
HAL Id: hal-04366652
https://hal.science/hal-04366652v1

Submitted on 29 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Global dataset of soil organic carbon in tidal marshes
Tania Maxwell, André Rovai, Maria Fernanda Adame, Janine Adams, José

Álvarez-Rogel, William Austin, Kim Beasy, Francesco Boscutti, Michael
Böttcher, Tjeerd Bouma, et al.

To cite this version:
Tania Maxwell, André Rovai, Maria Fernanda Adame, Janine Adams, José Álvarez-Rogel, et al..
Global dataset of soil organic carbon in tidal marshes. Scientific Data , 2023, 10 (1), pp.797.
�10.1038/s41597-023-02633-x�. �hal-04366652�

https://hal.science/hal-04366652v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1Scientific Data |          (2023) 10:797  | https://doi.org/10.1038/s41597-023-02633-x

www.nature.com/scientificdata

Global dataset of soil organic 
carbon in tidal marshes
tania L. Maxwell et al.#

tidal marshes store large amounts of organic carbon in their soils. Field data quantifying 
soil organic carbon (SOC) stocks provide an important resource for researchers, natural 
resource managers, and policy-makers working towards the protection, restoration, and 
valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon 
(MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, 
SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points 
from 2,329 unique locations, and 29 countries. We generated a general transfer function for 
the conversion of SOM to SOC. Using this data we estimated a median (± median absolute 
deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in 
the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and 
may contribute to incorporation of tidal marsh ecosystems into climate change mitigation 
and adaptation strategies and policies.

Background & Summary
Tidal marshes are vegetated wetlands formed by herbaceous and woody vascular plants that are present on many 
of the world’s depositional coastlines and are regularly inundated by tides1. While tidal marshes naturally change 
in extent, anthropogenic pressures (sometimes operating over thousands of years2) have greatly accelerated this 
change in recent decades, degrading their condition globally. Tidal marshes have received considerable attention 
recently as blue carbon ecosystems, one of a group of ecosystems that have the capacity to capture and store 
large amounts of soil organic carbon (SOC) over hundreds to thousands of years3. Alongside mangroves and 
seagrasses, they accumulate organic carbon most effectively in their soils where decomposition is slow due to 
anoxic waterlogged conditions4,5. Precise and consistent global-scale information on tidal marsh extent, distri-
bution change, or other ecosystem functions is lacking, highlighting a critical research gap given their potential 
value for climate change mitigation6,7.

Assessments of tidal marsh change have found that previous decades were characterised by extensive losses, 
with marshes disappearing at a rate of 1–2% per year8, leading to a total loss of 67% of tidal marshes over recent 
centuries9. In the period 2000 to 2019, one study estimated a global tidal marsh loss rate of 0.28% per year10, 
while another suggested that marshes have actually marginally increased globally in extent, including vege-
tation expansion onto existing tidal flats11. A new 10 m resolution global map of tidal marsh extent estimates 
that the ecosystem occupies 52,880 km2 (95% confidence intervals: 32,000 to 59,800 km2)12, similar to previ-
ous estimates13. These ecosystems continue to be at risk due to direct anthropogenic impacts such as activities 
that lead to destruction, disturbance, or degradation, sea-level rise, and changes in climate14, which negatively 
impact their ability to retain their stored SOC or accumulate more SOC via carbon sequestration and sediment 
accretion15,16.

The quantification of organic carbon stocks in tidal marsh soils provides critical information to promote the 
protection, management, and restoration of these natural carbon sinks. Such information, and derived models, 
may support blue carbon assessments, and enable the incorporation of tidal marsh ecosystems into climate 
change mitigation and adaptation strategies and policies, including the Nationally Determined Contributions 
that form a core component of global climate actions. Previous global estimates have averaged values from a few 
select studies4,17, or relied on global datasets that are biassed towards farmland soils10,18. There is a clear need 
for a centralised tidal marsh soil carbon dataset, and to this end the Coastal Carbon Research Coordination 
Network (CCRCN)19 has been collating and publishing core-level datasets. These data are mostly from the 
United States (U.S.) and have been used to model soil carbon of the Conterminous U.S. tidal marshes20. Here, we 
expand on these efforts by collating site- and core-level tidal marsh SOC data distributed globally.

