the
low-dimensional case, we truncate the τ value in order to avoid numerical issues induced by
points that are very close to the mean. That is, if τ is smaller than 10−12 we change its value
to the selected threshold. The implementation in Python of the algorithm is available at the
repository github.com/violetr/fem.

Furthermore, it is important to remark that, in our approach, the constraint on the trace of
Σ̂ (tr(Σ̂) = m) does not act as a regularization procedure, as it is usually the case in EM-like
algorithms [Garćıa-Escudero et al., 2008, Coretto and Hennig, 2017]. As mentioned in Remark
2, the trace constraint does not affect the clustering results.

Finally, regarding the complexity of the algorithm, it happens to be the same as the one
of the classical EM algorithm for mixture of Gaussian distributions. The E-step has the same
complexity of the usual algorithm. For the M-step, even though a nested loop is included to
solve the fixed-point equations, the complexity is not increased since the number of iterations
is constant and the main cost of each iteration corresponds to the scatter matrix inversion as in
EM for GMM.
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Figure 2: Convergence speed of the fixed-point equations for the estimation of µ (left) and Σ
(right). The results in Gaussian case are plotted on the top and on the bottom and the ones for
a mixture of t-distributions are shown on the bottom. Each line represents the median of the
values obtained on each iteration of the fixed-point iteration for all the iterations of the F-EM
algorithms and for all clusters. The gray areas represent the quartile range of each iteration of
each version.

Figure 3: Evolution of the log-likelihood of the models for the different versions. On the left,
the results in the Gaussian case and on the right the results for a mixture of t-distributions.
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3 Experimental Results

In this section, we present experiments obtained with both synthetic and real data. We study
the convergence of the fixed point equations and the estimation error in the case of synthetic
data (for which we know the true parameter values). We compare our results to the ones of the
classical EM for GMM, EM for multivariate t-distributions, TCLUST [Garćıa-Escudero et al.,
2008] and RIMLE [Coretto and Hennig, 2017]. Additionally, for the real data, we compare the
clustering results with the ground truth labels for k-means, HDBSCAN and spectral clustering
[Ng et al., 2001]. The comparison between the former three and our algorithm is straight-
forward because they all have in common only one main parameter (the number of clusters)
that we fix and suppose known in our experiments. Regarding the implementations, we use
Scikit-learn [Pedregosa et al., 2011] for k-means and the Gaussian Mixture and the R package
EMMIXskew [Wang et al., 2009] for the mixture of t−distributions. Concerning TCLUST and
the RIMLE algorithms, we set the number of clusters and use the default values for the rest
of the parameters. When possible, we avoided the artificial constraint on the TCLUST algo-
rithm solution caused by the eigenvalue constraint threshold. We used the OTRIMLE version
of RIMLE that selects the main parameter of the model with a data-driven approach [Coretto
and Hennig, 2019]. For both of them, we use the R implementation provided by the authors.
In the case of spectral clustering, we run the Scikit-learn implementation where it is necessary
to tune an extra parameter in order to build the neighborhood graph. We set the number of
neighbors in the graph equal to the number that maximizes the silhouette score [Rousseeuw,
1987]. A fair comparison with HDBSCAN is even more difficult to set because the parame-
ters to tune are completely different and less intuitive than those of the other algorithms. Once
again, we select the best silhouette score pair of parameters by sweeping a grid of selected values.

We then quantify the differences of performance by using the usual metrics for the clustering
task known as the adjusted mutual information (AMI) index and the adjusted rand (AR) index
[Vinh et al., 2010]. For real datasets, one also provides the rate of correct classification when
matching each clustering label with a classification label. In the case of real datasets, we also
report the clustering classification rate as done in Weber and Robinson [2016]. In some cases, we
visualize the 2D embedding of the data obtained by the UMAP algorithm [McInnes et al., 2018]
colored with the resulting labels of the different clustering algorithms in order to better under-
stand the nature of the data and the clustering results. This dimensional reduction algorithm
has the same objective as t-SNE [van der Maaten and Hinton, 2008] but its implementation in
Python is much faster.

3.1 Synthetic Data

In order to compare the clustering performance of the different algorithms, data are simulated
according to different distributions, different values for the τik’s and different parameters. The
different setups are reported in Tables 1 and 2. The setups 1 and 2 are mixtures of multivariate
t-distributions. Setup 3 is a mixture of k−distributions, t−distributions and Gaussian distri-
butions. On the other hand, in Setup 4 we add uniform noise background to three Gaussian
distributions. This noise accounts for 10% of the data. Finally, Setup 5 includes clusters that
are a mixture of two distributions. In other words, all points from a given cluster are generated
with the same parameters µ and Σ but we used different distributions. In this situation, we
mixed generalized Gaussian distributions (noted GN ), t−distributions and Gaussian distribu-
tions (noted N ). In Table 2, diag and diag† are diagonal matrices with trace m and diag∗
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has trace 12. Consequently, Setup 1 tests the performance of the algorithm in the presence of
covariance matrices with different traces.

Setup m n distribution 1 distribution 2 distribution 3

1 8 1000 t, dof = 3 t, dof = 3 t, dof = 3
2 8 1000 t, dof = 10 t, dof = 10 t, dof = 10
3 40 1300 K, dof = 3 t, dof = 6 N
4 8 1200 N N N
5 6 1200 0.7N + 0.3GN , s = 0.1 0.6N + 0.4t, dof = 2.3 N

Table 1: Dimension and shape of the distributions in the five different setups. The distribution
of each of the three clusters in each setup is specified. The distribution can be multivariate
Gaussian (N ), Generalized Gaussian (GN ), t−distribution or k−distribution. In the case of the
latter three distributions the extra parameters (dof or s) are indicated.

