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q-deformed real numbers are power series with integer coefficients. We study Stieltjes and Jacobi type continued fraction expansions of q-deformed real numbers and find many new examples of such continued fractions. We also investigate the corresponding sequences of Hankel determinants and find an infinite family of power series for which several of the first sequences of Hankel determinants consist of ´1, 0 and 1 only. These Hankel sequences satisfy Somos and Gale-Robinson recurrences.

Introduction and main results

In this paper we study power series with integral coefficients that represent so-called qdeformed real numbers, or "q-reals" for short. We calculate the sequences of Hankel determinants of the simplest examples. It turns out that there exists a remarkable infinite family of q-reals that have a surprising property: several first sequences of their Hankel determinants are periodic and consist of ´1, 0 and 1 only. This property is similar to that of the generating functions of Catalan and Motzkin numbers, but the number of t´1, 0, 1u-sequences is greater. Moreover, the obtained t´1, 0, 1u-Hankel sequences enjoy very special Somos and Gale-Robinson recurrences related to integrable dynamics.

The initial definition of q-reals [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] relies on continued fractions which are not of the Stieltjes or Jacobi type. One of our goals is to rewrite these series in the form of C-fractions and J-fractions which is most close to the classical Stieltjes and Jacobi continued fractions. In particular, we use the special class of Jacobi type continued fractions, called H-fractions, that was introduced and studied in [START_REF] Han | Hankel continued fraction and its applications[END_REF]. The problem remains open in general, we solve it in particular cases.

1.1. Continued fractions: classical examples. The following special class of continued fractions depending on one (formal) variable, that we denote q, are classically called C-fractions (1.1) f pqq " b 0 1 ´b1 q p 1 1 ´b2 q p 2 . . .

Here p " pp 1 , p 2 , . . .q is a sequence of integers, p i ě 1, and b " pb 0 , b 1 , b 2 , . . .q is a sequence of (real or complex) coefficients, such that b i ‰ 0 for all i ě 0. When p i " 1, the C-fraction (1.1) is a classical Stieltjes continued fraction [START_REF] Stieltjes | Recherches sur les fractions continues[END_REF], which is also called a regular C-fraction, or an Sfraction; see [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF][START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux généraux[END_REF] where combinatorial properties of continued fractions were studied. Given a power series f pqq "

8 ÿ i"0 f i q i ,
it can always be written as a C-fraction in a unique way [START_REF] Leighton | A general continued fraction expansion[END_REF]. For an explicit algorithm, see [START_REF]A simple algorithm for expanding a power series as a continued fraction[END_REF]. C-fractions were extensively studied and applied to many sequences of integers; see, e.g. [2, [START_REF] Barry | On the Hankel transform of C-fractions[END_REF]9,[START_REF] Cigler | A special class of Hankel determinants[END_REF][START_REF] Krattenthaler | Advanced determinant calculus[END_REF][START_REF] Krattenthaler | Advanced determinant calculus: a complement[END_REF][START_REF] Leighton | A general continued fraction expansion[END_REF][START_REF]A simple algorithm for expanding a power series as a continued fraction[END_REF] and references therein.

The generalized Jacobi continued fractions, or J-fractions, are of the form (1.2) f pqq " b 0

1 `qA 1 pqq ´b1 q p 1 1 `qA 2 pqq ´b2 q p 2 . . .

,

where A i pqq are polynomials with degpA i q ă p i ´1. When p i " 2, (1.2) is the classical Jacobi continued fraction, or a regular J-fraction. As mentioned, every power series can be written in the form (1.1), but a more flexible form (1.2) may be simpler and have more symmetries. The counterpart is that such a fraction does not always exist for a given series. Combinatorial theory of J-fractions was founded in [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF][START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux généraux[END_REF]. For a modern theory and applications, see [START_REF] Krattenthaler | Advanced determinant calculus[END_REF][START_REF] Krattenthaler | Advanced determinant calculus: a complement[END_REF][START_REF] Han | Hankel continued fraction and its applications[END_REF][START_REF] Han | Hankel continued fractions and Hankel determinants of the Euler numbers[END_REF]. The Catalan numbers C n " 1, 1, 2, 5, 14, 42, . . . are related to the simplest example of regular C-fraction. Indeed, the generating function Cpqq "

8 ÿ i"0 C n q n "
1 ´?1 ´4q 2q has the continued fraction expansion

Cpqq " 1 1 ´q 1 ´q . . . see, e.g. [START_REF] Aigner | A course in enumeration[END_REF]. Here and thereafter the generating function of a series is a function whose Taylor expansion at 0 coincides with the series. Abusing the notation, we will often identify series, the corresponding generating functions, and continued fractions. We will use the same notation for all of them. Note also that the "shifted series" Cpqq´1 q has the following J-fraction expansion

Cpqq ´1 q " 1 1 ´2q ´q2 1 ´2q ´q2 . . .
The Motzkin numbers M n " 1, 1, 2, 4, 9, 21, 51, . . . is another classical example. The generating function M pqq " 1 ´q ´ap1 `qqp1 ´3qq 2q 2 " 1 q C ´q 1 `q ¯ can be written as continued fractions

M pqq " 1 1 ´q 1 ´q 1 ´q2 1 ´q 1 ´q 1 ´q2 . . . " 1 
1 ´q ´q2 1 ´q ´q2 . . .

Note that the second formula (that can be found in [START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF]) is the simplest example of a regular J-fraction, while the first one is a very nice example of C-fraction.

1.2. q-reals: examples and ideas. The classical q-deformed integers are defined for n P Z ą0 by (1.3) rns q :" 1 `q `q2 `¨¨¨`q n´1 " 1 ´qn 1 ´q . They arose in the works of Euler and Gauss and play important role in combinatorics and mathematical physics. The notion of q-deformed rationals [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF] and, more generally, that of qdeformed real numbers [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] extends q-integers. Given x P R, the q-deformation rxs q is a series in q with integer coefficients. A fundamental property of q-reals is PSLp2, Zq-invariance; see [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF]. Analytic properties of the series defining q-deformed real numbers were studied in [START_REF] Leclere | On radius of convergence of q-deformed real numbers[END_REF].

The simplest example of q-deformed irrational number is the q-deformation of φ " 1`?5 2 , called the "golden ratio". This q-deformation will be denoted by Gpqq (instead of rφs q as in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]). It is given by the series (1.4) Gpqq :" 1 `q2 ´q3 `2q 4 ´4q 5 `8q 6 ´17q 7 `37q 8 ´82q 9 `185q 10 ´423q 11 `978q 12 ´2283q 13 `5373q 14 ´12735q 15 `30372q 16 ´72832q 17 `175502q 18 ´424748q 19 `1032004q 20 ¨¨s ee [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]. Note that the coefficients of this series are quite close to the sequence A004148; see [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. The differences are the zero linear term in (1.4) and the alternating signs. The series A004148 belongs to the class of sequences called in [START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF] the "generalized Catalan numbers" 1 . It is connected to the Narayana triangle and has interesting combinatorial interpretations; see [START_REF] Barry | On a generalization of the Narayana triangle[END_REF].

The generating function of the series (1.4) is (1.5) Gpqq " q 2 `q ´1 `ap1 ´q `q2 qp1 `3q `q2 q 2q .

Similarly to the Motzkin case, the function Gpqq can be obtained from the generating function of the Catalan numbers:

Gpqq " 1 `q ´q 1 `q `q2 C ´q2 p1 `q `q2 q 2 ¯, 1 Note however that there are many other sequences known under this name.

(see [START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF] for a similar expression). The series (1.4) and its shifts have nice continued fraction expansions that have close resemblance with the Catalan and Motzkin continued fractions.

Proposition 1.1. The series (1.4) is represented by the following 2-periodic C-fraction

(1.6) Gpqq " 1 1 ´q2 1 `q 1 ´q2 1 `q . . .
It turns out that the series (1.4) is also related to another, 3-periodic, C-fraction. Let us introduce the following notation for the shifted series

(1.7) G p1q pqq :" Gpqq ´1 q , G p2q pqq :" Gpqq ´1 q 2
, G p3q pqq :" Gpqq ´1 ´q2 q 3 , that will be useful in the sequel. Note that the series G p2q pqq corresponds precisely to the sequence in the first column of A123634; see [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF].

Proposition 1.2. One has

(1.8) G p2q pqq " 1 1 `q 1 `q 1 `q3 1 `q 1 `q 1 `q3 . . .
The q-deformed golden ratio seems to be an inexhaustible source of beautiful continued fractions. Let us give two more formulas. Proposition 1.3. One has the following 2-periodic continued J-fraction

(1.9) G p2q pqq " 1 1 `q ´q2 1 `q `q3 1 `q ´q2 1 `q `q3 . . .
Despite their simplicity, we did not find the C-fractions (1.6) and (1.8) and the J-fraction (1.9) in the literature. We will give the proofs in Section 3.1.

