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Convex Parameter Estimation of Perturbed
Multivariate Generalized Gaussian Distributions

Nora Ouzir, Member, IEEE, Frédéric Pascal, Senior member, IEEE, and Jean-Christophe Pesquet, IEEE Fellow
member

Abstract—The multivariate generalized Gaussian distribution
(MGGD), also known as the multivariate exponential power
(MEP) distribution, is widely used in signal and image processing.
However, estimating MGGD parameters, which is required in
practical applications, still faces specific theoretical challenges. In
particular, establishing convergence properties for the standard
fixed-point approach when both the distribution mean and the
scatter (or the precision) matrix are unknown is still an open
problem. In robust estimation, imposing classical constraints on
the precision matrix, such as sparsity, has been limited by the
non-convexity of the resulting cost function. This paper tackles
these issues from an optimization viewpoint by proposing a
convex formulation with well-established convergence properties.
We embed our analysis in a noisy scenario where robustness is
induced by modelling multiplicative perturbations. The resulting
framework is flexible as it combines a variety of regularizations
for the precision matrix, the mean and model perturbations.
This paper presents proof of the desired theoretical properties,
specifies the conditions preserving these properties for different
regularization choices and designs a general proximal primal-
dual optimization strategy. The experiments show a more ac-
curate precision and covariance matrix estimation with similar
performance for the mean vector parameter compared to Tyler’s
M -estimator. In a high-dimensional setting, the proposed method
outperforms the classical GLASSO, one of its robust extensions,
and the regularized Tyler’s estimator.

Index Terms—Parameter Estimation, Convex Optimization,
Robust Estimation, Precision Matrix, Multivariate Generalized
Gaussian Distribution, Multivariate Exponential Power Distri-
butions.

I. Introduction

PPROBABILISTIC distribution parameters, particularly
the mean and covariance –or scatter/precision matrix–,

are central in statistical signal processing. In machine learning
applications, they are building blocks of clustering, classi-
fication, dimension reduction, or detection models [1], [2],
[3]. These parameters are rarely known in practice, and es-
timating them has been a long-standing statistical problem. A
Maximum Likelihood (ML) approach relying on the standard
Gaussian assumption has long been the solution of choice,
bringing simplicity and tractability to performance analysis.
The statistical properties of the Gaussian ML estimators are
also well-known: the estimated mean is Gaussian, while the
covariance matrix estimator follows a Wishart distribution.
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CentraleSupélec, Inria OPIS, Centre de Vision Numérique, 91190, Gif-
sur-Yvette, France. Frédéric Pascal is with Université Paris-Saclay, CNRS,
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The standard Gaussian assumption is no longer sufficient
to handle the complexity of real-world datasets today. With
datasets becoming increasingly large, high-dimensional, and
heterogeneous, and often containing significant outliers, the
limitations of the Gaussian probabilistic model are becoming
more apparent. In domains such as radar [4], financial sig-
nal [5], and image processing [6], where these limitations are
well-known, alternative models are being sought to address
these challenges. Robust estimation theory is one of those
alternatives that can provably deal with data perturbations [7].
It models observations with elliptically-contoured (EC) (com-
plex and real Elliptically Symmetric (ES)) distributions. This
broad-ranging model encompasses well-known multivariate
distributions such as the Gaussian, Generalized Gaussian, t-,
or k-distributions (see [8] for a review).

Regularizing the parameter estimation problem has been
another way of tackling current data challenges, such as high
dimensionality. For example, sparse ℓ1-regularization of the
precision matrix is a popular choice for Gaussian distribu-
tions [9]. Works in the standard Gaussian framework have
also laid the grounds for regularizing robust estimators of
EC models. In [10], the scatter matrix has been regularized
through the trace of its inverse. At the same time, closely
related shrinkage Tyler’s estimators have been studied in [11],
[12]. Although these works have addressed the problem in
the general statistical context of EC models, they remain
limited from the regularization viewpoint. For example, unlike
existing works in the Gaussian case, they have not considered
ℓ1-regularization of the precision matrix due to the non-
convexity of the resulting problem in robust estimation. It is
also worth noting that mostly plug-in (as opposed to model-
based) robust estimation strategies have been proposed in
the Gaussian case with ℓ1-regularization [13], [14], [15]. In
[16], a framework based on geodesic convexity has been
proposed to regularize the perturbed covariance matrix of a
zero-mean Gaussian distribution. To circumvent non-convexity
in the regularized robust case, similar geodesic convexity-
based strategies have been explored for MGGDs in the
particular context of covariance estimation with a chordal
sparsity pattern [17]. Furthermore, previous works have not
explored regularizing other parameters, such as the mean or
data perturbations. As explained in the following, this work
proposes an original model-based approach that copes with the
non-convexity of the original problem and provides a general
framework for exploring a larger variety of regularizations,
along with associated theoretical conditions.

This work tackles the above issues for a popular subclass of
EC models: the MGGD [6], also called MEP distribution [18].
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This distribution family is instrumental for image processing
because of its ability to model a wide range of features (e.g.,
wavelet coefficients, gradients) [6], [19]. It is also increas-
ingly used to model weight distributions in (deep) neural
networks [20], [21]. From a statistical point of view, its much-
needed flexibility is obtained thanks to an extra shape parame-
ter β modelling lighter (β > 2) and heavier than the Gaussian
(β < 2) tails.1 The multivariate Gaussian distribution is a spe-
cial case of MGGDs when β = 2. Furthermore, the parameter
estimation problem is addressed in this work in the particular
context of perturbed MGGDs. We are specifically interested
in jointly estimating the mean vector, covariance matrix, and
perturbation parameters, a complex problem introduced in
[22]2, with broad applicability in real-world applications. Our
main contribution is a convex reformulation of the resulting
statistically robust joint parameter estimation problem. The
proposed formulation offers all estimators theoretical guaran-
tees of existence and establishes conditions for their unique-
ness. In addition to modelling heterogeneity and outliers, the
proposed formulation is flexible and can adapt to various real-
life data structures. For example, the sparsity of the precision
matrix can be incorporated through ℓ1- regularization to deal
with high dimensional data with relatively few observations.
Unlike previous approaches, the proposed framework enables
regularizing all the involved parameters beyond the precision
matrix. We also study the impact of these regularizations
and specify the theoretical conditions they must satisfy to
preserve convexity. Our second contribution is designing a
proximal primal-dual algorithm tailored to solve the parameter
estimation problem with guaranteed convergence [23], [24].
The proposed algorithm is flexible, and associated proximity
operators can easily incorporate various regularization choices.

The paper is organized as follows. Section II introduces
the proposed perturbed MGGD model, starting with the
underlying statistical framework. Section III presents the
proposed convex parameter estimation approach, which is
the main contribution of this paper. The proposed proximal
primal-dual algorithm is detailed in Section IV. In Section V,
we compare the performance of the proposed approach to
different state-of-the-art robust and non-robust estimators in
various experimental scenarios. Finally, concluding remarks
and perspectives are provided in Section VI.

Notation: SK denotes the space of symmetric real matrices of
size K×K, S+

K is the cone of positive semi-definite matrices,
and S++

K the cone of positive definite matrices. Id denotes the
identity matrix (whatever its size), 1 the vector (the dimension
of which is understood from the context) whose components
are all equal to 1, and tr(.) the trace of a matrix. ∥ · ∥ denotes
the Euclidean norm, ∥.∥S is the operator norm, and ∥ · ∥r with
r ∈ [1,+∞[ denotes the element-wise ℓr norm (the same
notation will be used for a matrix or for a vector whatever the
dimension). Γ0(H) denotes the class of lower-semicontinuous
convex functions from some Hilbert space H to ]−∞,+∞]

1Note that β in this work corresponds to 2β in most MGGD-related
literature. This choice allows us to simplify notations.

2A preliminary version of this work was presented in [22] with reduced
theoretical results and limited experimental validation.

which are proper (i.e., finite at least at one point). The domain
of f is dom f =

{
x ∈ H

∣∣ f(x) < +∞
}

. ιD denotes the
indicator function of D ⊂ H, which is equal to 0 on this set
and +∞ out of it. Finally, a function f : H → ]−∞,+∞] is
coercive if lim∥x∥→+∞ f(x) = +∞. A comprehensive table
of notations is provided in Appendix F.

Table I
Table of Notation.

Cost function and regularizations

Q ∈ S++
K reparametrization of covariance matrix C

m ∈ RK reparametrization of mean µ

θ ∈ RN reparametrization of multiplicative perturbation τ

L original neg-likelihood function

L̃ reparametrized neg-likelihood function

gQ regularization function on Q

gm regularization function on m

gϑ regularization function on θ

f global regularized cost function

g̃ϑ function gathering the terms in θ

ψ(ξ)

{
− log ξ, if ξ > 0

+∞, otherwise.