Setup µ1 µ2 µ3 Σ1 Σ2 Σ3

1 U(0,1) 6 ∗ 1m 1.5 ∗ 1m + 3e1 diag diag∗ Im/m ∗ 4

2 U(0,1) 5 ∗ 1m 1.5 ∗ 1m +N (0, ε) diag diag† Im
3 2 ∗ 1m 6 ∗ 1m 7 ∗ 1m toep(ρ = 0.2) Im toep(ρ = 0.5)
4 5 ∗ 1m 7 ∗ 1m 9 ∗ 1m toep(ρ = 0.2) Im toep(ρ = 0.5)
5 U(0,0.2) 2 ∗ 1m 4 ∗ 1m + 2e1 toep(ρ = 0.4) Im toep(ρ = 0.7)

Table 2: Parameters of the distributions in the different setups. The means are either deter-
ministic vectors or stochastic random uniform or Gaussian vectors. The options for the scatter
matrix are diagonal with different eigenvalues, the identity matrix or Toeplitz matrix where we
specify the constant.

We repeat each experiment nrep = 200 times and collect the mean and standard deviation
of estimation errors. For the matrices, we compute the Frobenius norm of the difference between
the real scatter matrix parameter and its estimation, divided by the matrix size. In order to
make a fair comparison of the estimation performance, we take into account the estimations of
Σ’s up to a constant. In other words, we normalize all the Σ estimators to have the correct
trace. The reported estimation error is computed as follows:√√√√ m∑

l=1

m∑
o=1

(
(Σk)lo −

(
Σ̂ktr(Σk)

tr(Σ̂k)

)
lo

)2

/m2.

When estimating µ, the l2 norm of the error is computed. The πk vectors, corresponding to
the distribution proportions, are randomly chosen from a set of possibilities that avoid trivial
and giant clusters. These cases are avoided due to the ill posed clustering problem that it implies.

In these experiments, we include all the considered algorithms that estimate parameters.
Thus, we leave out of the comparison k-means, spectral clustering and HDBSCAN. Table 3
shows the estimation error when estimating the main parameters of the model for all the setups.
Furthermore, we report the clustering metrics in Table 4. Complementarily, figures 4 and 5
visually summarize with boxplots the distribution of these measures. In most cases, the EM for
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GMM (GMM-EM) method has poor results and a high variance.

In setups 1 and 2, the distributions are multivariate t−Student and the difference between
them is only in the degrees of freedom. In these setups, the proposed algorithm referred to as
flexible EM algorithm (F-EM) and t-EM error values are smaller than GMM-EM values. This
increase in the predictive performance can be simply explained by the robustness of the estima-
tors in the case of heavy-tailed distributions or in the presence of outliers. It is interesting to
confirm that, as in Setup 2, the considered distributions have larger degrees of freedom (tails
are lighter), GMM-EM performs much better than in Setup 1. However, while TCLUST and
RIMLE perform similarly in the Setup 1, RIMLE has a very big variance and worse estimation
in the Setup 2. This phenomenon is due to the overestimation of point as noise/outliers. On
the other hand, F-EM and t-EM perform very similarly in both settings, with a slight improve-
ment of F-EM in the Σ estimation. As shown in both tables, even in the t−distributed case
where the t-EM algorithm is completely adapted, our robust algorithm performs similarly in
average. We remark that F-EM performs very good as expected, even if in Setup 1 the traces
are very different. Then, for Setups 3, in the case of mixture of three different distributions
(k-distribution, t-distribution and Gaussian distribution), the F-EM algorithm outperforms the
other algorithms in the majority of runs. As Figure 4 shows, there are only very few runs where
F-EM had bad performance. Thus, it is important to notice that the model assumptions used to
derive the F-EM algorithm, i.e., unknown τik’s and different distributions for each observation,
is very general and it allows to successfully handle the case of mixtures of different distributions
without additive computational cost, which appears to be an important contribution of this work.

Furthermore, Figure 5 shows the performance in Setup 4 and Setup 5. In Setup 4, in which
uniform background noise in the cube [0, 14]m is included, the best performances are the ones
from TCLUST and RIMLE which appears reasonably since their design matches the data gen-
eration process. After them, F-EM has a very good performance taking into account that we
do not reject outliers and as a consequence, that those are intrinsically misclassified. When we
exclude the noise for the metric computation, the classification performance is equally good for
these three algorithms, althougth the TCLUST algorithm is computed with the true proportion
of outliers. Besides, the parameter estimation is equally good for F-EM, RIMLE and TCLUST.
The performance analysis in this Setup (for which RIMLE and TCLUST are designed to provide
the best performance) highlights the flexibility and the robustness of the proposed algorithm.
Finally, Setup 5 displays a very good behaviour of F-EM and RIMLE compared to the rest of
the algorithms. The performance of EM-GMM is really bad there because it cannot deal with
outliers coming from heavy tails. The combination of two distributions for one cluster is diffi-
cult to fit for t−EM and TCLUST. The model is too general for t−EM and TCLUST probably
suffers from a noise rate that is not sufficient to avoid the heavy tails.