Alternatively, the series G p2q pqq can be represented by a 1-periodic J-type continued fraction:

Proposition 1.4. One has

(1.10) G p2q pqq " 1 1 `q ´q2 `q3 1 `q ´q2 `q3 . . .
Note that the connection between the continued fraction (1.10) and the sequence A004148 was observed in [START_REF] Barry | On a generalization of the Narayana triangle[END_REF].

We will see in Section 3.3 that (1.10) belongs to the interesting class of super δ-fractions introduced and studied in [START_REF] Han | Hankel continued fraction and its applications[END_REF]. When δ " 2, they are called H-fractions, and applied to computation of Hankel determinants. They are particularly efficient in the case where some of the Hankel determinants associated with the series vanish.

We will also show that, unlike (1.6), (1.8), and (1.9), the expression (1.10) can be generalized to the infinite family of q-deformed "metallic numbers". Recall that these numbers are the irrationals y n (n P Z ą0 ) defined by the following 1-periodic regular continued fraction:

(1.11) y n " n `1 n `1 n `1 . . .
In Theorem 3.2, we shall see that the q-deformation ry n s q of any metallic number y n admits a 1-periodic super δ-fraction. For the golden ratio y 1 " 1`?5 2 " φ, this is simply formula (1.10) since ry 1 s q " Gpqq " 1 `q2 G p2q pqq.

The next metallic number is y 2 " ? 2 `1 which is often called the "silver ratio". The q-deformation ry 2 s q is the series that starts as follows (1.12) Spqq " 1 `q `q4 ´2q 6 `q7 `4q 8 ´5q 9 ´7q 10 `18q 11 `7q 12 ´55q 13 `18q 14 `146q 15 ´155q 16 ´322q 17 `692q 18 `476q 19 ´2446q 20 `307q 21 ¨¨s ee [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]. This series was recently added to the OEIS; see Sequence A337589. Not much is known about it yet. The generating function of the series (1.12) is the function

(1.13) Spqq " q 3 `2q ´1 `ap1 ´q `q2 qp1 `q `4q 2 `q3 `q4 q 2q .
As in the case of the golden ratio, we will use the following notation for the shifted series (1.14) S p1q pqq :" Spqq ´1 q , S p2q pqq :" Spqq ´1 ´q q 2 , S p3q pqq :" Spqq ´1 ´q q 3 , S p4q pqq :"

Spqq ´1 ´q q 4 .
Next statement is then the analogue of Proposition 1.4 for the series (1.12).

Proposition 1.5. We have

(1.15) S p4q pqq " 1 1 `2q 2 ´q3 `q5 1 `2q 2 ´q3 `q5 . . .
More continued fractions related to Spqq will be presented in Section 3.5 and other examples of metallic q-numbers will be treated in Section 4.4.

1.3. Hankel determinants. Given a power series f pqq " ř 8 i"0 f i q i or simply a sequence of numbers f " pf i q iPZ ě0 , the corresponding Hankel determinants are the determinants of the n ˆn matrices

(1.16) ∆ pℓq n pf q " ˇˇˇˇˇˇˇˇˇf ℓ f ℓ`1 ¨¨¨f ℓ`n´1 f ℓ`1 f ℓ`2 ¨¨¨f ℓ`n . . . . . . . . . f ℓ`n´1 f ℓ`n ¨¨¨f ℓ`2n´2 ˇˇˇˇˇˇˇˇˇ,
where ℓ, n " 0, 1, 2, 3, . . ., and where ∆ pℓq 0 pf q :" 1 by convention. These determinants are important characteristics of f and appear in a variety of subjects. The number ℓ is called the "shift" of the determinant ∆ pℓq n pf q. When ℓ " 0, we use the notation ∆ n pf q. Let us recall the classical examples of the Catalan numbers, studied by Aigner in [2]. The first two sequences of Hankel determinants in this case are identically equal to 1, and the third Hankel sequence consists in all natural numbers: ∆ n pCq " 1, 1, 1, . . . ∆ p1q n pCq " 1, 1, 1, . . . ∆ p2q n pCq " n `1. Note that the Hankel sequences ∆ n pCq and ∆ p1q n pCq completely characterize the sequence of Catalan numbers.

Another classical example is that of the Motzkin numbers, also studied by Aigner in [START_REF] Aigner | Motzkin numbers[END_REF]. In this case, the first sequence of Hankel determinants is still identically 1, the second is 3-antiperiodic (and thus 6-periodic) and consists of ´1, 0, and 1:

∆ n pM q " 1, 1, 1, . . . ∆ p1q n pM q " 1, 1, 0, ´1, ´1, 0, . . . for n " 0, 1, 2, 3, . . . The third sequence of Hankel determinants of the Motzkin numbers is ∆ p2q n pM q " 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . . It is classical that, whenever f pqq can be written as a regular C-fraction or a regular J-fraction, the determinants ∆ n pf q can be calculated explicitly; see, e.g. [START_REF] Krattenthaler | Advanced determinant calculus[END_REF][START_REF] Krattenthaler | Advanced determinant calculus: a complement[END_REF]. Much work has been done to generalize these classical results to the cases of more general continued fractions such as (1.1) and (1.2); see, e.g. [9, [START_REF] Cigler | A special class of Hankel determinants[END_REF][START_REF] Han | Hankel continued fraction and its applications[END_REF][START_REF] Han | Hankel continued fractions and Hankel determinants of the Euler numbers[END_REF][START_REF]A simple algorithm for expanding a power series as a continued fraction[END_REF]. We will try to adopt these results in our situation, although this is not always straightforward. Our proofs are based on the notion of H-fractions of [START_REF] Han | Hankel continued fraction and its applications[END_REF].

Sequences with Hankel determinants consisting of 0, 1 and ´1 were considered in [START_REF] Barry | On sequences with t´1, 0, 1u Hankel transforms[END_REF][START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF][START_REF] Barry | On a generalization of the Narayana triangle[END_REF][START_REF] Wang | Hankel determinants and shifted periodic continued fractions[END_REF]; according to [START_REF] Barry | On sequences with t´1, 0, 1u Hankel transforms[END_REF] the question of characterization of such sequences was asked by Michael Somos. We contribute to this study.

In Section 4.2 we will prove the following property of the q-deformed golden ratio (1.4). [START_REF] Wang | Hankel determinants and shifted periodic continued fractions[END_REF][START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF][START_REF] Barry | On the Hankel transform of C-fractions[END_REF][START_REF] Chang | A conjecture based on Somos-4 sequence and its extension[END_REF] and [21].

The sequences of Hankel determinants ∆ pℓq n pGq with ℓ ě 4 do not consist solely of 0, 1 and ´1, but they form interesting patterns. For instance, ∆ p4q n pGq " 1, 2, 0, ´2, ´3, ´4, 0, 4, 5, 6, 0, ´6, ´7, ´8, 0, 8, . . .

(1.18)
Observe a similarity with the Hankel sequence of the Motzkin numbers ∆ p2q n pM q. We will prove in Section 4.2 that the series Gpqq (see (1.4)) is completely characterized by the first four sequences of Hankel determinants. More precisely, we have the following statement.

Theorem 1.7. The series Gpqq is the only series with Hankel determinants as in (1.17).

Note that this kind of statements is obvious when the sequences of Hankel determinants contain no zero entries, for instance the sequence of Catalan numbers is characterized by the first two sequences of Hankel determinants consisting of 1's. With presence of zeros the situation is more complicated. For our second main example of silver ratio Spqq (see (1.12)), we have the following result that will be proved in Section 4. n pSq " 1, 1, ´2, ´1, 2, ´1, ´2, 1, 1, 0, 0, 0, . . . This differs the series Spqq from Gpqq; cf. formula (1.18). The sequences ∆ pℓq n pSq with ℓ ě 5 seem to be aperiodic.

Although Theorem 1.8 is quite similar to Theorem 1.6, unlike the case of the golden ratio, we are unable to recover the sequence Spqq from this information and do not know if this is the only series with Hankel determinants as in (1.19).

The number of Hankel sequences consisting of 0, 1, and ´1 for the q-deformation of the metallic numbers y k defined by (1.11) seems to grow as k grows; see Conjecture 1.9 below. 