Ψ(Q)

{
−N log detQ, if Q ∈ S++

K ,

+∞, otherwise,

g̃Q g̃Q = gQ +Ψ function gathering the terms in Q

g̃ϑ,0 g̃ϑ − g̃ϑ,1

g̃ϑ,1 convex part of g̃ϑ finite on ]0,+∞[N , exploding on the border of this domain

m ∈ RK known mean vector

λ ∈ ]0,+∞[ sparsity parameter

ϵ ∈ ]0,+∞[ elastic net regularization parameter

η ∈ ]0,+∞[ first parameter of the regularization gϑ
(scale parameter of a generalized Gamma distribution)

κ+ 1 second parameter of the regularization gϑ, with κ ∈]K(1− 1/β),+∞[

(shape parameter of a generalized Gamma distribution)

α ∈ [1,+∞[ third parameter of the regularization gϑ
(exponent parameter of a generalized Gamma distribution)

τ true target value of τ

θ true target value of θ

f average behaviour (up to a constant factor) of f with respect θn
κ > 1 κ = κβ/(K(β − 1))

f
′
(θn), f

′′
(θn) first and second derivatives of f at θn

θ̂n minimizer of f

II. Problem Formulation

The MGGD [18] belongs to a broad subclass of EC distri-
butions that can model various uni-modal probability density
functions (p.d.f) with heavier or lighter tails than the Gaussian
one. A random vector following an EC distribution can be
defined using its stochastic representation [25]:

x
d
= µ+RAu, (1)

where d
= stands for “is distributed as”. The modular variate

R is a positive random variable (with an unknown p.d.f),
u is a random vector uniformly distributed on the unit-
hypersphere {u ∈ RK | ∥u∥ = 1}, with R and u (statistically)
independent. In (1), the mean vector µ and the scatter matrix
factorization A (and the associated matrix C = AA⊤) are
the unknown parameters of the EC model. The stochastic
representation described above is of practical interest for
simulating EC-distributed random vectors. In particular, for
the MGGD subclass, Rβ ∼ Γ(1/2,K/β), where Γ(a, b) is
the univariate Gamma distribution with parameters a and b
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(see [26] for a definition).

The zero-mean MGGD of dimension K, denoted by
MGGDK(β,0,C), is characterized by its p.d.f

px(·) = CK,β(detC)−1/2 exp

(
−1

2

[
(·)⊤C−1(·)

]β/2)
, (2)

where CK,β =
K Γ(K/2)

πK/2Γ(1+K/β)21+K/β
is a constant, Γ(·)

denotes the Gamma function, and C ∈ S++
K is (up to a

multiplicative factor) the associated covariance matrix.3 With
this notation, when β = 2, (2) corresponds to the standard
multivariate Gaussian distribution. When β < 2, distributions
with heavier tails than the Gaussian one are obtained. In the
remainder of this paper, we assume that the exponent β > 1
is known (see Section II-C).

A. Observation Model with Multiplicative Perturbations

This subsection introduces the proposed MGGD model
under multiplicative perturbations. Let (xn)1⩽n⩽N be N
realizations of independent and identically distributed (i.i.d.)
random K-dimensional vectors generated according to a zero-
mean MGGD with shape parameter β. Let us now consider a
scenario where noisy observations (yn)1⩽n⩽N result from a
deterministic multiplicative perturbation τ of the unperturbed
(xn)1⩽n⩽N . The corresponding observation model reads

(∀n ∈ {1, . . . , N}) yn = τnxn + µ, (3)

where τ = (τn)1⩽n⩽N ∈ ]0,+∞[
N and β ∈]1,+∞[. The τ -

perturbed model (3) is equivalent to the assumption that the yn
samples follow a MGGDK(β,µ, τ2nC). As (3) accounts for
possible outliers in the observations (i.e., τn values larger than
1), it can also be seen as a general EC distribution where τn’s
are realizations of an unknown positive p.d.f. Interestingly,
similar models have been widely studied in the particular
context of perturbed Gaussian distributions (see, e.g., [27]).
Starting from (3), we aim to jointly estimate the perturbations
τ and the unknown distribution parameters µ and C. Thus, N
scalar parameters (τn)1⩽n⩽N need to be estimated in addition
to the mean and covariance matrix. This problem has been
addressed in [27] for the particular case of a centred Gaussian
distribution (µ = 0 and β = 2.) The following subsection
recalls the existing ML-based approaches in the more general
case.

B. Previous Work on Estimating (C,µ, τ )

ML estimation of the unknown parameters (C,µ, τ ) has
been broadly studied for EC models, including the MGGD or
compound Gaussian models. (For non-perturbed EC models,
one can refer to [7], [28].) For the proposed τ -perturbed
MGGD model, estimating C, µ, and τ can be achieved
by minimizing the negative log-likelihood function arising

3The covariance matrix of the MGGD is equal to 22/βΓ((K +
2)/β)(K Γ(K/β))−1 C. For large values of K, the following ap-
proximation can be used (for computational purposes): Γ(aK +
b) ∼

√
2π exp(−aK)(aK)aK+b−1/2, leading to 22/βΓ((K +

2)/β)(K Γ(K/β))−1 C ∼ 1/K (2K/β)2/β C.

from (3) (up to the normalizing constant that does not depend
on the unknown parameters), i.e.,

L(C,µ, τ ) = 1

2

N∑
n=1

[
(yn−µ)⊤C−1(yn−µ)

]β/2
τβn

+
N

2
log detC+K

N∑
n=1

log τn. (4)

Function (4) is non-convex, and its minimization has been
intensively investigated [29], [6]: the standard approach being
to first minimize with respect to τ , then plug the optimal
value τ̂ (C,µ) into (4). Precisely, the first step of the standard
approach yields

τ̂ (C,µ) =

[(β[(yn − µ)⊤C−1(yn − µ)]β/2

2K

) 1
β

]
1⩽n⩽N

,

(5)
and by assuming none of the vectors (yn)1⩽n⩽N is equal to
µ (which is true with probability 1 for continuous random
vectors for a given µ), plugging (5) into (4) leads to

L(C,µ, τ̂ (C,µ)) = K

2

N∑
n=1

log
[
(yn−µ)⊤C−1(yn−µ)

]
+
N

2
log detC, (6)

where the constant term KN
β

[
1+log

(
2K
β

)]
has been omitted.

Note that (6) is (up to constant terms) the log-likelihood
function of the (central) angular Gaussian distribution [30].
For a given value of µ, minimizing (6) with respect to C (or
C−1) on S++

K thus leads to Tyler’s estimator [31], defined as
the unique (up to a scale factor) solution to the fixed-point
equation:

C =
K

N

N∑
n=1

(yn−µ)(yn−µ)⊤

(yn−µ)⊤C−1(yn−µ)
. (7)

Considering both C and µ unknown leads to the joint fixed-
point equations [32]:

µ =

N∑
n=1

yn

(yn−µ)⊤C−1(yn−µ)

N∑
i=1

1

(yn−µ)⊤C−1(yn−µ)

,

C =
K

N

N∑
n=1

(yn−µ)(yn−µ)⊤

(yn−µ)⊤C−1(yn−µ)
,

(8)

or equivalently,
µ =

N∑
n=1

u(sn)yn

/
N∑
i=1

u(sn) ,

C =
1

N

N∑
n=1

u(sn) (yn−µ)(yn−µ)⊤ ,

(9)

where u(s) = K/s and sn = (yn−µ)⊤C−1(yn−µ) Tyler’s
estimator has been extensively studied from a computational
and statistical perspective ([31], [27], [33]). Note that when
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one redefines Tyler’s estimator as a Huber-type estimator [31],
an exponent 1/2 is added to the denominator in (8). The
following remarks are of importance.

Remark II.1 On the joint fixed-point algorithm:
(i) First, the existence, uniqueness, and convergence of the

recursive algorithm associated with (8) have been studied
in [31], [34] for a fixed mean. Although results have been
shown for redescending M-estimators [35], establishing
convergence properties when both µ and C are unknown
is still an open issue for the fixed-point algorithm as-
sociated with (8).4 While combining the results of [35]
and [31] could serve as a good starting point to analyse
the existence and convergence of (8), this paper proposes
a general framework where the mean and covariance are
jointly estimated and provides proof of the properties
above within this context. If existence/uniqueness is as-
sumed, then the asymptotic joint distribution of the corre-
sponding estimators (µ̂, Ĉ) is entirely characterized [31].

