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Some Lectures on Macroeconomics

Introduction

We present some theoretical frameworks used in macroeconomics, mainly economic growth. Our goal is not to provide a unified model but rather to present simplified versions of models in the classic academic articles to help students familiarize with theoretical models used in macroeconomics and taught in most graduate programs.

In each section, we explain our objective and motivation illustrated by empirical data. We then build a theoretical model allowing us to address our question.

We hope that this lecture would be useful for readers (not necessarily having a good background in economics) who want to follow the graduate programs in economics. However, readers should have a background in finite-dimensional optimization and discrete-time dynamical systems.

Chapter 1

Short-term analysis: IS-LM model

This section is based on Chapters 3, 4, 5, 6 of [START_REF] Blanchard | Macroeconomics, Global Edition[END_REF] with slight modifications. We will present a framework (IS-LM model) to think about how output and the interest rate are determined in the short run. Our analysis will allow us to answer the question: "what would happen if the government was to change its spending and taxes or the central bank was to change money supply/interest rate?"

For the sake of simplicity, we consider a closed economy (no trade or export=import). In the short run, prices are fixed or sticky, and as we will see demand determines output. Many factors (e.g., consumer confidence, fiscal and monetary policy,...) affect demand.

The goods market and the IS curve

The demand for goods

The total demand for goods is C + I + G + X -M . Denote it by Z.

Z ≡ C + I + G + X -M (1.1)
Since we are considering a closed economy (i.e., no trade), we have X = M = 0. So, the demand for goods is the sum of consumption, investment, and government spending Total demand: Z ≡ C + I + G.

(1.2)

Let us discuss each of these components.

• Assume that consumption is an increasing function of the disposable income Y D . Then, for the sake of simplicity, we can assume that disposable income equals income minus taxes: Y D = Y -T . By consequence, we have

C = C(Y -T ).
(1.3)

C increases when the income Y increases and/or taxes T increase.1 

Remark 1. If the consumption function has the form C = c 0 + c 1 (Y -T ), then the parameter c 1 is called the propensity to consume. (It is also called the marginal propensity to consume.)

• Investment depends primarily on two factors: The level of sales (which is the output Y ) and the interest rate i.

I = I(Y, i) (1.4) (+, -)
Notation + means that an increase in output leads to an increase in investment while notationmeans that an increase in the interest rate leads to a decrease in investment.

• Government spending. Government spending G and T describe fiscal policy -the choice of taxes and spending by the government. We will take G and T as exogenous.

But the reason why we assume G and T are exogenous is the following. Governments do not behave with the same regularity as consumers or firms, so there is no reliable rule we could write for G or T corresponding to the rule we wrote, for example, for consumption.

To sum up, the total demand is

Z = C(Y -T ) + I(Y, i) + G (1.5)
It depends on income Y , interest rate i, taxes T , and government spending G. By the way, we may write Z = Z(Y, i, T, G). For a given value of the interest rate i, demand is an increasing function of output because both consumption and investment are increasing functions of output. More precisely, we can explain as follows:

• An increase in output leads to an increase in income and thus to an increase in disposable income. The increase in disposable income leads to an increase in consumption.

• An increase in output also leads to an increase in investment. This is the relation between investment and production that we have just discussed.

Equilibrium on the goods market and IS curve

The supply of the goods market is the output or production, that is Y . The equilibrium in the goods market means that the supply of goods Y be equal to the demand for goods Z. So, we obtain the following equation Goods market equilibrium:

Y = C(Y -T ) + I(Y, i) + G (1.6)
Given T and G, equation (1.6) represents a relationship between interest rate i and output Y .

As we have seen in equation (1.5), the higher the interest rate, the lower the output. The economic intuition is that: If interest rate increases, then investment decreases. The decrease in investment leads to a decrease in output which further decreases consumption and investment. So, the relation between the interest rate and output is represented by the down-ward-sloping curve as follows.

Shifts of the IS curve

We want to answer the question: How will the relation between the interest rate and output change if taxes T and government spending G change?.