#A full list of authors and their affiliations appears at the end of the paper. 
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We collected data from 99 tidal marsh SOC peer-reviewed and unpublished studies and reformatted the data 
into a common structure using the R computing environment21. Studies were initially identified through a search 
of the peer-reviewed literature, and data were extracted directly from papers, from data repositories, or through 
personal communication from authors (Fig. 1). The tidal Marsh Soil Organic Carbon (MarSOC) database22 
contains 17,454 data points, each with geographic coordinates, collection year, soil depth, and site information 
(country, site name). The database includes data from 29 countries with an extensive tidal marsh coverage, and 
over 40% of the data are soil samples deeper than 30 cm. Using these data and the data from the CCRCN19, we 
provide a first order estimate for a globally representative SOC stock value for tidal marshes to 30 cm depth of 
79.2 ± 38.1 Mg C ha−1 (median ± absolute deviation of the median; n = 26,349), and to 1 m depth of 231 ± 134 
Mg C ha−1 (n = 39,126). Because marshes can be shallower or deeper than this, region-specific studies should 
develop their own stock estimates. However, using this value we can estimate an average of 1.22 ± 0.20 Pg C 
stored in tidal marshes in the upper metre of soil globally.

Generally, carbon content is quantified using an elemental analyzer, but these analyses can incur high costs, 
particularly in countries where laboratories with this specialised equipment are not easily accessible. Therefore, 
many studies only record soil organic matter (SOM) content based on Loss On Ignition (LOI). Therefore, to 

Fig. 1 Workflow of the literature search, abstract screening, and dataset generation process for the MarSOC 
dataset.
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estimate soil organic carbon (SOC) content, a number of equations have been developed to calculate SOC from 
SOM. For example, Craft and collaborators measured both SOM and SOC from marshes in North Carolina, 
U.S., and developed an equation for this relationship23, which has been used extensively by researchers globally 
to predict SOC from SOM in wetlands. However, for mangroves, this relationship can change according to the 
coastal environmental setting24, and several studies have generated their own site-specific equations25–29. For 
marshes in the continental U.S., Holmquist and collaborators20 developed their own equation using over 1,500 
points from 6 studies. Ouyang and Lee30 developed a global conversion equation, but they used only a subset of 
points from each of 11 studies in 4 countries (n = 344). Developing a more globally generalizable equation for 
tidal marshes is needed for large-scale analyses or as a starting point for new study sites. Within our database 
there are 17 studies with measurements of both SOM measured via LOI, and SOC measured via elemental 
analysis, allowing us to present this relationship. We therefore looked to include as many data points distributed 
globally using data from our database (n = 1,470) and the CCRCN database (n = 3,604), to create a universal 
conversion equation that spans the diversity of marsh soil types (e.g., minerogenic and organogenic settings) 
reported in the current literature.

The MarSOC dataset22 described here can be used for new global or large-scale estimates of tidal marsh soil 
organic carbon, and also provide a foundation for additional data collection and collaboration to improve soil 
organic carbon in tidal marsh estimates, especially from underrepresented areas. The dataset is released for non-
commercial use only and is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).  
All publications that use this database are encouraged to appropriately cite the data and this paper.

Methods
Literature search. We compiled the MarSOC dataset from a systematic review of the literature. On 19 
January 2022, we searched the title, abstract and keywords in both Scopus and the Web of Science (WoS) All 
Databases using a naive search string: ((“soil C” OR “soil carbon” OR “soil inorganic carbon” OR “soil organic 
carbon”) OR (“soil carbon sequestrat*” OR “soil carbon stabiliz*” OR “soil carbon stock*”)) AND (“tidal marsh*” 
OR “salt marsh*” OR “saltmarsh*”). The search identified 259 studies from Scopus and 331 from the WoS (Fig. 1).

We used the litsearchr R package31 to broaden our search terms using keyword co-occurrence net-
works31. All steps can be viewed in the published code with the dataset22. This resulted in our final search string: 
(“blue carbon” OR “carbon accumulation” OR “carbon cycle” OR “carbon dioxide” OR “carbon sequestration” 
OR “carbon stock*” OR “carbon stor*” OR “organic carbon” OR “organic matter” OR “soil carbon” OR “soil 
organic carbon” OR “soil organic matter” OR “soil respiration” OR “carbon content” OR “carbon dynamic*” OR 
“carbon pool*”) AND (“coastal marsh*” OR “coastal salt marsh*” OR “salt marsh*” OR “tidal marsh*” OR “tidal 
salt marsh*” OR “marsh ecosystem*” OR “marsh soil*” OR “saltmarsh*”).