(ii) The resulting estimators (µ̂, Ĉ) do not depend on β. It
can be shown (see [1]) that this is even true for any τ -
perturbed EC distribution expressed by (3), where extra-
parameters, such as shape, degree of freedom, or scale,
only impact the estimation of τ .

This work introduces an alternative formulation where (4) is
made convex through regularization. We prove the existence,
uniqueness, and convergence of all three µ, C, and τ estima-
tors in the proposed regularized setting.

C. Shape Parameter β

As mentioned previously, the shape parameter β only plays
a role in estimating the perturbation τ . One could compensate
for an approximate β value and retrieve the original distribu-
tion by varying τ , regardless of the true shape of the MGGD.
Furthermore, estimating the (extra-)shape parameter of the EC
model is a difficult problem that has been studied intensively
in the non-perturbed MGGD case [36], [37], [38], [39]. Other
extra-parameters, such as the degree of freedom of the t-
distribution [40] or the shape parameter of a k-distribution [41]
have also been studied.

With this in mind, estimating β for the presented τ -
perturbed MGGD model and/or considering a misspecified
model in terms of β appear out of the scope of this work.
We will assume that the shape parameter is known or previ-
ously estimated (without misspecification) in a non-perturbed
MGGD context for the experiments.

III. Proposed Convex Formulation

This section introduces a convex alternative to minimizing
(4). The main idea of the proposed approach is to convexify
the cost function through suitable variable changes and reg-
ularization. The purpose of regularizing the cost function is

4Considering function s1/2 u(s) as in [35], the case in Eq. (9) corresponds
to s1/2 u(s) = K s−1/2, which is not an increasing function of s near 0 (i.e.,
it is not redescending). Eqs. (8) correspond to the limiting case of redescending
M -estimators.

two-fold; first, prior information about the sought variables
may be used to improve their estimation (e.g., sparsity of the
precision matrix C−1 [9]). Secondly, regularization is critical
in tackling the non-convexity of the cost function. The follow-
ing subsection explains the details of these transformations.

A. A Regularized Cost Function

As explained above, convexifying (4) requires a series of
transformations. First, let us re-parameterize L by setting

Q = C−1/2 (10)
m = Qµ (11)

θ = (θn)1⩽n⩽N = (τβ/(β−1)
n )1⩽n⩽N , (12)

where Q ∈ S++
K and β ̸= 1. Note that the variable change

(10) was also made in [17]. Using the re-parametrization (10)-
(12), we can rewrite the original neg-likelihood function (4)
as

L(C,µ, τ )
= L̃(Q,m,θ)

=
1

2

N∑
n=1

∥Qyn −m∥β

θβ−1
n

−N log detQ+K(1−1/β)

N∑
n=1

log θn.

(13)

If we exclude the last term, the obtained function becomes
convex with respect to (Q,m,θ) for β > 1. In particular,
the first term fits the form of a perspective function, which
is known to be convex with respect to its argument (see
the proof outlines in Subsection III-C and Appendix A). In
Subsections III-B and III-E, we show that carefully choosing
a regularization function for θ counteracts the concavity of the
last term in (13) and leads to a fully convex formulation. More
generally, we consider the addition of regularization functions
gQ, gm, and gϑ on Q, m, and θ, respectively.5 Thus, we
introduce the general regularized form of (13) as follows:

f(Q,m,θ) =
L̃(Q,m,θ)+gQ(Q)+gm(m)+gϑ(θ) if θ ∈ ]0,+∞[

N

and Q ∈ S++
K

+∞ otherwise,
(14)

From a Bayesian perspective, minimizing the regularized cost
function (14) amounts to a Maximum A Posteriori (MAP)
estimation of Q, m, and θ.

The regularized cost function f is suitable for different
robust estimation problems depending on the choice of the
regularization functions. For example, in graph processing
applications, it is known that the precision matrix C−1 is
sparse [9]. Prior information on the nature of the perturbation

5These functions can take infinity values to model potential hard constraints
on the variables. For example, if one seeks to restrict the vector m to some
set D ⊂ RK (e.g., some hypercube or some ball) a suitable choice for gm
is the indicator function ιD of D, equal to 0 on D and +∞ elsewhere.
These regularization functions can be viewed as the potentials associated
with (possibly improper) prior probability density functions proportional to
exp(−gQ(·)), exp(−gm(·)), and exp(−gϑ(·)), respectively.
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τ may also be accessible (e.g., bounds), or one may seek
to restrict the mean to a specific set (e.g., known values
for a restricted subset of components). Examples of different
practical regularizations will be discussed in more detail in
Subsections III-D and III-E.

B. Study of Cost Function f

This subsection discusses key properties of the proposed
regularized cost function f . We will rely on these properties to
choose the regularization functions and develop a suitable min-
imization strategy. Namely, we introduce two central propo-
sitions describing the assumptions that will ensure convexity
and the existence of a minimizer. (Proof outlines are provided
in Subsection III-C, and detailed proofs of these propositions
can be found in Appendices A–B.) To simplify the analysis,
we start by introducing a function gathering the terms in θ in
(13)-(14), if we except those in the first summation:

(∀θ ∈ RN ) g̃ϑ(θ) = gϑ(θ)−K(1− 1/β)

N∑
n=1

ψ(θn), (15)

where

(∀ξ ∈ R) ψ(ξ) =

{
− log ξ if ξ > 0

+∞ otherwise.
(16)

Similarly, by defining

(∀Q ∈ SK) Ψ(Q) =

{
−N log detQ if Q ∈ S++

K

+∞ otherwise,
(17)

function g̃Q = gQ + Ψ gathers the terms in Q in (13)-(14),
excluding those in the first summation. Then, we have the
following result with detailed proofs in Appendices A and B.
For readers who prefer to avoid technical details in convex
analysis, an outline of the proofs is given in Section III-C.

Proposition III.1 Assume that gQ ∈ Γ0(SK) and that there
exists an invertible matrix Q ∈ S++

K such that gQ(Q) < +∞.
Assume that gm ∈ Γ0(RK) and g̃ϑ ∈ Γ0(RN ). Then, f is a
proper lower-semicontinuous convex function on SK ×RK ×
RN .

Proposition III.2 In addition to the conditions stated in
Proposition III.1, let us make the following assumptions:

(i) gm ⩾ 0;
(ii) g̃ϑ = g̃ϑ,0 + g̃ϑ,1 where g̃ϑ,0 ∈ Γ0(RN ), g̃ϑ,1 ∈ Γ0(RN ),

dom g̃ϑ,1 = ]0,+∞[
N , and

(∀θ̌ ∈ [0,+∞[
N \ ]0,+∞[

N
) lim

θ→θ̌
g̃ϑ,1(θ) = +∞;

(18)
(iii) g̃Q and g̃ϑ are coercive functions.
Then f admits a minimizer. Such a minimizer is unique if g̃Q
and g̃ϑ are strictly convex.

It stems from Propositions III.1 and III.2 that the convexity
of f and the existence of a minimizer depend on the choice
of the regularizations. First, one can easily notice that the
conditions on gm and gQ are satisfied by a wide range of

typical regularization functions. Secondly, the assumptions on
function g̃ϑ, gathering the terms in θ, are less usual but critical
regarding the above results. More precisely:

• The assumptions on gm are mild. They are satisfied both
when no information is available on parameter m (gm =
0) or when this vector is known (gm = ι{m} with m ∈
RK). In practice, restricting the mean to a specific set
(e.g., known values for a restricted subset of components)
satisfies these conditions.

• The assumptions on gQ are rather classical. In particular,
the core assumptions are satisfied by standard convex
penalization promoting sparsity or group sparsity [9].
The strict convexity assumptions can be satisfied by
adding a quadratic term leading to an elastic net-like
penalization [42]. Subsection III-D will explicit some
useful regularization functions for Q.

• The key conditions for convexity are related to the choice
of g̃ϑ. Note that this function contains the regularization
that acts implicitly on the perturbation parameter τ . In
Subsection III-E, we propose a regularization satisfying
the required conditions for g̃ϑ and analyse its impact on
estimating MGGD parameters.

In the following, we present a sketch of the proofs and then
discuss some illustrative examples of regularization functions
satisfying the above conditions for m,Q and θ. As discussed
above, the regularization choice for the perturbations is central
to preserving convexity properties. Therefore, we will analyse
the impact of the proposed regularization g̃ϑ on the cost
function f and propose guidelines for choosing associated
hyperparameters in practical scenarios.