To conclude, the proposed algorithm shows by design very stable performance among a wide
range of cases. Indeed, when the data perfectly follows a specific model such as e.g., a mixture of
t-distributions, the best algorithm will be the ML-based one (in this case the t-EM algorithm).
However, the F-EM algorithm does perform almost as good as the t-EM. But in various other
scenarios (data drawn from different models, outliers in the data), the F-EM will clearly out-
perform traditional model-based algorithms that are not adaptive.
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Figure 4: Boxplots representing the performance of the algorithms in the estimation and classi-
fication for the different setups. Each row represents one setup. From the left to the right, the
Figure summarizes the estimation error of the scatter matrix up to a constant, the estimation
error of the mean and the AR index of the classification when comparing to the ground truth.
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Figure 5: Boxplots representing the performance of the algorithms in the estimation and classi-
fication for the different setups. Each row represents one setup. From the left to the right, the
Figure summarizes the estimation error of the scatter matrix up to a constant, the estimation
error of the mean and the AR index of the classification when comparing to the ground truth.
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3.2 Real Data

The proposed F-EM algorithm has been tested on three different real data sets: MNIST [Lecun
et al., 1998], small NORB [LeCun and Bottou, 2004] and 20newsgroup [Mitchell, 1997]. The
MNIST hand-written digits (Figure 6) data set has become a standard benchmark for classifica-
tion/clustering methods. We apply F-EM to discover groups in balanced subsets of similar pairs
of digits (3-8 and 1-7) and the set of digits (3-8-6). We additionally contaminate the later subset
with a small proportion of noise by randomly adding some of the remaining different digits.

Figure 6: Two samples of the pair 3-8 from the hand-written MNIST data set.

As in many application examples in the literature, we first applied PCA to work with some
meaningful features instead of the original data [van der Maaten and Hinton, 2008]. We make
a trade-off between explained variance and curse of dimensionality effects. The dimension of
the reduced data is shown in Table 5 under the column m. Because of the stochastic character
of the algorithms, we run each of them multiple times (nrep = 50) and we report the median
value of the metrics. The metrics for the F-EM algorithm are almost always the same and this
explains why we do not report the variance.

As can be seen in Tables 6, 7 and 8, one obtains, in most cases, better values for all the
metrics than those produced by the other partitioning techniques. This can be explained by
the increment in flexibility and the smaller impact of outliers in the estimation process. More
precisely, the F-EM algorithm does not provide the best results in these scenarios:

• MNIST 7-1 scenario for AMI and AR indices, where the t-EM performs the best,

• MNIST 3-8-6 and its noisy variation for the three criteria where the spectral clustering
and TCLUST respectively perform the better,

The loss in performance of the F-EM algorithm is, in most cases, around or less than 1% high-
lighting the robustness of the approach: “better or strongly better than existing methods
in most cases and comparable in other cases”. Moreover, those scenarios always corre-
spond to the simpler scenarios, without noise and with well-separated clusters or completely
designed to be managed by the best algorithm (MNIST 3-6-8 plus noise for the TCLUST).

We collected the clustering results from the HDBSCAN algorithms fed with a grid of values
for its two main parameters. All the computed metrics comparing the results with the ground
truth were poor, close to 0. We show the best clustering result of the 3-8 MNIST subset in
Figure 7, where a high amount of data points is classified as noise by the algorithm. If the met-
ric is computed only in the non-noise labeled data points then the clustering is almost perfect.
This behavior might be explained by the dimension of the data, that seems to be too high for
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HDBSCAN to deal with.

Additionally, we have tested dimensional reduction techniques UMAP and t-SNE prior to
the clustering task. All metrics were improved after carefully tuning the parameters. In this
scenario, the proposed method performs similarly to the classical GMM-EM because these em-
bedding methods tend to attract outliers and noise to clusters. However, these non-linear visual-
ization approaches are not recommended to extract features before clustering because fictitious
effects might appear depending on the parameters choice.

Figure 7: UMAP embedding of the 3-8 pair MNIST subset colored with labels. On the first
row, from left to right, the real ground truth labels, the F-EM clustering labels and the t-EM
clustering labels. On the second row, from left to right, the k-means clustering labels, the
GMM-EM labels and the spectral clustering labels. On the bottom from the left to the right,
the TCLUST labels, the RIMLE labels and the HDBSCAN labels. Points colored with black
are labelled as noise.

For the NORB dataset (some representatives are shown in Figure 8), k-means, GMM-EM,
spectral clustering and UMAP+HDBSCAN do not perform in a satisfactory way since they
end-up capturing the luminosity as the main classification aspect. In contrast, t-EM and the
F-EM algorithm highly outperform them, as can be seen in Tables 6, 7 and 8. This can be
emphasized thanks to results of Figure 9, where label-colored two-dimensional embeddings of
the data based on the classification produced by the different methods are shown. The effect of
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extreme light values seems to be palliated by the robustness properties of the estimators.

Finally, the 20newsgroup data set is a bag of words constructed from a corpus of news.
Each piece of news is classified by topic modeling into twenty groups. Once again, we compare
the performance of our methods with the ones of k-means, EM, t-EM, TCLUST , RIMLE and
spectral clustering algorithms after applying PCA. The corresponding results are also presented
in Tables 6, 7 and 8. One can see that k-means, TCLUST, RIMLE and spectral clustering
perform poorly, while GMM-EM and t-EM outperform them. Nevertheless, the proposed F-EM
algorithm has strongly better results than the others. It is not clear why spectral clustering is
performing so badly on this data set, it could be due to the lack of separation between clusters
and/or the presence of noise that breaks the performance. Finally, the very poor capability of
the RIMLE algorithm in this dataset is explained by the choice of the parameter that highly
over estimates the noise.

Figure 8: Four samples of the small NORB data set from the 4 considered categories. Differences
in brightness between the pictures can be appreciated.

4 Concluding Remarks

In this paper we presented a robust clustering algorithm that outperforms several state of the art
algorithms for both synthetic and real diverse data. Its advantages stem from a general model
for the data distribution, where each data point is generated by its own elliptical symmetric
distribution. The good theoretical properties of this proposal have been studied and supported
by simulations. The flexibility of this model makes it particularly suitable for analyzing heavy-
tailed distributed and/or noise-contaminated data. Interestingly, under mild assumptions on
the data, the estimated probabilities of membership do not depend on the data distributions,
making the algorithm simpler (no need to re-estimate the likelihood at each step), flexible and
robust. Moreover, the original approach of estimating one scale parameter for each data point
makes the algorithm competitive in relatively high-dimensional settings.

