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Abstract
The sources of spontaneous point mutations in genomes are diverse, including DNA damages and
errors introduced by the polymerase during replication. The resulting mutation rate also depends on
the counteracting action of DNA repair mechanisms, with mutator phenotypes appearing constantly
and playing a role during phases of rapid evolution in nature and in the laboratory. Here, we use the
gram-positive model bacterium Bacillus subtilis to jointly assess the respective contributions to the
mutation rate of DNA polymerase nucleotide selectivity, proofreading, and mismatch repair
(MMR). For this purpose, we constructed and analysed several conditional hypermutators with a
proofreading-deficient allele of polC and/or a deficient allele of mutL. By covering a wide range of
mutation rates and displaying contrasted mutation profiles, these conditional hypermutators enrich
the B. subtilis synthetic biology toolbox for directed evolution. Analysis of their mutation profiles
in light of several mathematical models exposes the difficulties of interpreting apparent
probabilities of error correction that stem from aggregating possibly heterogeneous subclasses of
mutations into counts, and from unknowns on the components of the mutation profiles in the
presence of the repair systems. Aware of these difficulties, the analysis strongly suggests that
proofreading is needed to avoid partial saturation of the MMR in B. subtilis and that an inherent
effect of proofreading is to skew the net polymerase error rates by reinforcing intrinsic biases of
nucleotide selectivity.
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INTRODUCTION
Substitutions, insertions and deletions of single base pairs in the genome can have diverse
consequences on encoded molecular functions, from no effect to abrupt change, most often in the
direction of deterioration (Eyre-Walker and Keightley 2007). As such, point mutations are a
constant threat to the integrity of the genetic information, even if they are also essential to adaptive
evolution. In the long term, point mutation rates themselves result from an evolutionary process. A
drastic hypothesis, supported by the comparative study of mutation rates across the tree of life,
postulates that they are simply maintained as low as possible; the limit being the “drift-barrier”, at
which the strength of selection is matched by the opposite pressure of genetic drift and mutation,
presumably biased towards creating weak mutators (Lynch et al. 2016). Mutation rate would thus
have nothing to do with the benefit of evolvability for long-term survival, the energetic cost of
fidelity, or a biophysical limit. In bacteria, this rate is already typically as low as one mutation in the
genome per thousand of generations, but systems with a mutation rate one order of magnitude
below those observed in nature were reported to arise under scenarios of artificial evolution
(Deatherage et al. 2018; Dervyn et al. 2023).

Mutator phenotypes however occur constantly and their contribution to evolution is difficult to
estimate (Taddei et al. 1997; Couce et al. 2017). In asexual populations, where mutator alleles
remain linked with the mutations that they generate across successive generations, mutators are
advantageous when the potential for fitness improvement is high. In pathogenic bacteria, mutators
have for instance been associated with the apparition of complex antibiotic resistances (Dulanto
Chiang et al. 2022), rapid evolution within the host during infection (Oliver and Mena 2010), and
atypical virulence traits (Rudenko et al. 2020). Mutators also emerge spontaneously during
laboratory evolution in response to applied selective pressures (Sniegowski et al. 1997; Swings et
al. 2017). To instrumentalize the potential of mutator phenotypes to foster adaptation, conditional
systems have been engineered for some organisms as part of the synthetic biology toolbox (Badran
and Liu 2015; Sherer and Kuhlman 2020; Molina et al. 2022). Understanding the molecular factors
that determine mutation rates is therefore of strong fundamental and applied interest.

The sources of spontaneous mutations in living cells are diverse, primarily arising from DNA
lesions caused by endogenous and exogenous agents, from errors introduced by the DNA
polymerase during replication and by error-prone polymerases recruited in response to stress (Maki
2002). The resulting mutation rate depends on the intensity of these sources and of the
counteracting action of DNA repair mechanisms that work in coordination to achieve transmission
of correct genetic material to daughter cells. Two essential mechanisms, conserved from
prokaryotes to eukaryotes, ensure accurate repair of both bulky and non-bulky lesions resulting
from DNA damage, including those induced by reactive oxygen species, a major source of DNA
errors (Foster et al. 2015). The NER (Nucleotide Excision Repair) is necessary for repairing various
drug- and UV-induced lesions (i.e. bulky lesions), whereas the BER (Base Excision Repair) is
essential for repairing lesions caused by a variety of chemical assaults, such as alkylation,
oxidation, deamination, etc. (i.e. non-bulky lesions). Beyond damages, mutations can also arise
from errors made during DNA replication. DNA replication accuracy depends on three critical
mechanisms: the initial selectivity of the DNA polymerase, which is responsible for inserting the
correct nucleotide; the proofreading, which removes misincorporated nucleotides through
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polymerase-associated exonucleases; and the mismatch repair (MMR), which adds a second layer
of error-correction shortly after replication (Ganai and Johansson 2016).

In bacteria, genome replication is performed by a multiprotein machine classified into the C-family
of DNA polymerase holoenzymes, in which the catalytic polymerase α-subunit exists in two
primary forms, DnaE and PolC (Timinskas et al. 2014). A representative example of DnaE is found
in the extensively studied Gram-negative model bacterium Escherichia coli. Conversely, PolC is
predominant in low-GC Gram-positive bacteria, such as Bacillus subtilis (Sanjanwala and Ganesan
1991). In this organism, replication elongation involves two essential polymerases, PolC and DnaE
(Dervyn et al. 2001). These enzymes have distinct functions: PolC ensures most of the DNA
synthesis, but only DnaE can extend from RNA primers on the lagging strand before passing the
DNA fragment to PolC. In the absence of proofreading and MMR, the error rate of E. coli's
α-subunit replicative machinery has been estimated at approximately 10-6 per base pair per
generation both in vitro (Fujii et al. 1999) and in vivo (Niccum et al. 2018). Given this error rate and
the size of E. coli's genome, around 5 native replication errors are expected to be introduced per
generation.

The exonuclease domain essential for proofreading is encoded as an integral part of the vast
majority of PolC polymerases (Timinskas et al. 2014), including the B. subtilis PolC. In contrast,
DnaE polymerases do not possess their own exonuclease domain. The proofreading activity of the
E. coli DNA PolIII holoenzyme containing DnaE relies on an exonuclease domain found in the
ε-subunit. Error made by polymerases devoid of proofreading can also sometimes be corrected by a
process known as proofreading in trans, or extrinsic proofreading, well described between
eukaryotic DNA polymerases (Zhou et al. 2021). In B. subtilis, data suggest that PolC exonuclease
is able to proofread errors made by the error-prone DnaE polymerase (Bruck et al. 2003; Paschalis
et al. 2017).

The MMR is a universal mechanism that is responsible for correcting errors formed during DNA
replication and that escaped proofreading. Upon the identification of a replication error, the
mismatch sensing protein, MutS, recruits MutL. Most prokaryotic and eukaryotic MutL homologs
from human to bacteria possess a highly conserved endonuclease active site that serves to remove
mismatches (Pillon et al. 2010; Bolz et al. 2012). E. coli has been the primary model for studying
MMR, however its MutL does not possess the endonuclease activity, which is encoded in a distinct
protein, MutH, which specifically nicks the unmethylated and thus nascent strand bearing the
mismatch (Lenhart et al. 2012). In the absence of MutH and Dam methylation, the process that
guides MutL to the nascent strand remains unclear in most prokaryotes and all eukaryotes (Kadyrov
et al. 2006). In bacteria, MMR increases the fidelity of the chromosomal DNA replication pathway
approximately 100-fold and MMR is viewed as a system directed to the repair of the most frequent
replication errors (Lujan et al. 2012). Mutator phenotypes found in nature are often generated by
mutations inactivating the MMR.