Consider an increase in taxes. We will show that the IS curve shifts to the left (see Figure 1.2). To do so, we have to check that: at a given interest rate, an increase in taxes leads to a • Equilibrium in the goods market implies that an increase in the interest rate leads to a decrease in output. This relation is represented by the downward-sloping IS curve.

• Changes in factors that decrease the demand for goods given the interest rate shift the IS curve to the left. Changes in factors that increase the demand for goods given the interest rate shift the IS curve to the right.

Financial Markets and the LM Relation

The LM curve

The LM curve (LM-Liquidity Money) represents the relation between the interest rate and output. We assume that the central bank chooses an interest rate, call it, ī, and adjust the money supply so as as, under our assumption, the to achieve it. The LM curve is a horizontal line as in Figure 1.3.2 

LM curve

Monetary policy in practice

The transmission of monetary policy of the ECB3 is illustrated by Figure 1.4. The transmission of monetary policy of the Federal Reserve4 is summarized in Figure 1.5.

In the Fed, the Federal Open Market Committee (FOMC) sets a target for the federal funds interest rate and attempts to hit the target by buying or selling government securities. 5We refer to the Fed's purchase of government securities as expansionary monetary policy and its sale of government securities as contractionary monetary policy.

• Expansionary Monetary Policy 1. When the Fed buys government securities through securities dealers in the bond market, it deposits the payment into the bank accounts of the banks, businesses, and individuals who sold the securities. 3. Because banks want to lend money, to attract borrowers they decrease interest rates, including the rate banks charge each other for overnight loans (the federal funds rate).

• Contractionary Monetary Policy 1. When the Fed sells government securities, buyers pay from their bank accounts, which decreases the amount of funds held in their bank accounts.

2. Banks then have less money available to lend.

3. When banks have less money to lend, the price of lending that money -the interest rate -goes up, and that includes the federal funds rate.

The IS-LM model and applications

We now put the IS and LM relations together. At any point in time, the supply of goods must be equal to the demand for goods (equilibrium in the goods market), and the supply of money must be equal to the demand for money (equilibrium in the money market). So, both the IS and LM relations must hold. Together, they determine both output and the interest rate.

Goods market:

Y = C(Y -T ) + I(Y, i) + G (1.7)
Financial market: i = ī.

(1.8)

Graphically, we have Figure 1.6. 

Application: the effects of fiscal policy

Firstly, we look at the effects of an increase of taxes. Since taxes do not appear in the LM relation, they do not shift the LM curve.

Literally, we can say that an increase in taxes shifts the IS curve to the left and leads to a decrease in the equilibrium level of output. The increase in taxes leads to lower disposable income, which causes people to decrease their consumption. This decrease in demand leads, in turn, to a decrease in output and income. At a given interest rate, the increase in taxes leads therefore to a decrease in output.

Looking at the components of output: The decrease in income and the increase in taxes both contribute to the decrease in disposable income and, in turn, a decrease in consumption. The decrease in output leads to a decrease in investment. Thus, both consumption and investment decrease.

Formally, we have, in equilibrium,

Y = C(Y -T ) + I(Y, ī) + G.
Of course, we need to impose some conditions about ī, G, T so that this equation has a solution.

Then, taking derivatives of both sides, we get that

∂Y ∂T = C (Y -T ) ∂Y ∂T -1 + ∂I ∂Y ∂Y ∂T (1.9) ∂Y ∂T 1 -C (Y -T ) - ∂I ∂Y (Y, ī) = -C (Y -T ) (1.10) ∂Y ∂T = -C (Y -T ) 1 -C (Y -T ) -∂I ∂Y (Y, ī) (1.11) So, ∂Y ∂T < 0 if C (Y -T ) > 0 and 1 -C (Y -T ) -∂I ∂Y (Y, ī) > 0.
We then find that