(1.20) ∆ n`4 ∆ n " ∆ n`3 ∆ n`1 ´∆2 n`2 .
Note also for comparison that the shifted Hankel sequence ∆ p1q n pM q of the Motzkin numbers satisfies the recurrence ∆ n`2 ∆ n " ∆ 2 n`1 ´1. Recurrence (1.20) is (an instance of) the Somos-4 sequence, whose general form is a n`4 a n " α a n`3 a n`1 ´βa 2 n`2 , for arbitrary parameters α, β. This remarkable class of sequences was discovered by Michael Somos in the '80s. It remained unnoticed for some time and was disclosed by David Gale [START_REF] Gale | The strange and surprising saga of the Somos sequences[END_REF]16]. Since then Somos sequences became very popular and were studied by many authors.

Relation between the Hankel determinants of sequences satisfying quadratic ("Catalan type") recurrences and Somos-4 sequences was discovered by Michael Somos who lectured about the subject in the fall of 2000 at MIT Stanley Seminar in Combinatorics. Somos conjectured, in general, the appearance of the Somos-4 sequence as the Hankel determinants of a quadratic type sequence (for the sequence A004148, see the Hankel determinant number wall A123634). This relation was rediscovered by Paul Barry and also conjectured in [START_REF] Barry | Generalized Catalan numbers, Hankel transforms and Somos-4 sequences[END_REF]. The first detailed proof of this conjecture was given in [START_REF] Chang | A conjecture based on Somos-4 sequence and its extension[END_REF], a deep connection to (hyper)elliptic curves and generalizations were obtained in [21]. Recurrence (1.20) can be considered as a part of these results.

Recurrence (1.20) has an interesting geometric interpretation. Taking independent variables px, y, z, tq, it produces the map

px, y, z, tq Þ ÝÑ ´y, z, t, yt ´z2 x ¯,
which generates a 4-dimensional discrete dynamical system integrable in the sense of Liouville-Arnold; see [START_REF] Hone | Elliptic curves and quadratic recurrence sequences[END_REF][START_REF] Fordy | Discrete integrable systems and Poisson algebras from cluster maps[END_REF] and references therein. The first three Hankel sequences ∆ n pGq, ∆ p1q n pGq, and ∆ p2q n pGq thus correspond to periodic trajectories of the above map, or equivalently to periodic solutions of (1.20).

It is also easy to see that the first four sequences of Hankel determinants (1.19) satisfy the recurrence

(1.21) ∆ n`6 ∆ n " ∆ n`5 ∆ n`1 ´∆2 n`3 ,
which is a Somos-6 sequence. This statement is closely related to the results of Andrew Hone [21], since the quadratic recurrence for the coefficients of (1.12) fits into the class considered in this paper; see Eq. Let us conclude our introduction. The results proved in this article for k " 1 (golden ratio) and k " 2 (silver ratio) and a long series of computer experimentations for k " 3 and k " 4 (see Section 4) lead us to the following conjecture for the Hankel determinants sequences associated with the q-deformations of the metallic numbers y k .

Conjecture 1.9. Let k be a positive integer, and for ℓ P Z ě0 let ∆ consist of ´1, 0, 1 only. These sequences satisfy the recurrence

(1.22) ∆ pℓq n`2k ∆ pℓq n " ∆ pℓq n`2k´1 ∆ pℓq n`1 ´`∆ pℓq n`k ˘2 for ℓ " 0, 1, . . . , k `1 and all n P Z ě0 ,
and if k ě 2, they are 3 ¨2k -(anti)periodic:

∆ pℓq n`3¨2 k " p´1q k ∆ pℓq n .
(b) The first k `1 pairs of consecutive sequences are related by the formula

∆ pℓq n " p´1q spk,nq ∆ pℓ´1q n`k`1 for ℓ " 1, 2, . . . , k `1 and all n P Z ě0 ,
where spk, nq is some function of k and n.

Recurrence (1.22) is called the three term Gale-Robinson recurrence; see [16,[START_REF] Fomin | The Laurent phenomenon[END_REF]. Integrability of the Gale-Robinson systems was proved by Fordy and Hone [START_REF] Fordy | Discrete integrable systems and Poisson algebras from cluster maps[END_REF]. The Hankel determinants of q-deformed metallic numbers are, conjecturally, periodic t´1, 0, 1u-solutions of the corresponding discrete integrable systems.

Organization. The paper is organized as follows.

In Section 2, we present the definition of q-reals and give a few examples. We follow [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF][START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF] and emphasize the continued fraction presentation. We also discuss the PSLp2, Zq-invariance property. The family of q-deformed "metallic" irrationals is described with some details.

In Section 3, we develop the technique based on continued fractions. We use the notion of super δ-fractions and H-fraction introduced in [START_REF] Han | Hankel continued fraction and its applications[END_REF]. We consider the series of q-deformed metallic numbers and find their δ-fraction presentation.

In Section 4, we prove Theorems 1.6, 1.7, and 1.8. We also calculate the first sequences of Hankel determinants for several other examples of metallic numbers and show that the phenomenon detected for Gpqq and Spqq persists and is amplified. We demonstrate appearance of the recurrence (1.22). These results remain experimental for other metallic numbers.

The final Section 5 contains miscellaneous examples of continued fractions representing qnumbers. The general theory of C-and J-fraction presentation of q-numbers is yet to be developed.

q-deformed real numbers

In this section, we present the definition of q-deformed real numbers [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF][START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] and give several examples. The main property of q-reals is that of PSLp2, Zq-invariance [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF]. Other important properties have recently been studied in [4, [START_REF] Ovenhouse | q-rationals and finite Schubert varieties[END_REF][START_REF] Leclere | On radius of convergence of q-deformed real numbers[END_REF][START_REF] Morier-Genoud | Burau representation of braid groups and q-rationals[END_REF]32,34,[START_REF] Sikora | Tangle Equations, the Jones conjecture, slopes of surfaces in tangle complements, and q-deformed rationals[END_REF].

2.1. q-deformed continued fractions. The original definition consists in q-deformation of continued fractions, but it is not of the form (1.1).

Given x P R, let us consider its standard continued fraction expansions

x " c 1 ´1 c 2 ´1 . . . and x " a 1 `1 a 2 `1 . . . ,
where pc 1 , c 2 , . . .q and pa 1 , a 2 , . . .q are sequences of integers such that a i ě 1 and c i ě 2, for all i ě 2. The first continued fraction expansion is known under the name of Hirzebruch-Jung continued fraction (sometimes called the "negative", "minus", or "reversal" continued fraction), the second one is the most classical continued fraction expansion. We will use the notation

x " c 1 , c 2 . . . and x " ra 1 , a 2 , . . .s , respectively. Note that the first notation is due to Hirzebruch. The coefficients a i and c j of the above expansions are connected by the Hirzebruch formula; see, e.g. [START_REF] Hirzebruch | Hilbert modular surfaces[END_REF][START_REF] Morier-Genoud | Farey boat: continued fractions and triangulations, modular group and polygon dissections[END_REF].

The above continued fractions are finite if and only if x is rational and infinite (converging to x) when x is irrational. Definition 2.1 ( [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF][START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]). The q-analogue of x is the formal series rxs q defined by any of the following (equal) continued fractions:

rxs q " rc 1 s q ´qc 1 ´1 rc 2 s q ´qc 2 ´1
. . .

(2.1)

" ra 1 s q `qa 1 ra 2 s q ´1 `q´a 2 ra 3 s q `qa 3 ra 4 s q ´1 `q´a 4 . . . (2.2)
where rns q stands for the q-integer as in (1.3), and rns q ´1 " q 1´n rns q is the same expression with inverse parameter.

The continued fractions (2.1) and (2.2) coincide when x is rational [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]. When x is irrational, the convergence of the expansions (2.1) and (2.2) and their coincidence is guaranteed by the stabilization phenomenon highlighted in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]. Note that, in the rational case, the second formula (2.2) was also suggested (independently and almost simultaneously) in [START_REF] Sikora | Tangle Equations, the Jones conjecture, slopes of surfaces in tangle complements, and q-deformed rationals[END_REF]. Let us also mention that, when x is rational, rxs q is a rational function in q that has many nice properties, such as unimodality and total positivity; see [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]32,27,[START_REF] Ovenhouse | q-rationals and finite Schubert varieties[END_REF]. Another important property is that the q-deformation of any quadratic irrational number is necessarily periodic; see [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF]. This will be observed in all the examples treated in our article.

Remark 2.2. The continued fraction (2.1) has the type of Thron fraction, or T-fraction; see [START_REF] Thron | Some properties of continued fractions 1 `d0z `Kpz{p1 `dnzqq[END_REF]. Indeed, the degree of every numerator is equal to the degree of the preceding polynomial. Continued fractions of this type were used in various aspects of the theory of continued fractions and combinatorics, but they do not allow to calculate Hankel determinants.