Studying organisms, such as B. subtilis, with a PolC polymerase and an MMR pathway more
widely conserved across biology can offer key insights into the coordinated functioning of these
systems within living cells (Klocko et al. 2011). In prolongation of previous works characterising
the mutation profiles of MMR-deficient B. subtilis strains (Sung et al. 2015; Schroeder et al. 2016),
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the main goal of our study was to jointly assess in B. subtilis the respective contributions to the
mutation rates of nucleotide selectivity, proofreading and MMR and their interdependencies. For
this purpose, we constructed and analysed several conditional hypermutators with a
proofreading-deficient allele of polC and/or a deficient allele of mutL. Analysis of the data in light
of several mathematical models suggests that proofreading is needed to avoid partial saturation of
the MMR, as previously reported in E. coli (Schaaper 1988; Niccum et al. 2018), but also that an
inherent effect of proofreading is to skew the net polymerase error rates. The conditional
hypermutators cover a wide range of mutation rates and display contrasted mutation profiles,
enriching the B. subtilis synthetic biology toolbox for directed evolution.
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RESULTS

The mutation rate of Bacillus subtilis can be increased up to 6,000 times. We built five mutant
strains with expected hypermutator phenotypes from a B. subtilis 168-derived strain. The first two
strains are constitutively MMR-deficient as a result of the single deletions of mutS and mutL (later
denoted ΔS and ΔL). The three other strains were designed for conditional inactivation of either one
or both of these two DNA repair pathways and are thus expected to be inducible hypermutators
(Figures S1 and S2). In practice, the IPTG-inducible promoter Phs controls the expression of mutant
alleles selected for their reported or suspected ability to competitively displace their functional
counterparts. The first allele, denoted here as mutL*, has a mutation in the ATP hydrolysis active
site of MutL which was described to have a dominant negative effect (Bolz et al. 2012). The second
allele, denoted here as polC*, encodes a proofreading-deficient variant of PolC with a mutation in
its exonuclease domain (Sanjanwala and Ganesan 1991). The last strain, expected to display the
highest mutation rate under full induction, expresses these two deficient alleles in a synthetic
operon (mutL* polC*). Shorthand notations are used below for the 168-derived parental strain
serving as reference and the five mutant strains: R168, ΔL, ΔS, L*, C*, LC*.

Fluctuation assays were performed (Figure S3) to compare the rate of mutation to rifampicin
resistance of these strains, in the absence or presence of IPTG. Point estimates and confidence
intervals are shown in Figure 1, and detailed results in Table S1. In the absence of IPTG, the rate of
mutation of R168 was estimated at 9.74×10-10 per generation. Constitutive inactivation of the MMR
in ΔL and ΔS increased the mutation rate by a factor of approximately 85, with no statistically
significant difference between these two strains. This is close to the factor of about 60 previously
obtained for a double deletion of mutL and mutS in the B. subtilis PY79 genetic background, in a
similar fluctuation assay based on rifampicin (Schroeder et al. 2016). Mutation rates without IPTG
were slightly higher for the inducible strains (L*, C*, LC*) than for R168 (up to 1.09×10-8 for LC*);
probably reflecting the basal low-level activity already described for Phs (Guiziou et al. 2016). From
there, the mutation rate of the three inducible strains increased with IPTG concentration, until a
plateau reached between 50 and 100 µM. At full induction (100 µM IPTG), they exhibited clearly
distinct mutation rates ranging from 3.66×10-7 for L* to 5.78×10-6 for LC*. The mutation rate in L*
is comparable or slightly higher than in ΔL and ΔS, while the mutation rate in LC* represents an
increase by a factor of approximately 6,000 as compared to R168.

Mutation rates much higher than in the reference strain may induce stress responses, possibly
altering the physiology of each mutant differently. Nevertheless, we did not detect any substantial
impact on growth in 96-well microtiter plates (Figure S4). We also performed transcriptomics
experiments on the R168, L*, C* and LC* strains in the presence of 100 µM IPTG. The analyses did
not reveal any significantly differentially expressed genes between the strains. However, they
allowed us to quantify the expression of mutant alleles relative to wild-type alleles for the genes
mutL and polC. Upon induction, the mutant allele accounted for 96-98% of the total mRNA pool
for the considered gene (Table S2), which is consistent with the results of fluctuation assays giving
a mutation rate in L* as high as in ΔL and ΔS (i.e. total inactivation of the MMR). We therefore
concluded that the mutational profiles of these strains can be compared with each other and can be
attributed to the sole inactivation of the two targeted DNA repair pathways.
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Highest mutation rates are counter-selected in mutation-accumulation experiments.
Mutation-accumulation experiments give access to the molecular nature of mutations (Lynch et al.
2016), unlike fluctuation assays which only provide a mutation rate aggregated over an array of
mutations conferring a screenable phenotype. For each of the five strains (R168, ΔL, ΔS, L *, C*,
LC*), four independent mutation-accumulation lines (MA-lines) were propagated by repeated
cycles (MA-steps, Figure S5) of colony sampling, dilution, and plating on LB, in the presence of
100 µM IPTG when relevant. By randomly selecting a single colony, each MA step creates a
bottleneck in the propagated population. The purpose of these bottlenecks is to limit genetic
diversity and thereby maximise random genetic drift and minimise natural selection. The interval
between two bottlenecks, or one MA-step, was estimated to represent an average of 25.6
generations. We performed whole-genome sequencing of the endpoint of each line; we also
sequenced intermediate time-points (up to 4 for LC*) to detect changes in mutation rates (Figure
S5). In total, 56 clones isolated after 1 to 37 MA-steps were sequenced. Substitutions, insertions,
and deletions were identified, and mutation rates per base pair (bp) and generation (abbreviated
bp-1.gen-1) were estimated in each time interval of each MA-line. To increase statistical power, we
also incorporated previously collected data from mutation-accumulation experiments using B.
subtilis 3610 (R3610) and its corresponding ΔmutS mutant strain (ΔS3610) into our analysis (Sung et al.
2015; Sung et al. 2016). The detailed list of all mutations found is provided in Table S3.

In the four independent lines of R168, only one nucleotide substitution was identified after 37
MA-steps, giving an average substitution rate of about 7×10-11 bp-1.gen-1 (Table 1). This was not
statistically significantly different from a previous report on B. subtilis (Sung et al. 2016), which
was recalculated to 3.4×10-10 bp-1.gen-1 (Table 1).

Between 113 and 157 nucleotide substitutions were identified after 21 MA-steps in each of the ΔL,
ΔS and L* strains, resulting in point estimates of the substitution rates between 1.4×10-8 and 1.9×10-8

bp-1.gen-1, with no statistically significant differences observed between the strains (Table 1). The
absence of statistical differences between ΔL, ΔS and L* strains, all derived from B. subtilis 168, led
us to aggregate the data collected for these three strains under the label MMR-168 (Table 1). For the
L* strain, sequencing an intermediate time-point located at the end of MA-step 11 did not reveal
any difference between the rates of accumulation in the first and in the second part of the evolution
(Figure 2 and Figure S6). In the MMR-deficient strains, substitutions identified at end points of the
MA-lines appeared thus to result from accumulation at a constant rate.

In contrast to L* MA-lines, C* and LC* MA-lines displayed a tendency towards decreasing
substitution rates over their evolution, with differences between the two strains in terms of
frequency, temporality, and magnitude of decrease (Figure 2 and Figure S6). A statistically
significant decrease was detected for a single C* MA-line but for all LC* MA-lines. Notably, the
decrease was only detected during the second half of an evolution of 21 MA-steps for this C*
MA-line (C*3), whereas it was detected as early as during the second MA-step for LC*2 (p-value =
8.4×10-3), and during MA-steps 3-6 for the 3 other LC* MA-lines. The magnitude of the decrease
was also only a factor ~2.5x for C*3 but reached ~50x for LC*4. Therefore, despite heterogeneity
between MA-lines, decreases were globally more frequent, quicker and of larger magnitude for LC*
than for C*. Importantly, in LC* MA-lines, 56% of the 1,129 identified substitutions occurred in
intervals affected by a decrease in the substitution rate (Table 1). We therefore decided to retain
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only the data corresponding to time intervals before any detected decrease to establish the mutation
rates of the strains. This resulted in point estimates for the substitution rates of the C* and LC*
strains of 5.5×10-8 and 5.5×10-7 bp-1.gen-1, respectively (Table 1).