∂C ∂T = C (Y -T ) ∂Y ∂T -1 = -C (Y -T ) 1 -∂I ∂Y (Y, ī) 1 -C (Y -T ) -∂I ∂Y (Y, ī) < 0 (1.12) ∂I ∂T = ∂I ∂Y ∂Y ∂T = ∂I ∂Y -C (Y -T ) 1 -C (Y -T ) -∂I ∂Y (Y, ī) < 0. (1.13)
Consider a particular case where C(Y -T ) = c 0 + c 1 (Y -T ) where c 0 > 0, c 1 ∈ (0, 1), and I(Y, i) = Ī, ∀Y, i. In this case, we have

∂Y ∂T = -c 1 1 -c 1 < 0. (1.14)
An increase of taxes decreases the output.

Exercise 1. Find an expression of ∂Y ∂G . Provide conditions under which ∂Y ∂G > 0 and interpret the result.

Proof. We have

∂Y ∂G = 1 1 -C (Y -T ) -∂I ∂Y (Y, ī) (1.15)
This is the so-called fiscal multiplier.

If we assume that 1 -C (Y -T ) -∂I ∂Y (Y, ī) > 0, then 1 -C (Y -T ) -∂I ∂Y (Y, ī) ∈ (0, 1) which implies that ∂Y ∂G > 1.
It means that if the government increases its spending by 1 usd, then the output increases more than 1 usd.

Consider a particular case where C(Y -T ) = c 0 + c 1 (Y -T ) where c 0 > 0, c 1 ∈ (0, 1), I(Y, i) = Ī, ∀Y, i, we find the fiscal multiplier

∂Y ∂G = 1 1 -c 1 = 1 + c 1 + c 2 1 + c 3 1 + • • • (1.16)

Application: the effects of a monetary expansion (i decreases)

Now turn to monetary policy. Suppose the central bank decreases the interest rate. Recall that, to do so, it increases the money supply, so such a change in monetary policy is called a monetary expansion.

A change in i does not shift the IS curve but shifts the LM curve down. The economy moves along the IS curve.

The economy moves down along the IS curve, and the equilibrium moves from point A to point A . Output increases from Y to Y , and the interest rate decreases from i to i .

We can explain by words as follows: The lower interest rate leads to an increase in investment and, in turn, to an increase in demand and output.

Looking at the components of output:

• The increase in output and the decrease in the interest rate both lead to an increase in investment. Formally, we have

I = I(Y , ī ) > I = I(Y, ī).
• The increase in income leads to an increase in disposable income and, in turn, in consumption. Formally, we have Example 1 (monetary-fiscal policy mix). Using the above framework, investigate the following questions.

C = C(Y -T ) > C = C(Y -T ).
• The Effects of a Combined Fiscal and Monetary Expansion.

• The Effects of a Combined Fiscal Consolidation and a Monetary Expansion

Appendix: quarterly GDP vs annual GDP

In the US, the Bureau of Economic Analysis (BEA) estimates both quarterly and annual GDPs.

Let us look at the following example. According to the Bureau of Economic Analysis -The annual GDP of the US of the year 2018 is 20,580.223 Billions of Dollars.

-The quarterly GDP of the US of the fourth quarter of 2018 is 20,897.804 Billions of Dollars.

However, this does not mean that the US produces more during the period 10/2018-12/2018 than during the period 01/2018-12/2018. The reason is that the quarterly GDP of the US is annualized (in the above example, the market valued added of the US of the fourth quarter of 2018 is equal to 20,897.804 Chapter 2 Economic growth: an overview

Introduction and the importance of economic growth

Economic growth is the steady increase in aggregate output over time. Quantitatively, it is the increase in the inflation-adjusted market value of the goods and services produced by an economy over time. The rate of growth of real GDP from period t to period t + 1 is computed by

Y t+1 -Y t Y t (2.1)
where Y t represents the real GDP at the year t.

Remark 2 (Rule of 70). Growing at a constant rate of g% per year, GDP (or anything else) will double approximately every 70/g years.

