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EFFECTS OF THE CROSS-LINKING OF THE CELLULOSIC FIBRILLAR 
NETWORK ON THE EFFECTIVE MACROSCOPIC BEHAVIOUR OF 
WOOD 

 
 
Nhat-Tung Phan1, François Auslender1, Joseph Gril1,2, Rostand Moutou Pitti11,3 

 
ABSTRACT: This study aims at analysing the influence of the fibrils oscillations and interconnexions on the 
macroscopic behaviour of wood. For that, a multi-scale model of softwood has been developed, with two options for the 
cell-wall level: a reference with no oscillations (0S) and oscillations and interconnexions in two directions (2S). The cell-
wall and tissue effective behaviours are determined by using numerical homogenization for periodic media, while the 
succession of earlywood and latewood is dealt with analytically. It is observed that the influence of the fibrils oscillations 
is significant for some macroscopic moduli, such as the effective shear moduli 
!"# and�
!"$, while it isn’t for other moduli 
at the macroscopic level. Furthermore, although the effect of the interconnexions is quite strong for some components of 
the elastic behaviour at the cell wall level, it would lose its significance at the macroscopic level, especially for low-
density wood. This tendency can be explained by the interaction of layers from two neighbouring cells that compensate 
for the absence of interaction between fibrils in the 0S model. The effect becomes stronger in the case of a softened 
matrix.  
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Wood is one of the longest-standing and most universal 
materials used by humans. In response to environmental 
changes, population growth, and increasing standard of 
living, the global demand for lignocellulose material has 
accelerated [1]. The advantages of this material are 
mainly its availability and its excellent mechanical 
performance relative to the density, explained by its 
structural organization [2].  

 

Figure 1: Hierarchical structure and anisotropy of a softwood 

However, the study of wood has revealed a large 
variability of mechanical properties and various scales of 
heterogeneity. Thus, a better understanding of structure-
property relationships is required to improve our capacity 
to design wood-derived products. Since wood is 
considered as a natural composite material with a complex 
multiscale organization, its behaviour is a consequence of 
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both the deformation mechanisms of its constituents and 
their spatial distribution at different scales. In this study, 
having in mind the case of a softwood, we will then 
describe wood at three main levels (see Figure 1): the 
macroscopic level - scale of the grown-rings, the 
mesoscopic level - scale of the tissues, and the 
microscopic level - scale of the cell walls. 
This paper aims to investigate the influence of a more 
realistic cell wall morphology on the macroscopic 
behaviour of wood by considering curved and 
interconnected fibrils, rather than considering them 
parallel as classically in the literature [3, 4, 5]. To this end, 
we develop a multiscale model incorporating three 
different scales of wood microstructure as described 
above, ranging from cell walls to annual grown-rings, 
from which both numerical and analytical 
homogenization methods will be used to determine their 
effective behaviour by defining a periodic elementary cell 
at each scale considered.  
 
2 METHODOLOGY 
2.1 MULTI-SCALE MODEL  
2.1.1 An anisotropic material at all scales: from the 

secondary wall to the growth-ring 
The illustration of the hierarchical structure of the wood 
at different scales in Figure 1 highlights the preferred 
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directions at each level. In this research, we make use of 
three orthonormal frames with in each case the first 
direction corresponding to the one with the most 
resistance and rigidity. They are represented in Figure 2 
for the three considered levels. The three reference frames 
are: (L, R, T) for the growth-rings level, (1', 2', 3') for the 
tissues level and (1, 2, 3) for the cell walls level. 

 
Figure 2: Macroscopic, mesoscopic and microscopic 
orientations [6]. 

2.1.2 Description of the wood microstructure at the 
3 relevant scales 

 
a) Wood cell wall microstructure  
In the literature, the macrofibrils have classically been 
assumed to be straight and parallel to each other (Figure 
3a). However, some experimental characterizations [7, 8] 
suggest that this is not the case and that the macrofibrils 
are curved and connected to each other [9]. These 
suggestions are similar to the models of an oscillating 
cellulose network originally proposed by Boyd [10], and 
later used by Gril [6].  
 

 

 
Figure 3: Interpretation of the interconnexions between 
macrofibrils: (a) classical representation with straight and 
parallel microfibrils; (b) Oscillations and lateral contacts 
between macrofibrils through hydrogen bonding; (c) 
connexions resulting from the random transfer of oscillating 
microfibrils between neighbouring macrofibrils [11]. 