Statistically significant decreases were also observed in indel rate (Figure S7) and correlated with
decreases in substitution rate (Figure S8). This is consistent with contributions of both proofreading
and MMR in correcting the indel errors introduced by the polymerase activity of PolC
(Supplementary Methods and Results 1.1) whose rate increases with the length of the
homopolymers (Figure S9). Insertions and deletions rates computed are given in Table S4.

Nonsynonymous mutations were found in the inducible synthetic circuits of 4 out of 5 MA-lines
exhibiting a decrease in mutation rate (Table S5, Figure S10, Supplementary Methods and
Results 1.2). Given the total number of mutations in the LC* lines and the size of the polC gene,
the number of mutations found on the polC* allele is 4 times higher than expected in the absence of
selection (Chi-squared test with simulated p-values, p-value=4.1×10-2). Recent studies have
concluded that positive selection is possible in mutation-accumulation experiments despite the
extreme bottlenecks imposed on the population (Mahilkar et al. 2022; Wahl and Agashe 2022).
Here, the over-representation of mutations in the genetic elements conferring the strongest
hypermutator phenotypes indicates adaptive evolution by positive selection to decrease the mutation
rate. This finding echoes previous studies that reported changes in the mutation rates in
mutation-accumulation experiments (Perfeito et al. 2014; Singh et al. 2017). Additionally, it gives a
posteriori experimental justification to the choice of restricting the mutation-accumulation
experiments on proofreading-deficient E. coli to 3 to 6 MA-steps to minimise selection (Niccum et
al. 2018).

Proofreading repairs errors leading to transversions at least as well as those leading to
transitions. The sequence data do not provide information on the DNA strand on which the error
that led to the mutation initially occurred. To record substitutions, we opted for a framework in
which the reference base is the pyrimidine (C or T) of the Watson-Crick pair at the genomic
position where a mutation is observed. This allows prior-free analyses of strand asymmetries in
mutational profiles and follows the convention used in cancer research (Tate et al. 2019). 

In all strains, a slightly higher number of mutations was found on C than on T bases (Figure 3). All
strains also exhibited a predominance of transitions over transversions, but the strength of this bias
differs between strains (Figure 3 and Table 1). The highest proportion of transversions among
substitutions, found in R3610 (point estimate 0.25), is about 10 times higher than the lowest ones,
found in the MMR- strains (ΔS3610 and MMR-168 strains). The C* strain displays an intermediate
proportion (point estimate 0.12). The small number of transversions made it difficult to compare
those changing the reference pyrimidine (C or T) to an A and to a G. Nevertheless the C* and R3610

strains may exhibit an excess of C→A over C→G not seen in other strains. The approximately
10-fold increase in the proportion of transitions when comparing the MMR-168 strains to the R3610

strain is consistent with previously published results on ΔS3610 (Sung et al. 2015). Indeed, the MMR
has a general tendency to reduce the transition rate much more than the transversion rate across
microorganisms (Lujan et al. 2012; Long et al. 2018).
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When comparing LC* and MMR-168 strains, the inactivation of PolC proofreading activity leads to a
slight increase in the proportion of transversions (from 0.01 to 0.04). However, this difference is not
statistically significant (Table 1). This comparison suggests that proofreading corrects errors
leading to both transversions and transitions with at least similar efficiency. Interestingly, the
conclusion drawn from the comparison between LC* and MMR-168 strains may appear
contradictory to what one might infer from the comparison between the C* and R3610 strains. When
comparing C* and R3610, the inactivation of proofreading significantly reduces the proportion of
transversions among substitutions (from 0.25 to 0.12). Even if there is a substantial statistical
uncertainty associated with the estimation of the proportion of transversions, particularly in
MMR-deficient contexts, these opposite trends pose a question. Together with the magnitude of
fold-change which is larger when inactivating MMR in presence of proofreading than in its absence
(Figure 3 and Table 1), this indeed suggests that MMR may already be partially inactivated in
absence of proofreading (C*), as already described in E. coli where the fold-change in substitution
rate upon inactivation of the MMR was also reported to be much lower in cells deficient for PolIII
holoenzyme proofreading than in wild-type (Schaaper 1988; Niccum et al. 2018). This was
interpreted as resulting from MMR saturation by the high number of errors introduced during DNA
replication; an hypothesis further supported by direct assays of MMR activity and restoration of the
MMR by overexpression (Schaaper 1988; Schaaper and Radman 1989). We will later formally
explore this interpretation using a model-based analysis integrating information on the
chromosomal context of mutations (adjacent nucleotides and strand).

Strand-asymmetry of substitution rate at C:G sites is apparent only after proofreading. To
further characterise the two DNA repair systems, we investigated for each strain how substitution
rates were altered by the distance to the origin of replication, the orientation of the strand relative to
replication or transcription, the coding or noncoding regions, and the level of transcription. For
these analyses, we counted substitutions in the different chromosomal contexts and computed the
corresponding “local” substitution rates.

In MMR-168 strains, like in ΔS3610 and R3610 strains, the substitution rates are significantly higher
when C is on the leading than on the lagging strand (Figure 4A). This agrees with previous results
in B. subtilis (Sung et al. 2015), where all mutations were recorded as a change on the “strand
templating the leading strand” (i.e. the lagging strand), and which showed higher mutation rates for
G bases in R3610 and ΔS3610 strains. This bias is not present in the C* and LC* strains, which are
proofreading-deficient. Besides the strong asymmetry at C:G sites, we detected a weaker, but
statistically significant, replication-oriented asymmetry on substitutions at T:A sites: the substitution
rate is higher when T is on the lagging strand, the difference between the two strands being
statistically significant for all our hypermutator strains (Figure 4A). In R3610, this bias on T:A sites
seems less pronounced and is possibly inexistent. In keeping with the conclusions of Schroeder et
al. (2016), analysis of localization with respect to transcription, which is most often collinear to
replication in B. subtilis, did not point to a contribution of transcription-related processes to these
asymmetries between strands in any of the hypermutator strains (Supplementary Methods and
Results 1.3, Figure S11AB).

In wild-type, the replication-oriented asymmetry of substitution rates at G:C sites is a prominent
characteristic of the mutational profile. In line with previous analyses of MMR-deficient strains,
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among which ΔS3610, this bias was also detected in MMR-168 strains. Our data reveal its absence in
C* and LC* strains. A similar observation was made in E. coli proofreading-deficient strains and
led to the interpretation that proofreading is strand-biased and creates this bias (Niccum et al. 2018),
but a concurrent explanation will be discussed below. In contrast, the wild-type exhibits little or no
asymmetry at A:T sites, whereas such asymmetry exists in the hypermutator strains; error correction
systems, and in particular the MMR, tend to reduce or even cancel this asymmetry.

In parallel, it is intriguing to observe the presence of two trends detected only in wild-type: a higher
substitution rate in non-coding regions (Figure S11C) and, to a lesser extent, in the
half-chromosome near replication origin (Figure S11D). A higher substitution rate in non-coding
than in coding regions, specific to the wild-type, was also pointed out in E. coli and was interpreted
as an indication that “MMR preferentially repair coding sequences” (Lee et al. 2012; Foster et al.
2018). Alternatively, trends exclusively observed in the wild-type may correspond to substitutions
originating from processes not subject to correction by proofreading and MMR, which could be
masked by elevated rates of substitutions in hypermutator strains.

Polymerase errors still shape the distribution of mutations after proofreading. In all strains, the
substitution rate is heavily influenced by the nucleotide adjacent in the 5’ or 3’ position to the focal
pyrimidine (Figure 4C and Figure 4D). This observation, previously made in wild-type and
MMR-deficient strains (Sung et al. 2015), extends to proofreading-deficient strains. Considering
simultaneously the adjacent nucleotides on both sides (Table S6 and Figure S12) and the
replication strand, requires binning the counts into 64 replication-stranded triplets. To mitigate the
dimensionality issue, exemplified by the absence of observed substitutions for some bins, we
adopted a Bayesian estimation framework which incorporates the mean and standard-deviation of
log-transformed rates as strain-specific hyperparameters (Supplementary Methods and Results
1.4). Information is thereby borrowed from the whole distribution to establish point estimates and
credibility intervals of the substitution rate for a given triplet (Figure 5A).