Rule of 70: Years to Double = 70/g

Examples:

• Growing at 2%: Double every 70/2 = 35 years.

• Growing at 5%: Double every 70/5 = 14 years.

• Growing at 7%: Double every 70/7 = 10 ans.

With this rule, we can reverse to estimate a growth rate when observing a "time to double".

A natural question is whether economic growth matters. The reason we care about growth is that we care about the standard of living (Remark 2 shows an example). Looking across time, we want to know by how much the standard of living has increased. Looking across countries, we want to know how much higher the standard of living is in one country relative to another. Thus, the variable we want to focus on, and compare either over time or across countries, is output per person, rather than output itself.

We will present relations between income per capita growth and other indicators. See Figures 2.1, 2.2, 2.3, 2.4, 2.5. Figure 2.6 shows the world GDP per person (in 1990 purchasing-power-parity dollars) since the start of the first millenium. Four major periods can be distinguished. From prehistory through the Middle Ages, yearly income remains at around $450 per person (in fact, it declines throughout the first millenium). It then increases to about $600 between $1400 and 1800. The true "take-off" comes with the industrial revolution in the nineteenth century and GDP per person exceeds $1500 on the eve of the World 2. Along a growth path, income per person and productivity exhibit significant medium-term turning points that are not necessarily synchronous across countries at similar development levels. See Figure 2.8.

GDP per person and productivity can thus experience significant synchronous and asynchronous inflections. Especially Europe and Japan, which had been catching up with the US standard of living since the Second World War, fell behind after the 1980s.

3. Convergence at the top is neither general nor unattainable. In the last decades, the income per person in some formerly underdeveloped countries, such as East Asian 4. Largely as a consequence of growth developments, income inequalities among world citizens increased strongly during the nineteenth and the first half of the twentieth centuries. They have stabilized since the 1990s, essentially through the rapid increase in wealth of part of the Chinese and Indian populations. See Figures 2.9, 2.10, 2.11 and 2.12.

In Figure 2.9, the higher the GINI coefficient, the more unequal the distribution of income within the country. Countries above the 45 o line have experienced widening inequality over the period. 5. Growth patterns differ over time and they can at times increase inequality within countries. See Figures 2.9, 2.10, 2.11, 2.12.

Thinking about economic growth: main determinants

As we have discussed, economic growth as the source of current income differences. Some determinants of economic growth are

• Geography (natural resources, climate, land, ...).

• Labor (labor supply, education, motivation, ...).

• Capital (machines, manufactory, road, ...).

• Technology (science, management organization, spirit, ...).

1 Source: http://howmuch.net/articles/income-distribution-usa [START_REF] North | Institutions, Institutional Change, and Economic Performance[END_REF] offers the following definition: Institutions are the rules of the game in a society or, more formally, are the humanly devised constraints that shape human interaction.

Other variables that are usually found to have a significant long-term impact on per-capita GDP are (see [START_REF] Barro | Economic growth[END_REF], Chapter 12, for a survey):

• The functioning of markets (degree of competition, distortions introduced by state interventions, corruption). • Macroeconomic stability (and, in particular, price stability).

• Political stability (absence of wars, coups, or frequent power shifts between opposite camps).

Chapter 3

Growth models with exogenous saving rate

As we have seen there are many factors determining economic growth and per-capita GDP. We will present several economic growth models to understand the determinants of economic growth. In this chapter, for the sake of simplicity, we focus on models where the saving rate is constant over time. Consider a closed economy. Denote Y t the output, K t the capital stock, S t the savings, I t the investment and the labor force L t of the economy at date t. Assume that

C t + S t = Y t I t = S t K t+1 = (1 -δ)K t + I t (capital accumulation)
where δ ∈ (0, 1) represents the depreciation rate of capital. 1Next, we introduce the saving and production functions S t = sY t (constant saving rate)

Y t = F (K t , L t , A t ) (production function)
where A t represents the productivity.

