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CONTINUED FRACTIONS FOR q-DEFORMED REAL NUMBERS,

t´1, 0, 1u-HANKEL DETERMINANTS,

AND SOMOS-GALE-ROBINSON SEQUENCES

VALENTIN OVSIENKO AND EMMANUEL PEDON

Abstract. q-deformed real numbers are power series with integer coefficients. We study Stielt-
jes and Jacobi type continued fraction expansions of q-deformed real numbers and find many
new examples of such continued fractions. We also investigate the corresponding sequences of
Hankel determinants and find an infinite family of power series for which several of the first
sequences of Hankel determinants consist of ´1, 0 and 1 only. These Hankel sequences satisfy
Somos and Gale-Robinson recurrences.
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1. Introduction and main results

In this paper we study power series with integral coefficients that represent so-called q-
deformed real numbers, or “q-reals” for short. We calculate the sequences of Hankel deter-
minants of the simplest examples. It turns out that there exists a remarkable infinite family
of q-reals that have a surprising property: several first sequences of their Hankel determinants
are periodic and consist of ´1, 0 and 1 only. This property is similar to that of the generating
functions of Catalan and Motzkin numbers, but the number of t´1, 0, 1u-sequences is greater.
Moreover, the obtained t´1, 0, 1u-Hankel sequences enjoy very special Somos and Gale-Robinson
recurrences related to integrable dynamics.

The initial definition of q-reals [30] relies on continued fractions which are not of the Stieltjes or
Jacobi type. One of our goals is to rewrite these series in the form of C-fractions and J-fractions
which is most close to the classical Stieltjes and Jacobi continued fractions. In particular, we
use the special class of Jacobi type continued fractions, called H-fractions, that was introduced
and studied in [17]. The problem remains open in general, we solve it in particular cases.

1.1. Continued fractions: classical examples. The following special class of continued frac-
tions depending on one (formal) variable, that we denote q, are classically called C-fractions

(1.1) fpqq “
b0

1 ´
b1q

p1

1 ´
b2q

p2

. . .

Here p “ pp1, p2, . . .q is a sequence of integers, pi ě 1, and b “ pb0, b1, b2, . . .q is a sequence of
(real or complex) coefficients, such that bi ‰ 0 for all i ě 0. When pi ” 1, the C-fraction (1.1)
is a classical Stieltjes continued fraction [38], which is also called a regular C-fraction, or an S-
fraction; see [10, 40] where combinatorial properties of continued fractions were studied. Given
a power series

fpqq “

8
ÿ

i“0

fiq
i,

it can always be written as a C-fraction in a unique way [26]. For an explicit algorithm, see [37].
C-fractions were extensively studied and applied to many sequences of integers; see, e.g. [2, 7,
9, 14, 22, 23, 26, 37] and references therein.
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The generalized Jacobi continued fractions, or J-fractions, are of the form

(1.2) fpqq “
b0

1 ` qA1pqq ´
b1q

p1

1 ` qA2pqq ´
b2q

p2

. . .

,

where Aipqq are polynomials with degpAiq ă pi ´ 1. When pi ” 2, (1.2) is the classical Jacobi
continued fraction, or a regular J-fraction. As mentioned, every power series can be written in
the form (1.1), but a more flexible form (1.2) may be simpler and have more symmetries. The
counterpart is that such a fraction does not always exist for a given series. Combinatorial theory
of J-fractions was founded in [10, 40]. For a modern theory and applications, see [22, 23, 17, 18].

The Catalan numbers Cn “ 1, 1, 2, 5, 14, 42, . . . are related to the simplest example of regular
C-fraction. Indeed, the generating function

Cpqq “

8
ÿ

i“0

Cnq
n “

1 ´
?
1 ´ 4q

2q

has the continued fraction expansion

Cpqq “
1

1 ´
q

1 ´
q

. . .

see, e.g. [1]. Here and thereafter the generating function of a series is a function whose Taylor
expansion at 0 coincides with the series. Abusing the notation, we will often identify series, the
corresponding generating functions, and continued fractions. We will use the same notation for
all of them.

Note also that the “shifted series” Cpqq´1
q has the following J-fraction expansion

Cpqq ´ 1

q
“

1

1 ´ 2q ´
q2

1 ´ 2q ´
q2

. . .

TheMotzkin numbers Mn “ 1, 1, 2, 4, 9, 21, 51, . . . is another classical example. The generating
function

Mpqq “
1 ´ q ´

a

p1 ` qqp1 ´ 3qq

2q2
“

1

q
C

´ q

1 ` q

¯
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can be written as continued fractions

Mpqq “
1

1 ´
q

1 ´
q

1 ´
q2

1 ´
q

1 ´
q

1 ´
q2

. . .

“
1

1 ´ q ´
q2

1 ´ q ´
q2

. . .

Note that the second formula (that can be found in [5]) is the simplest example of a regular
J-fraction, while the first one is a very nice example of C-fraction.

1.2. q-reals: examples and ideas. The classical q-deformed integers are defined for n P Zą0

by

(1.3) rnsq :“ 1 ` q ` q2 ` ¨ ¨ ¨ ` qn´1 “
1 ´ qn

1 ´ q
.

They arose in the works of Euler and Gauss and play important role in combinatorics and
mathematical physics. The notion of q-deformed rationals [29] and, more generally, that of q-
deformed real numbers [30] extends q-integers. Given x P R, the q-deformation rxsq is a series
in q with integer coefficients. A fundamental property of q-reals is PSLp2,Zq-invariance; see [24].
Analytic properties of the series defining q-deformed real numbers were studied in [25].

The simplest example of q-deformed irrational number is the q-deformation of φ “ 1`
?
5

2 ,
called the “golden ratio”. This q-deformation will be denoted by Gpqq (instead of rφsq as

in [30]). It is given by the series

(1.4)

Gpqq :“ 1 ` q2 ´ q3 ` 2q4 ´ 4q5 ` 8q6 ´ 17q7 ` 37q8 ´ 82q9

`185q10 ´ 423q11 ` 978q12 ´ 2283q13 ` 5373q14 ´ 12735q15

`30372q16 ´ 72832q17 ` 175502q18 ´ 424748q19 ` 1032004q20 ¨ ¨ ¨

see [30]. Note that the coefficients of this series are quite close to the sequence A004148; see [35].
The differences are the zero linear term in (1.4) and the alternating signs. The series A004148
belongs to the class of sequences called in [5] the “generalized Catalan numbers”1. It is connected
to the Narayana triangle and has interesting combinatorial interpretations; see [6].

The generating function of the series (1.4) is

(1.5) Gpqq “
q2 ` q ´ 1 `

a

p1 ´ q ` q2qp1 ` 3q ` q2q

2q
.

Similarly to the Motzkin case, the function Gpqq can be obtained from the generating function
of the Catalan numbers:

Gpqq “ 1 ` q ´
q

1 ` q ` q2
C

´ q2

p1 ` q ` q2q2

¯

,

1Note however that there are many other sequences known under this name.
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(see [5] for a similar expression). The series (1.4) and its shifts have nice continued fraction
expansions that have close resemblance with the Catalan and Motzkin continued fractions.

Proposition 1.1. The series (1.4) is represented by the following 2-periodic C-fraction

(1.6) Gpqq “
1

1 ´
q2

1 `
q

1 ´
q2

1 `
q

. . .

It turns out that the series (1.4) is also related to another, 3-periodic, C-fraction. Let us
introduce the following notation for the shifted series

(1.7) Gp1qpqq :“
Gpqq ´ 1

q
, Gp2qpqq :“

Gpqq ´ 1

q2
, Gp3qpqq :“

Gpqq ´ 1 ´ q2

q3
,

that will be useful in the sequel. Note that the series Gp2qpqq corresponds precisely to the
sequence in the first column of A123634; see [35].

Proposition 1.2. One has

(1.8) Gp2qpqq “
1

1 `
q

1 `
q

1 `
q3

1 `
q

1 `
q

1 `
q3

. . .

The q-deformed golden ratio seems to be an inexhaustible source of beautiful continued frac-
tions. Let us give two more formulas.

Proposition 1.3. One has the following 2-periodic continued J-fraction

(1.9) Gp2qpqq “
1

1 ` q ´
q2

1 ` q `
q3

1 ` q ´
q2

1 ` q `
q3

. . .

Despite their simplicity, we did not find the C-fractions (1.6) and (1.8) and the J-fraction (1.9)
in the literature. We will give the proofs in Section 3.1.

Alternatively, the series Gp2qpqq can be represented by a 1-periodic J-type continued fraction:
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Proposition 1.4. One has

(1.10) Gp2qpqq “
1

1 ` q ´ q2 `
q3

1 ` q ´ q2 `
q3

. . .

Note that the connection between the continued fraction (1.10) and the sequence A004148
was observed in [6].