Furthermore, this oscillating structure may be the reason 
for the puzzling orientation interpreted from tomography 
[12]. As to the nature of the links between macrofibrils, it 
can be speculated that macrofibrils oscillate by slight 
deviations from their main direction, and occasionally get 
into contact through hydrogen bonding with neighbouring 

macrofibrils (Figure 3b). An alternative explanation is 
that some of the microfibrils composing a macrofibril 
could occasionally shift to the neighbouring one, resulting 
in stronger connections (Figure 3c). In any case, it seems 
reasonable to assume the existence of a network of 
macrofibrils laterally connected, separated by lignified 
matrix incrustations with more or less lenticular shapes, 
and both interpretations would be compatible with the 
subsequent modelling approach. For the sake of 
simplification, the macrofibrils will be simply be called 
fibrils in what follows.  
From the schematic description of the secondary walls 
proposed by Boyd [10], we assume that the fibrils 
oscillate around a principal direction, that we name 
direction 1, corresponding to the one defined by the MFA 
(Figure 4a). Taking the case of perfectly aligned fibrils as 
a reference (Figure 4b), we will examine the effect of 
oscillated fibrils (Figure 4c). In this study, we will 
describe oscillations for which the fibrils can oscillate 
within both planes (1, 2) and (1, 3). 

 
Figure 4: Representation of the material constituting the 
secondary cell wall: (a) position and orientation of a portion 
of the cell wall, (b) classical representation with straight and 
parallel fibrils and (c) improved description with oscillated 
and connected fibrils [11]. 

In order to analyse the influence of oscillated and 
connected fibrils on the effective behaviour of the cell 
wall, two periodic elementary cells that correspond to the 
0S and 2S models, respectively, are meshed (Figure 5). 
The cell wall material is assumed to be the periodic 
repetition of each of the represented elementary cells. 

 
Figure 5: two different morphological models to describe the 
periodic elementary cell (Cast3M) 

b) Cellular tissue microstructure  
The tissue microstructure of wood is modelled on the 
basis of anatomical and morphological descriptions of the 
structure of wood at the tissue level, considering tissues 
composed only of longitudinal tracheids. We will thus 
neglect the parenchyma rays which are a minor 
component of softwood. The studied microstructure being 

(a) (b) (c)
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supposed to be periodic, we will consider a periodic unit 
cell to represent it and calculate its effective behaviour. 
Moreover, this elementary cell will be constructed by 
integrating additional assumptions, frequently used in the 
literature [13, 14, 15]: 
- Invariance of the tissue structure in the longitudinal 

direction L, i.e. longitudinal irregularities at the points 
where the tracheids meet end to end are ignored; 

- Invariance of the local density in the longitudinal 
direction. 

Based on typical morphological parameters of softwoods 
at the tissue scale [16], earlywood (EW) and latewood 
(LW) are described as tissues consisting of a periodic 
arrangement of tissue microstructures of EW (Figure 6a) 
and LW (Figure 6b), respectively. Furthermore, each wall 
of the tissue microstructure consists of 3 layers (S1, S2, 
and S3), incorporating the primary wall and the middle 
lamella in the S1 layer. 
 

  

(a) Model EW (a) Model LW 

Figure 6: Geometric description of the two microstructures 
of EW and LW in the RT plane. 

 
Figure 7: Schematically idealized model for the annual ring 

c) Growth-ring microstructure  
At the macroscopic scale, wood is described as a periodic 
arrangement of orthotropic homogeneous layers of EW 
and LW, without taking into account the curvature of the 
rings (see Figure 7). Although in reality the transition 
between EW and LW is gradual, the choice of a ring 
consisting of two layers has been made in order to achieve 
an equivalent effect in terms of contribution to transverse 
anisotropy.  
 
2.2 CALCULATION OF THE EFFECTIVE 

BEHAVIOUR 
On the one hand, we determine the effective elastic 
behaviour at both the cell wall and tissue scales by using 
a numerical homogenization procedure for its periodic 
microstructures in the first two steps of the developed 

multiscale model. On the other hand, the macroscopic 
elastic properties of the wood corresponding to the 
succession model of EW and LW are determined 
analytically and correspond to the last step of the 
multiscale model. Furthermore, the interaction of the 
material parameters between the different levels of the 
multiscale model are also taken into account.  
 