Remark 3. We may consider another form of the production function

Y t = A t F (B t K t , D t L t )
where A t is the total factor of productivity, B t is the capital quality and D t is the labor quality, K t is the capital stock, L t is the labor quantity (number of workers, for example).

We are interested in the evolution of the economy, specially the rate of growth of output. Before doing that, we introduce the notions of balanced growth path and steady state.

Definition 1. (1)

The sequences (Y t , K t , S t ) is a balanced growth path of our model if they are a solution to our model and they can be represented as follows:

Y t = Y * (1 + g y ) t , K t = K * (1 + g k ) t , S t = S * (1 + g s ) t , ∀t,
where Y * > 0, K * > 0, S * > 0, and g y > -1, g k > -1, g s > -1.

(2) The (Y, K, S) is a steady state of our model if they are positive and the sequence (Y t , K t , S t ) with (Y t , K t , S t ) = (Y, K, S), ∀t, is a solution to our model Note that growth rates g y , g k , g s may be negative.

The Harrod model

Let us start with the Harrod model [START_REF] Harrod | An essay in dynamic theory[END_REF]. Consider an infinite horizon closed economy starting with an initial capital stock k 0 > 0: 

Harrod Model: c t + S t = Y t I t = S t k t+1 = k t (1 -δ) + I t S t = sY t Y t = A t k t ,
Y t N t = A t k t N t α ,
i.e., we consider the output per capita as function of capital per capita.

From the above system, we obtain that, for any t ≥ 0,

Y t = A t ((1 -δ)k t-1 + sY t-1 ) and ∆Y t Y t = A t+1 A t (1 -δ) + sA t+1 -1 where ∆Y t ≡ Y t+1 -Y t .
Therefore, we have the following result.

Proposition 1. Consider the above Harrod model. Suppose A t → A > 0 when t tends to infinity. We have that:

1. ∆Yt Yt → sA -δ. 2. If sA -δ > 0 then Y t → +∞. 3. If sA -δ < 0 then Y t → 0.
According to this result, the economy may grow or collapse, depending to the TFP A: if A is high enough (A > δ/s), then we have economic growth without bounds.

The Solow-Swan model

We now consider a model à la Solow [START_REF] Solow | A contribution to the theory of economic growth[END_REF][START_REF] Solow | Technical change and the aggregate production function[END_REF][START_REF] Swan | Economic growth and economic accumulation[END_REF]. This model is quite similar to the Harrod Model, excepted the production function.

Solow-Swan Model:

C

t + S t = Y t I t = S t K t+1 = (1 -δ)K t + I t (capital accumulation) S t = sY t (constant saving rate) Y t = A t K α t L 1-α t , α ∈ (0, 1) A t = a 0 (1 + γ) t L t = L 0 (1 + n) t . (population)
Here γ > -1 is the rate of growth of the TFP A t while n > -1 is the rate of growth of the labor force. Both of them are assumed to be exogenous. From the above system, we obtain that, for any t ≥ 0,

Y t = a 0 (1 + γ) t K α t L 1-α t Y t+1 Y t = (1 + γ)(1 + n) 1-α K t+1 K t α K t+1 = (1 -δ)K t + sa 0 (1 + γ) t K α t L 1-α t . Denote 1. k t ≡ Kt
Lt the capital stock per capita at date t.

y t ≡ Yt

Lt the income per capita at date t.

When the rate of growth of TFP is constant

Assume that γ = 0. We have

K t+1 = (1 -δ)K t + sa 0 K α t L 1-α t → (1 + n) K t+1 L t+1 = (1 -δ) K t L t + sa 0 K t L t α (1 + n)k t+1 = (1 -δ)k t + sa 0 k α t .
In this case, we can prove that for any k 0 > 0, the sequence k t converges.

Proposition 2. Consider the above Solow model with γ = 0. Assume that s ∈ (0, 1), a 0 > 0, α ∈ (0, 1).