C. Proof Outlines
1) Proof of Proposition III.1: The proof first shows that f

is a sum of proper lower-semicontinuous convex functions,
which makes it a lower-semicontinuous convex function.
More precisely, because of the form of the first term in
L̃, the first part of the function f is lower-semicontinuous
and convex according to [43, Proposition 9.42]. In addition,
the assumptions made on the different regularizations in
Proposition III.1 allow us to deduce that (the entire) function
f is convex lower-semicontinuous. In a second step, based on
the assumptions made on gQ and the form of the function g̃ϑ,
we show that f is also proper (i.e., its domain is non-empty),
which completes the proof.

2) Proof of Proposition III.2: The proof uses three main
steps. First, we show the existence of a unique infimum m̂
based on strict convexity and coercivity of f with respect
to m (only). Then, using [43, Proposition 8.35], we restrict
the analysis to a new function composed of the marginal
function and remaining parts of f independent of m. Writing
the domain of this new function explicitly, we show that the
necessary properties for [43, Proposition 9.33] are satisfied;
thus, it is proper convex lower-semicontinuous. Based on
Assumption (iii), we finally show that this new function is
coercive. Thus, a minimizer exists and is unique if strict
convexity is achieved for g̃Q and g̃ϑ.
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D. Examples of Regularization Choices for m and Q

As seen in Subsection III-B, the assumptions on the regular-
izations gm and gQ are relatively straightforward to satisfy. In
the following, we let gm = ι{0} and consider a frequently
encountered scenario where the precision matrix C−1 is
sparse. It is common in sparse estimation to enforce most
entries of C−1 to zero using the ℓ1 norm (as a surrogate for
the ℓ0 pseudo-norm, which counts the number of zero entries
in a matrix or vector). More precisely, the following ways of
addressing sparsity can be considered:

• The standard graphic LASSO (GLASSO) problem [9]
can be obtained in the particular case where β = 2 by
setting gm = ι{0}, gϑ = ι{1}, and gQ : Q 7→ λ∥Q2∥1 (or,
equivalently, λ∥C−1∥1) with λ ∈ ]0,+∞[.

• With the proposed re-parametrization, it is more direct to
impose sparsity on the (new) variable Q (square root of
C−1) by choosing

gQ : Q 7→ λ∥Q∥1. (19)

Note that choosing (19) for Q (and indirectly for the
precision matrix C−1), without any regularization on m
and θ, a zero mean, and no multiplicative perturbations
(gϑ = ι{1}), leads to a particular case of the proposed
formulation studied in [17]. We will also use (19) in our
experimental study in Section V.

• Another typical choice for enforcing sparsity is elastic
net regularization where gQ = λ∥ · ∥1 + ϵ

2∥ · ∥2F with
λ and ϵ ∈ ]0,+∞[. It should be noted that elastic net
regularization is strictly convex, and if g̃ϑ is also strictly
convex, f will admit a unique minimizer, as stated in
Proposition III.2.

E. Regularization Choice for θ and Impact on f

1) Choice of gϑ: The choice of the regularization on θ is
central to our analysis. The goal is to ensure the convexity of
the global cost function f by compensating for the last term
in (13). The concavity of this term will be counterbalanced
by choosing a regularization leading to a coercive function.
A simple choice for the regularization function gϑ allowing
us to achieve this goal (while satisfying the requirements in
Propositions III.1 and III.2) is the potential of a generalized
Gamma distribution with scale parameter η, shape parameter
(κ+ 1), and exponent parameter α, i.e.,

(∀θ ∈ RN ) gϑ(θ) =
1

ηα
∥θ∥αα + κ

N∑
n=1

ψ(θn) (20)

where ψ has been defined in (16), α ∈ [1,+∞[, η ∈ ]0,+∞[,
and κ ∈]K(1− 1/β),+∞[. We can then set

g̃ϑ,0(θ) =
1

ηα
∥θ∥αα

g̃ϑ,1(θ) =
(
κ−K(1− 1/β)

) N∑
n=1

ψ(θn),

which are functions satisfying Assumptions (ii) and (iii) in
Proposition III.2. As emphasized above, coercivity is achieved
by adjusting κ such that the weight κ − K(1 − 1/β) of the

logarithmic term is positive. In addition, since g̃ϑ,1 is then
strictly convex, g̃ϑ is also strictly convex. It follows that the
resulting cost function has a unique minimizer, provided that
the chosen gQ is also strictly convex.

2) Impact on Cost Function f : To gain better insight into
the impact of regularization (20), we study the average be-
haviour of the cost function f with respect to θ and the associ-
ated regularization parameters η, κ, and α.6 Let us first isolate
the terms of interest by introducing functions (fn)1⩽n⩽N such
that, for every (Q,m,θ) ∈ S++

K × RK × ]0,+∞[
N ,

f(Q,m,θ) =

N∑
n=1

fn(θn,Q,m) + g̃Q(Q) + gm(m) (21)

and, for every n ∈ {1, . . . , N},

fn(θn,Q,m) =
∥Qyn −m∥β

2θβ−1
n

+
θαn
ηα

−
(
κ−K(1−1/β)

)
log θn.

(22)
To focus our analysis on the variable θ, we make the simpli-
fying assumption that Q and m have been perfectly identified
with respect to the original statistical model. We can then
restrict the analysis to the above function fn by looking at
its average behaviour:

E{fn(θn,Q,m)} =
E{∥Qyn −m∥β}

2θβ−1
n

+
θαn
ηα

−(
κ−K(1− 1/β)

)
log θn. (23)

In (23), (Qyn−m) follows an MGGDK(β,0, τ2n Id ), where
τn > 0 is the true value of the multiplicative perturbation
factor in Model (3) (with re-parametrizations (10)–(12)). We
then have

E{∥Qyn −m∥β} =
2K

β
θ
β−1

n (24)

with θn = τ
β/(β−1)
n , and

E{fn(θn,Q,m)} = K(1− 1/β)f(θn), (25)

where

f(θn) =
θ
β−1

n

(β − 1)θβ−1
n

+
βθαn

K(β − 1)ηα
−
(
κ− 1

)
log θn (26)

and
κ = κβ/(K(β − 1)). (27)

With the conditions imposed on κ, one has κ > 1. The
derivative of f at θn is

f
′
(θn) =

1

θn

(
1−

(θn
θn

)β−1

+
αβθαn

K(β − 1)ηα
− κ

)
. (28)

Moreover, one has θn = 1 for unperturbed data. In this case,
if the scale parameter

η =
( αβ

K(β − 1)κ

)1/α
or equivalently, η =

(α
κ

)1/α
, (29)

6We will denote the true target value in this subsection by θ̄ (resp. τ̄ ) to
distinguish it from the parameter or variable θ (resp. τ ).
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then f is decreasing over ]0, 1] and increasing over [1,+∞[
(see Appendix C). As expected, the minimum of this function
is thus attained at θ̂n = 1. For a given value of κ, the choice
for η in (29) makes function f independent of the vector
dimension K, and we have, in this case,

f(θn) =
θ
β−1

n

(β − 1)θβ−1
n

+
κθαn
α

−
(
κ− 1

)
log θn. (30)

In Appendix C, we show that the above function has
a unique minimizer θ̂n. If θn > 1, θ̂n ∈]1, θn[, which
means that a bias is introduced by the regularization. As
θ̂n is an increasing function of θn, the method remains
effective in reducing the influence of outliers. In addition,
when θn > 1, θ̂n is a decaying function of α (resp.
κ). In other words, a stronger regularization comes at
the expense of a larger bias in estimating the perturbation
parameter τn. This suggests choosing both α and κ close to 1.

3) Choice of Parameters: Plots of the graph of the function
f for different values of α are shown in Figure. 1. As expected,
when α increases, stronger perturbations θn are penalized
more heavily, which suggests the use of higher α values
when more robustness is desired (i.e., in heavily perturbed
scenarios). Figure. 2 shows the variations of θ̂n as a function
of θn for the same parameter values. The introduced bias can
be seen in the increasing gap between the target θn and θ̂n as
α increases. We can also notice that the bias increases as the
perturbations become larger for a given value of α. Note that,
although a larger value of α introduces more bias, it can also
benefit the convergence speed of optimization algorithms in
addition to more penalization. For example, when α = 2, f is
a strongly convex function for which we can typically expect
a linear convergence rate of optimization algorithms. This
suggests that a trade-off between acceptable bias, robustness
to perturbations, and reasonable computational speed is to be
considered in practice.