2.2.1 Local problem 
For determining the effective elastic properties of the 
different periodic microstructures, we make use of a 
deformation approach and apply to each periodic unit cell 
periodic boundary conditions of the type u%x&�=�!�x�+�
u''x( where�! is the imposed macroscopic strain and u''x( 
a periodic displacement field [17]. The local problem to 
be solved reads as follows: 

)***
+*
**,-./ 0!'1(2 3 Ͳ�����������������������������
!'1( 3 C'1(ǣ 4'1(�����������������������
4'1( 3 ͳʹ567'1(6'1( 8 67'1(96'1( :���;**<

**=>1 ? "�������
7%x) = ! x + 7''x(ǡ with periodic 7'ǡ�>1 ? 6"��

 

 

 
(1) 

where " stands for the RVE, i.e. the periodic unit cell, and 
#" the cell boundary. The fourth-order tensor C'1(�is 
given by: 

C'1( 3 @ CA ǤBAACDǡE %1& 3 CDǤBD%1& 8 CE ǤBE%1& 
where BA%1&�is the characteristic function of the phase r, 
equal to 1 if 1 belongs to the phase r and zero otherwise. 
The tensors CAare the tensors of the elastic moduli of the 
phases�F. 
 
2.2.2 Numerical homogenization 
To calculate the effective behaviour of a periodic 
elementary cell corresponding to the cell wall (Figure 5) 
and tissue (Figure 6) microstructures, we make use of a 
deformation approach and apply periodic boundary 
conditions (PBC). 
By applying 6 different elementary loadings to the 
periodic unit cell and solving by means of the FE method 
the local problem, we obtain for each elementary loading 
the local stress field, thus allowing us to determine the 
macroscopic stress which is classically defined by:  

! 3 G!H 3 ͳȁ���ȁI����!'1(-1$ (2) 

The tensor of the effective elastic moduli �J  of the cell wall 
is then obtained by the following relation 

" 3 C!ǣ K (3) 
which, by using Voigt notations, can be rewritten as  

LM
MN
!OP
!OQ
!OR
!OS
!OT
!OUVW
WX 3

LM
MMN

C!11 C!12 C!13
C!21 C!22 C!23
C!31 C!32 C!33

C!14 C!15 C!16
C!24 C!25 C!26
C!34 C!35 C!36

C!41 C!42 C!43
C!51 C!52 C!53
C!61 C!62 C!63

C!44 C!45 C!46
C!54 C!55 C!56
C!64 C!65 C!66VW
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where�Z��3�Z��ǡ�K��3�K�� for i = 1 to 3 and�ZͶ�3�Zʹ͵Ǣ��Zͷ�3�Zͳ͵Ǣ��Z�3�Zͳʹ and KͶ�3�ʹKʹ͵Ǣ�Kͷ�3�ʹKͳ͵Ǣ�K�3�ʹKͳʹ. 
For instance, if we apply an elementary loading of the 
form�K�3��ͳ[��ͳ, the first column of the second-order 
tensor C! is given by: 

C!11=�"1�=�G"11H;C!21=�"2�=�G"22H;�C!31=�"3�=�G"33H;�C!41�=�
"4�=�G"23H;�C!51=�"5�=�G"13H;�C!61=�"6�=�G"12H. 
Accordingly, the application of 6 independent elementary 
loadings provide the whole effective tensor C! of elastic 
moduli.  
Moreover, by symmetry arguments related to the 
geometry of the elementary cell and the phase behaviour, 
it is shown that the effective behaviour of both the cell 
wall and tissue is necessarily orthotropic. 
2.2.3 Analytical homogenization  
The macroscopic behaviour of wood in the (L, R, T) 
directions is calculated by using an analytical solution for 
a bi-laminate consisting of the periodic repetition of two 
orthotropic elastic layers of earlywood and latewood (see 
Figure 7).  
 

3 RESULTS AND DISCUSSION 
 
In this work, we make use of the above-mentioned 
multiscale approach was used in this research to study the 
relationships between wood microstructure and its elastic 
properties. More specifically, this work aims to analyse 
through parametric studies the influence of oscillated and 
interconnected fibrils within the cell wall on the elastic 
effective properties of wood at three different scales.  
 
3.1 THE CELL WALL LEVEL   
The parametric studies are performed for both 
microstructure models (0S) and (2S) of the cell wall by 
varying different geometrical parameters such as the 
shape ratio r% = L1/L2, the fibril volume fraction c, the 
ratio of lamellar matrix on lenticular matrix 
r&= Vlamellar matrix/Vlenticular matrix and material parameter 
(phase contrast: ratio���	Ȁ�� where���	 is the longitudinal 
Young's modulus of the fibrils and �� is the Young's 
modulus of the matrix). Three effects associated with the 
fibrils oscillations are highlighted: those induced by the 
orientation of the fibrils, by the contact between the 
fibrils, and finally by the heterogeneous spatial 
distribution of the matrix between the oscillating fibrils 
(see Figure 8). 