1. If 1 + n > 1 -δ, then k t , y t converge a positive value k and y, where k is determined by (1 + n)k = (1 -δ)k + sa 0 k α . 2. If 1 + n ≤ 1 -δ (extreme case -the population decreases to zero), then the capital stock per capita k t = Kt L 0 (1+n) t . converges to infinity. Moreover, k t+1 kt is decreasing in time and lim t→∞ k t+1 kt = 1-δ 1+n ≥ 1. Figure 3.1: Dynamics of capital stock per capita 0 0.5 1 1.5 2 2.5 3 0 1 2 3 k t k t+1 k t+1 = (1-δ)kt+sak α t 1+n Line k t+1 = k t Proof. 1. If 1 + n > 1 -δ, k t , y t converges a positive value k and y, where k is determined by (1 + n)k = (1 -δ)k + sa 0 k α , i.e., k = sa 0 n+δ 1 1-α .
We can prove that k is uniquely determined.

(a) If k 0 = k, then k t = k for any t.

(b) If k 0 < k, then we can prove that k t+1 > k t and k t < k for any t. Then, k t converges. (c) If k 0 > k, then we can prove that k t+1 < k t and k t > k for any t. Then, k t converges.

2. If 1+n ≤ 1-δ, then k t+1 > k t for any t. So, k t converges. Since it cannot converge to a finite value, it must converge to infinity. Moreover, since

k t+1 kt = 1 1+n 1 -δ + sa 0 k α-1 t ,
we see that k t+1 kt is decreasing in time and lim t→∞

k t+1 kt = 1-δ 1+n .
Let us focus on the case 1 + n > 1 -δ. Observe that the capital stock per capita at the steady state

k = sa 0 n + δ 1 1-α (3.1) y = a 0 sa 0 n + δ α 1-α (3.2)
Note that both y and k are increasing in the saving rate s but decreasing in the rate of population growth n and the depreciation rate δ.

Moreover, we can compute the rates of growth

y t+1 y t = a 0 k α t+1 a 0 k α t+1 = ( k t+1 k t ) α k t+1 k t = 1 1 + n 1 -δ + sa 0 k α-1 t .
By consequence, we get that 1. If k 0 = k, then k t = k and y t+1 yt = 1 for any t.

2. If k 0 < k, then we can see that k t+1 kt and y t+1 yt are decreasing in time and converge to 1.

3. If k 0 > k, then we can see that k t+1 kt and y t+1 yt are increasing in time and converge to 1.

General case

We now consider the general case where γ > -1.

We write by K t = (1 + g) t X t where g will be determined later. So,

K t+1 = K t (1 -δ) + sA t K α t L 1-α t becomes (1 + g) t+1 X t+1 = (1 -δ)(1 + g) t X t + sa 0 (1 + γ) t (1 + g) t X t α L 0 (1 + n) t 1-α ⇐⇒ X t+1 = (1 -δ)X t + sa 0 L 1-α 0 X α t (1+γ)(1+n) 1-α (1+g) 1-α t 1 + g . Now, we choose g so that (1 + γ)(1 + n) 1-α = (1 + g) 1-α . Thus X t+1 = (1 -δ)X t + sa 0 L 1-α 0 X α t 1 + g .
Using the same argument as in Proposition 2, we can prove the convergence of X t . Therefore, we obtain the following result:

Proposition 3. Consider the above Solow model. The sequence (X t ) converges. Moreover,

K t+1 -Kt Kt → g and Y t+1 -Yt

Yt

→ g where g satisfies

1 + g = (1 + n)(1 + γ) 1 1-α .
The long-term rate of growth g of the output depends strongly on the rate of growth of the TFP A t . The higher A, the higher the rate of growth g. Exercise 2. Investigate the growth rates per capita k t+1 -kt kt and y t+1 -yt yt . Do they converge? If yes, how do the limits depend on n and γ? Provide interpretations.