On simulated data, we obtained accurate estimations and good classification rates. Of course,
the best model is the one that perfectly coincides with the distribution of the data, e.g., when
the mixture is actually Gaussian, GMM-EM outperforms all other methods, including ours, but
only marginally, and our method performs well on all considered scenarios.
For the real data sets that we considered, We have shown that the proposed method offers
better results compared to k-means, GMM-EM and t-EM. It is also competitive with spectral
clustering, TCLUST and RIMLE and it still delivers very good results in situations where both
HDBSCAN and spectral clustering completely break down.
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Figure 9: NORB’s UMAP embedding colored with relative labels. On the top, the real ground
truth labels on the left and the F-EM clustering labels on the right. On the bottom, the k-means
clustering labels on the left and the spectral clustering labels on the right.

Concerning future works, we consider studying in depth the convergence of the algorithm
with a data-driven approach. Besides, it would be very interesting to study the impact of the τ
parameters in the model when using them for classification and / or outlier rejection. Finally,
we consider that including a sparse regularization in the scatter estimation would be very useful
to take advantage of the fact that the τ parameters are better estimated when the dimension
increases with the number of observations.

A Proofs

This Appendix contains the different proofs of propositions provided in this paper (Section 2).

A.1 Proof of Proposition 1

Proof 8 Let us define sik =
(xi−µk)TΣ−1

k (xi−µk)

τik
. Then we can rewrite the expression

EZ|x,θ∗ [l(Z,x; θ)] =
K∑
k=1

l0k (πk,µk,Σk) +
K∑
k=1

n∑
i=1

lik (πk,µk,Σk, τik) , (13)
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where the terms of the sum are

l0k (πk,µk,Σk) =
n∑
i=1

pik[log(πk) + log(Aik) +
1

2
log(|Σ−1

k |)−
m

2
log ((xi − µk)

TΣ−1
k (xi − µk))],

(14)
and

lik (πk,µk,Σk, τik) = pik log(s
m/2
ik gi,k(sik)). (15)

If we fix the parameters (πk,µk,Σk) and we maximize lik (πk,µk,Σk, τik) w.r.t. τik, one obtains
that

τ̂ik =
(xi − µk)

TΣ−1
k (xi − µk)

aik
, (16)

where aik = arg sup
t
{tm/2gi,k(t)}. As we supposed that

∫
tm/2gi,k(t)dt < ∞, it implies that

tm/2gi,k(t)→ 0, when t→∞ so that the aik is finite. Now, observing that

K∑
k=1

n∑
i=1

lik (πk,µk,Σk, τ̂ik) =
n∑
i=1

K∑
k=1

a
m/2
ik gi,k(aik)pik,

and since pik = Pi,θ∗(Zi = k|xi = xi) and aik do not depend on θ, then
K∑
k=1

n∑
i=1

lik (πk,µk,Σk, τ̂ik)

does not depend on the parameters (πk,µk,Σk) for any k ∈ 1, ...,K. Thus, estimating those
parameters will only rely on the first term of the expected likelihood, i.e.,

S0 =

K∑
k=1

l0k (πk,µk,Σk) . (17)

Note that S0 involves density functions that are proportional to the Angular Gaussian p.d.f.
[Ollila et al., 2012].

A.2 Proof of Proposition 2

Proof 9 Let us maximize EZ|x,θ∗ [l(Z,x; θ)] with respect to θk = (πk,µk,Σk), for k = 1, . . . ,K.

Note that the optimization problem is solved under the constraint on the {πk}Kk=1, which enforces
to use a Lagrange multiplier. Cancelling the gradient of the expected conditional log-likelihood
thus leads to the following system of equations

∂[EZ|x,θ∗ [l(Z,x; θ)]− λ(1−
∑K

j=1 πj)]

∂πk
=

n∑
i=1

pik
πk

+ λ = 0 , ∀1 ≤ k ≤ K,

together with the conditions
∑K

j=1 πj = 1 and
∑K

j=1 pij = 1. This is equivalent to

πk = −
1

λ

n∑
i=1

pik.
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Taking the summation over k, together with the constraints, leads to λ = −n, proving the ex-
pression given in Eq. (6).

Let us now consider the derivative of the expected conditional log-likelihood with respect to
µk. One obtains, for k = 1, . . . ,K,

∂[EZ|x,θ∗ [l(Z,x; θ)]− λ(1−
∑K

j=1 πj)]

∂µk
=

∂l0k (πk,µk,Σk)

∂µk

=
m

2

n∑
i=1

pik
Σ−1
k (xi − µk)

(xi − µk)
TΣ−1

k (xi − µk)
,

where l0k is given in Eq. (14).
Then, setting the previous expression to zero leads to

µk

n∑
i=1

pik

(xi − µk)
TΣ−1

k (xi − µk)
=

n∑
i=1

pik

(xi − µk)
TΣ−1

k (xi − µk)
xi,

providing the result of Eq. (7).

Now, in order to estimate Σk, we differentiate the expected conditional log-likelihood w.r.t.
Σ−1
k . One obtains, for k = 1, . . . ,K,

∂[EZ|x,θ∗ [l(Z,x; θ)]− λ(1−
∑K

j=1 πj)]

∂Σ−1
k

=
∂l0k

(
πk,µk,Σ

−1
k

)
∂Σ−1

k

=

∂
{∑n

i=1 pik
[

1
2 log |Σ−1

k | −
m
2 log

(
(xi − µk)(xi − µk)

TΣ−1
k

)]}
∂Σ−1

k

=

n∑
i=1

pik

[
Σk −m

(xi − µk)(xi − µk)
T

(xi − µk)
TΣ−1

k (xi − µk)

]
.