Based on these estimates, we measured a very strong correlation between the substitution rates of
the 64 replication-stranded triplets in MMR-168 and ΔS3610 (Pearson correlation r=0.91 on
log-transformed rates), which confirms that our MMR-168 background is very close to the mutant
previously studied (Sung et al. 2015). There is also a strong correlation between the substitution
profiles of LC* and proofreading-proficient MMR-deficient strains (r=0.79 between LC* and
ΔS3610). This is in line with the idea that, after PolC proofreading and before correction by the
MMR, most of the errors leading to substitutions originate from misincorporations by the PolC
polymerase that escaped proofreading. Since MMR removes ~98-99% of these errors (Table 1)
they also constitute the bulk of errors corrected by the MMR.

We further noticed very substantial correlations between the substitution profiles of the wild-type
and those of all hypermutator strains. They were the highest with the MMR-deficient
proofreading-proficient strains (r=0.72 with ΔS3610, r=0.71 with MMR-168) and remained statistically
significant with the proofreading-deficient strains (r=0.58 with LC* and r=0.57 with C*,
p-values<10-6). The correlation between triplet substitution rate profiles in LC* and the wild-type,
whose global substitution rate is 1600 times lower (Table 1), fits remarkably with the working
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hypothesis that PolC misincorporations which escaped the proofreading and the MMR shape
substantially the substitution profile of the wild-type.

Proofreading squares the biases of polymerase error rates. As measured by the standard
deviation and the span of their distributions, point estimates in MMR-168 and ΔS3610 are
approximately 10-fold more dispersed than in other strains, doubling the dispersion in log-scale
(Figure 5B). Because point estimates of triplet substitution rates cannot be precisely estimated
based on small counts, we sought an alternative approach that could directly quantify dispersion.
Using a coincidence-counting method for entropy estimation developed to be robust to sparse
sampling (Nemenman et al. 2001), we calculated the Kullback-Leibler (KL) divergence between the
unknown underlying distribution of the observed counts and the theoretical distribution assuming a
uniform substitution rate (expected count proportional to the number of occurrences of the triplet in
the chromosome). The estimates of KL divergences (Figure 5C) confirmed both the similar level of
dispersion of the substitution rates in the wild-type (R3610) and the proofreading-deficient strains,
and the comparatively much higher dispersion in MMR-deficient strains (approximately 2.5-fold
higher divergence from uniform). In other words, PolC proofreading activity contributes to
dispersing the substitution rates, while MMR activity counteracts this dispersion. This observation,
which suggests a compensation for the biases of proofreading by opposite biases of MMR
correction in B. subtilis, may seem surprising. However, it is consistent with the conclusions of a
study on E. coli PolIII holoenzyme proofreading (Niccum et al. 2018).

After proofreading (but before MMR correction), the substitution profile becomes more dispersed
but remains very similar in terms of the direction of biases compared to before proofreading. This
observation is puzzling since it means that proofreading amplifies biases which already arise from
the sole polymerase activity, rather than simply masking the initial biases with its own biases of
greater amplitude. To better understand the implication of this observation, we can formulate a
minimal model in which the proofreading activity reduces the initial probability of error of the
polymerase, denoted γ[i], through a two-step process: first, the detection and removal of a
misincorporated nucleotide with probability d[i]; second, the re-incorporation of a nucleotide with
the probability of error γ[i] characteristic of the initial polymerase activity. The probability of error
after proofreading then writes e[i]=γ[i](1-d[i])/(1-γ[i]d[i]), where the term (1-γ[i]d[i]) accounts for
the possibility of cycling the two-step process if a new incorporation error follows the removal. If
d[i] is the same for all i, the possibility of cycle, by itself, already amplifies the initial biases.
However, this effect is negligible as long as γ[i], which corresponds to the substitution rate observed
in the LC* strain (<10-5 in Figure 5B), remains extremely small in comparison to 1. To increase
biases to the extent of doubling the dispersion in log-scale (i.e. e[i]/e[j]=(γ[i]/γ[j])2), as
approximately observed in our data, it supposes a probability of non-detection and removal in the
first step of proofreading (1-d[i]) proportional to γ[i], the probability of error of the sole polymerase
activity.

A theoretical model suggests saturation of MMR beyond 5 errors per DNA replication cycle.
Rates of error corrections measured for proofreading and MMR are heavily influenced by the
presence or absence of the other system. For instance, proofreading decreases the overall
substitution rate by a factor of 162 in the presence of MMR versus only 32 in its absence (resp.
μR3610/μC* and μMMR-168/μLC*, denoting by μ the considered mutation rate and using the ML estimates
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of Table 1). Similarly, MMR reduces the substitution rate more significantly when proofreading is
present compared to when it is absent. Using Bayesian estimates of substitution rates, none of the
triplets or types of mutations (ts, tv, ins, del) clearly contradicts this observation (with a posterior
probability of being above the diagonal greater than 5% for all triplets; Figure 6). The trend
becomes even more pronounced if ΔS3610 is used instead of MMR-168 as a representative of the
MMR-deficient proofreading-proficient background (Figure S12).

To thoroughly examine the compatibility of the data collected in B. subtilis with a saturation
mechanism, we formulated a mathematical model in which the mutation rate, μC*[i], in strain C* for
a given triplet or type of mutation i is determined by the equation:

μC*[i]=γ[i](θ+(1-θ).qMMR[i]),

where γ[i] is the error rate before correction by proofreading or MMR, and θ is a mixture parameter
common to all values of i. It corresponds to the proportion of errors made by the
proofreading-deficient PolC that occur in a physiological context of MMR saturation (generating
mutations distributed as in LC*). The complementary proportion (1-θ) is subjected to correction by
MMR, reducing the number of errors by a factor qMMR[i]. In this model, whose assumptions are
presented along with an associated Bayesian estimation procedure in Supplementary Methods and
Results 1.5, the mutation rate in C* can be expressed as a function of the rates in the three other
backgrounds by identifying qMMR[i] to μwt[i]/μMMR-[i] and γ[i] to μLC*[i].

This parameterization was used to estimate the mixture parameter θ and to check the agreement of
the model to the experimental data (Figure 7). In practice, the posterior distribution of θ was
estimated based either on the rates of substitutions for the 64 replication-oriented triplets (with
MMR-168 or ΔS3610 as representative of MMR-deficient background) or on the rates of the 4 types of
mutations (transition, transversion, insertion, deletion). These three posterior distributions were
very similar (Figure 7A), the posterior mean for θ varying only from 0.071 to 0.084. Observed
counts aggregated by type of mutations (Figure 7C) and by triplet (Figures S14 and S15) fall
within the prediction intervals of the model, indicating a good fit to the experimental dataset. Of
note, although the fraction of errors introduced by PolC that arise in a context of MMR saturation
remains small (θ<10%), these errors, which cannot be corrected by the saturated MMR anymore,
are responsible for the majority of the mutations observed in strain C* (Figure 7A).