IV. Proximal Primal-Dual Algorithm

Minimizing cost function (14) requires handling various
regularizations. Proximal algorithms can efficiently tackle such
minimization problems: regularization terms are dealt with
using proximity operators, usually in closed form [43], [44],
[45]. In this section, we will show that Problem (14) can be
reformulated as the minimization of a sum of compositions of
convex functions and linear operators, which can be solved
with convergence guarantees using a proximal primal-dual
algorithm. Furthermore, considering a suitable norm on the
dual space allows us to make the convergence of the proximal
primal-dual algorithm faster.

A. Primal and Dual Spaces

The primal space is here H = SK × RK × RN , endowed
with the norm:

(∀p = (Q,m,θ) ∈ H) ∥p∥H =
√
∥Q∥2F + ∥m∥2 + ∥θ∥2.

(31)

0 1 2 3 4 5 6 7 8 9 10
10 0

10 1

10 2

Non-regularized
 = 1
 = 1.5
 = 2

Figure 1. Graph of function f in (26) when η is given by (29), β = 1.7,
and θn = 1. In blue, the non-regularized case when η → +∞ and κ = 0.
Other plots correspond to κ = 1.1 with increasing values of α, i.e., α = 1
in red, α = 1.5 in yellow, and α = 2 in purple. The ordinate axis is in the
log scale.

10-1 100 101
10-1

100

101

Figure 2. Variations of θ̂n versus θn based on a numerical solution of (63)
when β = 1.7. In blue, the non-regularized case where κ = 0. Other plots
correspond to κ = 1.1 with increasing values of α, i.e., α = 1 in red,
α = 1.5 in yellow, and α = 2 in purple. Both axes are in the log scale.

The dual space is G1 × G2 with G1 = (RK)N × RN and
G2 = SK × RN . The first space is endowed with the norm(

∀v1 =
(
(un)1⩽n⩽N ,θ) ∈ G1

)
∥v1∥G1 =

√√√√ N∑
n=1

∥un∥2 + ω1∥θ∥2, (32)

while the second one is equipped with the norm(
∀v2 =

(
Q,θ) ∈ G2

)
∥v2∥G2 =

√
∥Q∥2F + ω2∥θ∥2, (33)

where (ω1, ω2) ∈ ]0,+∞[
2. In the proposed algorithm, the

latter parameters add more flexibility and allow to make the
update of the θ estimates faster than the standard choice ω1 =
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ω2 = 1. Note that all the described product spaces are finite-
dimensional Hilbert spaces.

B. Cost Function f as a Sum of Elementary Convex Functions

To design a proximal primal-dual algorithm, we first re-
formulate the optimization problem as a minimization of a
sum of compositions of convex functions and linear operators,
which is required to guarantee convergence. Recall that, when
θ ∈ ]0,+∞[

N and Q ∈ S++
K ,

f(Q,m,θ) = L̃(Q,m,θ)+gQ(Q)+gm(m)+gϑ(θ). (34)

Thus, by introducing (i) a new variable p = (Q,m,θ), (ii)
three convex functions F , G1 and G2 encompassing parts
of the likelihood term L̃ and the regularizations gQ, gm and
gϑ, and (iii) linear operators L1 and L2, we can rewrite the
optimization problem as follows

minimize
p∈H

F (p) +G1(L1p) +G2(L2p). (35)

Precisely, with the choice of the regularisation functions made
in Sections III-D and and III-E, F and G2 are the following
convex functions:

F (Q,m,θ) = Ψ(Q) + gm(m) + g̃ϑ,1(θ)

G2(Q,θ) = gQ(Q) + g̃ϑ,0(θ). (36)

Since F and G2 are separable functions, their proximity
operators can be calculated componentwise. In order to define
G1, we introduce the following functions:

Φ: (RK)N × RN : ((vn)1⩽n⩽N ,θ) 7→
N∑
n=1

φ(vn, θn), (37)

φ : RK × R : (u, ξ) 7→


∥u∥β

2ξβ−1
if u ̸= 0 and ξ > 0

0 if u = 0 and ξ = 0

+∞ otherwise,

(38)

and choose G1 = Φ. Finally, L1 and L2 are linear operators
such that

L1 : H → G1 : (Q,m,θ) 7→ (T (Q,m),θ)

L2 : H → G2 : (Q,m,θ) 7→ (Q,θ), (39)

where T is the linear operator

T : SK×RK → (RK)N : (Q,m) 7→ (Qyn−m)1⩽n⩽N .
(40)

The existence of a solution to the minimization problem (35)
follows from Proposition III.2.

C. Proposed Iterative Algorithm

To minimize (34), and equivalently, solve the reformula-
tion (35), a standard solution is the Chambolle-Pock algo-
rithm [46]. The algorithm iterates between a proximal step
on F (in the primal space) and an update of the dual variables
(v1,k)k⩾0 and (v2,k)k⩾0 (related to G1 and G2). Starting from

initial values p0 ∈ H, v1,0 ∈ G1, and v2,0 ∈ G2, the algorithm
reads

For k = 0, 1, . . .
pk+1 = proxγF (pk − γ(ζ1L

∗
1v1,k + ζ2L

∗
2v2,k))

p̃k = 2pk+1 − pk

v1,k+1 =
(
Id − proxζ−1

1 G1

)
(v1,k + L1p̃k)

v2,k+1 =
(
Id − proxζ−1

2 G2

)
(v2,k + L2p̃k),

(41)

where the adjoints of L1 and L2 are denoted by L∗
1 and L∗

2,
and (γ, ζ1, ζ2) are positive scalar parameters.

To make the role of each involved variable more explicit,
we can rewrite Algorithm (41) in terms of (Q,m,θ). Let
us set, at each iteration number k, pk = (Qk,mk,θk),
p̃k = (Q̃k, m̃k, θ̃k), v1,k = ((uk,n)1⩽n⩽N ,θ

#
1,k), and v2,k =

(Q#
k ,θ

#
2,k), where θ#

1,k (resp. θ#
2,k) corresponds to the dual

variable of θk in the space G1 (resp. G2), while Q#
k stands

for the dual variable of Qk in the space G2. Let us also define
ζ3 = ω1ζ1 and ζ4 = ω2ζ2. From the expressions of the adjoint
operators of L1 and L2 derived in Appendix D, we obtain the
following iterative algorithm:

For k = 0, 1, . . .

Q̂k = Qk − γ
(
ζ1

N∑
n=1

uk,ny
⊤
n + ζ2Q

#
k

)
Qk+1 = proxγΨ

(
(Q̂k + Q̂⊤

k )/2
)

mk+1 = proxγgm
(
mk + γζ1

N∑
n=1

uk,n

)
θk+1 = proxγg̃ϑ,1

(
θk − γ(ζ3θ

#
1,k + ζ4θ

#
2,k)
)

Q̃k = 2Qk+1 −Qk

m̃k = 2mk+1 −mk

θ̃k = 2θk+1 − θk
For n = 1, . . . , N (uk+1,n, θ

#
1,k+1,n)

=
(
Id − proxζ

−1
1 ,ζ−1

3
φ

)
(uk,n + Q̃kyn − m̃k, θ

#
1,k,n

+θ̃k,n)

Q#
k+1 =

(
Id − proxζ−1

2 gQ

)
(Q#

k + Q̃k)

θ#
2,k+1 =

(
Id − proxζ−1

4 g̃ϑ,0

)
(θ#

2,k + θ̃k),

where the required proximity operators are specified in Ap-
pendix E.

D. Choice of the Step Parameters (γ, ζ1, ζ2)

To ensure the algorithm convergence, the scalar parameters
(γ, ζ1, ζ2) must be chosen such that

γ(ζ1∥L1∥2S + ζ2∥L2∥2S) < 1, (42)

where ∥ · ∥S is the operator norm. From the calculations of
the norms of L1 and L2 in Appendix D, we deduce that a
sufficient condition for (42) to be satisfied is

ζ1 max{∥Y∥2S, ω1}+ ζ2 max{1, ω2} < γ−1, (43)
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where

Y =

[
y1 . . . yN
1 . . . 1

]
. (44)

Based on (43), we chose ω1 = ∥Y∥2S and ω2 = 1 in our
implementation.

V. Experiments

This section evaluates the proposed method in comparison
with various state-of-the-art approaches. For the proposed
method, the experiments are carried out by imposing sparsity
on the precision matrix and regularization (20) on the
perturbations (see Subsections III-D and III-E). We present
results with varying N (sample size) and K (dimension)
values. In particular, we study the standard case N > K and
the high-dimensional setting where N ≪ K. The impact of
sparse regularization on the precision matrix is investigated
by considering dense and sparse matrices. Finally, we study
the behaviour of the estimators with varying perturbation
levels.