We will see in Section 3.3 that (1.10) belongs to the interesting class of super δ-fractions intro-
duced and studied in [17]. When δ “ 2, they are called H-fractions, and applied to computation
of Hankel determinants. They are particularly efficient in the case where some of the Hankel
determinants associated with the series vanish.

We will also show that, unlike (1.6), (1.8), and (1.9), the expression (1.10) can be generalized
to the infinite family of q-deformed “metallic numbers”. Recall that these numbers are the
irrationals yn (n P Zą0) defined by the following 1-periodic regular continued fraction:

(1.11) yn “ n `
1

n `
1

n `
1

. . .

In Theorem 3.2, we shall see that the q-deformation rynsq of any metallic number yn admits a

1-periodic super δ-fraction. For the golden ratio y1 “ 1`
?
5

2 “ φ, this is simply formula (1.10)

since ry1sq “ Gpqq “ 1 ` q2Gp2qpqq.

The next metallic number is y2 “
?
2 ` 1 which is often called the “silver ratio”. The

q-deformation ry2sq is the series that starts as follows

(1.12)
Spqq “ 1 ` q ` q4 ´ 2q6 ` q7 ` 4q8 ´ 5q9 ´ 7q10 ` 18q11 ` 7q12 ´ 55q13 ` 18q14

`146q15 ´ 155q16 ´ 322q17 ` 692q18 ` 476q19 ´ 2446q20 ` 307q21 ¨ ¨ ¨

see [30]. This series was recently added to the OEIS; see Sequence A337589. Not much is known
about it yet. The generating function of the series (1.12) is the function

(1.13) Spqq “
q3 ` 2q ´ 1 `

a

p1 ´ q ` q2qp1 ` q ` 4q2 ` q3 ` q4q

2q
.

As in the case of the golden ratio, we will use the following notation for the shifted series

(1.14)

Sp1qpqq :“
Spqq ´ 1

q
, Sp2qpqq :“

Spqq ´ 1 ´ q

q2
,

Sp3qpqq :“
Spqq ´ 1 ´ q

q3
, Sp4qpqq :“

Spqq ´ 1 ´ q

q4
.

Next statement is then the analogue of Proposition 1.4 for the series (1.12).
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Proposition 1.5. We have

(1.15) Sp4qpqq “
1

1 ` 2q2 ´ q3 `
q5

1 ` 2q2 ´ q3 `
q5

. . .

More continued fractions related to Spqq will be presented in Section 3.5 and other examples
of metallic q-numbers will be treated in Section 4.4.

1.3. Hankel determinants. Given a power series fpqq “
ř8

i“0 fiq
i or simply a sequence of

numbers f “ pfiqiPZě0 , the corresponding Hankel determinants are the determinants of the
n ˆ n matrices

(1.16) ∆pℓq
n pfq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fℓ fℓ`1 ¨ ¨ ¨ fℓ`n´1

fℓ`1 fℓ`2 ¨ ¨ ¨ fℓ`n

...
...

...
fℓ`n´1 fℓ`n ¨ ¨ ¨ fℓ`2n´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where ℓ, n “ 0, 1, 2, 3, . . ., and where ∆
pℓq
0 pfq :“ 1 by convention. These determinants are

important characteristics of f and appear in a variety of subjects. The number ℓ is called the

“shift” of the determinant ∆
pℓq
n pfq. When ℓ “ 0, we use the notation ∆npfq.

Let us recall the classical examples of the Catalan numbers, studied by Aigner in [2]. The
first two sequences of Hankel determinants in this case are identically equal to 1, and the third
Hankel sequence consists in all natural numbers:

∆n pCq “ 1, 1, 1, . . . ∆p1q
n pCq “ 1, 1, 1, . . . ∆p2q

n pCq “ n ` 1.

Note that the Hankel sequences ∆n pCq and ∆
p1q
n pCq completely characterize the sequence of

Catalan numbers.
Another classical example is that of the Motzkin numbers, also studied by Aigner in [3]. In this

case, the first sequence of Hankel determinants is still identically 1, the second is 3-antiperiodic
(and thus 6-periodic) and consists of ´1, 0, and 1:

∆n pMq “ 1, 1, 1, . . . ∆p1q
n pMq “ 1, 1, 0,´1,´1, 0, . . .

for n “ 0, 1, 2, 3, . . . The third sequence of Hankel determinants of the Motzkin numbers is

∆p2q
n pMq “ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . .

It is classical that, whenever fpqq can be written as a regular C-fraction or a regular J-fraction,
the determinants ∆npfq can be calculated explicitly; see, e.g. [22, 23]. Much work has been done
to generalize these classical results to the cases of more general continued fractions such as (1.1)
and (1.2); see, e.g. [9, 14, 17, 18, 37]. We will try to adopt these results in our situation, although
this is not always straightforward. Our proofs are based on the notion of H-fractions of [17].

Sequences with Hankel determinants consisting of 0, 1 and ´1 were considered in [8, 5, 6, 41];
according to [8] the question of characterization of such sequences was asked by Michael Somos.
We contribute to this study.

In Section 4.2 we will prove the following property of the q-deformed golden ratio (1.4).
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Theorem 1.6. The first four sequences of Hankel determinants corresponding to the series (1.4)
are 4-antiperiodic

∆
pℓq
n`4pGq “ ´∆pℓq

n pGq, ℓ “ 0, 1, 2, 3,

(and thus 8-periodic) and consist of 0, 1, and ´1 only. The period is as follows

(1.17)

∆npGq “ 1, 1, 1, 0, ´1, ´1, ´1, 0, . . .

∆
p1q
n pGq “ 1, 0, ´1, 1, ´1, 0, 1, ´1, . . .

∆
p2q
n pGq “ 1, 1, 1, 0, ´1, ´1, ´1, 0, . . .

∆
p3q
n pGq “ 1, ´1, 0, 0, ´1, 1, 0, 0, . . .

for n “ 0, 1, 2, 3, . . .

The first formula in (1.17) is not completely new; see Sequence A123634. Sequences with
generating function satisfying quadratic functional equations similar to our main examples were
studied in [41, 5, 7, 13] and [21].

The sequences of Hankel determinants ∆
pℓq
n pGq with ℓ ě 4 do not consist solely of 0, 1 and ´1,

but they form interesting patterns. For instance,

∆p4q
n pGq “ 1, 2, 0,´2,´3,´4, 0, 4, 5, 6, 0,´6,´7,´8, 0, 8, . . .(1.18)

Observe a similarity with the Hankel sequence of the Motzkin numbers ∆
p2q
n pMq.

We will prove in Section 4.2 that the series Gpqq (see (1.4)) is completely characterized by the
first four sequences of Hankel determinants. More precisely, we have the following statement.

Theorem 1.7. The series Gpqq is the only series with Hankel determinants as in (1.17).

Note that this kind of statements is obvious when the sequences of Hankel determinants contain
no zero entries, for instance the sequence of Catalan numbers is characterized by the first two
sequences of Hankel determinants consisting of 1’s. With presence of zeros the situation is more
complicated.

For our second main example of silver ratio Spqq (see (1.12)), we have the following result
that will be proved in Section 4.3.

Theorem 1.8. The first four sequences of Hankel determinants are periodic with period 12

∆
pℓq
n`12pSq “ ∆pℓq

n pSq, ℓ “ 0, 1, 2, 3,

and consist in ´1, 0, 1 only. The period is as follows

(1.19)

∆npSq “ 1, 1, ´1, ´1, 1, 0, ´1, 0, 0, 1, 0, ´1, . . .

∆
p1q
n pSq “ 1, 1, 0, ´1, 0, 0, ´1, 0, 1, 1, ´1, ´1, . . .

∆
p2q
n pSq “ 1, 0, 0, ´1, 0, 1, ´1, ´1, 1, 1, ´1, 0, . . .

∆
p3q
n pSq “ 1, 0, ´1, ´1, 1, 1, ´1, ´1, 0, 1, 0, 0, . . .

for n “ 0, 1, 2, 3, . . .
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It turns out that the next sequence is also 12-periodic, ∆
p4q

n`12pSq “ ∆
p4q
n pSq, with the following

period

∆p4q
n pSq “ 1, 1,´2,´1, 2,´1,´2, 1, 1, 0, 0, 0, . . .

This differs the series Spqq from Gpqq; cf. formula (1.18). The sequences ∆
pℓq
n pSq with ℓ ě 5

seem to be aperiodic.
Although Theorem 1.8 is quite similar to Theorem 1.6, unlike the case of the golden ratio,

we are unable to recover the sequence Spqq from this information and do not know if this is the
only series with Hankel determinants as in (1.19).

The number of Hankel sequences consisting of 0, 1, and ´1 for the q-deformation of the
metallic numbers yk defined by (1.11) seems to grow as k grows; see Conjecture 1.9 below.