In a simple mechanistic model, these values of θ may correspond to the capacity of the MMR to
handle (with a probability of failure qMMR[i]) 4 to 5 errors introduced in the genome per replication
cycle (Figure 7B, Supplementary Methods and Results 1.5). Alternatively, θ values may also be
interpreted as reflecting the fraction of errors made by the polymerase before covering a certain
distance after a first error.
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DISCUSSION

Aggregating mutations in counts: a necessary evil. Our experimental data could, in principle,
also be explained by a model which does not involve MMR saturation. This alternative model
acknowledges that counting mutations on the genome implies aggregating them by types or
contexts, themselves probably encompassing subclasses of mutations originating from errors which
are not corrected with the same probability of success. In the extreme scenario where MMR and
proofreading correct non-overlapping sets of errors, the effects of separately inactivating the two
systems would simply add to each other in cells where both systems are inactivated. This idea has
already been mentioned and refuted for mutational signatures of human cancers (Haradhvala et al.
2018). In fact, while changes in mutation rates between strains may not be strictly multiplicative,
they are clearly more than additive. This raises interest for a more general model that considers
aggregated subclasses of mutations, not distinguished in the counts and arbitrary correction rates.
We algebraically explored this model in its simplest form with only two subclasses
(Supplementary Methods and Results 1.6). Interestingly, as soon as the probability of error
correction differs between subclasses for both MMR and proofreading, the aggregation creates
apparent epistasis in the sense that the effect of inactivating one system, measured in terms of
mutation rate fold-change, depends on the presence or absence of the other system.

With more parameters than data points (5 parameters for 4 mutation rates), even the simplest
scenario with two subclasses can fit almost any data set, explaining from additive to
super-multiplicative effects. The model is therefore difficult to falsify. Nevertheless, we note that
the sign of this epistasis depends on whether the systems exhibit similar or opposite specificities: if
they do tend to repair different subclasses of mutations, the apparent epistasis will be negative
(sub-multiplicative, as it is the case in our data), otherwise the epistasis will be positive
(super-multiplicative). If this explanatory model had a prevalent role in the explanation of the
apparent epistasis reported here, it is difficult to understand why positive epistasis is not observed in
any triplet context or type of mutation. Indeed, explaining negative epistasis with this model would
be at odds with the generally admitted idea that MMR correction is mostly coreplicative and targets
the same errors as those corrected by proofreading, i.e. Watson-Crick mismatches introduced during
DNA replication by the DNA polymerase. If aggregation of subclasses does not substantially
contribute to the observed apparent epistasis which seems well explained by MMR saturation, it
complicates interpretation of the mutation profiles.

A cautious interpretation of the apparent efficiency of proofreading and MMR.
Acknowledging saturation of the MMR, the proofreading-deficient strain C* should not be
considered as a fully MMR-proficient. Thus, it cannot serve to estimate the efficiency of the
proofreading and MMR, i.e. as the numerator in a ratio μC*/μLC* to estimate the probability that an
error escapes the proofreading, and as the denominator in a ratio μwt/μC* to estimate the probability
that an error escapes correction by the MMR in physiological conditions relevant for the wild-type.
Instead, these escape probabilities should be estimated by the ratios μMMR--/μLC* and μwt/μMMR--, which
are represented in Figure 8 (MMR- being either MMR-168 or ΔS3610) for each replication-oriented
triplet and type of mutation (ts, tv, ins, del). The mutation rates in LC* and wild-type, which
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respectively correspond to the rates of errors leading to mutation before and after correction by the
combined action of proofreading and MMR are also shown. 

Proofreading and MMR escape probabilities (μMMR--/μLC* and μwt/μMMR-) are correlated to the
substitution rates of the triplets (Figure S16). In Figure 8, triplets are ordered according to
wild-type substitution rates (as in Figure 5A), which highlights general trends: proofreading escape
tends to be higher on triplets where the polymerase initially makes more incorporation errors
(Figure S16, r=0.32 p-value=0.0097); MMR escape tends to be lower on triplets with high mutation
rate in wild-type (Figure S16, r=-0.45, p-value=0.00018). Of note, these two correlations are of
opposite sign to the artefactual correlations that would be generated by noise in the estimates of
μLC*[i] and μwt[i], which also enter in the ratios μMMR-[i]/μLC*[i] and μwt[i]/μMMR--[i].

The positive correlation between proofreading escape and mutation rate in LC* matches the
observation that proofreading increases the biases of polymerase error rates. Statistical uncertainty
on proofreading escape probability makes it difficult to draw conclusions on specific triplets, and
few triplets show clear strand asymmetry. It is however interesting to note that this positive
correlation is not apparent within pairs of triplets that only differ by the strand relative to DNA
replication. In particular, GTG and ATG are more affected by substitutions in LC* when the focal
pyrimidine (T) is on the lagging strand, but no difference is detected in terms of proofreading
escape probability between strands. For these triplets, it might be that errors are primarily made by
the DnaE polymerase during synthesis of the lagging strand, generating strand asymmetry of
substitutions rates in LC* without affecting proofreading. Reciprocally, errors affecting GCT and
GCG seem less corrected by proofreading when C is on the leading strand, but the substitution rate
in LC* is similar between strands. Deamination of cytosine to uracil in the lagging strand template
(i.e. the leading strand) due to exposure of single-stranded DNA within the context of the
replication fork has been, for a long time, suspected to be the reason behind the near-universal
GC-skew between replication strands in prokaryotes (Frank and Lobry 1999) and does represent a
substantial source of C to T transitions in wild-type (Bhagwat et al. 2016). Strikingly,
MMR-deficient strains show a strong similarly replication-oriented bias for substitutions at C sites
(Lee et al. 2012; Sung et al. 2015), which may have the same origin as in wild-type. The hypothesis
that cytosine deamination could also create this bias in MMR-deficient strains has already been
evoked (Foster et al. 2018). In the absence of proofreading, these errors caused by deamination
would be drowned out by polymerase misincorporation errors, and this could explain why
substitutions at C sites apparently escape more the proofreading when on the leading strand. This
would indeed be consistent with studies reporting a role of the B. subtilis MMR in counteracting the
effects of base deamination (López-Olmos et al. 2012; Patlan-Vazquez et al. 2022). 

The hypothesis of proofreading efficiency connected to initial polymerase incorporation accuracy
was proposed based on the analysis of substitution rates by triplet context without distinguishing
transversion and transition. Transversions represent only 4% of the substitutions in LC*. The lower
proofreading escape probability of errors leading to transversions than to transitions (Figure 8) is
consistent with the above hypothesis. However, the difference between the proofreading escape
probabilities of the two types of errors, which cannot be estimated precisely, seems smaller than
expected. A possible explanation would be an overestimation of the proofreading escape for
misincorporation errors leading to transversions, as would happen if a substantial fraction of the
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rare errors leading to transversions that persist after proofreading in MMR-deficient strains did not
stem from polymerase errors and would thus simply not be subjected to proofreading.

Concerning MMR escape, which is not the primary focus of this study, the strong negative
correlation with proofreading escape (Figure S17, r=-0.63, p-value=2.6×10-8) could suggest an
evolution towards correcting the most frequent errors resulting from DNA replication. This would
indeed echo the proposed role of differential MMR efficiency in balancing the DNA replication
fidelity between the two strands in eukaryotes (Lujan et al. 2012; Andrianova et al. 2017; Zhou et
al. 2021). However, we need to underscore the lack of information on the fraction of the residual
errors seen as mutations in wild-type which originate from DNA replication and are subjected to
-but missed by- MMR correction. Indeed, the contribution of different sources of spontaneous
mutations in wild-type remains poorly understood (Schroeder et al. 2018). Among studies
addressing this question, it has been shown that the inactivation of oxidative damage repair
pathways increases the mutation rate in E. coli under conditions of optimal growth without external
stress, suggesting that events escaping correction by oxidative damage repair pathways may
contribute to the mutation profile of the wild-type (Foster et al. 2015). Since oxidation damages
tend to cause transversions, this hypothesis would indeed be in line with the higher proportion of
transversions in wild-type than in any of our hypermutator strains. If a substantial fraction of the
substitutions in wild-type originate from other sources of errors not subjected to MMR correction,
variations not directly linked to MMR efficiency may enter into the ratio μwt/μMMR-- used to estimate
the MMR escape probability (Figure 8), via its numerator (e.g., the number of errors from these
other sources) and its denominator (e.g., the number of errors remaining after proofreading). Indeed,
variations in the denominator clearly drive the variations of the ratio (Figure S16, r=-0.94,
p-value=2.3e-31) and because the proofreading escape probability (μMMR--/μLC*) is itself positively
correlated with the denominator (Figure S16, r=0.71, p-value=7.3e-11) this could contribute to the
negative correlation observed between the MMR escape probability and the proofreading escape
probability.