Our comparisons aim to evaluate the estimators’ consistency
and mean square error (MSE) with respect to the true param-
eters. The consistency of an estimated matrix Â is quantified
by ∥Â − A∥F, whereas the MSE is E

(
∥Â−A∥2F

)
, where

A is the true matrix. In our experiments, the expectation
is computed empirically by averaging NMC = 104 Monte
Carlo runs except for the high-dimensional case where we
use NMC = 103.

A. State-Of-The-Art Methods

In the standard case when N > K, the proposed method
is compared to i) the empirical statistics corresponding to the
classical sample mean and covariance and ii) robust Tyler’s
estimates obtained with (8) in both perturbed and ideal non-
perturbed ((∀n) τn = 1) scenarios. Note that a fixed-point
update estimates the mean in Tyler’s method. Although this
approach has no convergence guarantees, it is frequently used
in practice [32]. In the high-dimensional setting (N ≪ K),
where Tyler’s estimates do not exist, we show the results of
the regularized Tyler’s method [11], [10], where the covariance
C is obtained by solving

C(λ) = (1− λ)
K

N

N∑
n=1

(yn − µ)(yn − µ)T

(yn − µ)TC(λ)−1(yn − µ)
+ λId ,

(45)
with λ ∈]0, 1[ a fixed scalar regularization parameter. In
addition, we compare the proposed method to the classical
GLASSO [9] (discussed in Subsection III-D), and its robust
extension GlassoGaussQn proposed in [15]. Both use a sparse
regularization on the precision matrix, and the corresponding
estimators are obtained by maximizing the penalized log-
likelihood (with respect to C−1)

log detC−1 − tr(ĈC−1)− λ∥C−1∥1, (46)

where the regularization parameter controlling sparsity is again
denoted by λ, and Ĉ = ĈSCM is the sample covariance matrix

in GLASSO , which is replaced by a robust estimate of the
covariance Ĉ = ĈGlassoGaussQn in GlassoGaussQn. In [15],
several robust GLASSO extensions are proposed by replacing
the classical GLASSO input with various robust covariance
matrix estimates. Among the estimators presented in [15], we
investigate GlassoGaussQn (the best-performing one), which
computes the robust covariance matrix using the Qn-estimator
of scale and a Gaussian rank correlation matrix.

B. Simulation Parameters

Unless indicated otherwise, β = 1.5, the perturbations
are uniformly distributed in the interval [1, τmax], with a
maximum perturbation level τmax = 5, and the proportion
of corrupted data is set to pτ = 0.3. (We end the following
subsection with experiments analysing the performance for
larger pτ values.) The mean vector is drawn from the standard
normal distribution (zero-mean and identity covariance matrix)
in all experiments. The gamma prior parameters are set to
κ = 1.1K(1 − 1/β) and α = 1, which are parameters satis-
fying the conditions in Subsection III-E. Note that we do not
fine-tune κ (nor η) in our experiments, but performance could
be improved by adjusting the amount of regularization. The
sparse regularization parameter λ is a user-defined parameter;
in this work, it is automatically adjusted by providing the
desired sparsity level (that is, the proportion of zero entries
in the generated matrices).

C. Experiments with N > K

The first experiments study two different cases of i.i.d.
K = 20-dimensional data vectors (xn)1⩽n⩽N distributed first
according to an MGGDK(β,0,C1) where C−1

1 is a sparse
precision matrix, and then, an MGGDK(β,0,C2) with a dense
precision matrix C−1

2 .7 The precision matrix C−1
1 is modelled

by an auto-regressive (AR) process of order 3 such that

C−1
1 (i, j) =


ρ|i−j|, for |i−j| = 0 and i ∈ {1, . . . ,K}

for |i−j| = 1 and i ∈ {2, . . . ,K−1}
for |i−j| = 2 and i ∈ {3, . . . ,K−2}

0 otherwise.
(47)

resulting in a tri-diagonal sparse matrix. The entries of the
dense matrix C−1

2 are given by

(∀(i, j) ∈ {1, . . . ,K}2), C−1
2 (i, j) = ρ|i−j|, (48)

where ρ = 0.5 is the correlation coefficient used to generate
both precision matrices. Figure. 3 shows the evolution of the
MSE and consistency of the obtained mean, covariance, and
precision matrices for different values of N in the case of a
sparse precision matrix. As expected, the best mean estimates
correspond to the empirical ones in the ideal case. The least ac-
curate/consistent are those obtained with the empirical estima-
tor in the perturbed case. Comparing the proposed method and
Tyler’s estimates reveals an almost identical performance. This
is interesting because, unlike Tyler’s method, the proposed

7The observed samples (yn)1⩽n⩽N follow an MGGDK(β,µ, τ2n C1) (or
an MGGDK(β,µ, τ2n C2)) according to (3).
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Figure 3. MSEs and consistencies of different mean, covariance and precision matrix estimators for the experiments with a sparse AR precision matrix.

method guarantees convergence in the unknown mean case. On
the other hand, the results obtained by the proposed method
for covariance and precision matrix estimation show a notable
improvement over all other approaches. These improvements
in MSE and consistency are even more noticeable for small
sample sizes, indicating that the proposed method performs
relatively well with a limited number of observations. The
superior performance of the proposed method can be explained
by the direct estimation of the precision matrix, strength-
ened by an appropriate sparse regularization. The benefits of
sparse regularization in this first experimental scenario can be
understood by studying the performance of dense precision

Table II
MSEs obtained for the experiments with a dense precision matrix for

increasing sample sizes N .

N
Empirical Tyler Proposed

µ C2 C−1
2 µ C2 C−1

2 µ C2 C−1
2

21 42.51 1.29e12 3.925 37.94 1.10e12 3.950 40.54 1.90e4 0.629
30 33.23 7.03e3 0.732 29.37 8.05e3 0.791 29.98 1.65e3 0.330
50 16.73 766.25 0.262 14.75 651.59 0.265 14.85 419.14 0.191
80 11.43 235.91 0.127 9.99 177.13 0.118 10.04 147.80 0.100
100 8.74 145.11 0.100 7.77 119.10 0.092 7.80 99.53 0.079
200 4.40 47.14 0.045 4.07 38.55 0.040 4.06 35.51 0.037
300 2.99 27.85 0.029 2.59 22.31 0.025 2.60 21.50 0.024
400 2.23 20.14 0.022 1.98 15.49 0.019 1.98 15.25 0.018
500 1.93 15.00 0.018 1.66 12.00 0.015 1.67 11.85 0.015

1000 0.97 6.89 0.009 0.84 5.43 0.007 0.84 5.42 0.007

matrix estimation (Table II). Here, the MSE gap between
different methods is less pronounced, probably due to the
minor impact of sparse regularization. However, it is worth
noting that the performance of the proposed method remains
superior to the other approaches for covariance and precision
matrix estimation. As in the sparse case, the MSEs of the mean
are similar for the proposed and Tyler’s methods.

We investigated the different estimator behaviours with
varying perturbation levels and fixed K = 20 and N = 100.
Figure. 4 shows the MSEs of the empirical (perturbed when
pτ > 0), Tyler’s, and proposed dense covariance matrix
estimators8 with different τ proportions. The experiments are
conducted with β = 2 and β = 1.5, corresponding to a Gaus-
sian and heavier-tailed distribution. Note that the empirical
statistics are expected to perform ideally in the non-perturbed
Gaussian case. As expected, the results show the robustness
of the proposed method and Tyler’s estimates compared to
the empirical statistics when the perturbations increase. We
can also see that the proposed method outperforms Tyler’s
estimates in all cases. Interestingly, the proposed method
achieves the ideal performance of the empirical statistics in
the non-perturbed Gaussian case (pτ = 0, β = 2). In the
non-perturbed heavy-tailed scenario (pτ = 0, β = 1.5),
the proposed method outperforms the empirical statistics. In
contrast, Tyler’s estimates are the least accurate when both
distributions are not perturbed.

8Similar behaviour is observed for the precision matrix estimates, while the
mean estimates follow previous findings and are comparable to Tyler’s ones
for varying perturbation levels.
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(a) (b)
Figure 4. MSEs of the estimated dense covariance matrices for varying
perturbation proportions pτ for (a) an MGGD (β = 1.5) and (b) Gaussian
distribution (β = 2).

Table III
MSEs obtained for sparse precision matrix estimation when K = 100
and N ≪ K. Execution times (in seconds) are provided for N = 10.