 

Figure 8: Illustration of the 3 effects induced by the 
undulations of the fibrils. 

Furthermore, it is observed that the 2S model have a 
significant impact on the effective coefficients C!PQǡC!UU 
and C!PR, C!TT which are significantly influenced by the 
fibril oscillations in the (1, 2) plane and (1, 3) plane, 
respectively. Besides, the 2S model is able to take into 
account the influence of oscillated fibrils in the (2, 3) 
plane by the observations associated with the effective 
coefficients et C!QR, C!SS, respectively.  
 

 

(a) 

 

(b) 

 

(c) 

Figure 9: Variations of the effective moduli C!ij as functions 
of the volume fraction (r& = 1) 

3.2 THE TISSUE LEVEL 
Following the observations carried out at the cell wall 
level, we have shown at the tissue scale that the influence 
of the oscillated and interconnected fibrils increases with 
the relative density of the tissue. However, although the 
effects induced by the fibril oscillations are quite strong 
for some components of elastic behaviour at the cell wall 
scale, it loses its importance at the tissue level, especially 
for low density wood. This trend can be explained by the 
antisymmetric sloping of microfibrils in adjacent cell 
walls. Thus, for denser wood where the interaction 
between adjacent cell walls is less dominant, the effect of 
fibril oscillations remains significant. To highlight these 
results, we present in Figure 10 the evolutions of the 3 

0.0

10.0

0.0 1.0

Ef
fe

ct
iv

e 
st

iff
ne

ss
(G

Pa
)

fibrils volume fraction c

1

2

3

4

2S (r 3.75)
2S (r 7.50)
2S (r 15.0)
2S (r 30.0)
0S

%

%

%

%

'
'
'
' 44C!

0.0

5.0

0.0 1.0

Ef
fe

ct
iv

e 
st

iff
ne

ss
(G

Pa
)

fibrils volume fraction c

1

2

3

4

2S (r 3.75)
2S (r 7.50)
2S (r 15.0)
2S (r 30.0)
0S

%

%

%

%

'
'
'
'

55C!

0.0

5.0

0.0 1.0

Ef
fe

ct
iv

e s
tif

fn
es

s
(G

Pa
)

fibrils volume fraction c

1

2

3

4

2S (r 3.75)
2S (r 7.50)
2S (r 15.0)
2S (r 30.0)
0S

%

%

%

%

'
'
'
'

66C!

446https://doi.org/10.52202/069179-0060



effective shear moduli G! �� as a function of relative density 
(wood density divided by cell-wall density) for the 
latewood case. 

 

(a) 

 

(b) 

 

(c) 

Figure 10: Evolution of the effective C!ij components as a 
function of relative density for the LW model with the 
different data associated with the 0S and 2S models 

3.3 THE GROWN-RING LEVEL 
Based on Figure 11, the study of the influence of fibril 
oscillations on the macroscopic behaviour of wood via the 
presented multiscale model shows that the results 
obtained are similar to those observed at the grown-ring 
level. In addition, we also present for comparison 
purposes the experimental data of Guitard [18] for 
softwood. 

(a) 

(b) 

(c) 

Figure 11: Evolution of the effective moduli C!ij as a function 
of wood density for the two microstructures 0S and 2S 

 
4 CONCLUSION AND PERSPECTIVES 

  
Using the presented multiscale model, we showed that the 
influence of the oscillated and interconnected fibrils is 
significant for some macroscopic moduli, such as 
effective shear moduli, while it is not significant for other 
moduli at the macroscopic level (grown-ring scale). 
Furthermore, the proposed multiscale model provides 
macroscopic elastic properties and their evolutions as a 
function of wood density which are close to those 
observed experimentally for softwoods, with the 
exception of the modulus G!�� which is strongly 
underestimated. Lastly, although the effect of fibril 
crosslinks is quite strong for some components of the 
elastic behaviour at the cell wall level, it loses its 
importance at the macroscopic level, especially for low-
density wood. 
In order to study the influence of fibril oscillations not 
only on the effective elastic properties of wood at the three 
scales considered, an extension of the presented procedure 
to the case of linear hygro-elastic behaviour, has been 
developed within the multiscale model. It is based on FE 
calculations associated with the linear thermo-elasticity 
model, has been developed within the multi-scale model. 
This procedure allows to take into account the 
deformations induced in the absence of mechanical 
loading by an increase (respectively a decrease) of the 
water content which leads to a swelling (respectively a 
shrinking) of the wood. 
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