Example 2.3. (a) The simplest example of a q-deformed irrational is the golden ratio φ " 1`?5 2 already discussed in the introduction. The regular continued fraction of the golden ratio is φ " r1, 1, 1, . . .s, and the Hirzebruch-Jung expansion is φ " 2, 3, 3, 3, . . . . Recall that the q-deformation of φ was denoted by Gpqq. Formulas (2.1) and (2.2) then read (2.3)

Gpqq " 1 `q ´q 1 `q `q2 ´q2 1 `q `q2 ´q2 . . . " 1 `q2 q `1 1 `q2 q `1 . . .
The explicit power series is as in (1.4). (b) The regular continued fraction of the silver ratio y 2 is 1-periodic: y 2 " r2, 2, 2, . . .s, and the Hirzebruch-Jung expansion has period 2: y 2 " 3, 2, 4, 2, 4, 2, 4, . . . . The q-deformation Spqq is then given by the series represented by the following 2-periodic continued fractions (2.4)

Spqq " r3s q ´q2 1 `q ´q 1 `q `q2 `q3 ´q3 1 `q ´q . . . " 1 `q `q4 q `q2 `1 1 `q `q4 q `q2 `1 . . . (c)
The formula for the power series "? 2 ‰ q can be deduced from (2.4) since "? 2 ‰ q " S p1q pqq with the help of the recurrence formula (2.7) below.

(d) For more examples; see [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF][START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF].

Clearly, the continued fractions (2.3), (2.4), and more generally (2.1) and (2.2), are nor Cfractions neither J-fractions, since the powers of q in the numerators are not high enough. Rewriting one of the fractions (2.1), or (2.2) in the form (1.1) and/or (1.2) is a challenging open problem.

2.2. PSLp2, Zq-invariance. Modular, i.e., PSLp2, Zq-invariance is the main property of q-numbers. It can be used as an equivalent (and perhaps more conceptual) definition, comparing to Definition 2.1. Although we will not use this modular invariance, we recall it here because it explains formulas (2.1) and (2.2).

The group SLp2, Zq is the group of unimodular matrices with integer coefficients

M " ˆr v s u ˙, r, v, s, u P Z, ru ´vs " 1.
It acts on R Y t8u by linear-fractional transformations:

(2.5) M ¨x " rx `v sx `u . This action is effective for the modular group PSLp2, Zq, which is the quotient of SLp2, Zq by its center t˘Idu. It can be generated by two elements, and the standard choice of generators is

T " ˜1 1 0 1 ¸, S " ˜0 ´1 1 0
with the relations S 2 " pT Sq 3 " Id. Following [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF][START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF], consider the following matrices depending on q (2.6)

T q " ˜q 1 0 1 ¸, S q " ˜0 ´1 q 0 ¸.
Viewed as elements of PGLp2, Zrq, q ´1sq, the matrices T q and S q satisfy the same relations as T and S, namely S 2 q " pT q S q q 3 " Id. Therefore, they generate a representation ρ : PSLp2, Zq Ñ PGLp2, Zrq, q ´1sq, and hence an action on the space Zppqqq Y t8u of formal Laurent series in q defined by linearfractional transformations as in formula (2.5). PSLp2, Zq-invariance then reads rM ¨xs q " ρpM q ¨rxs q .

Since the linear-fractional action (2.5) is transitive on Q Y t8u, one can understand q-rationals as an orbit of one point, that can be chosen r0s q " 0, or r1s q " 1, etc. under the PSLp2, Zq-action on Zppqqq Y t8u defined by (2.6).

Using the generators (2.6), this can be stated as recurrence relations

(2.7) rx `1s q " q rxs q `1 " ´1 x ȷ q " ´1 q rxs q , and when x P Q, these relations suffice to determine the rational function rxs q if we know that r0s q " 0. Formulas (2.1) and (2.2) readily follow from the PSLp2, Zq-invariance, at least for rational x. Indeed, if x " c 1 , c 2 . . . , c n then rxs q " T c 1 q S q T c 2 q S q ¨¨¨T cn q ¨0, hence (2.1). The second formula (2.2) involving the regular continued fraction can be deduced in a similar way; see [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF].

A straightforward generalization of the first formula in (2.7) will be of interest:

(2.8) rx `ks q " q k rxs q `rks q px P R, k P Z ě0 q.

Let us also mention that the above PSLp2, Zq-invariance can be understood as invariance with respect to the Burau representation of the braid group B 3 ; see [4,[START_REF] Morier-Genoud | Burau representation of braid groups and q-rationals[END_REF].

2.3. The gap theorem. We give a refined form of the "gap theorem" which was proved in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF].

Theorem 2.4. If k ď x ă k `1 n for some k, n P Z ě0 , then the series rxs q starts as follows rxs q " rks q `qk`n `κk`n`1 q k`n`1 `¨¨ï .e., if k ě 1, rxs q " 1 `q `¨¨¨`q k´1 `qk`n `κk`n`1 q k`n`1 `¨¨ẅ here κ i are some integer coefficients.

Proof. The case n " 1 was proved in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] (see Theorem 2). Using (2.8), this implies that, if ´n ´1 ď x ă ´n, then rxs q is of the form rxs q " ´q´n´1 `1 `α1 q `α2 q 2 `¨¨¨w ith α i integers. Applying the second equation in (2.7), we conclude that if 0 ď x ă 1 n , then rxs q " q n `1 `β1 q `β2 q 2 `¨¨¨w ith β i integers. The result follows applying again (2.8).

□

One can observe the gaps of length 1 and 2 in the examples (1.4) and the series rδs q after (2.4), respectively.

The gap theorem will be important for the sequel. In particular, it implies that the expression (2.9) σ q pxq :" rx ´ks q q " rxs q ´rks q q k`1 , is still a power series. It turns out that these "shifted series" have better continued fraction expansions; formulas (1.2) and (1.4) give two such examples, others will be obtained in Section 3.3.

The metallic irrationals.

Our main examples of q-reals are q-deformations of the "metallic numbers" y n , i.e. the irrational numbers whose regular continued fraction expansion is 1periodic as in (1.11). Two examples of such numbers, the golden ratio φ and the silver ratio δ have already been considered in the introduction. Let us give two more examples.

Example 2.5. (a) The third example y 3 " 3`?13 2 is sometimes called the "bronze ratio". The generating function of ry 3 s q is as follows (2.10)

Bpqq " q 4 `q2 `2q ´1 `ap1 ´q `q2 qp1 `q `2q 2 `5q 3 `2q 4 `q5 `q6 q 2q .

The series starts as follows " 3 `?13 2 ȷ q " 1 `q `q2 `q6 ´q8 ´2q 9 `2q 10 `4q 11 `q12 ´11q 13 ´7q 14 `15q 15 `34q 16 ´17q 17 ´83q 18 ´38q 19 `189q 20 `215q 21 ´260q 22 ¨¨T his sequence is not in the OEIS.

(b) The next example is y 4 " "? 5 `2‰ q " q 2 "? 5 ‰ q `q `1 sometimes called "platinum". Its generating function is P pqq " q 5 `q3 `q2 `2q ´1 `ap1 ´q `q2 qp1 `q `2q 2 `3q 3 `6q 4 `3q 5 `2q 6 `q7 `q8 q 2q .

We will need the following statement, which is also implicitly in [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF].

Proposition 2.6. The q-deformed metallic numbers are characterized by the following functional equation

(2.11) q ry n s 2 q `´p1 `qn qp1 ´qq ´q rns q ¯ry n s q " 1.

Proof. By definition (2.2), the q-deformation ry n s q is characterized by the functional equation ry n s q " rns q `qn rns q ´1 `q´n ry n s q , and therefore ry n s q " rns q ry n s q rns q ´1 `q´n rns q `qn ry n s q ry n s q rns q ´1 `q´n .

Since rns q ´1 " q 1´n rns q , after some simplification we obtain (2.11). □

The following examples will be useful in the sequel.

Example 2.7. (a) The first metallic number is the golden ratio φ " y 1 , already discussed in the introduction. The generating function Gpqq of the q-deformed golden ratio is given by (1.5).

It satisfies (and is characterized by) the following functional equation (2.12) q Gpqq 2 ``1 ´q ´q2 ˘Gpqq " 1, that readily follows from (2.3) (see also [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF]). Recall that G p1q pqq, G p2q pqq, and G p3q pqq are the generating functions of the shifted series (1.7). Then

(2.13) Gpqq " 1 `qG p1q pqq " 1 `q2 G p2q pqq " 1 `q2 `q3 G p3q pqq.