N Regularized Tyler GLASSO GlassoGaussQn Proposed
10 0.80 (0.08s) 0.77 (60.18s) 0.76 (34.85s) 0.64 (0.95s)
20 0.88 0.74 0.76 0.61
40 0.65 0.48 0.48 0.42
60 0.78 0.51 0.48 0.44
80 0.89 0.57 0.53 0.44

20 40 60 80

10

20

30

40

50

60
Proposed
Regularized Tyler
GLASSO
GlassoGaussQn

Figure 5. Execution times (in seconds) for the experiments with N ≪ K.

D. High-Dimensional Case: N ≪ K

For the higher dimensional experiments, we run NMC = 103

Monte Carlo runs for K = 100 and N -values between 10 and
80. We focus on an experimental scenario for which sparse
regularization is suitable. A uniformly sparse precision matrix
is generated with approximately 90% of the off-diagonal
elements equal 0. The sparse regularization parameters pro-
viding the best MSEs are used for all methods, and we use
the same values as before for all other parameters of the
proposed method. Table III shows the obtained MSEs for
the precision matrices estimated with the regularized Tyler,
GLASSO, GlassoGaussQn, and proposed methods. Recall that
GLASSO, its robust version GlassoGaussQn, and the proposed
method employ a sparse ℓ1-regularization of the precision
matrix (see (46)). This could explain the gap in performance
between these methods and the regularized Tyler’s method.
The performance of GLASSO is similar to its robust version
GlassoGaussQn, although slightly improved for higher N -
values. We can see that the proposed method results in the
smallest errors for all experiments.

Finally, the average execution times per Monte Carlo run
are displayed in Figure. 5 for different values of N . The
times corresponding to N = 10 are also reported in Ta-
ble III. 9 For all values of N , the regularized Tyler is the
fastest method, while GLASSO is the most time-consuming.
The proposed method is notably faster than GLASSO and
GlassoGaussQn, but remains slower than Tyler’s. However,
it is worth noting that Tyler’s method is the least accurate
estimator in this experiment, where regularization is clearly
advantageous. Notice also that the times associated with the
proposed and Tyler’s methods increase slightly with sample
sizes. Nonetheless, they are less affected across different
experiments when compared to GLASSO and GlassoGaussQn,
which converge much slower for small N -values.

VI. Conclusion

This paper has introduced a novel robust Bayesian-like
estimator for the perturbed multivariate Generalized Gaussian
distribution, which is based on a convex parameter estimation
method. This optimization-based approach judiciously com-
bines a reparametrization of the original likelihood with reg-
ularization. Unlike existing methods, theoretical convergence
guarantees are obtained for all parameters in the perturbed
case, and experiments show improvements in performance in
various simulation scenarios, including the high-dimensional
case. Sparse precision matrix estimation is notably improved
in accuracy and speed compared to regularized robust and non-
robust plugin methods. These improvements can be useful
for various (high-dimensional) machine learning and graph
processing applications. Forthcoming work will investigate
such applications in the context of real noisy data.

Appendices

A. Proof of Proposition III.1

Let us define again the following functions:

Φ: (RK)N × RN : ((vn)1⩽n⩽N ,θ) 7→
N∑
n=1

φ(vn, θn), (49)

φ : RK × R : (u, ξ) 7→


∥u∥β

2ξβ−1
if u ̸= 0 and ξ > 0

0 if u = 0 and ξ = 0

+∞ otherwise,

(50)

and the linear operator

T : SK×RK → (RK)N : (Q,m) 7→ (Qyn−m)1⩽n⩽N .
(51)

Function φ fits the form of a so-called perspective function
as defined in [43, Example 9.43]. Thus, function Φ defined in
(49) belongs to Γ0

(
(RK)N × RN

)
and the function

(Q,m,θ) 7→ Φ
(
T (Q,m),θ

)
,

9All codes are implemented in MATLAB and run on a computer with an
Intel(R) Xeon(R) W-2235 CPU processor @3.8MHz using 251GB of RAM,
running Linux v5.4.0.
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which corresponds to the composition of a linear operator with
a convex function is also proper, lower-semicontinuous, and
convex. In addition,

(∀Q ∈ SK) Ψ(Q) = N

K∑
k=1

ψ(σk), (52)

where (σk)1⩽k⩽K are the eigenvalues of Q.r Ψ is a spectral
function (i.e., a symmetric function of the eigenvalues of its
matrix argument in SK), which is associated with ψ ∈ Γ0(R).
Therefore Ψ ∈ Γ0(SK).

The considered cost function can be re-expressed as

f(Q,m,θ) = Φ
(
T (Q,m),θ

)
+Ψ(Q) + gQ(Q)

+ gm(m) + g̃ϑ(θ) (53)

and it follows from the previous observations on the two first
functions Φ

(
T ·, ·

)
and Ψ, and the assumptions made on the

three last ones that f is lower-semicontinuous and convex.
Then, it is left to show that the domain of f is non-empty, i.e.,
f is proper. First, ∅ ̸= dom g̃ϑ and, according to (15), g̃ϑ(θ)
is not defined if θ ̸∈ ]0,+∞[

K , which means that dom g̃ϑ ⊂
]0,+∞[

N . Since we have assumed that gQ is also finite at
least for one symmetric positive definite matrix, f is proper.
Thus, we have shown that f is a proper lower-semicontinuous
convex function on SK × RK × RN .

B. Proof of Proposition III.2

Having shown that f is proper, lower-semicontinuous and
convex, we will prove that a minimizer exists and provide
conditions for its uniqueness.

Since ∥ · ∥β with β > 1 is a strictly convex function, for
given values of (Q,θ) ∈ S++

K × ]0,+∞[
N ,

m 7→ Φ
(
T (Q,m),θ

)
+ gm(m) (54)

is a strictly convex function. Assumption (i) yields

(∀m ∈ RK) Φ
(
T (Q,m),θ

)
+ gm(m)

⩾
1

2

N∑
n=1

∥Qyn −m∥β

θβ−1
n

. (55)

This allows us to deduce from the coercivity of ∥ · ∥β that the
function in (54) is a coercive lower-semicontinuous strictly
convex function. Its infimum is thus reached for a unique
vector m̂(Q,θ).

Let function Θ be defined as

(∀(Q,θ) ∈ SK × RN )

Θ(Q,θ) = inf
m∈RK

Φ
(
T (Q,m),θ

)
+ gm(m) + Ψ(Q)

+ g̃ϑ,1(θ). (56)

It follows from [43, Proposition 8.35] that the marginal func-
tion (Q,θ) 7→ infm∈RK Φ

(
T (Q,m),θ

)
+ gm(m) is convex

and from the convexity of the last two terms that Θ is a convex
function. In addition, by incorporating the infimum m̂(Q,θ),

and by using Definition (17) and Assumption (ii), for every
(Q,θ) ∈ S++

K × ]0,+∞[
N we have

Θ(Q,θ) = Φ
(
T (Q, m̂(Q,θ)),θ

)
+ gm(m̂(Q,θ))

+ Ψ(Q) + g̃ϑ,1(θ) < +∞. (57)

This shows that the domain of Θ is the open set S++
K ×

]0,+∞[
N . It thus follows from [43, Corollary 8.39] that

Θ is continuous on this domain. In addition let (Q̌, θ̌) ∈
S+
K × [0,+∞[

N be a point on the border of domΘ. One of
the eigenvalues of Q̌ or one of the components of θ̌ is thus
equal to zero. As a consequence of the form of Ψ in (17) and
Assumption (ii),

lim
(Q,θ)→(Q̌,θ̌)
(Q,θ)∈dom Θ

Θ(Q,θ) ⩾

lim
(Q,θ)→(Q̌,θ̌)

Q∈S++
K ,θ∈]0,+∞[N

Ψ(Q) + g̃ϑ,1(θ) = +∞. (58)

It thus follows from [43, Proposition 9.33] that Θ is a proper
lower-semicontinuous convex function. Besides,

inf
Q∈SK ,m∈RK ,θ∈RN

f(Q,m,θ)

= inf
Q∈SK ,θ∈RN

Θ(Q,θ) + gQ(Q) + g̃ϑ,0(θ). (59)

The function

(Q,θ) 7→ Θ(Q,θ) + gQ(Q) + g̃ϑ,0(θ) (60)

is lower-semicontinuous and convex as a finite sum of lower-
semicontinuous convex functions. It is also proper since,
according to the assumptions in Proposition III.1 and As-
sumption (ii), there exists at least one point (Q,θ) ∈ S++

K ×
]0,+∞[

N such that gQ(Q), +g̃ϑ,0(θ) is finite. In addition, for
every (Q,θ) ∈ SK × ]0,+∞[

N ,

Θ(Q,θ) + gQ(Q) + g̃ϑ,0(θ) ⩾ g̃Q(Q) + g̃ϑ(θ). (61)

Using now Assumption (iii), we deduce that function (60) is
coercive. Since it is a coercive proper lower-semicontinuous
convex function, it admits a minimizer (Q̂, θ̂). Hence, a
minimizer of f is

(
Q̂, m̂(Q̂, θ̂), θ̂). In addition, if g̃Q and

g̃ϑ are strictly convex, function (60) is strictly convex, which
ensures that it has a unique minimizer.