1.4. Somos and Gale-Robinson recurrences. It is very easy to check that the first three

sequences of Hankel determinants ∆npGq,∆
p1q
n pGq, and ∆

p2q
n pGq (see (1.17)) satisfy the recur-

rence

(1.20) ∆n`4∆n “ ∆n`3∆n`1 ´ ∆2
n`2.

Note also for comparison that the shifted Hankel sequence ∆
p1q
n pMq of the Motzkin numbers

satisfies the recurrence ∆n`2∆n “ ∆2
n`1 ´ 1.

Recurrence (1.20) is (an instance of) the Somos-4 sequence, whose general form is

an`4an “ αan`3an`1 ´ βa2n`2,

for arbitrary parameters α, β. This remarkable class of sequences was discovered by Michael
Somos in the ’80s. It remained unnoticed for some time and was disclosed by David Gale [15, 16].
Since then Somos sequences became very popular and were studied by many authors.

Relation between the Hankel determinants of sequences satisfying quadratic (“Catalan type”)
recurrences and Somos-4 sequences was discovered by Michael Somos who lectured about the
subject in the fall of 2000 at MIT Stanley Seminar in Combinatorics. Somos conjectured, in
general, the appearance of the Somos-4 sequence as the Hankel determinants of a quadratic type
sequence (for the sequence A004148, see the Hankel determinant number wall A123634). This
relation was rediscovered by Paul Barry and also conjectured in [5]. The first detailed proof of
this conjecture was given in [13], a deep connection to (hyper)elliptic curves and generalizations
were obtained in [21]. Recurrence (1.20) can be considered as a part of these results.

Recurrence (1.20) has an interesting geometric interpretation. Taking independent vari-
ables px, y, z, tq, it produces the map

px, y, z, tq ÞÝÑ

´

y, z, t,
yt ´ z2

x

¯

,

which generates a 4-dimensional discrete dynamical system integrable in the sense of Liouville-

Arnold; see [20, 12] and references therein. The first three Hankel sequences ∆npGq,∆
p1q
n pGq, and

∆
p2q
n pGq thus correspond to periodic trajectories of the above map, or equivalently to periodic

solutions of (1.20).
It is also easy to see that the first four sequences of Hankel determinants (1.19) satisfy the

recurrence

(1.21) ∆n`6∆n “ ∆n`5∆n`1 ´ ∆2
n`3,
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which is a Somos-6 sequence. This statement is closely related to the results of Andrew Hone [21],
since the quadratic recurrence for the coefficients of (1.12) fits into the class considered in this
paper; see Eq. (4.22) in [21].

Let us conclude our introduction. The results proved in this article for k “ 1 (golden ratio)
and k “ 2 (silver ratio) and a long series of computer experimentations for k “ 3 and k “ 4 (see
Section 4) lead us to the following conjecture for the Hankel determinants sequences associated
with the q-deformations of the metallic numbers yk.

Conjecture 1.9. Let k be a positive integer, and for ℓ P Zě0 let ∆
pℓq
n :“ ∆

pℓq
n

`

ryksq

˘

denote as

in (1.16) the ℓ-shifted sequence of Hankel determinants associated with the q-deformation of the
metallic number yk.

(a) The first k ` 2 sequences ∆
p0q
n ,∆

p1q
n , . . . ,∆

pk`1q
n consist of ´1, 0, 1 only. These sequences

satisfy the recurrence

(1.22) ∆
pℓq
n`2k ∆

pℓq
n “ ∆

pℓq
n`2k´1∆

pℓq
n`1 ´

`

∆
pℓq
n`k

˘2
for ℓ “ 0, 1, . . . , k ` 1 and all n P Zě0,

and if k ě 2, they are 3 ¨ 2k-(anti)periodic:

∆
pℓq

n`3¨2k
“ p´1qk∆pℓq

n .

(b) The first k ` 1 pairs of consecutive sequences are related by the formula

∆pℓq
n “ p´1qspk,nq∆

pℓ´1q

n`k`1 for ℓ “ 1, 2, . . . , k ` 1 and all n P Zě0,

where spk, nq is some function of k and n.

Recurrence (1.22) is called the three term Gale-Robinson recurrence; see [16, 11]. Integrability
of the Gale-Robinson systems was proved by Fordy and Hone [12]. The Hankel determinants of
q-deformed metallic numbers are, conjecturally, periodic t´1, 0, 1u-solutions of the corresponding
discrete integrable systems.

Organization. The paper is organized as follows.
In Section 2, we present the definition of q-reals and give a few examples. We follow [30, 29]

and emphasize the continued fraction presentation. We also discuss the PSLp2,Zq-invariance
property. The family of q-deformed “metallic” irrationals is described with some details.

In Section 3, we develop the technique based on continued fractions. We use the notion of
super δ-fractions and H-fraction introduced in [17]. We consider the series of q-deformed metallic
numbers and find their δ-fraction presentation.

In Section 4, we prove Theorems 1.6, 1.7, and 1.8. We also calculate the first sequences of
Hankel determinants for several other examples of metallic numbers and show that the phenom-
enon detected for Gpqq and Spqq persists and is amplified. We demonstrate appearance of the
recurrence (1.22). These results remain experimental for other metallic numbers.

The final Section 5 contains miscellaneous examples of continued fractions representing q-
numbers. The general theory of C- and J-fraction presentation of q-numbers is yet to be devel-
oped.
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2. q-deformed real numbers

In this section, we present the definition of q-deformed real numbers [29, 30] and give several
examples. The main property of q-reals is that of PSLp2,Zq-invariance [24]. Other important
properties have recently been studied in [4, 33, 25, 31, 32, 34, 36].

2.1. q-deformed continued fractions. The original definition consists in q-deformation of
continued fractions, but it is not of the form (1.1).

Given x P R, let us consider its standard continued fraction expansions

x “ c1 ´
1

c2 ´
1

. . .

and x “ a1 `
1

a2 `
1

. . .

,

where pc1, c2, . . .q and pa1, a2, . . .q are sequences of integers such that ai ě 1 and ci ě 2, for
all i ě 2. The first continued fraction expansion is known under the name of Hirzebruch-Jung
continued fraction (sometimes called the “negative”, “minus”, or “reversal” continued fraction),
the second one is the most classical continued fraction expansion. We will use the notation

x “ Jc1, c2 . . .K and x “ ra1, a2, . . .s ,

respectively. Note that the first notation is due to Hirzebruch. The coefficients ai and cj of the
above expansions are connected by the Hirzebruch formula; see, e.g. [19, 28].

The above continued fractions are finite if and only if x is rational and infinite (converging to
x) when x is irrational.

Definition 2.1 ([29, 30]). The q-analogue of x is the formal series rxsq defined by any of the
following (equal) continued fractions:

rxsq “ rc1sq ´
qc1´1

rc2sq ´
qc2´1

. . .

(2.1)

“ ra1sq `
qa1

ra2sq´1 `
q´a2

ra3sq `
qa3

ra4sq´1 `
q´a4

. . .

(2.2)

where rnsq stands for the q-integer as in (1.3), and rnsq´1 “ q1´nrnsq is the same expression with
inverse parameter.

The continued fractions (2.1) and (2.2) coincide when x is rational [29]. When x is irrational,
the convergence of the expansions (2.1) and (2.2) and their coincidence is guaranteed by the
stabilization phenomenon highlighted in [30]. Note that, in the rational case, the second for-
mula (2.2) was also suggested (independently and almost simultaneously) in [36]. Let us also
mention that, when x is rational, rxsq is a rational function in q that has many nice properties,
such as unimodality and total positivity; see [29, 32, 27, 33]. Another important property is
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that the q-deformation of any quadratic irrational number is necessarily periodic; see [24]. This
will be observed in all the examples treated in our article.

Remark 2.2. The continued fraction (2.1) has the type of Thron fraction, or T-fraction; see [39].
Indeed, the degree of every numerator is equal to the degree of the preceding polynomial. Con-
tinued fractions of this type were used in various aspects of the theory of continued fractions
and combinatorics, but they do not allow to calculate Hankel determinants.

Example 2.3. (a) The simplest example of a q-deformed irrational is the golden ratio φ “ 1`
?
5

2
already discussed in the introduction. The regular continued fraction of the golden ratio is
φ “ r1, 1, 1, . . .s, and the Hirzebruch-Jung expansion is φ “ J2, 3, 3, 3, . . .K. Recall that the
q-deformation of φ was denoted by Gpqq. Formulas (2.1) and (2.2) then read

(2.3)

Gpqq “ 1 ` q ´
q

1 ` q ` q2 ´
q2

1 ` q ` q2 ´
q2

. . .