Substituting these expressions to (2.12) leads to (2.14) q 2 G p1q pqq 2 ``1 `q ´q2 ˘Gp1q pqq " q, q 3 G p2q pqq 2 ``1 `q ´q2 ˘Gp2q pqq " 1, q 4 G p3q pqq 2 ``1 `q ´q2 `2q 3 ˘Gp3q pqq " ´1 `q ´q2 .

(b) The second example is the silver ratio y 2 . The generating function Spqq of its q-deformation is as in (1.13), it satisfies the following functional equation (2. [START_REF] Gale | The strange and surprising saga of the Somos sequences[END_REF] q Spqq 2 ``1 ´2q ´q3 ˘Spqq " 1.

Let S p1q pqq, S p2q pqq, S p3q pqq, and S p4q pqq be the generating functions of the shifted series (1.14). It easily follows from (2.15) that these functions satisfy (2.16) q 2 S p1q pqq 2 ``1 ´q3 ˘Sp1q pqq " 1 `q2 , q 3 S p2q pqq 2 ``1 `2q 2 ´q3 ˘Sp2q pqq " q 2 , q 4 S p3q pqq 2 ``1 `2q 2 ´q3 ˘Sp3q pqq " q, q 5 S p4q pqq 2 ``1 `2q 2 ´q3 ˘Sp4q pqq " 1.

(c) The generating function of the q-deformed bronze ratio y 3 " 3`?13 2 (see (2.10)) satisfies q Bpqq 2 ``1 ´2q ´q2 ´q4 ˘Bpqq " 1.

As concerns the shifted series " 1`?13 2 ı q , its generating function B p1q pqq :" Bpqq´1 q is such that (2.17) q 2 B p1q pqq 2 ``1 ´q2 ´q4 ˘Bp1q pqq " 1 `q `q3 .

Further examples can be found in [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF]; see Example 4.5.

q-irrationals and super δ-fractions

This section contains the material that will be necessary for the proof of our main results. We start with a proof of Propositions 1.1, 1.2 and 1.3. We then show that the power series obtained as the q-deformation of the metallic numbers has a J-fraction expansion of a special type that was studied in [START_REF] Han | Hankel continued fraction and its applications[END_REF]. For the simplest examples of metallic numbers, the golden and silver ratios, we obtain particularly useful formulas of H-fractions.

3.1. Proof of Propositions 1.1, 1.2 and 1.3. Let us now prove formulas (1.6), (1.8) and (1.9).

Proof of Proposition 1.1. Formula (1.6) can be rewritten in the form of recurrence:

(3.1)
Gpqq " 1

1 ´q2 1 `q Gpqq
that is equivalent to the fact that Gpqq satisfies (2.12). Proposition 1.1 follows. □ Proof of Proposition 1.2. Formula (1.8) reads

G p2q pqq " 1 1 `q 1 `q 1 `q3 G p2q pqq ,
which is equivalent to the second part of (2.14), hence Proposition 1.2. □

Proof of Proposition 1.3. Formula (1.9) can be written

G p2q pqq " 1 1 `q ´q2 1 `q `q2 G p1q pqq
, that follows from (2.14). □

Super δ-fractions and H-fractions.

A special class of generalized Jacobi fractions was introduced and studied by G.-N. Han in [START_REF] Han | Hankel continued fraction and its applications[END_REF]. For every positive integer δ, consider the expressions

(3.2) Hpqq " v 0 q k 0 1 `q U 1 pqq ´v1 q k 0 `k1 `δ 1 `q U 2 pqq ´v2 q k 1 `k2 `δ 1 `q U 3 pqq ´v3 q k 2 `k3 `δ . . .
where v i ‰ 0 are constants, k i P Z ě0 , and U i pqq are polynomials such that degpU i q ď k i´1 `δ ´2. These continued fractions were called in [START_REF] Han | Hankel continued fraction and its applications[END_REF] "super δ-fractions". They include the regular Cfractions (for δ " 1 and k i " 0) and the J-fractions (for δ " 2 and k i " 0). One of the main results of [START_REF] Han | Hankel continued fraction and its applications[END_REF] is that for every δ ě 1 any power series can be expanded as a unique super δ-fraction.

In the special case where δ " 2, the continued fractions (3.2) were called H-fractions and applied to computation of Hankel determinants. In particular, Theorem 2.1 of [START_REF] Han | Hankel continued fraction and its applications[END_REF] states the following. Introduce the notation (3.3) s n :"

n´1 ÿ i"0 k i `n, ε n :" n´1 ÿ i"0 k i pk i `1q 2 , for n ě 1. Then (3.4) # ∆ sn pHpqqq " p´1q εn v sn 0 v sn´s 1 1 v sn´s 2 2 ¨¨¨v sn´s n´1 n´1 , ∆ m pHpqqq " 0 if m R ts n , n ě 1u.
This theorem is a powerful tool that we will use systematically. We also refer to [START_REF] Han | Hankel continued fractions and Hankel determinants of the Euler numbers[END_REF] for a long history of this statement that was independently proved in different forms and with different generality by several authors; see, e.g. [9]. The proof of (3.4) is based on the following beautiful lemma (see Lemma 2.2 of [START_REF] Han | Hankel continued fraction and its applications[END_REF]) that we will often use directly.

Lemma 3.1 ([17]

). Let k be a nonnegative integer and let F pqq, Gpqq be two power series such that F pqq " q k 1 `q U pqq ´qk`2 Gpqq where U pqq is a polynomial of degpU q ď k. Then, ∆ n pF q " p´1q kpk`1q 2 ∆ n´k´1 pGq.

3.3.

Super δ-fractions of metallic q-numbers. Consider the infinite family of quadratic irrationals that can be represented by the 1-periodic continued fractions

(3.5) x n " 1 n `1 n `1 . . .
for some n P Z ą0 . In other words, x n is a shift of the number y n " x n `n which is the n-th "metallic number" already defined in (1.11). It turns out that the q-deformation of x n can be written as a rather simple 1-periodic super δ-fraction. For convenience, we will use the following notation:

(3.6) xny q :" qrns q `p1 `qn qp1 ´qq "

# 1 `q2 `q3 `¨¨¨`q n´1 `2q n ´qn`1 if n ě 2, 1 `q ´q2 if n " 1.
The following statement is our most general result.

Theorem 3.2. (i) If y n is a metallic number, i.e. y n " rn, n, n, . . .s and x n " y n ´n as in (3.5), then we have the following 1-periodic expansion

(3.7) rx n s q q n " 1
xny q `q2n`1 xny q `q2n`1 . . .

(ii) The continued fraction (3.7) is a super δ-fraction with δ " 3.

Proof. Part (i). We transform (2.11) into a quadratic equation for rx n s q . Indeed, (2.8) reads ry n s q " q n rx n s q `rns q , and inserting this equality in (2.11) leads to (3.8) q n`1 rx n s 2 q `xny q rx n s q ´qn " 0.

On the other hand, (3.7) can be rewritten as follows rx n s q " q n xny q `qn`1 rx n s q which is clearly equivalent to (3.8).

Part (ii). The continued fraction (3.7) fits with the general formula (3.2) with δ " 3, taking v 0 " 1 and all other coefficients v i " ´1, and k i " n ´1 for all i. □ Example 3.3. For n " 1 formula (3.7) coincides with (1.10), for n " 2 this is (1.15).

Remark 3.4. The continued fractions (3.7) are very simple and 1-periodic. They are of type (3.2), but unfortunately they are not H-fractions, since δ " 3. Therefore, the methods of [START_REF] Han | Hankel continued fraction and its applications[END_REF] to calculate the Hankel determinants cannot be applied to them. Our next goal is to rewrite these super δ-fractions as H-fractions, we succeeded to do this in several cases.

H-fractions for the golden ratio.

Let us now rewrite the continued fraction expansions for the series Gpqq (see (1.4)) and its shifts, in such a way that they become H-fractions, i.e. super δ-fractions with δ " 2. This is a technical work that will be useful for the proof of Theorem 1.6.

Lemma 3.5. (i) One has the following 3-periodic expansion

(3.9) G p2q pqq " 1 1 `q ´q2 1 `q `q3 1 `q ´q2 `q3 1 `q ´q2 . . .
(ii) The continued fraction (3.9) is an H-fraction in the sense of [START_REF] Han | Hankel continued fraction and its applications[END_REF].