C. Study of Function f

The first and second-order derivatives of f in (30) read

(∀θn ∈ ]0,+∞[)

f
′
(θn) =

1

θn

(
1−

(θn
θn

)β−1

+ κ(θαn − 1)

)
f
′′
(θn) =

1

θ2n

(
β
(θn
θn

)β−1

+ (α− 1)κθαn + κ− 1

)
.

(62)

The second derivative being positive, f is a strictly convex
function. Since f(θn) → +∞ as θn → 0 and θn → +∞, f
has a unique minimizer. This minimizer is a function of θn,
κ, α, and β but, for simplicity’s sake, we will not make it
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explicit in our notation. The minimizer θ̂n satisfies the first-
order optimality condition

1−
(θn
θ̂n

)β−1

+ κ(θ̂αn − 1) = 0, (63)

and we have

f
′
(1) = 1− θ

β−1

n (64)

f
′
(θn) =

κ

θn
(θ
α

n − 1). (65)

We deduce that, if θn > 1, then f
′
(1) < 0 and f

′
(θn) > 0,

which shows that θ̂n ∈]1, θn[. Similarly, if θn < 1, then θ̂n ∈
]θn, 1[. In addition, by implicit derivation of (63),

q(θ̂n)
∂θ̂n

∂θn
= (β − 1)θ

β−2

n θ̂1−βn (66)

q(θ̂n)
∂θ̂n
∂α

= −κθ̂αn log θ̂n (67)

q(θ̂n)
∂θ̂n
∂κ

= 1− θ̂αn (68)

q(θ̂n)
∂θ̂n
∂β

= ln
(θn
θ̂n

)(θn
θ̂n

)β−1

(69)

where q(θ̂n) = (β−1)θ
β−1

n θ̂−βn +καθ̂α−1
n . Since ∂θ̂n/∂θn >

0, θ̂n is an increasing function of θn. If θn > 1, then
∂θ̂n/∂α < 0, ∂θ̂n/∂κ < 0, and ∂θ̂n/∂β > 0, which
shows that θ̂n decreases w.r.t. α and κ, and increases w.r.t.
β. Conversely, when θn < 1, θ̂n is an increasing function
w.r.t. α and κ, and a decreasing one with respect to β.

Note that, since θ̂n increases w.r.t. θn, θ̂n → θ̂∞ as
θn → +∞, where the limit θ̂∞ is either finite or +∞. Eq. (63)
allows us to discard the former case and to conclude that
limθn→+∞ θ̂n = +∞.

D. Properties of Operators L1 and L2

From the definitions of L1, L2, and the norms equipping
the primal and dual spaces H, G1, and G2, we deduce that

∥L1∥S = sup
p∈H\{0}

∥L1p∥G1

∥p∥H
= max{∥T ∥S,

√
ω1} (70)

∥L2∥S = sup
p∈H\{0}

∥L2p∥G2

∥p∥H
= max{1,

√
ω2}. (71)

Let us now evaluate the norm of T . For every Q ∈ SK and
m ∈ RK ,

∥T (Q,m)∥2 =

N∑
n=1

∥Qyn −m∥2

=

N∑
n=1

∥∥∥[Q −m]

[
yn
1

] ∥∥∥2
= tr([Q −m]YY⊤[Q −m]⊤), (72)

where Y is given by (44). We also have

[Q −m]YY⊤[Q −m]⊤

⪯ ∥YY⊤∥S[Q −m][Q −m]⊤

= ∥Y∥2S[Q −m][Q −m]⊤. (73)

Combining (72) and (73) yields

∥T (Q,m)∥2 ⩽ ∥Y∥2S tr([Q −m][Q −m]⊤)

= ∥Y∥2S∥[Q −m]∥2F
= ∥Y∥2S(∥Q∥2F + ∥m∥2). (74)

This shows that ∥T ∥S ⩽ ∥Y∥S. Using (70) and (71), we
deduce that (43) is a sufficient condition for (42) to be
satisfied.

The adjoint of L1 is

L∗
1 : G1 → H :

(
(un)1⩽n⩽N ,θ) 7→ (Q,m, ω1θ) (75)

with (Q,m) = T ∗((un)1⩽n⩽N), where T ∗ is the adjoint of
T . The adjoint of T can be deduced from the identity

(∀Q ∈ SK)(∀m ∈ RK)(∀(un)1⩽n⩽N ∈ (RK)N ) (76)
N∑
n=1

u⊤
n [T (Q,m)]n

=

N∑
n=1

u⊤
n (Qyn −m)

= tr
(
Q

N∑
n=1

ynu
⊤
n

)
−m⊤

N∑
n=1

un, (77)

which shows that

T ∗((un)1⩽n⩽N ) =
(1
2

N∑
n=1

(uny
⊤
n + ynu

⊤
n ),−

N∑
n=1

un

)
.

(78)
In turn, the adjoint of L2 is simply expressed as

L∗
2 : (Q,θ) 7→ (Q,0, ω2θ). (79)

E. Proximity Operators
The expressions of the proximity operators of the functions

involved in (53), up to a positive scaling parameter γ, are
provided below.10

• Function ψ: For every ξ ∈ R,

proxγψ(ξ) =
ξ +

√
ξ2 + 4γ

2
. (80)

• Function Ψ: For every Q ∈ SK , let us perform the eigen-
value decomposition of Q as UDiag(σ1, . . . , σK)U⊤

where (σk)1⩽k⩽K are the eigenvalues of Q and the
columns of U form the associated orthonormal basis of
eigenvectors. Then,

proxγΨ(Q)

= UDiag
(
proxNγψ(σ1), . . . , proxNγψ(σK)

)
U⊤.

(81)

• Function Φ: As shown by (49), Φ is a separable function
of the components of its arguments. Thus,(

∀(vn)1⩽n⩽N ∈ (RK)N
)
(∀θ ∈ RN )

proxγΦ((vn)1⩽n⩽N ,θ) =
(
proxγφ(vn, θn)

)
1⩽n⩽N

.

(82)

10See http://proximity-operator.net.
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The expression of the proximity operator of the perspec-
tive function φ has been derived in [44, Example 3.7].
Let

β∗ =
β

β − 1
, ϱ =

(
2
(
1− 1

β∗

))β∗−1

(83)

and, for every u ∈ RK \ {0} and ξ ∈ R such that
β∗γβ

∗−1ξ + ϱ∥u∥β∗
> 0, let

p(u, ξ) =
t(u, ξ)

∥u∥
u (84)

where t(u, ξ) is the unique solution in ]0,+∞[ of the
equation

s2β
∗−1 +

β∗ξ

γϱ
sβ

∗−1 +
β∗

ϱ2
s− β∗

γϱ2
∥u∥ = 0. (85)

Then, for every u ∈ RK and ξ ∈ R,

proxγφ(u, ξ) = (86)

(
u− γp(u, ξ), ξ +

γϱ

β∗ t(u, ξ)
β∗
)

if u ̸= 0 and

β∗γβ
∗−1ξ + ϱ∥u∥β∗

> 0

(0, ξ) if u = 0 and ξ > 0

(0, 0) otherwise,

=
(
prox(1)γφ(u, ξ), prox(2)γφ(u, ξ)

)
. (87)

As shown by the developments in Section IV (see (32) –
(33)), one may be interested in deriving the expression of
the proximity operator in a metric that weights the two
variables in an unbalanced manner. This means that, for
every (γ1, γ2) ∈ [0,+∞[2, u ∈ RK \{0} and ξ ∈ R, one
would seek

proxγ1,γ2φ (u, ξ) = argmin
u∈RK ,

ξ′∈[0,+∞[

φ(u′, ξ′) +
1

2γ1
∥u′ − u∥2

+
1

2γ2
(ξ′ − ξ)2. (88)

Performing the variable change ũ = u′/
√
γ1 and ξ̃ =

ξ′/
√
γ2 and using the definition of φ in (50) yields

proxγ1,γ2φ (u, ξ) =

(
√
γ1prox(1)

γφ

( u
√
γ1
,
ξ

√
γ2

)
,

√
γ2prox(2)

γφ

( u
√
γ1
,
ξ

√
γ2

))
, (89)

with γ =

√
γβ1 /γ

β−1
2 .
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