Equating the latter expression to zero leads to Eq. (8) and concludes the proof.

A.3 Proof of Proposition 3

Proof 10 Similarly to the proof given by Dempster et al. [1977], we can decompose EZ|x,θ∗ [l(Z,x; θ)]
as follows:

EZ|x,θ∗ [l(Z,x; θ)] = l(x; θ) +H(θ, θ∗), (18)

where we define

H(θ, θ∗) = EZ|x,θ∗ [l(Z,x; θ)]− l(x; θ).
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We can re-write this expression as

H(θ, θ∗) = EZ|x,θ∗ [l(Z,x; θ)]− l(x; θ)

=
n∑
i=1

EZi|xi,θ∗

[
log

(
fi,θ(Zi,xi)

fi(xi)

)]

=
n∑
i=1

EZi|xi,θ∗ [log(Pi,θ(Zi|xi)], (19)

where fi,θ(Zi,xi) =
K∑
k=1

11Zi=kfi,θk(xi), 11Ω is the indicator function equal to 1 on Ω and 0

elsewhere. Moreover, Pi,θ(a|b) =
fi,θ(a,b)
fi,θ(b) . At this point, we use the fact that θ(t+1), the set

of estimations computed in iteration t + 1 and derived in Proposition 2, fulfills the following
equality:

EZ|x,θ(t)] [l(Z,x; θ(t+1))] = max
θ

EZ|x,θ(t) [l(Z,x; θ)]. (20)

Of course, we need to assume the convergence of the fixed-point equation system. Thus, using
equation (18) and the fact that EZ|x,θ(t) [l(Z,x; θ(t+1))] ≥ EZ|x,θ(t) [l(Z,x; θ(t))] from (20), we
derive the following inequality:

l(x; θ(t+1))− l(x; θ(t)) ≥ H(θ(t), θ(t))−H(θ(t+1), θ(t)) =
n∑
i=1

EZi|x,θ(t)

[
log

(
Pi,θ(t)(Zi|xi)
Pi,θ(t+1)(Zi|xi)

)]
≥

−
n∑
i=1

log

[
EZ|x,θ(t)

[
Pi,θ(t+1)(Zi|xi)
Pi,θ(t)(Zi|xi)

]]
,

where in the inequality we applied the Jensen inequality for the − log function. As the expectation
is one and in consequence the sum is zero, then l(x; θ(t+1)) ≥ l(x; θ(t)) and that concludes the
proof.

A.4 Proof of Proposition 4

Proof 11 By definition, one has pik = Pθ(Zi = k|xi = xi). Using the Bayes theorem, one
obtains, for i = 1, . . . , n and k = 1, . . . ,K:

pik =
πkfi,θk(xi)
K∑
j=1

πjfi,θj (xi)

Now, the estimated conditional probability can be written by replacing unknown parameters by
their previously derived estimators as
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p̂ik =
π̂kfi,θ̂k

(xi)

K∑
j=1

π̂jfi,θ̂j (xi)

(21)

=

π̂kAikτ̂
−m/2
ik |Σ̂k|−1/2 gi

(
(xi−µ̂k)T Σ̂

−1
k (xi−µ̂k)

τ̂ik

)
K∑
j=1

π̂jAikτ̂
−m/2
ij |Σ̂j |−1/2 gi

(
(xi−µ̂j)T Σ̂

−1
j (xi−µ̂j)

τ̂ij

) . (22)

Finally, using the expression of τ̂ik given by Eq. (5) obtained in Proposition 1, one obtains

p̂ik =
π̂k

(
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)
)−m/2

|Σ̂k|−1/2 max
t

(
ai t

m/2 gi(t)
)

∑K
j=1 π̂j

(
(xi − µ̂j)

T Σ̂
−1

j (xi − µ̂j)
)−m/2

|Σ̂j |−1/2 max
t

(
ai tm/2 gi(t)

) ,
where we use that a

m/2
i gi(ai) = max

t

(
tm/2 gi(t)

)
, by definition of the ai = arg sup

t
{tm/2gi(t)}.

Thus one finally obtains

p̂ik =
π̂k

(
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)
)−m/2

|Σ̂k|−1/2

∑K
j=1 π̂j

(
(xi − µ̂j)

T Σ̂
−1

j (xi − µ̂j)
)−m/2

|Σ̂j |−1/2

. (23)

A.5 Proof of Proposition 5

Proof 12 We re-write the t−distribution density as

fk(xi) = AkL0iks
m/2
ik gk(sik),

with sik =
(xi−µk)TΣ−1

k (xi−µk)

τik
, Ak = π−m/2,

gk(t) =
Γ(νk+m

2 )

Γ(νk2 )
ν
−m/2
k

[
1 +

t

νk

]−(νk+m)/2

, (24)

and the distribution-free factor

L0ik = |Σk|−1/2[(xi − µk)
TΣ−1

k (xi − µk)]
−m/2. (25)

With this factorization of the density function, we can work on the two decoupled factors that
let us write

p̂ik =

π̂kAkL̂0iksup
t
{tm/2gk(t)}

K∑
j=1

π̂jAjL̂0ijsup
t
{tm/2gj(t)}

. (26)

First, we compute the derivative of tm/2gk(t) to get sup
t≥0
{tm/2gj(t)}
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d

dt

(
Γ(νk+m

2 )

Γ(νk2 )
ν
−m/2
k tm/2

[
1 +

t

νk

]−(νk+m)/2
)

= (27)(
m

2
tm/2−1

[
1 +

t

νk

](νk+m)/2

− tm/2

νk

νk +m

2

(
1 +

t

νk

)−(νk+m)/2−1
)

= (28)

tm/2−1

(
1 +

t

νk

)−(νk+m)/2−1 [m
2

(
1 +

t

νk

)
− νk +m

2

t

νk

]
. (29)

Equating the latter to 0, we get two possible solutions: t = 0 and t = m. Then, m maximizes
tm/2gj(t) and the maximum is reached and is

Γ(νk+m
2 )

Γ(νk2 )

(νk
m

)−m/2 [
1 +

m

νk

]−(νk+m)/2

.