14



Conclusion. Saturation of the MMR in the absence of proofreading, greater dispersion of the
substitution rates in the presence than in the absence of proofreading, and the existence of strand
biases that become apparent only in the presence of proofreading, appear to be shared traits between
B. subtilis and E. coli. Given the considerable divergence between these two organisms in terms of
phylogenetic distance and molecular organisation of the DNA polymerase and MMR, these traits
are thus probably common to many other organisms. Characterization of the overdispersion of the
mutation rates in MMR-deficient proofreading-proficient strains compared to other strains led us to
propose the hypothesis that proofreading intrinsically skews DNA polymerase error rates. This
could represent a drawback of the principle of proofreading, which relies on the DNA polymerase
to detect its own errors, a function of judge and party, leading to introducing the same biases in
nucleotide misincorporation and error escape rates.

This study also attempts to examine carefully the consequences of aggregating mutations in counts,
and more generally acknowledges the difficulty of interpreting apparent error escape rates. First,
unaware aggregation in the analysis of subclasses of mutations resulting from different molecular
pathways can create almost any pattern of apparent interactions in the effects of deactivating
different error correction systems. Second, interpreting the effect of disabling one error correction
system is generally complex due to the uncertainty on the contribution of errors corrected by this
system to the mutations observed in its presence. This uncertainty makes it difficult to interpret the
appearance of strand bias upon activation of proofreading, which may be caused by a mutation
process post-proofreading, such as deamination, rather than by a bias in proofreading. Similarly, the
“flattening” of biases in mutation rates upon activation of the MMR is difficult to interpret since it
could result from a better efficiency of MMR at correcting the most common errors but also from
the contribution of multiple sources of mutations to the profile of the wild-type. The hypothesis of a
substantial contribution of multiple sources seems consistent with the drift-barrier hypothesis
(Lynch et al. 2016). In wild-type, the rates of the mutations resulting from different molecular
pathways may have been pushed down below the same point where they do not encounter
significant counter-selection.

The construction of strains with inducible hypermutator phenotypes circumvented the problem of
stability which compromised the reproducibility of some studies on E. coli proofreading-deficient
strains (discussed in (Niccum et al. 2018)). It was also motivated by the interest in tools for
synthetic biology applications. Concerning the future use of our inducible systems to accelerate
evolution, a proofreading-deficient strain would yield a less biased mutation spectrum than an
MMR-deficient strain. If needed, extreme mutation rates can be obtained by inactivating the two
reparation systems simultaneously but strong counterselection against mutational load makes that
such an induction can be envisioned only over a short period of time.
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MATERIALS AND METHODS

Media and bacterial strains. E. coli DH5α was used for plasmid construction and transformation
using standard techniques (Sambrook et al. 1989). B. subtilis strains used in this study derived from
the Master Strain (MS), a prophage-free and trp+ derivative of B. subtilis 168 (Dervyn et al. 2023),
also denoted here R168. Lysogeny broth (LB) was used to grow E. coli and B. subtilis.
Transformation of B. subtilis cells was performed using the protocol from (Konkol et al. 2013).
When required, media were supplemented with the following antibiotics, ampicillin 100 μg.mL-1 for
E. coli, and spectinomycin 100 µg.mL-1, or kanamycin 5 µg.mL-1 for B. subtilis.

Construction of hypermutator strains. The ΔS and ΔL mutant strains were generated by
transforming the PCR-amplified kan mutL and mutS kan sequences, using the P1-P2 primer pair
along with genomic DNA from ΔmutS::kan and ΔmutL::kan mutant strains, respectively. These
strains were obtained from the previously published single-gene deletion library of B. subtilis (Koo
et al. 2017). For the construction of the L* strain, the first and second half of the mutL gene were
PCR-amplified using the P5-P8 and P6-P7 primer pairs (Figure S1), respectively, with the P7 and
P8 primers both carrying the desired point mutation (as indicated in Table S7). The two fragments
were then assembled by PCR to lead to the mutL(N34H) allele. The backbone of the pDR111
plasmid (kind gift from D. Rüdner), which contains the isopropyl-β-D-1-thiogalactopyranoside
(IPTG) inducible Phyperspank promoter (denoted Phs) and the spec gene (conferring resistance to
spectinomycin), was PCR-amplified using primers P3 and P4. The 5’ extensions of the P5 and P6
primers then allowed for the assembly of the mutL(N34H) allele with the PCR-amplified pDR111
using the HiFi DNA assembly protocol (New England Biolabs, USA). This resulted in cloning the
mutL(N34H) allele under the control of Phs in a B. subtilis amyE-integrative plasmid (Figure S1).
Similarly, for the construction of the C* strain, the polC allele found in B. subtilis mut-1 (Bazill and
Gross 1973), characterised by the G430E and S621N mutations (Sanjanwala and Ganesan 1991),
was PCR-amplified using the P11-P12 primer pair and assembled to the PCR-amplified pDR111
(using P3 and P4) using the HiFi DNA assembly protocol (New England Biolabs, USA). This
resulted in cloning the polC mut-1 allele under the control of Phs in a B. subtilis amyE-integrative
plasmid (Figure S2). For the construction of the LC* strain, a mutL* polC* synthetic operon was
generated by assembly of the mutL(N34H) allele PCR-amplified from strain L* using P5 and P11,
and the polC mut-1 allele PCR-amplified from C* using P12 and P10, and assembled to the
PCR-amplified pDR111 (using P3 and P4) using the HiFi DNA assembly protocol (New England
Biolabs, USA). This resulted in cloning the mutL* polC* synthetic operon under the control of Phs

in a B. subtilis amyE-integrative plasmid (Figure S2). Plasmids were transformed into B. subtilis
amyE locus by double recombination events. All strains were verified by sequencing, and
transcriptomics experiments were performed to compare global gene expression. The RNA-seq
reads and detailed protocols and results were deposited on GEO under the accession GSE239804.

Fluctuation assays. For each strain to be tested, a single colony was grown in 1 mL LB at 37°C for
90 minutes. This preculture was serially diluted in fresh LB to initiate cultures with a small number
of cells N0. Cells were then grown during 7.5 h hours to reach saturation. In case the induction with
IPTG was to be tested, LB medium with the desired concentration of IPTG was prepared right
before use from an IPTG stock concentration of 1 mM. When the volume of culture was 1 mL,
cultures were centrifuged before plating so as to keep the cells viable, then 750 µL of supernatant
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were removed. The remaining 250 µL were gently vortexed before plating on LB supplemented
with rifampicin (10 µg.mL-1). For each assay, a predefined number of cultures (8 for the R168 assay,
4 for ΔS and ΔL assays, and 3 for all other assays) was not plated on LB medium supplemented
with rifampicin, but instead serially diluted and plated on LB agar, in order to determine the final
number of cells (Nt) in each culture. Fluctuation assays performed on the same day were considered
to have the same distribution of the final number of cells. All other cultures were plated on LB agar
with rifampicin to obtain the number of Rif-resistant colony-forming units (CFUs). All plates were
incubated at 37°C and scored for CFUs after 24 h of growth. The maximum likelihood estimator
(MLE) of the number of mutations by assay (m), as well as the confidence interval, were computed
under the Luria-Delbrück model, and by taking into account the variation in the final number of
cells (Zheng 2016), using the newton.B0 with default parameters and confint.B0 functions of R
package “Rsalvador” v1.7 (Zheng 2017). For the computation of confidence intervals, the initial
guess for the parameter m was taken as the m given by the “newton.B0” function. We consider here
that the mutation probability is constant over the cell cycle, so that the mutation rate per base per
generation is the mutation rate per base per cell division (Foster 2006). The final number of cells,
Nt, is the result of Nt – N0 cell divisions, i.e. ~Nt divisions. The rate of RifR emergence was therefore
calculated as =m/Nt.µ

𝑅𝑖𝑓

Mutation-accumulation experiments and sequencing. An isolated colony was collected each day
(24 h at 37°C), suspended in culture medium + glycerol 20%, and diluted by 2×105, a factor that
allows for distinguishable colonies, before plating on LB agar (+ 100 µM IPTG for the L*, C* and
LC* strains) for the next MA-step. Counting of the colonies present on the agar plate gave an
estimate of the number of bacteria initially present in the diluted colony and thereby of the number
of generations per MA-step. Four parallel MA-lines of successive MA-steps were propagated per
strain (21 MA-steps for ∆S, ∆L, L* and C*, 11 for LC*).