“ 1 `
q2

q `
1

1 `
q2

q `
1

. . .

The explicit power series is as in (1.4).
(b) The regular continued fraction of the silver ratio y2 is 1-periodic: y2 “ r2, 2, 2, . . .s, and

the Hirzebruch-Jung expansion has period 2: y2 “ J3, 2, 4, 2, 4, 2, 4, . . .K. The q-deformation Spqq

is then given by the series represented by the following 2-periodic continued fractions

(2.4)

Spqq “ r3sq ´
q2

1 ` q ´
q

1 ` q ` q2 ` q3 ´
q3

1 ` q ´
q

. . .

“ 1 ` q `
q4

q ` q2 `
1

1 ` q `
q4

q ` q2 `
1

. . .

(c) The formula for the power series
“?

2
‰

q
can be deduced from (2.4) since

“?
2
‰

q
“ Sp1qpqq

with the help of the recurrence formula (2.7) below.
(d) For more examples; see [30, 24].
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Clearly, the continued fractions (2.3), (2.4), and more generally (2.1) and (2.2), are nor C-
fractions neither J-fractions, since the powers of q in the numerators are not high enough.
Rewriting one of the fractions (2.1), or (2.2) in the form (1.1) and/or (1.2) is a challenging open
problem.

2.2. PSLp2,Zq-invariance. Modular, i.e., PSLp2,Zq-invariance is the main property of q-numbers.
It can be used as an equivalent (and perhaps more conceptual) definition, comparing to Defini-
tion 2.1. Although we will not use this modular invariance, we recall it here because it explains
formulas (2.1) and (2.2).

The group SLp2,Zq is the group of unimodular matrices with integer coefficients

M “

ˆ

r v
s u

˙

, r, v, s, u P Z, ru ´ vs “ 1.

It acts on R Y t8u by linear-fractional transformations:

(2.5) M ¨ x “
rx ` v

sx ` u
.

This action is effective for the modular group PSLp2,Zq, which is the quotient of SLp2,Zq by its
center t˘Idu. It can be generated by two elements, and the standard choice of generators is

T “

˜

1 1

0 1

¸

, S “

˜

0 ´1

1 0

¸

with the relations S2 “ pTSq3 “ Id.
Following [29, 24], consider the following matrices depending on q

(2.6) Tq “

˜

q 1

0 1

¸

, Sq “

˜

0 ´1

q 0

¸

.

Viewed as elements of PGLp2,Zrq, q´1sq, the matrices Tq and Sq satisfy the same relations as T
and S, namely S2

q “ pTqSqq3 “ Id. Therefore, they generate a representation

ρ : PSLp2,Zq Ñ PGLp2,Zrq, q´1sq,

and hence an action on the space Zppqqq Y t8u of formal Laurent series in q defined by linear-
fractional transformations as in formula (2.5). PSLp2,Zq-invariance then reads

rM ¨ xsq “ ρpMq ¨ rxsq .

Since the linear-fractional action (2.5) is transitive on Q Y t8u, one can understand q-rationals
as an orbit of one point, that can be chosen r0sq “ 0, or r1sq “ 1, etc. under the PSLp2,Zq-action
on Zppqqq Y t8u defined by (2.6).

Using the generators (2.6), this can be stated as recurrence relations

(2.7) rx ` 1sq “ q rxsq ` 1

„

´
1

x

ȷ

q

“ ´
1

q rxsq
,

and when x P Q, these relations suffice to determine the rational function rxsq if we know that

r0sq “ 0. Formulas (2.1) and (2.2) readily follow from the PSLp2,Zq-invariance, at least for
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rational x. Indeed, if x “ Jc1, c2 . . . , cnK then

rxsq “ T c1
q SqT

c2
q Sq ¨ ¨ ¨T cn

q ¨ 0,

hence (2.1). The second formula (2.2) involving the regular continued fraction can be deduced
in a similar way; see [24].

A straightforward generalization of the first formula in (2.7) will be of interest:

(2.8) rx ` ksq “ qkrxsq ` rksq px P R, k P Zě0q.

Let us also mention that the above PSLp2,Zq-invariance can be understood as invariance with
respect to the Burau representation of the braid group B3; see [4, 31].

2.3. The gap theorem. We give a refined form of the “gap theorem” which was proved in [30].

Theorem 2.4. If k ď x ă k ` 1
n for some k, n P Zě0, then the series rxsq starts as follows

rxsq “ rksq ` qk`n ` κk`n`1 q
k`n`1 ` ¨ ¨ ¨

i.e., if k ě 1,

rxsq “ 1 ` q ` ¨ ¨ ¨ ` qk´1 ` qk`n ` κk`n`1 q
k`n`1 ` ¨ ¨ ¨

where κi are some integer coefficients.

Proof. The case n “ 1 was proved in [30] (see Theorem 2). Using (2.8), this implies that, if
´n ´ 1 ď x ă ´n, then rxsq is of the form

rxsq “ ´q´n´1
`

1 ` α1 q ` α2 q
2 ` ¨ ¨ ¨

˘

with αi integers. Applying the second equation in (2.7), we conclude that if 0 ď x ă 1
n , then

rxsq “ qn
`

1 ` β1 q ` β2 q
2 ` ¨ ¨ ¨

˘

with βi integers. The result follows applying again (2.8). □

One can observe the gaps of length 1 and 2 in the examples (1.4) and the series rδsq after (2.4),
respectively.

The gap theorem will be important for the sequel. In particular, it implies that the expression

(2.9) σqpxq :“
rx ´ ksq

q
“

rxsq ´ rksq

qk`1
,

is still a power series. It turns out that these “shifted series” have better continued fraction ex-
pansions; formulas (1.2) and (1.4) give two such examples, others will be obtained in Section 3.3.

2.4. The metallic irrationals. Our main examples of q-reals are q-deformations of the “metal-
lic numbers” yn, i.e. the irrational numbers whose regular continued fraction expansion is 1-
periodic as in (1.11). Two examples of such numbers, the golden ratio φ and the silver ratio δ
have already been considered in the introduction. Let us give two more examples.

Example 2.5. (a) The third example y3 “ 3`
?
13

2 is sometimes called the “bronze ratio”. The
generating function of ry3sq is as follows

(2.10) Bpqq “
q4 ` q2 ` 2q ´ 1 `

a

p1 ´ q ` q2qp1 ` q ` 2q2 ` 5q3 ` 2q4 ` q5 ` q6q

2q
.
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The series starts as follows
„

3 `
?
13

2

ȷ

q

“ 1 ` q ` q2 ` q6 ´ q8 ´ 2q9 ` 2q10 ` 4q11 ` q12 ´ 11q13 ´ 7q14 ` 15q15

`34q16 ´ 17q17 ´ 83q18 ´ 38q19 ` 189q20 ` 215q21 ´ 260q22 ¨ ¨ ¨

This sequence is not in the OEIS.
(b) The next example is y4 “

“?
5 ` 2

‰

q
“ q2

“?
5
‰

q
` q ` 1 sometimes called “platinum”. Its

generating function is

P pqq “
q5 ` q3 ` q2 ` 2q ´ 1 `

a

p1 ´ q ` q2qp1 ` q ` 2q2 ` 3q3 ` 6q4 ` 3q5 ` 2q6 ` q7 ` q8q

2q
.

We will need the following statement, which is also implicitly in [24].

Proposition 2.6. The q-deformed metallic numbers are characterized by the following func-
tional equation

(2.11) q ryns
2
q `

´

p1 ` qnqp1 ´ qq ´ q rnsq

¯

rynsq “ 1.

Proof. By definition (2.2), the q-deformation rynsq is characterized by the functional equation

rynsq “ rnsq `
qn

rnsq´1 `
q´n

rynsq

,

and therefore

rynsq “
rnsqrynsqrnsq´1 ` q´nrnsq ` qnrynsq

rynsqrnsq´1 ` q´n
.

Since rnsq´1 “ q1´nrnsq, after some simplification we obtain (2.11). □

The following examples will be useful in the sequel.

Example 2.7. (a) The first metallic number is the golden ratio φ “ y1, already discussed in
the introduction. The generating function Gpqq of the q-deformed golden ratio is given by (1.5).
It satisfies (and is characterized by) the following functional equation

(2.12) q Gpqq2 `
`

1 ´ q ´ q2
˘

Gpqq “ 1,

that readily follows from (2.3) (see also [30]). Recall that Gp1qpqq, Gp2qpqq, and Gp3qpqq are the
generating functions of the shifted series (1.7). Then

(2.13) Gpqq “ 1 ` qGp1qpqq “ 1 ` q2Gp2qpqq “ 1 ` q2 ` q3Gp3qpqq.