On 28 January 2022, we searched both Scopus and the WoS All Databases using the final search string men-
tioned above within the University of Cambridge library account, which includes the following databases: Web 
of Science Core Collection, BIOSIS Previews, BIOSIS Citation Index, Current Contents Connect, MEDLINE, 
Zoological Record, Data Citation Index, KCI- Korean Journal Database, SciELO Citation Index, Russian Science 
Citation Index, and Derwent Innovations Index. This procedure aimed to ensure the inclusion of articles pub-
lished in languages other than English. We retrieved 4,035 items from WoS and 2,428 from Scopus. We dedupli-
cated the results, giving a total of 4,317 references (Fig. 1), which is tenfold higher than the original naive search.
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Fig. 2 Sample locations coloured by data type (core-level purple, review turquoise, site-level yellow).
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inclusion criteria. The initial and retained articles, with inclusion criteria and additional labels, can be 
found on our sysrev projects, an open and online tool to screen and label abstracts. In the first sysrev project, 
we screened the title and abstracts of the 4,317 references to identify those that mentioned soil organic matter 
or organic carbon in tidal marsh studies. We excluded studies that did not meet these criteria, and separated 
these into SOC measured in mudflats or seagrasses, other C cycling variables measured in tidal marshes, or 
studies generally not in tidal marshes or without mention of SOC data. Included studies were labelled as reviews  
(studies with a general scope, studies with potentially large datasets), modelling (studies with raw data that was 
used for modelling purposes in that study), and raw data (studies that may contain raw data). Studies could have 
two tags, such as review studies that included raw data. All studies labelled as “reviews” were retained for full-text 
assessment, from which we were able to include 9 datasets from tables or the supplementary material. Some of the 

Variable name Units Descriptor Type

Source Study from which the data was extracted Character

Original_source If the source study was a review, the original study of the data Character

Data_type Core-level, site-level, or from a review Character

Site The name of the site where core(s) were taken Character

Core Core ID Character

Plot If site-level data, identifier of the site Character

Site_name Unique ID per plot or core Character

Soil_type Soil type (i.e., peat, sand, silt, mud) when specified Character

Latitude Decimal degrees Geographic coordinate of sample location in WGS84 (N - S) Numeric

Longitude Decimal degrees Geographic coordinate of sample location in WGS84 (E - W) Numeric

accuracy_flag Accuracy of geographic coordinate (direct from dataset, averaged, or 
estimated using Google Earth) Character

Country The name of the country where the soil cores were taken Character

Admin_unit Administrative unit below country level (Nation, State, Emirate) Character

Year_collected The year of the collection. If cores were taken over several years, the year 
the collection started Integer

Year_collected_end If cores were taken over several years, the last year collected Integer

U_depth_m Metres Upper depth of soil core Numeric

L_depth_m Metres Lower depth of soil core Numeric

Method Method used to measure organic carbon (%). Elemental analysis (EA), 
loss-on-ignition (LOI), Walkley Black Character

Conv_factor Conversion factor used to convert soil organic matter measured via LOI to 
organic carbon Character

OC_perc % Soil organic carbon measurement Numeric

BD_g_cm3 g cm−3 Dry bulk density measurement Numeric

SOM_perc % Soil organic matter measurement Numeric

N_perc % Nitrogen (%), if measured alongside C in a CN analyser. Numeric

Time_replicate Time replicate for soil sampled more than once a year (summer, winter, 
month-specific) Character

Treatment Site-specific information (control, invaded, univaded, grazed, ungrazed, 
historic-breach, managed realignment, post-fire) Character

n_cores Number of cores in site-level or review measurements, when data available Integer

SOM_perc_mean % Mean of soil organic matter measured (data not at core-level) Numeric

SOM_perc_sd % Standard deviation of the mean of soil organic matter measured Numeric

OC_perc_mean % Mean of soil organic carbon measured (data not at core-level) Numeric

OC_perc_sd % Standard deviation of the mean of soil organic matter measured Numeric

OC_perc_se % Standard error of the mean of soil organic matter measured Numeric

BD_g_cm3_mean g cm−3 Mean of dry bulk density measured (data not at core-level) Numeric

BD_g_cm3_sd g cm−3 Standard deviation of the mean of dry bulk density measured Numeric

BD_g_cm3_se g cm−3 Standard error of the mean of dry bulk density measured Numeric