Case large νk’s and fixed m:
For νk tending to infinity and fixed m, one retrieves the Gaussian case as follows

Γ(νk+m
2 )

Γ(νk2 )

(νk
m

)−m/2 [
1 +

m

νk

]−(νk+m)/2

≈ (30)

Γ(νk2 )(νk2 )−m/2

Γ(νk2 )

(νk
m

)−m/2 [[
1 +

1

νk/m

]νk/m]−m(νk+m)/(2νk)

≈ (31)

mm/2(2e)−m/2, (32)

where the 2−m/2 factor corresponds to the normalizing constant of the Gaussian case together
with Ak = π−m/2.

Case large νk’s and m:
If νk are fixed and m tends to infinity, as in Gaussian case, one notice that this part of the
likelihood diverges. Consequently, we assume νk and m are large and of the same rate νk

m → ck.
Then, using the Stirling approximation of the Gamma function

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
,

we derive the following approximations.
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Γ(νk+m
2 )

Γ(νk2 )

(νk
m

)−m/2 [
1 +

m

νk

]−(νk+m)/2

=

Γ
(

(1+ck)m
2

)
Γ
(
ckm

2

) c
−m/2
k

[
1 +

1

ck

]−(1+ck)m/2

=√
4π

(1+ck)m

(
(1+ck)m

2e

)(1+ck)m/2 (
1 +O

(
1
m

))√
4π
ckm

(
ckm
2e

)ckm/2 (1 +O
(

1
m

)) c
−m/2
k

[
1 +

1

ck

]−(1+ck)m/2

=

√
ck

1 + ck
(2e)−

m
2

(
1 + ck
ck

)(1+ck)m/2

m
m
2

(
1 +O

(
1
m

))(
1 +O

(
1
m

)) [1 + ck
ck

]−(1+ck)m/2

=√
ck

1 + ck
(2e)−

m
2 m

m
2

(
1 +O

(
1
m

))(
1 +O

(
1
m

)) .
When replacing this expression in (26) we derived the following approximation,

p̂ik =
π̂kL̂0ik

√
ck

1+ck
(2e)−

m
2 m

m
2

(1+O( 1
m))

(1+O( 1
m))

K∑
j=1

(
π̂jL̂0ij

√
cj

1+cj
(2e)−

m
2 m

m
2

(1+O( 1
m))

(1+O( 1
m))

)

=
π̂kL̂0ik

√
ck

1+ck

(
1 +O

(
1
m

))
K∑
j=1

(
π̂jL̂0ij

√
cj

1+cj

(
1 +O

(
1
m

)))

=
π̂kL̂0ik

√
ck

1+ck
+O

(
1
m

)
K∑
j=1

(
π̂jL̂0ij

√
cj

1+cj

)
+O

(
1
m

) .
(33)

Finally, one obtains for i = 1, . . . , n and k = 1, . . . ,K

p̂ik =
π̂kL̂0ik

√
ck

1+ck

K∑
j=1

(
π̂jL̂0ij

√
cj

1+cj

) +O

(
1

m

)
.

If ck = c for all k, we retrieve the same result as the particular case developed in Section
2.2.

A.6 Proof of Proposition 6

Proof 13 By Tyler’s Theorem that applies to elliptical distributions under the assumptions in-
cluded in the proposition, we have the convergence of the scatter matrix Σ̂k to the true Σk in
probability [Tyler, 1987, Theorem 4.1].
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Then, by applying the continuous mapping theorem, it follows that Σ̂
−1

k
P−→ Σk

−1. Given
that xi, one has

τ̂ik =
(xi − µ̂k)

T Σ̂
−1

k (xi − µ̂k)

m

=
(
√
τikAkqi + µk − µ̂k)

T Σ̂
−1

k (
√
τikAkqi + µk − µ̂k)

m
.

Combining Σ̂
−1

k
P−→ Σk

−1 and µ̂k
P−→ µk and the Slutsky theorem leads to

τ̂ik
P−→
√
τikq

T
i AT

kΣ−1√τikAkq

m
=
τikq

T
i qi
m

.

Furthermore,

τikq
T
i qi
m

=
τik
∑m

l=1(qi)
2
l

m
,

with the components (qi)
2
1, ..., (qi)

2
m i.i.d. distributed as χ2(1) because qi ∼ N (0, Im). Thus, τ̂ik

tends to τik
χ2(m)
m .

Now, to assess the behavior when m tends to infinity, one has thanks to the Central Limit
Theorem that, since E[(qi)

2
1] = 1 and V [(qi)

2
1] = 2, for m large enough

τik
∑m

l=1(qi)
2
l

m
∼ N (τik, 2τ

2
ik/m),

Finally, sequentially combining the approximations and imposing the condition n > m(2m−
1) to ensure the existence and uniqueness of the estimator, one obtains the limiting distribution
for (τ̂ik − τik).

References

J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering. Biomet-
rics, 49(3):803–821, 1993. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/

2532201.

M. Bilodeau and D. Brenner. Robustness, pages 206–242. Springer New York, New York, NY,
1999. ISBN 978-0-387-22616-3. doi: 10.1007/978-0-387-22616-3 13. URL https://doi.org/

10.1007/978-0-387-22616-3_13.