Proof. Part (i). Formula (3.9) can be written as follows

G p2q pqq " 1 1 `q ´q2 1 `q `q3 1 `q ´q2 `q3 G p2q pqq
and it is easily seen that this expression is in accordance with (2.14). Part (ii). In the formula (3.2) with δ " 2, take the following 3-periodic sequences of coefficients k i , v i and polynomials U i (3.10)

k i " 0, 0, 1, 0, 0, 1, 0, . . . v i " 1, 1, ´1, ´1, 1, ´1, ´1, . . . U i " 1, 1, 1 ´q, 1, 1, 1 ´q, . . .
where i " 0, 1, 2, 3, . . . With this choice, the H-fraction (3.2) is precisely the continued fraction (3.9). Lemma 3.5 is proved. □

We are also able to present an H-fraction expansion for the genuine q-deformed golden ratio.

Lemma 3.6. (i) One has the following continued fraction expansion

(3.11) Gpqq " 1 1 ´q2 1 `q `q3 1 `q ´q2 `q3 1 `q ´q2 1 `q `q3 1 `q ´q2 `q3 1 `q ´q2 . . .
which is 3-periodic starting from the third numerator.

(ii) The continued fraction (3.11) is an H-fraction in the sense of [START_REF] Han | Hankel continued fraction and its applications[END_REF].

Proof. Comparing to (3.9), formula (3.11) reads 1 Gpqq " 1 G p2q pqq ´q.

One easily checks that the above equation is equivalent to the relation (2.12). Part (ii) can be checked in the same way as in Lemma 3.5. □

We will need one more formula.

Lemma 3.7. One has the following 2-periodic continued fraction expansion

(3.12) G p3q pqq " 1 1 `2q ´q4 1 `q ´q2 `2q 3 ´q4 1 `2q ´q4 1 `q ´q2 `2q 3 ´q4 . . .
which is also an H-fraction.

Proof. On the one hand, the generating function G p3q pqq satisfies the functional equation indicated in (2.14). On the other hand, (3.12) reads (3.13) ´Gp3q pqq " 1 1 `2q ´q4 1 `q ´q2 `2q 3 `q4 G p3q pqq and leads to exactly the same functional equation. □ 3.5. H-fractions for the silver ratio. Let us do the similar work in the case of our second main example, the silver ratio y 2 . We present H-fractions for the series Spqq, S p1q pqq and S p3q pqq given by (1.14). They will be used to prove Theorem 1.8.

Lemma 3.8. The series S p1q pqq and S p3q pqq are related via the continued fraction

(3.14) S p1q pqq " 1 1 ´q3 1 `2q 2 `q5 1 `2q 2 ´q3 `q4 S p3q pqq
Proof. Using S p1q pqq " q 2 S p3q pqq `1, formula (3.14) is equivalent to

S p1q " 1 1 ´q3 1 `2q 2 `q5 1 `q2 ´q3 `q2 S p1q
.

After simplification, one obtains S p1q " S p1q p2q 4 `q2 q ´pq 3 ´2q 2 ´1qpq 2 `1q S p1q p´q 5 `2q 4 `q2 q `q6 ´2q 5 `2q 4 ´2q 3 `3q 2 `1 This is equivalent to ´q2 S p1q pqq 2 ``1 ´q3 ˘Sp1q pqq ´p1 `q2 q ¯`q 3 ´2q 2 ´1˘" 0, and thus follows from the first equation in (2.16). □

Actually, another continued fraction connects S p3q pqq to S p1q pqq: Lemma 3.9. One has

S p3q pqq " q 1 `2q 2 ´q3 1 `q2 1 `q2 1 `q `q2 1 `q2 S p1q pqq
Proof. Similarly to (3.14), this formula follows from (2.16), after a straightforward computation. □

Gluing formulas of the two previous lemmas we obtain an H-fraction for the shifted series S p1q pqq of the q-silver ratio.

Corollary 3.10. One has the following 8-periodic H-fraction presentation

(3.15) S p1q pqq " 1 1 ´q3 1 `2q 2 `q5 1 `2q 2 ´q3 `q5 1 `2q 2 ´q3 1 `q2 1 `q2 1 `q `q2 1 `q2 S p1q pqq
Proof. It remains only to check that it has the type (3.2) of an H-fraction. This is easily done, by using the following 8-periodic sequences of coefficients k i , v i and polynomials U i (3.16)

k i " 0, 1, 2, 1, 0, 0, 0, 0, . . . v i " 1, 1, ´1, ´1, 1, ´1, ´1, ´1, . . . U i " 0, 2q, 2q ´q2 , 2q , 0, 0, 1, q . . . 
where i " 0, 1, 2, 3, . . . □ Lemma 3.11. One has the following relation between the generating function Spqq and its first shift

(3.17) Spqq " 1 1 ´q `q2 1 `q `q2 1 `q2 S p1q pqq .
Note that the concatenation of (3.17) and (3.15) gives a H-fraction for the q-deformation Spqq of the silver ratio y 2 .

Proof. The functional equation (2.15) combined with Spqq " q S p1q pqq `1 gives q 2 SpqqS p1q pqq ``1 ´q ´q2 ˘Spqq " 1. This is equivalent to (3.17) after an elementary computation. □

Hankel determinants of q-metallic numbers

In this section, we prove Theorems 1.6, 1.7 and 1.8. We then consider more examples of the series ry n s q , and observe experimentally that several first sequences of their Hankel determinants consist of ´1, 0, and 1 only. Moreover, the number of t´1, 0, 1u-Hankel sequences increases, as n grows.

The most fascinating property of these t´1, 0, 1u-Hankel sequences is that they satisfy Somos or Gale-Robinson recurrences. This property is easily proved for the gold and silver ratio and remains conjectural for other metallic numbers. 4.1. Shifted Hankel determinants. We first establish a general formula concerning Hankel determinants of metallic numbers. Proposition 4.1. Let y k " rk, k, k, . . .s be a metallic number. We have the following relation between the shifted Hankel determinants:

∆ pkq n `ry k s q ˘" p´1q n`p k`1qpk´2q 2 ∆ pk`1q n´k´1 `ry k s q ˘.
Proof. Let x k " y k ´k, as in (3.5). By definition, rx k s q " q σ q py k q. From (3.8) we have rx k s q " ry k ´ks q " q k xky q `qk`2 σ q py k q .

According to (3.6), xky q is of the form 1 `upqqq with upqq a polynomial of degree k. Thus we can apply Lemma 3.1 and get that ∆ n prx k s q q " p´1q kpk`1q{2 ∆ n´k´1 p´σ q py k qq, hence the result. □ 4.2. The case of golden ratio. Proof of Theorems 1.6 and 1.7. We are ready to prove that the first Hankel determinants of the q-deformed golden ratio are indeed given by (1.17) and that they characterize the series (1.4).

Proof of Theorem 1.6. Until the end of the proof the Hankel determinants ∆ pℓq n pGq will be simply denoted by ∆ pℓq n when there is no ambiguity. Here is our strategy: (a) first, we shall prove that the knowledge of any of the first three sequences of determinants ∆ " ∆ p0q , ∆ p1q , ∆ p2q entails the knowledge of the two others, because there are very simple relations between them.

Then it will be sufficient: (b) to calculate ∆ p2q , and (c) to calculate ∆ p3q . Before we do so, a first obvious but crucial observation is that the three shifted determinants ∆ pℓq n , where ℓ " 1, 2, 3, correspond to the non-shifted Hankel determinant ∆ n of a shifted variant of Gpqq or, equivalently, of a power series represented by one of the generating functions G pℓq , ℓ " 1, 2, 3 introduced in (1.7). To make it clear: ∆ pℓq n " ∆ n pG pℓq q, ℓ " 0, 1, 2, 3. Now we start our proof. (a) Applying Proposition 4.1 to the case of the golden ratio φ " y 1 , one obtains the relation ∆ n pG p1q q " p´1q n´1 ∆ n´2 pG p2q q or equivalently ∆ p1q

n " p´1q n´1 ∆ p2q n´2 . Thus the second and third sequences in (1.17) can be deduced the one from the other. Similarly, because of (3.1) and (2.13) we have

Gpqq " 1 1 ´q2 F 1 pqq , with F 1 pqq " 1 1 `qGpqq " 1 1 `q `q2 G p1q pqq .
Applying Han's Lemma 3.1 we thus obtain the relation

∆ n " ∆ n pGq " p´1q n ∆ n pG p1q q " p´1q n ∆ p1q n´2
which connects the second sequence in (1.17) with the first one.