OC_from_SOM_our_eq % Soil organic carbon estimated from soil organic matter using our equation 
(Fig. 4) Numeric

OC_obs_est
Method of OC measurement: “Observed”, “Estimated (study equation)” - 
OC from LOI with regional eq. (see Conv_factor column), “Estimated (our 
equation)” - OC from LOI with Eq. 3

Character

OC_perc_final % Coalesce of all columns of OC_perc (OC_perc, OC_perc_mean, and 
OC_from_SOM_our_eq) Numeric

Notes Varying sample-specific notes (i.e., flagged outliers) Character

DOI Source study DOI URL Character

Table 1. Description of variables contained in the dataset.
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studies labelled as “raw data” were easily identified as having extractable data (n = 23), such as published datasets 
(Fig. 1).

To reduce the number of studies requiring full-text screening, from the initial studies tagged “raw data” 
(n = 1,168), we focused on geographical locations from which we had few datasets (i.e., outside the U.S., U.K., 
China, and Australia). A second abstract screening with more specific labels was then conducted. We labelled 
abstracts to identify studies by continent, presence of SOC or SOM data, and inclusion of primary data. A total 
of 69 studies with primary data in data-poor regions were identified. From these, 21 datasets were extracted or 
provided by the lead authors on the corresponding papers (Fig. 1).

We searched the SEANOE, PANGAEA, CIFOR, and Marine Scotland Data repositories and found 5 addi-
tional studies that fit the inclusion criteria (Fig. 1). We also included data compiled previously for a separate 
project, which included 12 core-level and 10 site-level published studies. Correspondence with experts in the 
field led to the inclusion of 10 additional datasets from published studies and 2 from studies that are unpub-
lished or in preparation (see Supplementary Information section I for corresponding sampling methodologies). 
Finally, data from 7 recent studies published beyond the search date of January 2022 were included. Datasets 
already held in the Coastal Carbon Research Coordination Network were not included, as our data compilation 
is intended to be complementary to that research database. The final extracted datasets were from 99 studies 
(Fig. 1).

Data acquisition. From the identified studies, when possible, we extracted data (SOM and/or SOC) from 
the publications’ tables, figures, or supplementary information. When not available, we contacted authors and 
asked them to contribute their datasets. We downloaded published datasets in repositories from their respective 
online sources. In total, we extracted data (from tables, supplementary material) from 22 studies, received data via 
email from 33 studies, and included 22 published datasets from a variety of general (Dataverse, DRYAD, FigShare, 
Mendeley Data), subject-specific (SEANOE, PANGEA), and country-specific (Environmental Information Data 
Centre (EIDC), Marine Scotland Data, USGS) repositories. Finally, we appended data from 22 studies from a 
previous data compilation effort. 

In total, we compiled data from 2,329 unique locations (Fig. 2). To be as comprehensive as possible, we 
included data recorded at the core-level (n = 72 studies25–28,32–97), site-level (n = 227,98–118), and from reviews 
(n = 5119–123). This data identification is included in the Data_type column, while the unique ID for each core 
or plot sampled is reported in the Site_name column (Table 1).

For each data point (i.e., each row), the data include the upper and lower depth of the soil sample, with SOC 
percent and/or SOM percent (Fig. 3), alongside the method used to determine these values (elemental analyser, 
Loss-On-Ignition, etc.). Each data point in our dataset also includes geographical coordinates, with a correspond-
ing accuracy flag. If available in the original datasets, dry bulk density (85% of the data) and nitrogen content (15% 
of the data) were also included. There is also information on the year the sample was collected and the site name 
and country where the sample was collected, with the name of any finer scale administrative unit if applicable.

Additionally, the data collated here provide the opportunity to calculate an updated and more globally rep-
resentative average value for the soil organic carbon stock to 1 m depth in tidal marshes. To do so, our database 
was used with the data from the CCRCN19 to maximise the number of points for this calculation (n = 38,945). 
Using the following equation (Eq. 1), we calculated soil organic carbon density for the subset of soil samples 
which recorded both a SOC content and measured dry bulk density value (Fig. 3d).

SOC density[g cm ] dry bulk density[g cm ]*(SOC[%] /100) (1)3 3=− −
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Fig. 3 Distribution of data stored in this MarSOC database across all soil depths.
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We separated all SOC density samples according to their horizon midpoint into the following soil layer cat-
egories: 0–15, 15–30, 30–50, and 50–100 cm (Figure S1). Using all of the measured SOC density values within 
each of these soil layers (that is, depth interval bins), we calculated the median SOC density value for each layer, 
along with its absolute deviation. The median was chosen as opposed to the mean due to the skewness of the 
data (Fig. 3d). We then multiplied this value by the corresponding thickness of each layer, and by 100 to convert 
grams to megagrams and cubic centimetres to hectares, to get the median SOC stock for each layer (Eq. 2).