G. Boente, M. Salibián Barrera, and D. E. Tyler. A characterization of elliptical distribu-
tions and some optimality properties of principal components for functional data. Jour-
nal of Multivariate Analysis, 131:254 – 264, 2014. ISSN 0047-259X. doi: https://doi.org/
10.1016/j.jmva.2014.07.006. URL http://www.sciencedirect.com/science/article/pii/

S0047259X14001638.

C. Bouveyron and C. Brunet-Saumard. Model-based clustering of high-dimensional data: A
review. Computational Statistics & Data Analysis, 71:52 – 78, 2014. ISSN 0167-9473.
doi: https://doi.org/10.1016/j.csda.2012.12.008. URL http://www.sciencedirect.com/

science/article/pii/S0167947312004422.

32

http://www.jstor.org/stable/2532201
http://www.jstor.org/stable/2532201
https://doi.org/10.1007/978-0-387-22616-3_13
https://doi.org/10.1007/978-0-387-22616-3_13
http://www.sciencedirect.com/science/article/pii/S0047259X14001638
http://www.sciencedirect.com/science/article/pii/S0047259X14001638
http://www.sciencedirect.com/science/article/pii/S0167947312004422
http://www.sciencedirect.com/science/article/pii/S0167947312004422


R. P. Browne and P. D. McNicholas. A mixture of generalized hyperbolic distributions.
Canadian Journal of Statistics, 43(2):176–198, 2015. doi: 10.1002/cjs.11246. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11246.

N. A. Campbell. Mixture models and atypical values. Journal of the International Association
for Mathematical Geology, 16(5):465–477, 1984. ISSN 1573-8868. doi: 10.1007/BF01886327.
URL https://doi.org/10.1007/BF01886327.

R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander. Hierarchical density estimates for
data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data, 10
(1):5:1–5:51, 2015. ISSN 1556-4681. doi: 10.1145/2733381. URL http://doi.acm.org/10.

1145/2733381.

G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition, 28
(5):781 – 793, 1995. ISSN 0031-3203. doi: https://doi.org/10.1016/0031-3203(94)00125-6.
URL http://www.sciencedirect.com/science/article/pii/0031320394001256.

E. Conte and M. Longo. Characterisation of radar clutter as a spherically invariant random
process. IEE Proceedings F - Communications, Radar and Signal Processing, 134(2):191–197,
1987. ISSN 0143-7070. doi: 10.1049/ip-f-1.1987.0035.

E. Conte, A. De Maio, and G. Ricci. Covariance matrix estimation for adaptive CFAR detection
in compound-gaussian clutter. IEEE Transactions on Aerospace and Electronic Systems, 38
(2):415–426, 2002a. ISSN 0018-9251. doi: 10.1109/TAES.2002.1008976.

E. Conte, A. De Maio, and G. Ricci. Recursive estimation of the covariance matrix of a
compound-gaussian process and its application to adaptive cfar detection. IEEE Transac-
tions on Signal Processing, 50(8):1908–1915, 2002b. ISSN 1053-587X. doi: 10.1109/TSP.
2002.800412.

P. Coretto and C. Hennig. Consistency, breakdown robustness, and algorithms for robust im-
proper maximum likelihood clustering. J. Mach. Learn. Res., 18(1):5199–5237, January 2017.
ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=3122009.3208023.

Pietro Coretto and Christian Hennig. otrimle: Robust Model-Based Clustering, 2019. R package
version 1.3.

R. Couillet, F. Pascal, and J. W. Silverstein. Robust estimates of covariance matrices in the
large dimensional regime. IEEE Transactions on Information Theory, 60(11):7269–7278, Nov
2014. ISSN 1557-9654. doi: 10.1109/TIT.2014.2354045.

R. Couillet, F. Pascal, and J. W. Silverstein. The random matrix regime of Maronna’s M-
estimator with elliptically distributed samples. Journal of Multivariate Analysis, 139:56 –
78, 2015. ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.02.020. URL http:

//www.sciencedirect.com/science/article/pii/S0047259X15000676.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B, 39:1–38, 1977. URL
http://web.mit.edu/6.435/www/Dempster77.pdf.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estima-
tion. Journal of the American Statistical Association, 97(458):611–631, 2002. ISSN 01621459.
URL http://www.jstor.org/stable/3085676.

33

https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11246
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11246
https://doi.org/10.1007/BF01886327
http://doi.acm.org/10.1145/2733381
http://doi.acm.org/10.1145/2733381
http://www.sciencedirect.com/science/article/pii/0031320394001256
http://dl.acm.org/citation.cfm?id=3122009.3208023
http://www.sciencedirect.com/science/article/pii/S0047259X15000676
http://www.sciencedirect.com/science/article/pii/S0047259X15000676
http://web.mit.edu/6.435/www/Dempster77.pdf
http://www.jstor.org/stable/3085676


J. Frontera-Pons, M. Veganzones, F. Pascal, and J-P. Ovarlez. Hyperspectral Anomaly Detectors
using Robust Estimators. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing (JSTARS), 9(2):720–731, february 2016.
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Setup Error GMM-EM t-EM F-EM TCLUST OTRIMLE