(b) Now we determine explicitly the shifted Hankel determinants ∆ p2q n . Since the continued fraction (3.9) is an H-fraction by Lemma 3.5, we can calculate the Hankel determinants ∆ p2q n via formula (3.4). The parameters v i , s i , ε i contributing in this formula can be easily deduced from (3.10) and (3.3): where i " 0, 1, 2, 3, . . . The sequence ps i q misses the values 3 `4i " 3, 7, 11, . . . which means that the Hankel determinants ∆ p2q 3`4i vanish. On the other hand, the non-zero values of the Hankel determinants of the sequence σ q pφq are as follows:

v i " 1, 1, ´1,
∆ p2q 0 " 1, ∆ p2q 1 " 1, ∆ p2q 2 " 1, ∆ p2q 4 " ´1, ∆ p2q 5 " ´1, ∆ p2q 6 " ´1, ∆ p2q 
8 " 1, . . . In other words we have proved that the sequence ∆ p2q is the one given in the third row of (1.17). Because of (a) this proves also that ∆ and ∆ p1q are as in (1.17).

(c) The remaining case of ∆ p3q " ∆pG p3q q in (1.17) is treated by applying formula (3.4) to the H-fraction (3.12). The parameters of this H-fraction are k 2m " 0, k 2m`1 " 2 for all m ě 0, and thus s i " 1, 4, 5, 8, 9, 12, 13 . . . , i " 1, 2, 3, . . . are the indices of non-zero determinants. We obtain this way the fourth row in (1.17).

Theorem 1.6 is proved.

Remark 4.2. An alternative proof of (b) above would be the following. According to (3.9), one can write

G p2q pqq " 1 1 `q ´q2 F 1 pqq , F 1 pqq " 1 1 `q `q2 F 2 pqq
, F 2 pqq " q 1 `q ´q2 `q3 G p2q pqq .

Applying Han's Lemma 3.1 we thus obtain the relations ∆ n pG p2q q " ∆ n´1 pF 1 q, ∆ n pF 1 q " p´1q n´1 ∆ n´1 pF 2 q, ∆ n pF 2 q " p´1q n´1 ∆ n´2 pG p2q q which imply the 4-antiperiodicity: ∆ p2q n " ´∆p2q n´4 . Thus it suffices to calculate the first four determinants ∆ p2q n with n " 0, 1, 2, 3 to get the complete sequence. Similarly, using (3.13) we easily prove the 4-antiperiodicity of the ∆ p3q sequence and this gives another proof of (c).

Finally, let us mention that, instead of proving the validity of our formula (1.17) for the sequence of shifted determinants ∆ p2q as we did in (b), we could have looked instead at the sequence of non-shifted determinants ∆, since (a) above shows that they are equivalent. The proof is quite the same and consists in applying formula (3.4) to the H-fraction (3.11).

Proof of Theorem 1.7. Let us now prove that the series Gpqq is characterized by the Hankel determinants (1.17). We proceed by induction: assume that the first k coefficients, G 0 , G 1 , . . . G k´1 of the series Gpqq "

8 ÿ i"0 G i q i
(see (1.4)) are determined by (1.17). We need to prove that G k is also determined by these determinants.

Among the Hankel determinants (1.17), consider those with G k in the lower right entry:

(4. n " ∆ n pS pℓq q, ℓ " 0, 1, 2, 3, 4, with S pℓq defined in (1.14).

(a) Consider first the shifted series S p1q pqq. Applying (3.4) to the continued fraction of Lemma 3.10, we obtain the second formula in (1.19). Indeed, the parameters v i , s i , ε i contributing in this formula can be easily deduced from (3.16) and (3.3):

v i " 1, 1, ´1, ´1, 1, ´1, ´1, ´1, ´1, . . . s i " 1, 3, 6, 8, 9, 10, 11, 12, . . . ε i " 0, 1, 4, 5, 5, 5, 5, 5, . . . 
where i " 0, 1, 2, 3, . . . The Hankel sequence ∆ p1q n is then given by (3.4). (b) Now, Lemma 3.11 allows us to calculate the Hankel determinants ∆ n . Indeed, using auxillary functions F 1 pqq and F 2 pqq, formula (3.17) reads Spqq " 1 1 ´q `q2 F 1 pqq , F 1 pqq " 1 1 `q `q2 F 2 pqq , F 2 pqq " 1 1 `q2 S p1q pqq .

Applying then Han's Lemma 3.1, we have ∆ n " p´1q n´1 ∆ n´1 pF 1 q, ∆ n pF 1 q " p´1q n´1 ∆ n´1 pF 2 q, ∆ n pF 2 q " p´1q n´1 ∆ p1q n´1 .

Hence, we conclude ∆ n " p´1q n ∆ p1q n´3 , in accordance with (1.19). (c) Applying Lemma 3.8, we are able to calculate the determinants ∆ p3q n . Once again, using auxillary functions F 1 pqq and F 2 pqq, formula (3.14) then gives

S p1q pqq " 1 1 ´q2 F 1 pqq , F 1 pqq " q 1 `2q 2 `q3 F 2 pqq , F 2 pqq " q 2 1 `2q 2 ´q3 `q4 S p3q pqq .
From Han's Lemma, we have ∆ n " 1, 1, 0, ´1, ´1, 1, 1, 0, ´1, ´1, 0, 0, 1, 0, 0, 0, 1, 0, 0, ´1, ´1, 0, 1, 1, . . . ∆ p1q n " 1, 1, ´1, 0, 1, ´1, 0, 0, ´1, 0, 0, 0, ´1, 0, 0, ´1, 1, 0, ´1, 1, 1, ´1, 0, 1, . . . ∆ p2q n " 1, 1, 0, 0, ´1, 0, 0, 0, ´1, 0, 0, 1, 1, 0, ´1, ´1, 1, 1, 0, ´1, ´1, 1, 1, 0, . . .

∆ p1q n " ∆ n pF 1 q, ∆ n pF 1 q " p´1q n´1 ∆ n´2 pF 2 q, ∆ n pF 2 q " p´1q n ∆ p3q 

∆ p3q n

" 1, 0, 0, 0, 1, 0, 0, 1, ´1, 0, 1, ´1, ´1, 1, 0, ´1, 1, 1, ´1, 0, 1, ´1, 0, 0, . . .

∆ p4q n

" 1, 0, 0, ´1, ´1, 0, 1, 1, ´1, ´1, 0, 1, 1, ´1, ´1, 0, 1, 1, 0, 0, ´1, 0, 0, 0, . . . 

(4.3) ∆ n " p´1q n´1 ∆ p1q n´4 " ´∆p2q n´8 " p´1q n ∆ p3q n´12 " ∆ p4q 
n´16 . Some of the above relations are easy to prove. For instance, the last equality in (4.3) is a corollary of Proposition 4.1, while the second equality follows from the following. Lemma 4.6. One has

B p1q pqq " 1 1 ´q `q2 1 `q `q3 1 `q2 B p1q pqq " 1 1 ´q `q2 1 `q `q3 1 `q `q3 B p2q pqq .
Proof. This readily follows from (2.17 The next Hankel sequences have entries different from ´1, 0, 1, but certain symmetry persists. For example we have a sequence which is again 24-antiperiodic with the following (anti)period ∆ p5q n " 1, 0, ´1, 2, 1, ´1, 1, 0, ´1, 0, 0, ´1, 0, 1, ´1, 1, 2, ´1, 0, 1, 0, 0, 0, 0, . . . Let us end this section with the case of ? 5 `2 " y 4 .

Experimental Fact 4.8. The first six sequences of Hankel determinants of "? 5 `2‰ q consist of ´1, 0, 1 only, and they are 48-periodic. The sequences start like this (4.4)

∆ n " 1, 1, 0, 0, 1, 1, ´1, 0, 1, 0, ´1, ´1, 1, . . . ∆ p1q n " 1, 1, 0, ´1, 0, 1, ´1, ´1, 0, 0, ´1, ´1, 0, . . . ∆ p2q n " 1, 1, ´1, 0, 0, 1, ´1, 0, 0, 0, ´1, 0, 0, . . . ∆ p3q n
" 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, ´1, 0, 0, . . .

∆ p4q n

" 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, ´1, 0, 0, . . .

∆ p5q n " 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, ´1, 0, 1, . . .
It seems that the following relations hold between the rows:

∆ pℓq n " p´1q n´1 ∆ pℓ`1q n´5 
for ℓ " 0, 1, 2, 3, 4. It is interesting to notice that in every 8-periodic row satisfying this recurrence the 4 first ("initial") values determine the 4 remaining. For instance, in the first row ∆ n pGq " 1, 1, 1, 0, ´1, ´1, ´1, 0, 1, 1, 1, . . . where n " 0, 1, 2, . . . the values 1, 1, 1, 0 determine the rest. Indeed, although the recurrence equation ∆ 7 ∆ 3 " ∆ 6 ∆ 4 ´∆2 5 does not allow to recover ∆ 7 , since ∆ 3 " 0, the next equation ∆ 8 ∆ 4 " ∆ 7 ∆ 5 ´∆2 6 determines ∆ 7 , since ∆ 8 is known by periodicity. (b) In the case of the Silver ratio, the first four rows satisfy the Somos-6 recurrence (1.21): similarly to the case of the golden ratio, this is an easy consequence of Theorem 1.8. Moreover, one can check that this Somos-6 recurrence, together with the 12-periodicity assumption, allows one to recover the full sequence of coefficients from the six first terms.