= ∗ ∗− −SOC stock[Mg ha ] SOC density[gcm ] Horizon thickness[cm] 100 (2)1 3

We then summed these estimated stocks of the four layers to get the estimated total stock to both 30 cm and 
to 1 m depth. The final estimated value of SOC stock to 30 cm was 79.2 ± 38.1 Mg ha−1 (n = 26,239). With an 
additional 7,204 points located between 30 cm and 50 cm and 5,502 points between 50 and 100 cm, we calculated 
the stock to 1 m in tidal marsh soils as 231 ± 134 Mg ha−1 (median ± median absolute deviation). By using SOC 
density values from each sample to estimate the density for their respective soil layer (i.e., 0–15, 15–30, 30–50, 
and 50–100 cm), all data points were used in the stock calculation without needing to extrapolate. To get a more 
refined estimate of global tidal marsh soil carbon storage, it is possible to multiply this stock value by the tidal 
marsh area estimate of 52,880 km2 (95% CI: 32,000 to 59,800 km2) from the recent globally consistent extent 
map12. This gives us a global estimate of tidal marsh soil carbon of around 1.22 ± 0.20 Pg C in the top metre 
of soil, which is lower than previous estimates17. However, we acknowledge that this is a general estimate, and 
that a study using machine learning and environmental predictors to estimate SOC at a finer scale would give a 
more appropriate and accurate spatial representation of SOC stocks across the world’s coastal marshes. We also 
acknowledge that tidal marsh soils in different regions may be more shallow, or deeper than 1 m, so we recom-
mend that regional studies develop their own carbon stock estimates.

Global conversion factor. To create our conversion factor between SOC and SOM, we identified 17 studies 
in which, both SOM and SOC were measured. While data from the CCRCN is not included in our final dataset, 
we did include all data with both SOM and SOC measurements from the CCRCN19 to create the conversion factor 
equation. Thus, we included 18 studies124–128 from the CCRCN129–141 and 17 studies from our dataset to investigate 
the SOM to SOC relationship (Fig. 4). A further 10 studies, in which the authors developed their own conversion 
factor to convert SOM to SOC (Fig. 5), were selected for comparison.

To model SOC from SOM, we used the nls() and the lmer() functions in R to fit linear and quadratic 
models with an intercept fixed to 0, and included the study ID as a random effect. Based on Akaike’s Information 
Criteria, testing model parsimony relative to explanatory power, the best fitting model was a quadratic function 
with study ID as a random effect (Eq. 3; Fig. 4, R2 = 0.949, n = 5074).

= . ± . ∗ + . ± ∗SOC[%] (0 000683 0 00563) SOM[%] (0 410 0) SOM[%] (3)2

SOC = 0.000683 * SOM2 + 0.41 * SOM  

R2 = 0.949, n = 5074
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This can be compared to 16 studies from our literature search that used a variety of conversion factors 

(Table S1). We also fitted a quadratic model to each of the individual studies presented in Fig. 4, used to gen-
erate the general equation (Figure S2). We found that many of the study-specific quadratic equations were sig-
nificantly different to the overall equation (Table S2), showing that there is high variability in the relationship 
between SOM and SOC between each study. While site-specific conversion equations will always be desirable, 
our general model captures a range of coastal tidal marsh types distributed across the climatic, oceanographic, 
and geomorphic gradients with applications to regional or larger-scale studies. Our equation lies amongst the 
other conversion equations (Fig. 5), and estimates less organic carbon from organic matter than the commonly 
used Craft23 equation or the second equation presented in Blue Carbon Initiative handbook142, which used 
data from Maine. Our dataset can be used to analyse the uncertainty in how these different equations affect the 
calculation of a C stock for soils. For example, the uncertainty may be different for varying levels of soil organic 
matter, or for marshes with different coastal geomorphologies or soil type, which may influence the relationship 
between SOM and SOC24,143. It can also be used to estimate soil carbon stocks in tidal marshes for varying soil 
depths and using different methods, such as extrapolating cores to 1 m or confining the analysis to the topsoil. 
Finally, the data can serve as a basis for future work integrating other soil variables, such as soil total inorganic 
carbon, particulate organic and inorganic carbon, as well as isotope measurements.