For sequencing at intermediate and end points of the MA-lines, 5 to 50% of the picked colony was
cultured in LB medium to collect cells. DNA was extracted using the GenEluteTM Bacterial
Genomic DNA Kit (Sigma-Aldrich) following the supplied protocol. The DNA samples
corresponding to an intermediate time-point in the four parallel MA-lines for a same strain were
pooled in equimolar proportions. Simple and pooled DNA samples were sequenced (150-bp
paired-end reads) on an Illumina platform (NovaSeq 6000) to an average depth of ~300. The reads
can be accessed in NCBI SRA (BioProject PRJNA995423).

Detection of mutations. The reads were aligned to the reference sequence of the B. subtilis 168
genome (GenBank: AL009126.3) using the BWA-MEM v0.7.17 (Li and Durbin 2009), after quality
control and trimming using sickle v1.33 (command “sickle pe” with options “-t sanger -x -q 20 -l
20”) (Joshi and Fass 2011). Properly paired reads, selected using “samtools view -f 3” (samtools
v1.14, Li 2011), were locally realigned around indels using ABRA2 v2.24 (Mose et al. 2019). The
number of occurrences of each nucleotide (base read quality ≥35) and indels at each position of the
reference in confidently mapped reads (alignment quality ≥50) was counted using “samtools
mpileup” with options “-aa -d 5000 -q 50 -Q 35 -x -B”. These numbers of occurrences were
analysed using R.
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For each position, we calculated the effective depth (DPeff) as the total number of informative
reads. A reference subset of positions common to all samples was determined for the computation
of the mutation rates. This reference consisted of positions well covered (DPeff≥100) and
sequenced on both strands (≥10% of the reads on the less represented strand) in all samples. Most of
the regions with a low coverage matched with the regions that were deleted during the construction
of the MS / R168 strain (Dervyn et al. 2023), which lacks 233.4 kb of the chromosome relative to
wild-type B. subtilis 168, and with the multicopy structural RNAs. Overcovered regions were also
eliminated from this reference subset of positions: the region of gene upp and downstream
(positions 3,788,426 to 3,789,124), repeated due to pop-ins - pop-outs at that locus during the
construction of the R168 strain; the region from position 2,432,478 to 2,433,315, over-covered in
polC* samples; the regions of genes polC (1,727,133 to 1,731,446) and mutL (1,778,337 to
1,780,539) duplicated by the insertion of the mutant alleles polC* and mutL*. This resulted in a
reference subset of 3,794,734 positions (out of a total of 4,215,606 bp in AL009126.3) that served
as our reference chromosome for the computation of mutation rates.

The distribution of the proportion of non-reference reads in the different samples was graphically
examined to establish relevant cut-offs for identifying mutations. A mutation was identified at the
end point of a MA-line if, in the corresponding sample, a variant accounted for ≥75% of the DPeff
at a position, with ≥10% of the non-reference reads on the less represented strand. When
intermediate time-points were available for this MA-line, the mutation was traced back to the first
time-point in which it appeared at a frequency ≥5% of the reads in the corresponding pooled
sequence sample. Due to the detection during graphical examination of a contamination from other
samples, we lowered the cut-off from 75% to 60% for the identification of mutation in the third
MA-line of ΔS and from 5% to 2% for the analysis of the pool corresponding to the intermediate
time-point for L* strain MA-lines. Mutations found in all samples, or in the four MA-lines of a
same strain, were interpreted as fixed prior to the mutation-accumulation experiment and were
discarded for calculation of the mutation rates.

Detection of mutations in the inducible synthetic circuits. Reads were also aligned to the
reference sequences of the inserted regions represented in Figure S2. For the mutant alleles mutL*
and polC*, reads originating from the native alleles (mutL and polC) mapped also on the insert and
variant calling, in itself, does not distinguish a mutation in the native and in the mutant allele.
However, we found that, at positions where bases differed from the reference on these genes in
individual samples, the proportion of these alternative bases was bimodally distributed, with two
peaks, around 40% and 60% of the reads (Figure S10). Given that the characteristic point mutations
of both polC* and mutL* accounted for more than 50% of the reads (resp. between 52% and 71%
and between 65% and 75%) at their respective positions, we anticipated that the mutations for
which ~60% of the reads differed from the reference were on the mutant allele, while the others
were on the native allele. This prediction is consistent with the position of the amyE locus in which
the mutant alleles are inserted, i.e. closer to the replication origin of the chromosome than both
native alleles, and thus expected to be more abundant in the sample due to ongoing replication. As a
verification, we used specific primers to amplify and determine the sequence of either the native or
inserted allele. Of the 5 PCR-verified mutations, all of them were found on the predicted allele
(Table S5).
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Chromosome partitioning to assess the impact of transcription and replication on mutation
rate. To assess the impact of transcription, the “gene” features of the GenBank annotation served to
define the dichotomy between “template” and “nontemplate” strand as well as between “coding”
and “noncoding”. Since the “noncoding” represents only ~10% of the genome and contains
transcribed untranslated regions (UTRs) we also sought to assess the impact of transcription with
more statistical power and in a more accurate way than permitted by the GenBank annotation. For
this purpose, two categories of regions of roughly equivalent sizes were also defined based on the
transcribed regions identified across 269 samples of a wild-type strain and representative of a wide
diversity of growth conditions (Nicolas et al. 2012). These two categories reflected the quantity of
transcripts in LB as measured in 9 samples corresponding to the growth in liquid LB (triplicate
samples for the exponential, transition and stationary phases) and 2 samples corresponding to 16
hours of growth on LB (non-confluent colonies). The regions of “high” transcription level were
those belonging to the top 30% in at least one of these 11 samples. Conversely, the regions of “low”
transcription level were those that never belonged to the top 30%. All overlapping regions (i.e. both
strands were transcribed) were eliminated, as well as all regions shorter than 100 bp. This resulted
in a set of 3,622 non-overlapping, transcription-oriented regions covering 84.9% of the reference
genome (43.4% for “high”, 41.4% for “low”).

To assess the impact of the DNA replication strand, the leading and lagging strands were defined
based on the replication origin (position 1) and the middle of the centremost terminus of replication
(position 2,018,289) (Wake 1997). To assess the impact of DNA replication timing, the genome was
divided into a replication “first half” corresponding to the 2 Mbp of B. subtilis 168 centred on the
replication origin (position 1) and a “second half”.

Mutation rate estimations and comparisons. To incorporate the list mutations in R3610 and ΔS3610

into our analysis, the positions given on the B. subtilis NCIB 3610 genome (GenBank:
CM000488.1) by (Sung et al. 2015) and (Sung et al. 2016) were transferred to the B. subtilis 168
genome by mapping of the 41 bp-long sequence centred on each mutation site. Keeping only the
exact and unique matches, more than 99% of these mutations were transferred (Table S3), with a
perfect collinearity between the positions of the mutations on both reference genomes.

Maximum-likelihood estimates of the mutation rates were obtained as μ=m/(T×G), where m is the
total number of mutations of a considered type in a considered genotype and genomic context
(nucleotide at focal position and adjacent nucleotides, orientation with respect to replication,
transcription, …), T is the total number of occurrences of the genomic context in the reference
sequence, and G the number of considered generations in MA-lines. Confidence intervals for these
point estimates were calculated using the exact method for Poisson counts implemented in R
package “epitools” v0.5-10.1, with m as the count and T×G as the time-person at risk.