Substituting these expressions to (2.12) leads to

(2.14)

q2Gp1qpqq2 `
`

1 ` q ´ q2
˘

Gp1qpqq “ q,

q3Gp2qpqq2 `
`

1 ` q ´ q2
˘

Gp2qpqq “ 1,

q4Gp3qpqq2 `
`

1 ` q ´ q2 ` 2q3
˘

Gp3qpqq “ ´1 ` q ´ q2.
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(b) The second example is the silver ratio y2. The generating function Spqq of its q-deformation
is as in (1.13), it satisfies the following functional equation

(2.15) q Spqq2 `
`

1 ´ 2q ´ q3
˘

Spqq “ 1.

Let Sp1qpqq, Sp2qpqq, Sp3qpqq, and Sp4qpqq be the generating functions of the shifted series (1.14).
It easily follows from (2.15) that these functions satisfy

(2.16)

q2 Sp1qpqq2 `
`

1 ´ q3
˘

Sp1qpqq “ 1 ` q2,

q3 Sp2qpqq2 `
`

1 ` 2q2 ´ q3
˘

Sp2qpqq “ q2,

q4 Sp3qpqq2 `
`

1 ` 2q2 ´ q3
˘

Sp3qpqq “ q,

q5 Sp4qpqq2 `
`

1 ` 2q2 ´ q3
˘

Sp4qpqq “ 1.

(c) The generating function of the q-deformed bronze ratio y3 “ 3`
?
13

2 (see (2.10)) satisfies

q Bpqq2 `
`

1 ´ 2q ´ q2 ´ q4
˘

Bpqq “ 1.

As concerns the shifted series
”

1`
?
13

2

ı

q
, its generating function Bp1qpqq :“ Bpqq´1

q is such that

(2.17) q2Bp1qpqq2 `
`

1 ´ q2 ´ q4
˘

Bp1qpqq “ 1 ` q ` q3.

Further examples can be found in [24]; see Example 4.5.

3. q-irrationals and super δ-fractions

This section contains the material that will be necessary for the proof of our main results. We
start with a proof of Propositions 1.1, 1.2 and 1.3. We then show that the power series obtained
as the q-deformation of the metallic numbers has a J-fraction expansion of a special type that
was studied in [17]. For the simplest examples of metallic numbers, the golden and silver ratios,
we obtain particularly useful formulas of H-fractions.

3.1. Proof of Propositions 1.1, 1.2 and 1.3. Let us now prove formulas (1.6), (1.8) and (1.9).

Proof of Proposition 1.1. Formula (1.6) can be rewritten in the form of recurrence:

(3.1) Gpqq “
1

1 ´
q2

1 ` q Gpqq

that is equivalent to the fact that Gpqq satisfies (2.12). Proposition 1.1 follows. □

Proof of Proposition 1.2. Formula (1.8) reads

Gp2qpqq “
1

1 `
q

1 `
q

1 ` q3Gp2qpqq

,

which is equivalent to the second part of (2.14), hence Proposition 1.2. □
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Proof of Proposition 1.3. Formula (1.9) can be written

Gp2qpqq “
1

1 ` q ´
q2

1 ` q ` q2Gp1qpqq

,

that follows from (2.14). □

3.2. Super δ-fractions and H-fractions. A special class of generalized Jacobi fractions was
introduced and studied by G.-N. Han in [17]. For every positive integer δ, consider the expres-
sions

(3.2) Hpqq “
v0q

k0

1 ` q U1pqq ´
v1q

k0`k1`δ

1 ` q U2pqq ´
v2q

k1`k2`δ

1 ` q U3pqq ´
v3q

k2`k3`δ

. . .

where vi ‰ 0 are constants, ki P Zě0, and Uipqq are polynomials such that degpUiq ď ki´1`δ´2.
These continued fractions were called in [17] “super δ-fractions”. They include the regular C-
fractions (for δ “ 1 and ki ” 0) and the J-fractions (for δ “ 2 and ki ” 0). One of the main
results of [17] is that for every δ ě 1 any power series can be expanded as a unique super
δ-fraction.

In the special case where δ “ 2, the continued fractions (3.2) were called H-fractions and
applied to computation of Hankel determinants. In particular, Theorem 2.1 of [17] states the
following. Introduce the notation

(3.3) sn :“
n´1
ÿ

i“0

ki ` n, εn :“
n´1
ÿ

i“0

ki pki ` 1q

2
, for n ě 1.

Then

(3.4)

#

∆sn pHpqqq “ p´1qεnvsn0 vsn´s1
1 vsn´s2

2 ¨ ¨ ¨ v
sn´sn´1

n´1 ,

∆m pHpqqq “ 0 if m R tsn, n ě 1u.

This theorem is a powerful tool that we will use systematically. We also refer to [18] for a long
history of this statement that was independently proved in different forms and with different
generality by several authors; see, e.g. [9].

The proof of (3.4) is based on the following beautiful lemma (see Lemma 2.2 of [17]) that we
will often use directly.

Lemma 3.1 ([17]). Let k be a nonnegative integer and let F pqq, Gpqq be two power series such
that

F pqq “
qk

1 ` q Upqq ´ qk`2Gpqq

where Upqq is a polynomial of degpUq ď k. Then, ∆npF q “ p´1q
kpk`1q

2 ∆n´k´1pGq.
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3.3. Super δ-fractions of metallic q-numbers. Consider the infinite family of quadratic
irrationals that can be represented by the 1-periodic continued fractions

(3.5) xn “
1

n `
1

n `
1

. . .

for some n P Zą0. In other words, xn is a shift of the number yn “ xn ` n which is the n-th
“metallic number” already defined in (1.11).

It turns out that the q-deformation of xn can be written as a rather simple 1-periodic super
δ-fraction. For convenience, we will use the following notation:

(3.6)

xnyq :“ qrnsq ` p1 ` qnqp1 ´ qq

“

#

1 ` q2 ` q3 ` ¨ ¨ ¨ ` qn´1 ` 2qn ´ qn`1 if n ě 2,

1 ` q ´ q2 if n “ 1.

The following statement is our most general result.

Theorem 3.2. (i) If yn is a metallic number, i.e. yn “ rn, n, n, . . .s and xn “ yn´n as in (3.5),
then we have the following 1-periodic expansion

(3.7)
rxnsq

qn
“

1

xnyq `
q2n`1

xnyq `
q2n`1

. . .

(ii) The continued fraction (3.7) is a super δ-fraction with δ “ 3.

Proof. Part (i). We transform (2.11) into a quadratic equation for rxnsq. Indeed, (2.8) reads
rynsq “ qn rxnsq ` rnsq, and inserting this equality in (2.11) leads to

(3.8) qn`1 rxns
2
q ` xnyq rxnsq ´ qn “ 0.

On the other hand, (3.7) can be rewritten as follows

rxnsq “
qn

xnyq ` qn`1 rxnsq

which is clearly equivalent to (3.8).
Part (ii). The continued fraction (3.7) fits with the general formula (3.2) with δ “ 3, tak-

ing v0 “ 1 and all other coefficients vi “ ´1, and ki “ n ´ 1 for all i. □

Example 3.3. For n “ 1 formula (3.7) coincides with (1.10), for n “ 2 this is (1.15).

Remark 3.4. The continued fractions (3.7) are very simple and 1-periodic. They are of
type (3.2), but unfortunately they are not H-fractions, since δ “ 3. Therefore, the methods
of [17] to calculate the Hankel determinants cannot be applied to them. Our next goal is to
rewrite these super δ-fractions as H-fractions, we succeeded to do this in several cases.
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3.4. H-fractions for the golden ratio. Let us now rewrite the continued fraction expansions
for the series Gpqq (see (1.4)) and its shifts, in such a way that they become H-fractions, i.e.
super δ-fractions with δ “ 2. This is a technical work that will be useful for the proof of
Theorem 1.6.

Lemma 3.5. (i) One has the following 3-periodic expansion

(3.9) Gp2qpqq “
1

1 ` q ´
q2

1 ` q `
q3

1 ` q ´ q2 `
q3

1 ` q ´
q2

. . .

(ii) The continued fraction (3.9) is an H-fraction in the sense of [17].

Proof. Part (i). Formula (3.9) can be written as follows

Gp2qpqq “
1

1 ` q ´
q2

1 ` q `
q3

1 ` q ´ q2 ` q3Gp2qpqq

and it is easily seen that this expression is in accordance with (2.14).
Part (ii). In the formula (3.2) with δ “ 2, take the following 3-periodic sequences of coefficients

ki, vi and polynomials Ui

(3.10)
ki “ 0, 0, 1, 0, 0, 1, 0, . . .
vi “ 1, 1, ´1, ´1, 1, ´1, ´1, . . .
Ui “ 1, 1, 1 ´ q, 1, 1, 1 ´ q, . . .

where i “ 0, 1, 2, 3, . . . With this choice, the H-fraction (3.2) is precisely the continued frac-
tion (3.9).