1 Σ1 0.0094 0.0070 0.0073 0.0102 0.0101
1 Σ2 0.0371 0.0132 0.0151 0.0371 0.0260
1 Σ3 0.0128 0.0046 0.0046 0.0090 0.0062
1 µ1 0.2110 0.1628 0.1670 0.2304 0.1808
1 µ2 1.6277 0.2100 0.2513 1.2186 0.3079
1 µ3 1.2004 0.1238 0.1401 0.8618 0.1420
2 Σ1 0.0098 0.0104 0.0083 0.0135 0.0372
2 Σ2 0.0083 0.0068 0.0076 0.0075 0.0099
2 Σ3 0.0103 0.0074 0.0094 0.0088 0.0289
2 µ1 0.2168 0.2200 0.1853 0.3115 2.1054
2 µ2 0.1879 0.1379 0.1570 0.1405 0.2337
2 µ3 0.2063 0.1532 0.2077 0.1895 1.0695
3 Σ1 0.0019 0.0025 0.0013 0.0016 0.0011
3 Σ2 0.0016 0.0034 0.0014 0.0014 0.0000
3 Σ3 0.0022 0.0012 0.0012 0.0011 0.0029
3 µ1 0.5565 10.1226 0.2967 0.3469 0.3714
3 µ2 0.3655 6.1910 0.3025 0.3374 4.6289
3 µ3 0.6081 0.2885 0.3060 0.2781 1.7128
4 Σ1 0.0070 0.0144 0.0060 0.0055 0.0055
4 Σ2 0.0085 0.0085 0.0064 0.0055 0.0056
4 Σ3 0.0254 0.0076 0.0065 0.0057 0.0056
4 µ1 0.1876 3.1683 0.1249 0.1048 0.1071
4 µ2 0.7796 0.7783 0.1382 0.1179 0.1167
4 µ3 3.1758 0.2386 0.1436 0.1080 0.1053
5 Σ1 0.0376 0.0384 0.0134 0.0328 0.0117
5 Σ2 0.0481 0.0361 0.0191 0.0322 0.0181
5 Σ3 0.0000 0.0091 0.0110 0.0093 0.0095
5 µ1 3.9425 2.0617 0.0751 1.9759 0.1822
5 µ2 0.6168 1.3857 0.3063 2.2991 0.2996
5 µ3 5.1633 0.1457 0.1659 0.1434 0.1424

Table 3: Average of the norm of the error in the estimation of the main parameters in the
different setups.

Setup Error GMM-EM t-EM F-EM TCLUST OTRIMLE

1 AMI 0.4491 0.7095 0.6809 0.4036 0.4197
1 ARI 0.4373 0.7895 0.7513 0.4293 0.2851
2 AMI 0.8784 0.8843 0.8836 0.7414 0.5342
2 ARI 0.9156 0.9233 0.9208 0.8476 0.4809
3 AMI 0.7753 0.5514 0.9597 0.8377 0.4936
3 ARI 0.7056 0.5624 0.9722 0.9120 0.4497
4 AMI 0.7373 0.6115 0.7836 0.9551 0.9476
4 ARI 0.5709 0.5603 0.8159 0.9690 0.9661
5 AMI 0.1058 0.5479 0.6711 0.5573 0.6426
5 ARI 0.0187 0.5038 0.6946 0.4947 0.7265

Table 4: Average clustering metrics in the different setups.
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Set Set name m n k

1 MNIST 3-8 30 1600 2
2 MNIST 7-1 30 1600 2
3 MNIST 3-8-6 30 1800 3
4 MNIST 3-8-6 + noise 30 2080 3
5 NORB 30 1600 4
6 20newsgroup 100 2000 4

Table 5: Characteristics of the subsets of the data sets that have been used to compare the
algorithms. The data sets are variations of the MNIST data set, small NORB and 20newsgroup.

Set k-means GMM t-EM F-EM spectral TCLUST RIMLE

1 0.2203 0.4878 0.5520 0.5949 0.5839 0.5666 0.3875
2 0.7839 0.8414 0.8947 0.8811 0.8852 0.5705 0.3875
3 0.6149 0.7159 0.7847 0.7918 0.8272 0.7818 0.6077
4 0.3622 0.4418 0.4596 0.4664 0.3511 0.6047 0.3553
5 0.0012 0.0476 0.4370 0.5321 ∼ 0 0.1516 0.2312
6 0.2637 0.3526 0.4496 0.4873 0.1665 0.2604 0.0686

Table 6: Median AMI index measuring the performance of k-means, GMM-EM, t-EM, TCLUST,
RIMLE, spectral and our algorithm (F-EM) results for variations of the MNIST data set, small
NORB and 20newsgroup.

Set k-means GMM t-EM F-EM spectral TCLUST RIMLE

1 0.2884 0.5716 0.6397 0.6887 0.6866 0.6847 0.2494
2 0.8486 0.8905 0.9432 0.9360 0.9384 0.6885 0.2493
3 0.6338 0.7332 0.8262 0.8306 0.8542 0.8366 0.4274
4 0.4475 0.4909 0.5296 0.5548 0.3115 0.6908 0.1498
5 0.0015 0.0468 0.4223 0.5067 ∼ 0 0.1330 0.1472
6 0.1883 0.2739 0.4426 0.5114 0.0987 0.2664 0.0026

Table 7: Median AR index measuring the performance of k-means, GMM-EM, t-EM, TCLUST,
RIMLE, spectral and our algorithm (F-EM) results for variations of the MNIST data set, small
NORB and 20newsgroup.

Set k-means GMM t-EM F-EM spectral TCLUST RIMLE

1 0.7687 0.8781 0.9093 0.9150 0.9050 0.8881 0.5193
2 0.9606 0.9718 0.9856 0.9868 0.9844 0.8893 0.5193
3 0.8495 0.8976 0.9366 0.9390 0.9476 0.9183 0.5157
4 0.8144 0.8700 0.8894 0.8966 0.5444 0.9247 0.4988
5 0.2725 0.3487 0.6528 0.6975 0.2600 0.4087 0.3887
6 0.5755 0.7100 0.6900 0.8030 0.5220 0.5740 0.2970

Table 8: Median accuracy measuring the performance (correct classification rate) of k-means,
GMM-EM, t-EM, TCLUST, RIMLE, spectral and our algorithm (F-EM) results for variations
of the MNIST data set, small NORB and 20newsgroup.
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