To assess if a factor impacts the substitution rates, we used Generalised Linear Models (GLMs) for
Poisson distributed count data with log-link, combined Analysis of Variance (ANOVA) (R package
“stats” v3.6.3) to compare the fit of a GLM that accounts and a GLM that does not account for the
considered factor. This statistical comparison was done separately for each genotype.

Markov chain Monte Carlo methods implemented in JAGS (Plummer 2003) accessed through R
package “rjags” were used for Bayesian estimation via posterior sampling, in particular for
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estimation replication-stranded triplet mutation rates and MMR saturation parameter θ. Details on
models and algorithms settings are provided in Supplementary Methods and Results 1.4.

Mathematical modelling of mutation rates

Assumptions and Bayesian estimation procedure for the model with saturation of the MMR are
presented in Supplementary Methods and Results 1.5. Algebraic analysis of the general model
with two subclasses of errors and two repair pathways is presented in Supplementary Methods
and Results 1.6.
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TABLES

Table 1. Aggregated numbers of substitutions, substitution rate, and proportion of transversions for
each investigated strain.

Straina
Li-
nes Generation

sb,c

Substitutionsc

Substitution rate
[95% CI]

Proportion of
transversions

[95% CI]
Total Tsd Tve

R168 4 3,790 1 1 0 7.0×10-11 [0.18-39×10-10] 0.00 [0.00-0.98]

R3610 49 248,920 319 238 81 3.4×10-10 [3.0-3.8×10-10] 0.25 [0.21-0.31]

ΔS3610 19 38,000 4,844 4,711 133 3.4×10-8 [3.3-3.5×10-8] 0.03 [0.02-0.03]

ΔL 4 2,151 149 147 2 1.8×10-8 [1.5-2.1×10-8] 0.01 [0.00-0.05]

ΔS 4 2,151 157 155 2 1.9×10-8 [1.6-2.2×10-8] 0.01 [0.00-0.05]

L* 4 2,151 113 111 2 1.4×10-8 [1.1-1.7×10-8] 0.02 [0.00-0.06]

MMR-168 12 6,453 419 413 6 1.7×10-8 [1.6-1.9×10-8] 0.01 [0.01-0.03]

C* 4 1,895 (256) 395 (19) 348 (18) 47 (1) 5.5×10-8 [5.0-6.1×10-8] 0.12 [0.09-0.16]

LC* 4  230 (897) 502 (627) 484 (599) 18 (28) 5.5×10-7 [5.2-6.3×10-7] 0.04 [0.02-0.06]
a The label MMR-168 corresponds to the aggregation of the date from the three MMR-deficient strains
constructed in this study from R168 (ΔL, ΔS, L*). Data for strains R3610 and ΔS3610 retrieved from Sung et al.
(2015) and mapped to R168 genome sequence.
b Conversion between MA-steps and generation based on an estimated average number of generations per
step: 25.6 here, 27.53 in Sung et al. (2015).
c Number of substitutions in the reference subset of positions well covered by the sequencing data (3,795
kbp). Between parentheses: number of generations or substitutions in time intervals with decreased mutation
rates (discarded from the analysis).
d Number of transversions. e Number of transversions.
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FIGURES

Figure 1. Mutation rate to rifampicin resistance for increasing IPTG concentration as
measured by fluctuation assays. Each color corresponds to a strain; the vertical bars represent
95% confidence intervals.
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Figure 2. Evolution of substitution rate along mutation accumulation lines. Examples are
shown for one MA line of each strain with inducible mutation rate. The rate per base and per
generation is computed from the number of new substitutions identified within each interval.
Sequencing intervals are represented by horizontal brackets and 95% confidence intervals are
reported for estimated rates by vertical bars. Red crosses indicate sequencing intervals with
significantly decreased mutation rate and thus discarded from downstream analyses.
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Figure 3. Substitution rates measured by mutation accumulation experiments. Rate per
position and per generation for each type of substitution. 95% confidence intervals are indicated and
were computed using the Poisson distribution. The rates of C -> G and T -> G mutations for
MMR-168 (aggregation of the ΔS, ΔL, and L* strains) are not displayed since no mutations of these
types occurred in these strains, only the upper limit of the 95% CI is shown.

29



Figure 4. Impact of replication strand and neighbor nucleotides on substitution rates.
Substitution rates depending on the different parameters considered. Error bars represent the 95%
confidence interval according to the Poisson distribution. A. Substitution rate depending on the
mutated pyrimidine of the pair and its orientation with regard to the replication strand. B.
Substitution rate depending on the mutated pyrimidine of the pair and its orientation both with
regard to the replication and the transcription strand. C. Substitution rate depending on the mutated
pyrimidine of the pair and the 3’ adjacent nucleotide. D. Substitution rate depending on the mutated
pyrimidine of the pair and the 5’ adjacent nucleotide.
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Figure 5. Comparison of stranded-triplet substitution rates between genotypes. Each stranded
triplet corresponds to the mutated pyrimidine and its 5’ and 3’ nucleotides, distinguishing
pyrimidines on the leading and lagging strand of chromosomal replication. ΔS, ΔL, and L* (IPTG
100 µM) are aggregated as MMR-168. A. Heatmap representation of the stranded-triplet substitution
rate (log2 ratio of estimated rate wrt to the mean for each genotype). Rates were estimated with a
Bayesian methodology involving a log-normal prior and hyperparameters. Estimates based on the
absence of substitutions in this stranded-triplet context are indicated by “0” in the cells of the
heatmaps. Triplets are ordered by decreasing order of non-stranded empirical substitution rates. B.
Beeswarm representation of the distribution of Bayesian estimates of stranded-triplet substitution
rates, the standard deviation of the estimates (in log10-scale) is reported above each beeswarm. C.
KL divergence with respect to a uniform distribution (same rate for each triplet), derived from
robust entropy estimates.
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Figure 6. The effect of activating an error correction system depends on the presence or
absence of the other system. Left plot: comparison of the effect of activating proofreading in the
presence or the absence of MMR activity. Right plot: comparison of the effect of activating MMR
in the presence or the absence of proofreading activity. Around each point, the 50% and 95%
marginal credibility intervals on horizontal and vertical axes, computed from the quantiles of the
posterior distributions, are represented by segments (resp. bold and dark vs. thin and light). The data
used for MMR- substitution profile is MMR-168, i.e. the aggregation of ΔS, ΔL, and L*. The
amplitudes of the effects of activating proofreading or MMR are greater in the presence than in the
absence of the other system (resp. MMR or proofreading).
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Figure 7. Parameter estimation of the MMR-saturation model and assessment of the fit to
experimental data. A. Posterior distribution of the mixing parameter θ corresponding to the
proportion of errors in strain C* that arise in a context of saturated MMR. The corresponding
proportion of the mutations observed in C* (i.e. after MMR correction) is shown in the insert plot.
B. Relationship between the mixing parameter θ and the number of mutations before MMR
saturation in a simplified model of replication: one replication per generation, the first mutations are
subjected to MMR correction until saturation of the MMR. C. Assessment of the fit of the
MMR-saturation model to experimentally measured rates of transition, transversion, insertion, and
deletion. Points represent empirically calculated mutation rates, i.e. the number of observed
mutations divided by the number of possible sites on the genome and the number of generations.
Colored areas represent the distribution of values for empirical rates simulated under the posterior
distribution of the model parameters (50% of density in dark area, 95% including also the light
area).

33



Figure 8. Apparent efficiency of proofreading and MMR across replication-stranded triplets
and types of mutations. Estimated proofreading and MMR escape probabilities are represented
(middle plots) along with estimated mutation rates in absence and presence of both correction
systems (upper and lower plots). Replication stranded triplets are ordered by decreasing order of
non-stranded empirical substitution rates and then pyrimidine on the leading and lagging strands of
replication. Bold and thin vertical bars 50% and 95% credibility intervals, respectively.
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