Lemma 3.5 is proved. □

We are also able to present an H-fraction expansion for the genuine q-deformed golden ratio.

Lemma 3.6. (i) One has the following continued fraction expansion

(3.11) Gpqq “
1

1 ´
q2

1 ` q `
q3

1 ` q ´ q2 `
q3

1 ` q ´
q2

1 ` q `
q3

1 ` q ´ q2 `
q3

1 ` q ´
q2

. . .
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which is 3-periodic starting from the third numerator.
(ii) The continued fraction (3.11) is an H-fraction in the sense of [17].

Proof. Comparing to (3.9), formula (3.11) reads

1

Gpqq
“

1

Gp2qpqq
´ q.

One easily checks that the above equation is equivalent to the relation (2.12).
Part (ii) can be checked in the same way as in Lemma 3.5. □

We will need one more formula.

Lemma 3.7. One has the following 2-periodic continued fraction expansion

(3.12) Gp3qpqq “
1

1 ` 2q ´
q4

1 ` q ´ q2 ` 2q3 ´
q4

1 ` 2q ´
q4

1 ` q ´ q2 ` 2q3 ´
q4

. . .

which is also an H-fraction.

Proof. On the one hand, the generating function Gp3qpqq satisfies the functional equation indi-
cated in (2.14). On the other hand, (3.12) reads

(3.13) ´Gp3qpqq “
1

1 ` 2q ´
q4

1 ` q ´ q2 ` 2q3 ` q4Gp3qpqq

and leads to exactly the same functional equation. □

3.5. H-fractions for the silver ratio. Let us do the similar work in the case of our second
main example, the silver ratio y2. We present H-fractions for the series Spqq, Sp1qpqq and Sp3qpqq

given by (1.14). They will be used to prove Theorem 1.8.

Lemma 3.8. The series Sp1qpqq and Sp3qpqq are related via the continued fraction

(3.14) Sp1qpqq “
1

1 ´
q3

1 ` 2q2 `
q5

1 ` 2q2 ´ q3 ` q4 Sp3qpqq

Proof. Using Sp1qpqq “ q2Sp3qpqq ` 1, formula (3.14) is equivalent to

Sp1q “
1

1 ´
q3

1 ` 2q2 `
q5

1 ` q2 ´ q3 ` q2 Sp1q

.
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After simplification, one obtains

Sp1q “
Sp1qp2q4 ` q2q ´ pq3 ´ 2q2 ´ 1qpq2 ` 1q

Sp1qp´q5 ` 2q4 ` q2q ` q6 ´ 2q5 ` 2q4 ´ 2q3 ` 3q2 ` 1

This is equivalent to
´

q2 Sp1qpqq2 `
`

1 ´ q3
˘

Sp1qpqq ´ p1 ` q2q

¯

`

q3 ´ 2q2 ´ 1
˘

“ 0,

and thus follows from the first equation in (2.16). □

Actually, another continued fraction connects Sp3qpqq to Sp1qpqq:

Lemma 3.9. One has

Sp3qpqq “
q

1 ` 2q2 ´
q3

1 `
q2

1 `
q2

1 ` q `
q2

1 ` q2 Sp1qpqq

Proof. Similarly to (3.14), this formula follows from (2.16), after a straightforward computation.
□

Gluing formulas of the two previous lemmas we obtain an H-fraction for the shifted series
Sp1qpqq of the q-silver ratio.

Corollary 3.10. One has the following 8-periodic H-fraction presentation

(3.15) Sp1qpqq “
1

1 ´
q3

1 ` 2q2 `
q5

1 ` 2q2 ´ q3 `
q5

1 ` 2q2 ´
q3

1 `
q2

1 `
q2

1 ` q `
q2

1 ` q2 Sp1qpqq

Proof. It remains only to check that it has the type (3.2) of an H-fraction. This is easily done,
by using the following 8-periodic sequences of coefficients ki, vi and polynomials Ui

(3.16)
ki “ 0, 1, 2, 1, 0, 0, 0, 0, . . .
vi “ 1, 1, ´1, ´1, 1, ´1, ´1, ´1, . . .
Ui “ 0, 2q, 2q ´ q2, 2q, 0, 0, 1, q . . .

where i “ 0, 1, 2, 3, . . . □
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Lemma 3.11. One has the following relation between the generating function Spqq and its first
shift

(3.17) Spqq “
1

1 ´ q `
q2

1 ` q `
q2

1 ` q2 Sp1qpqq

.

Note that the concatenation of (3.17) and (3.15) gives a H-fraction for the q-deformation Spqq

of the silver ratio y2.

Proof. The functional equation (2.15) combined with Spqq “ q Sp1qpqq ` 1 gives

q2 SpqqSp1qpqq `
`

1 ´ q ´ q2
˘

Spqq “ 1.

This is equivalent to (3.17) after an elementary computation. □

4. Hankel determinants of q-metallic numbers

In this section, we prove Theorems 1.6, 1.7 and 1.8. We then consider more examples of the
series rynsq, and observe experimentally that several first sequences of their Hankel determinants

consist of ´1, 0, and 1 only. Moreover, the number of t´1, 0, 1u-Hankel sequences increases, as
n grows.

The most fascinating property of these t´1, 0, 1u-Hankel sequences is that they satisfy Somos
or Gale-Robinson recurrences. This property is easily proved for the gold and silver ratio and
remains conjectural for other metallic numbers.

4.1. Shifted Hankel determinants. We first establish a general formula concerning Hankel
determinants of metallic numbers.

Proposition 4.1. Let yk “ rk, k, k, . . .s be a metallic number. We have the following relation
between the shifted Hankel determinants:

∆pkq
n

`

ryksq

˘

“ p´1qn`
pk`1qpk´2q

2 ∆
pk`1q

n´k´1

`

ryksq

˘

.

Proof. Let xk “ yk ´ k, as in (3.5). By definition, rxksq “ q σqpykq. From (3.8) we have

rxksq “ ryk ´ ksq “
qk

xkyq ` qk`2σqpykq
.

According to (3.6), xkyq is of the form 1 ` upqqq with upqq a polynomial of degree k. Thus we
can apply Lemma 3.1 and get that

∆nprxksqq “ p´1qkpk`1q{2∆n´k´1p´σqpykqq,

hence the result. □
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4.2. The case of golden ratio. Proof of Theorems 1.6 and 1.7. We are ready to prove
that the first Hankel determinants of the q-deformed golden ratio are indeed given by (1.17) and
that they characterize the series (1.4).

Proof of Theorem 1.6. Until the end of the proof the Hankel determinants ∆
pℓq
n pGq will be

simply denoted by ∆
pℓq
n when there is no ambiguity.

Here is our strategy:
(a) first, we shall prove that the knowledge of any of the first three sequences of determinants

∆ “ ∆p0q,∆p1q,∆p2q entails the knowledge of the two others, because there are very simple
relations between them.

Then it will be sufficient:
(b) to calculate ∆p2q, and

(c) to calculate ∆p3q.
Before we do so, a first obvious but crucial observation is that the three shifted determinants

∆
pℓq
n , where ℓ “ 1, 2, 3, correspond to the non-shifted Hankel determinant ∆n of a shifted variant

of Gpqq or, equivalently, of a power series represented by one of the generating functions Gpℓq,
ℓ “ 1, 2, 3 introduced in (1.7). To make it clear:

∆pℓq
n “ ∆npGpℓqq, ℓ “ 0, 1, 2, 3.

Now we start our proof.
(a) Applying Proposition 4.1 to the case of the golden ratio φ “ y1, one obtains the relation

∆npGp1qq “ p´1qn´1∆n´2pGp2qq

or equivalently

∆p1q
n “ p´1qn´1∆

p2q

n´2.

Thus the second and third sequences in (1.17) can be deduced the one from the other.
Similarly, because of (3.1) and (2.13) we have

Gpqq “
1

1 ´ q2F1pqq
, with F1pqq “

1

1 ` qGpqq
“

1

1 ` q ` q2Gp1qpqq
.

Applying Han’s Lemma 3.1 we thus obtain the relation

∆n “ ∆npGq “ p´1qn∆npGp1qq “ p´1qn∆
p1q

n´2

which connects the second sequence in (1.17) with the first one.