Data records
The data and code used in the methods described above are archived in a Zenodo repository22. This is a static 
copy of the data peer-reviewed in 2023, which is a release from the dynamic Github repository https://github.
com/Tania-Maxwell/MarSOC-Dataset. The data is currently being incorporated into the CCRCN Atlas.

The repository is formatted in the following structure:

•	 Maxwell_MarSOC_dataset.csv: .csv file containing the final dataset. The data structure is described 
in the metadata file. It contains 17,454 records distributed amongst 29 countries.

•	 Maxwell_MarSOC_dataset_metadata.csv: .csv file containing the main data file metadata (equiv-
alent to Table 1).

•	 data_paper/:  folder containing the list of studies included in the dataset, as well as figures 
for this data paper (generated from the following R script: ‘reports/04_data_process/
scripts/04_data-paper_data_clean.R’).

•	 reports/01_litsearchr/: folder containing.bib files with references from the original naive search, 
a .Rmd document describing the litsearchr analysis using nodes to go from the naive search to the final search 
string, and the.bib files from this final search, which were then imported into sysrev for abstract screening.

•	 reports/02_sysrev/: folder with.csv files exported from sysrev after abstract screening. These files 
contain the included studies with their various labels.

•	 reports/03_data_format/: folder containing all original data, associated scripts, and exported data.
•	 reports/04_data_process/: folder containing data processing scripts to bind and clean the exported 

data, as well as a script testing the different models for predicting soil organic carbon from organic matter and 
finalising the equation using all available data. A script testing and removing outliers is also included.
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Kohfeld et al 2022 (Clayoquot Sound, British Columbia)

Martins et al 2022 (Ria Formosa lagoon, Portugal)

Santos et al 2019 (Ria Formosa lagoon, Portugal)

Ward et al 2021 (California estuaries)

Fig. 5 Soil organic matter to soil organic carbon conversion relationships developed by different sources, along 
with the region, site, or species zone from which these were developed (equations detailed in Table S1). Our 
conversion equation is a solid black line, with prediction intervals in grey.

https://doi.org/10.1038/s41597-023-02633-x
https://github.com/Tania-Maxwell/MarSOC-Dataset
https://github.com/Tania-Maxwell/MarSOC-Dataset
https://ccrcn.shinyapps.io/CoastalCarbonAtlas/
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technical Validation
For consistency and to validate the inclusion criteria, the literature search and screening was conducted in a 
two-part process that included a repeated evaluation by different co-authors. All SOC and SOM values were 
extracted from numerical sources (tables, supplementary tables, or published datasets). The distribution of all 
quantitative variables was verified visually by two authors, and the following outliers were flagged: 1) SOC, 
SOM, and dry bulk density values greater than the sum of 2.2x the interquartile range plus the 95% percent 
quantile144 of this dataset combined with the CCRCN dataset, 2) SOM values greater than 100, and 3) SOC val-
ues greater than SOM values, which may have been due to incomplete removal of water prior to LOI or due to 
incomplete removal of carbonates prior to SOC measurements. These values were removed from all calculations 
but remain in the dataset with an outlier flag in the “Notes” column of the dataset. In total, this represented less 
than 1% of data removal. These operations and the distribution of all variables (Fig. 3) can be found in the script 
02_outliers.R.

Usage Notes
This data descriptor manuscript and dataset was peer reviewed in 2023 based on a targeted search of the data 
available at the time. This compilation of 99 published and unpublished tidal marsh soil carbon datasets can 
be used to answer multiple research questions. First, the MarSOC dataset can be used to support large-scale 
models of soil carbon in tidal marshes and improve global estimates of carbon stored in these coastal ecosys-
tems. Different drivers of soil carbon at the landscape-scale can be investigated, such as the influence of coastal 
geomorphology. In addition, our database serves as a baseline for targeted ecosystem design outcomes and 
restoration of degraded tidal marshes.

Code availability
The code to format and process data was developed in R computing environment and is freely available in the 
Zenodo repository22. This is a static copy of the data peer-reviewed in 2023, which is a release from the dynamic 
Github repository https://github.com/Tania-Maxwell/MarSOC-Dataset. When using data from this dataset 
please cite this publication, along with the original sources. Both dataset and code are available under a Creative 
Commons License (CC-BY).
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