Note also that the quadratic functional equations (2.16) fit into the class of sequences satisfying Eq. (4.22) of [21], so that this observation can be understood as a part of Theorem 5.5 of this reference.

(c) The five sequences of Hankel determinants (4.2) of the bronze number y 3 " 3`?13 2 satisfy the Gale-Robinson recurrence ∆ n`8 ∆ n " ∆ n`7 ∆ n`1 ´∆2 n`4 , in accordance with Conjecture 1.9. ∆ n`10 ∆ n " ∆ n`9 ∆ n`1 ´∆2 n`5 . As before, recurrence (4.5) allows to recover the Hankel sequences from the 9 initial values, provided we know that the sequences are 48-periodic.

Miscellaneous examples of continued fractions for q-numbers

In this section we give several examples of continued fractions for the series representing qdeformed rationals and q-deformed irrationals. Some of them are quite elegant and allow one to hope for a more general theory which is out of reach so far. 5.1. Another J-fraction for the silver ratio. Let us consider the series 1´S p2q pqq (see (1.14)) that has essentially the same sequence of coefficients than Spqq. It turns out that this series has a rather nice 2-periodic J-type continued fraction expansion. Proposition 5.1. One has the following 2-periodic continued fraction

1 ´Sp2q pqq " 1 1 `q2 1 `q2 ´q3 1 `q2 1 `q2 ´q3 . . .
Proof. This is an immediate corollary of (2.16). □ 5.2. A Stieltjes type formula for S p2q pqq. We give here the result of a straightforward computation. The formula below is rather complicated and does not leave a hope for general results in this direction. For a symmetry reason, we multiply S p2q pqq by q 3 . Proposition 5.2. The following 7-glide-periodic C-fraction represents the (shifted) r ? 2s q q 3 S p2q pqq " q 5

1 `2q 2 1 `q 2 1 ´q 2 1 `2q 1 ´2q 1 `q 2 . . .

By "7-glide-periodic" we mean that the 7 consecutive numerators of the above continued fraction repeat with inverse order: q 2 , ´2q, 2q, ´q 2 , q 2 , 2q 2 , q 5 , . . . Surprisingly, this continued fraction is 13periodic. 5.3. C-fractions for the q-integers. Let us consider the q-deformations of integers rns q " 1 `q `¨¨¨`q n´1 , as in (1.3), and of their inverses " 1 n ‰ q .

Proposition 5.3. (i) The C-fraction expression representing a q-integer is as follows rns q " 1 1 ´q 1 `qn´1 1 `q 1 ´q 1 `qn´3 1 `q . . .

If n " 2m `1 it is of length 3m, and if n " 2m it is of length 3m ´1.

(ii) For the inverse q-number " 1 n ‰ q , one has " 1 n ȷ q " q n 1 `q 1 ´q 1 `qn´2 1 `q 1 ´q 1 `qn´4 . . .

Proof. Use (1.3) for Part (i) and the formula " 1 n ‰ q " 1 rns q ´1 (see Eq. (2.8) in [START_REF] Leclere | q-deformations in the modular group and of the real quadratic irrational numbers[END_REF]) for Part (ii). □ Example 5.4. One has for instance r3s q " 1 1 ´q 1 `q2 1 `q, r4s q " 1 1 ´q 1 `q3 1 `q 1 ´q 1 `q, r5s q " 1 1 ´q 1 `q4 1 `q 1 ´q 1 `q2 1 `q and for the inverse numbers " 1 3 ȷ q " q 2 1 `q 1 ´q 1 `q, " 1 4 ȷ q " q 3 1 `q 1 ´q 1 `q2 1 `q, " 1 5 ȷ q " q 4 1 `q 1 ´q 1 `q3 1 `q 1 ´q 1 `q 5.4. C-fractions for q-rationals. The simplest examples for q-rationals are as follows.

" 2 5 ȷ q " q 2 1 `2q 2 1 `q 2 1 `q 2 , " 3 5 ȷ q 
" q 1 `q 1 `q 1 `q2

Here we have used the expansions 2 5 " r0, 2, 2s, 3 Email address: emmanuel.pedon@univ-reims.fr

1. 4 .

 4 Somos and Gale-Robinson recurrences. It is very easy to check that the first three sequences of Hankel determinants ∆ n pGq, ∆ p1q n pGq, and ∆ p2q n pGq (see (1.17)) satisfy the recurrence

  (4.22) in [21].

  k s q ˘denote as in(1.16) the ℓ-shifted sequence of Hankel determinants associated with the q-deformation of the metallic number y k .(a) The first k `2 sequences ∆ p0q n , ∆ p1q n , . . . , ∆ pk`1q n

‰ 0 .

 0 Since the row and the column containing G k in (4.1) consists of coefficients G i with i ă k, which are known by induction hypothesis, we conclude that the value of (4.1) determines G k , provided ∆ pℓq n´1 is different from 0. Theorem 1.7 is proved. 4.3. The case of silver ratio. Proof of Theorem 1.8. For short, we will use the notation ∆ pℓq n instead of ∆ pℓq n pSq until the end of the proof, so that ∆ pℓq

Remark 4. 3 ..

 3 As for Theorem 1.6, let us mention that we have alternative proofs of Theorem 1.8. For instance, Lemma 3.9 connects the determinants ∆ p3q n with ∆ p1q n . Indeed, using the same method as in (b) and (c), we have ∆ p3q n " ´∆p1q n´6 . Combining this with the conclusion (c), one proves the 12-periodicity of the Hankel sequence ∆ p3q n , and thus of ∆ n , ∆ p1q n , and ∆ p2q n . Then to prove Theorem 1.8 it suffices to calculate the first 11 values of (one of) the sequences. 4.4. The case of y 3 and y 4 : more rows of ´1, 0, 1. Consider the next example (after δ) of metallic number y 3 " 3`?13 2 Computer experimentation shows that the phenomenons already observed for φ and δ become even more amazing: the number of Hankel sequences consisting of ´1, 0, 1 increases. Experimental Fact 4.4. The first five sequences of Hankel determinants ∆ pℓq function (2.10), consist of ´1, 0 and 1 only. These sequences are 24-antiperiodic ∆ pℓq n`24 " ´∆pℓq n , ℓ " 0, 1, 2, 3, 4, with the following (anti)periods (4.2)

Remark 4. 5 .

 5 The above sequences ∆ p0q n , . . . , ∆ p4q n have multiple symmetries. In particular, they satisfy

7 .

 7 The second and the third rows are related via∆ p1q n " p´1q n ∆ p2q n´4 .The other two relations in (4.3) require more sophisticated computations, and we do not elaborate the details here.

4. 5 .

 5 The Somos-4, Somos-6 and Gale-Robinson recurrences. (a) Consider first the case of the golden ratio. We already know the first rows of Hankel determinants of Gpqq (see Theorem 1.6), and it is an easy task to check that the first three rows ∆ n pGq, ∆ p1q n pGq, and ∆ p2q n pGq, satisfy the Somos-4 recurrence (1.20).

  (d) For the metallic number y 4 " ? 5 `2, the six sequences of Hankel determinants (4.4) satisfy the Gale-Robinson recurrence (4.5)

  3. 

	It turns out that the next sequence is also 12-periodic, ∆	p4q n`12 pSq " ∆	p4q n pSq, with the following
	period			
			∆ p4q	
	Theorem 1.8. The first four sequences of Hankel determinants are periodic with period 12
			∆	pℓq n`12 pSq " ∆ pℓq n pSq,	ℓ " 0, 1, 2, 3,
	and consist in ´1, 0, 1 only. The period is as follows
		∆ n pSq " 1, 1, ´1, ´1, 1, 0, ´1,	0, 0, 1,	0, ´1, . . .
	(1.19)	∆ ∆	p1q n pSq " 1, 1, p2q n pSq " 1, 0,	0, ´1, 0, 0, ´1, 0, ´1, 0, 1, ´1, ´1, 1, 1, ´1, 0, 1, 1, ´1, ´1, . . . 0, . . .
		∆	p3q n pSq " 1, 0, ´1, ´1, 1, 1, ´1, ´1, 0, 1,	0,	0, . . .
	for n " 0, 1, 2, 3, . . .	
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