(b) Now we determine explicitly the shifted Hankel determinants ∆
p2q
n . Since the continued

fraction (3.9) is an H-fraction by Lemma 3.5, we can calculate the Hankel determinants ∆
p2q
n

via formula (3.4). The parameters vi, si, εi contributing in this formula can be easily deduced
from (3.10) and (3.3):

vi “ 1, 1, ´1, ´1, 1, ´1, ´1, ´1, ´1, . . .
si “ 1, 2, 4, 5, 6, 8, 9, 10, 12, . . .
εi “ 0, 0, 1, 1, 1, 2, 2, 2, 3, . . .

where i “ 0, 1, 2, 3, . . . The sequence psiq misses the values 3`4i “ 3, 7, 11, . . . which means that

the Hankel determinants ∆
p2q

3`4i vanish. On the other hand, the non-zero values of the Hankel
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determinants of the sequence σqpφq are as follows:

∆
p2q

0 “ 1, ∆
p2q

1 “ 1, ∆
p2q

2 “ 1, ∆
p2q

4 “ ´1, ∆
p2q

5 “ ´1, ∆
p2q

6 “ ´1, ∆
p2q

8 “ 1, . . .

In other words we have proved that the sequence ∆p2q is the one given in the third row of (1.17).

Because of (a) this proves also that ∆ and ∆p1q are as in (1.17).

(c) The remaining case of ∆p3q “ ∆pGp3qq in (1.17) is treated by applying formula (3.4) to
the H-fraction (3.12). The parameters of this H-fraction are k2m “ 0, k2m`1 “ 2 for all m ě 0,
and thus

si “ 1, 4, 5, 8, 9, 12, 13 . . . , i “ 1, 2, 3, . . .

are the indices of non-zero determinants. We obtain this way the fourth row in (1.17).
Theorem 1.6 is proved.

Remark 4.2. An alternative proof of (b) above would be the following. According to (3.9), one
can write

Gp2qpqq “
1

1 ` q ´ q2F1pqq
, F1pqq “

1

1 ` q ` q2F2pqq
, F2pqq “

q

1 ` q ´ q2 ` q3Gp2qpqq
.

Applying Han’s Lemma 3.1 we thus obtain the relations

∆npGp2qq “ ∆n´1pF1q, ∆npF1q “ p´1qn´1∆n´1pF2q, ∆npF2q “ p´1qn´1∆n´2pGp2qq

which imply the 4-antiperiodicity: ∆
p2q
n “ ´∆

p2q

n´4. Thus it suffices to calculate the first four

determinants ∆
p2q
n with n “ 0, 1, 2, 3 to get the complete sequence.

Similarly, using (3.13) we easily prove the 4-antiperiodicity of the ∆p3q sequence and this gives
another proof of (c).

Finally, let us mention that, instead of proving the validity of our formula (1.17) for the

sequence of shifted determinants ∆p2q as we did in (b), we could have looked instead at the
sequence of non-shifted determinants ∆, since (a) above shows that they are equivalent. The
proof is quite the same and consists in applying formula (3.4) to the H-fraction (3.11).

Proof of Theorem 1.7. Let us now prove that the series Gpqq is characterized by the Hankel de-
terminants (1.17). We proceed by induction: assume that the first k coefficients, G0, G1, . . . Gk´1

of the series

Gpqq “

8
ÿ

i“0

Giq
i

(see (1.4)) are determined by (1.17). We need to prove that Gk is also determined by these
determinants.

Among the Hankel determinants (1.17), consider those with Gk in the lower right entry:

(4.1) ∆pℓq
n pGq “

ˇ

ˇ

ˇ

ˇ

ˇ

∆
pℓq
n´1

...

¨ ¨ ¨ Gk

ˇ

ˇ

ˇ

ˇ

ˇ

,

where ℓ “ 0, 1, 2, 3 and ℓ ` 2n ´ 2 “ k (see (1.16)). For every Gk there are exactly two such

Hankel determinants: if k is even, these are ∆ k
2

`1 and ∆
p2q
k
2

; if k is odd, these are ∆
p1q
k`1
2

and

∆
p3q
k´1
2

.
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It is easy to see that, according to Theorem 1.6 (see (1.17)), at least one of the determinants

∆
pℓq
n´1 in (4.1) is different from 0. Indeed, for every k, either ∆ k

2
`1 ‰ 0, or ∆

p2q
k
2

‰ 0, and either

∆
p1q
k`1
2

‰ 0, or ∆
p3q
k´1
2

‰ 0. Since the row and the column containing Gk in (4.1) consists of

coefficients Gi with i ă k, which are known by induction hypothesis, we conclude that the value

of (4.1) determines Gk, provided ∆
pℓq
n´1 is different from 0.

Theorem 1.7 is proved.

4.3. The case of silver ratio. Proof of Theorem 1.8. For short, we will use the notation

∆
pℓq
n instead of ∆

pℓq
n pSq until the end of the proof, so that

∆pℓq
n “ ∆npSpℓqq, ℓ “ 0, 1, 2, 3, 4,

with Spℓq defined in (1.14).

(a) Consider first the shifted series Sp1qpqq. Applying (3.4) to the continued fraction of
Lemma 3.10, we obtain the second formula in (1.19). Indeed, the parameters vi, si, εi con-
tributing in this formula can be easily deduced from (3.16) and (3.3):

vi “ 1, 1, ´1, ´1, 1, ´1, ´1, ´1, ´1, . . .
si “ 1, 3, 6, 8, 9, 10, 11, 12, . . .
εi “ 0, 1, 4, 5, 5, 5, 5, 5, . . .

where i “ 0, 1, 2, 3, . . . The Hankel sequence ∆
p1q
n is then given by (3.4).

(b) Now, Lemma 3.11 allows us to calculate the Hankel determinants ∆n. Indeed, using
auxillary functions F1pqq and F2pqq, formula (3.17) reads

Spqq “
1

1 ´ q ` q2 F1pqq
, F1pqq “

1

1 ` q ` q2 F2pqq
, F2pqq “

1

1 ` q2 Sp1qpqq
.

Applying then Han’s Lemma 3.1, we have

∆n “ p´1qn´1∆n´1pF1q, ∆npF1q “ p´1qn´1∆n´1pF2q, ∆npF2q “ p´1qn´1∆
p1q

n´1.

Hence, we conclude ∆n “ p´1qn∆
p1q

n´3, in accordance with (1.19).

(c) Applying Lemma 3.8, we are able to calculate the determinants ∆
p3q
n . Once again, using

auxillary functions F1pqq and F2pqq, formula (3.14) then gives

Sp1qpqq “
1

1 ´ q2 F1pqq
, F1pqq “

q

1 ` 2q2 ` q3 F2pqq
, F2pqq “

q2

1 ` 2q2 ´ q3 ` q4 Sp3qpqq
.

From Han’s Lemma, we have

∆p1q
n “ ∆npF1q, ∆npF1q “ p´1qn´1∆n´2pF2q, ∆npF2q “ p´1qn∆

p3q

n´3,

and therefore ∆
p1q
n “ ´∆

p3q

n´6 confirming the fourth row of (1.19).

(d) Finally, we apply Proposition 4.1 to deduce the row ∆
p2q
n in (1.19) from ∆

p3q
n :

∆p2q
n “ p´1qn∆

p3q

n´3.

Theorem 1.8 is proved.
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Remark 4.3. As for Theorem 1.6, let us mention that we have alternative proofs of Theorem 1.8.

For instance, Lemma 3.9 connects the determinants ∆
p3q
n with ∆

p1q
n . Indeed, using the same

method as in (b) and (c), we have ∆
p3q
n “ ´∆

p1q

n´6. Combining this with the conclusion (c), one

proves the 12-periodicity of the Hankel sequence ∆
p3q
n , and thus of ∆n,∆

p1q
n , and ∆

p2q
n . Then to

prove Theorem 1.8 it suffices to calculate the first 11 values of (one of) the sequences.

4.4. The case of y3 and y4: more rows of ´1, 0, 1. Consider the next example (after δ) of

metallic number y3 “ 3`
?
13

2 . Computer experimentation shows that the phenomenons already
observed for φ and δ become even more amazing: the number of Hankel sequences consisting
of ´1, 0, 1 increases.

Experimental Fact 4.4. The first five sequences of Hankel determinants ∆
pℓq
n associated with

the series
”

3`
?
13

2

ı

q
generated by the function (2.10), consist of ´1, 0 and 1 only. These sequences

are 24-antiperiodic

∆
pℓq
n`24 “ ´∆pℓq

n , ℓ “ 0, 1, 2, 3, 4,

with the following (anti)periods

(4.2)

∆n “ 1, 1, 0,´1,´1, 1, 1, 0,´1,´1, 0, 0, 1, 0, 0, 0, 1, 0, 0,´1,´1, 0, 1, 1, . . .

∆
p1q
n “ 1, 1,´1, 0, 1,´1, 0, 0,´1, 0, 0, 0,´1, 0, 0,´1, 1, 0,´1, 1, 1,´1, 0, 1, . . .

∆
p2q
n “ 1, 1, 0, 0,´1, 0, 0, 0,´1, 0, 0, 1, 1, 0,´1,´1, 1, 1, 0,´1,´1, 1, 1, 0, . . .

∆
p3q
n “ 1, 0, 0, 0, 1, 0, 0, 1,´1, 0, 1,´1,´1, 1, 0,´1, 1, 1,´1, 0, 1,´1, 0, 0, . . .

∆
p4q
n “ 1, 0, 0,´1,´1, 0, 1, 1,´1,´1, 0, 1, 1,´1,´1, 0, 1, 1, 0, 0,´1, 0, 0, 0, . . .

Remark 4.5. The above sequences ∆
p0q
n , . . . ,∆

p4q
n have multiple symmetries. In particular, they

satisfy

(4.3) ∆n “ p´1qn´1∆
p1q

n´4 “ ´∆
p2q

n´8 “ p´1qn∆
p3q

n´12 “ ∆
p4q

n´16.

Some of the above relations are easy to prove. For instance, the last equality in (4.3) is a
corollary of Proposition 4.1, while the second equality follows from the following.

Lemma 4.6. One has

Bp1qpqq “
1

1 ´ q `
q2

1 ` q `
q3

1 ` q2Bp1qpqq

“
1

1 ´ q `
q2

1 ` q `
q3

1 ` q ` q3Bp2qpqq

.

Proof. This readily follows from (2.17). □

Using Lemma 3.1 we get the following.

Corollary 4.7. The second and the third rows are related via ∆
p1q
n “ p´1qn∆

p2q

n´4.

The other two relations in (4.3) require more sophisticated computations, and we do not
elaborate the details here.
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The next Hankel sequences have entries different from ´1, 0, 1, but certain symmetry persists.
For example we have a sequence which is again 24-antiperiodic with the following (anti)period

∆p5q
n “ 1, 0,´1, 2, 1,´1, 1, 0,´1, 0, 0,´1, 0, 1,´1, 1, 2,´1, 0, 1, 0, 0, 0, 0, . . .

Let us end this section with the case of
?
5 ` 2 “ y4.

Experimental Fact 4.8. The first six sequences of Hankel determinants of
“?

5 ` 2
‰

q
consist

of ´1, 0, 1 only, and they are 48-periodic. The sequences start like this

(4.4)

∆n “ 1, 1, 0, 0, 1, 1, ´1, 0, 1, 0, ´1, ´1, 1, . . .

∆
p1q
n “ 1, 1, 0, ´1, 0, 1, ´1, ´1, 0, 0, ´1, ´1, 0, . . .

∆
p2q
n “ 1, 1, ´1, 0, 0, 1, ´1, 0, 0, 0, ´1, 0, 0, . . .

∆
p3q
n “ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, ´1, 0, 0, . . .

∆
p4q
n “ 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, ´1, 0, 0, . . .

∆
p5q
n “ 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, ´1, 0, 1, . . .

It seems that the following relations hold between the rows:

∆pℓq
n “ p´1qn´1∆

pℓ`1q

n´5

for ℓ “ 0, 1, 2, 3, 4.

4.5. The Somos-4, Somos-6 and Gale-Robinson recurrences. (a) Consider first the case
of the golden ratio. We already know the first rows of Hankel determinants of Gpqq (see Theo-

rem 1.6), and it is an easy task to check that the first three rows ∆npGq,∆
p1q
n pGq, and ∆

p2q
n pGq,

satisfy the Somos-4 recurrence (1.20).
It is interesting to notice that in every 8-periodic row satisfying this recurrence the 4 first

(“initial”) values determine the 4 remaining. For instance, in the first row

∆npGq “ 1,1,1,0, ´ 1,´1,´1, 0, 1, 1, 1, . . .

where n “ 0, 1, 2, . . . the values 1, 1, 1, 0 determine the rest. Indeed, although the recurrence
equation ∆7∆3 “ ∆6∆4 ´ ∆2

5 does not allow to recover ∆7, since ∆3 “ 0, the next equation
∆8∆4 “ ∆7∆5 ´ ∆2

6 determines ∆7, since ∆8 is known by periodicity.
(b) In the case of the Silver ratio, the first four rows satisfy the Somos-6 recurrence (1.21):

similarly to the case of the golden ratio, this is an easy consequence of Theorem 1.8. Moreover,
one can check that this Somos-6 recurrence, together with the 12-periodicity assumption, allows
one to recover the full sequence of coefficients from the six first terms.

Note also that the quadratic functional equations (2.16) fit into the class of sequences satisfying
Eq. (4.22) of [21], so that this observation can be understood as a part of Theorem 5.5 of this
reference.

(c) The five sequences of Hankel determinants (4.2) of the bronze number y3 “ 3`
?
13

2 satisfy
the Gale-Robinson recurrence

∆n`8∆n “ ∆n`7∆n`1 ´ ∆2
n`4,

in accordance with Conjecture 1.9.
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(d) For the metallic number y4 “
?
5 ` 2, the six sequences of Hankel determinants (4.4)

satisfy the Gale-Robinson recurrence

(4.5) ∆n`10∆n “ ∆n`9∆n`1 ´ ∆2
n`5.

As before, recurrence (4.5) allows to recover the Hankel sequences from the 9 initial values,
provided we know that the sequences are 48-periodic.

5. Miscellaneous examples of continued fractions for q-numbers

In this section we give several examples of continued fractions for the series representing q-
deformed rationals and q-deformed irrationals. Some of them are quite elegant and allow one to
hope for a more general theory which is out of reach so far.

5.1. Another J-fraction for the silver ratio. Let us consider the series 1´Sp2qpqq (see (1.14))
that has essentially the same sequence of coefficients than Spqq. It turns out that this series has
a rather nice 2-periodic J-type continued fraction expansion.

Proposition 5.1. One has the following 2-periodic continued fraction

1 ´ Sp2qpqq “
1

1 `
q2

1 ` q2 ´
q3

1 `
q2

1 ` q2 ´
q3

. . .

Proof. This is an immediate corollary of (2.16). □

5.2. A Stieltjes type formula for Sp2qpqq. We give here the result of a straightforward com-
putation. The formula below is rather complicated and does not leave a hope for general results
in this direction. For a symmetry reason, we multiply Sp2qpqq by q3.

Proposition 5.2. The following 7-glide-periodic C-fraction represents the (shifted) r
?
2sq

q3 Sp2qpqq “
q5

1 `
2q2

1 `

q
2

1 ´

q
2

1 `
2q

1 ´
2q

1 `

q
2

. . .

By “7-glide-periodic” we mean that the 7 consecutive numerators of the above continued fraction
repeat with inverse order: q

2 ,´2q, 2q,´
q
2 ,

q
2 , 2q

2, q5, . . . Surprisingly, this continued fraction is 13-
periodic.



q-DEFORMED REAL NUMBERS AND CONTINUED FRACTIONS 29

5.3. C-fractions for the q-integers. Let us consider the q-deformations of integers rnsq “

1 ` q ` ¨ ¨ ¨ ` qn´1, as in (1.3), and of their inverses
“

1
n

‰

q
.

Proposition 5.3. (i) The C-fraction expression representing a q-integer is as follows

rnsq “
1

1 ´
q

1 `
qn´1

1 `
q

1 ´
q

1 `
qn´3

1 `
q

. . .

If n “ 2m ` 1 it is of length 3m, and if n “ 2m it is of length 3m ´ 1.
(ii) For the inverse q-number

“

1
n

‰

q
, one has

„

1

n

ȷ

q

“
qn

1 `
q

1 ´
q

1 `
qn´2

1 `
q

1 ´
q

1 `
qn´4

. . .

Proof. Use (1.3) for Part (i) and the formula
“

1
n

‰

q
“ 1

rnsq´1
(see Eq. (2.8) in [24]) for Part (ii). □

Example 5.4. One has for instance

r3sq “
1

1 ´
q

1 `
q2

1 ` q

, r4sq “
1

1 ´
q

1 `
q3

1 `
q

1 ´
q

1 ` q

, r5sq “
1

1 ´
q

1 `
q4

1 `
q

1 ´
q

1 `
q2

1 ` q
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and for the inverse numbers
„

1

3

ȷ

q

“
q2

1 `
q

1 ´
q

1 ` q

,

„

1

4

ȷ

q

“
q3

1 `
q

1 ´
q

1 `
q2

1 ` q

,

„

1

5

ȷ

q

“
q4

1 `
q

1 ´
q

1 `
q3

1 `
q

1 ´
q

1 ` q

5.4. C-fractions for q-rationals. The simplest examples for q-rationals are as follows.
„

2

5

ȷ

q

“
q2

1 `
2q2

1 `

q
2

1 `
q
2

,

„

3

5

ȷ

q

“
q

1 `
q

1 `
q

1 ` q2

Here we have used the expansions

2

5
“ r0, 2, 2s,

3

5
“ r0, 1, 1, 2s,

and applied definition (2.2).
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