Proof. We have

k t+1 k t = K t+1 L t+1 Kt Lt = 1 1 + n K t+1 K t = 1 1 + n (1 + g) t+1 X t+1 (1 + g) t X t = 1 1 + n K t+1 K t = 1 + g 1 + n X t+1 X t ⇒ lim t→∞ k t+1 k t = 1 1 + n lim t→∞ K t+1 K t = (1 + γ) 1 1-α .
Chapter 4

Macroeconomics with micro-foundations

4.1 Finite horizon models

Intertemporal choice (smooth consumption)

An agent living for two periods (present and future, represented by 0 and 1) wants to choose consumption allocation (c 0 , c 1 ) to maximize her(his) utility U (c 0 , c 1 ). This agent is endowed e 0 , e 1 units of good at date 0 and 1 respectively. She(he) can borrow or lend by using a financial asset.

To sum up, the maximization problem of this agent is the following: max U (c 0 , c 1 ) (4.1)

c 0 , c 1 ≥ 0 (4.2) p 0 c 0 + q 0 a 0 ≤ p 0 e 0 (4.3) p 1 c 1 ≤ p 1 e 1 + p 1 a 0 . (4.4)
Here, the agent buys a 0 units of financial asset at date 0. Then, at date 0, she(he) receives a 0 units of good at date 1 (it means that the payoff is is in terms of good). The payoff value (in terms of money) is p 1 a 0 at date 1.

Since there is no additional constraint (borrowing constraint, for example) on a 0 , we can rewrite the constraints as follows (prove this as an exercise):

c 0 , c 1 ≥ 0 p 0 c 0 + q 0 c 1 ≤ p 0 e 0 + q 0 e 1
Let us define r by q 0 = 1 1+r . Then r represents the real return. We have the intertemporal budget constraint, where all terms are in

c 0 + c 1 1 + r Present value of consumptions ≤ e 0 + e 1 1 + r Present value of endowments (4.5)
Note that both sides are in terms of good at date 0.

Proposition 4. Assume that U (c 0 , c 1 ) = u(c 0 ) + βu(c 1 ) where the function u is strictly concave, increasing, continuously differentiable, u (0) = ∞. Parameter β represents the rate of time preference.

At optimum, we can prove that

q 0 = βu (c 1 ) u (c 0 ) q 0 u (e 0 -q 0 a 0 ) = βu (e 1 + a 0 ).
We can provide conditions under which a 0 is a decreasing function of q 0 . We can also identify conditions under which the agent lends a 0 > 0 or borrows (a 0 < 0).

Let us consider a particular case with logarithmic utility function u(c) = ln(c). In this case, we find that

q 0 a 0 = βe 0 -qe 1 1 + β .
If we write q 0 = 1 1+r , then we have

a 0 = 1 + r 1 + β (βe 0 - e 1 1 + r ) Write β = 1 1+ρ . Observe that: a 0 > 0 if and only if r > (1 + e 1 -e 0 e 0 )(1 + ρ) = (1 + g)(1 + ρ). g = e 1 -e 0 e 0
can be interpreted as the rate of growth of endowments. By the way, the agent invests if and only if the return rate is high enough.

Intertemporal choice with productive investment

An agent living for two periods (present and future, represented by 0 and 1) wants to choose consumption allocation (c 0 , c 1 ) and physical capital k 1 to maximize her(his) utility U (c 0 , c 1 ) max

(c 0 ,c 1 ,k 1 ) U (c 0 , c 1 ) (4.6) subject to: c 1 ≥ 0, c 1 ≥ 0, k 1 ≥ 0 (4.7) c 0 + k 1 ≤ w 0 (4.8) c 1 ≤ w 1 + F (k 1 ) (4.9)
where w 0 , w 1 are given and strictly positive.

Assumption 2. The function F is assumed to be strictly increasing, concave, continuously differentiable and

F (0) = 0. Assume that U (c 0 , c 1 ) = u(c 0 )+βu(c 1 )
where the function u is strictly concave, increasing, continuously differentiable, u (0) = ∞. Parameter β represents the rate of time preference.

We would like to solve this problem to understand the optimal value of (c 0 , c 1 , k 1 ). Notice that in this setup, k t can be also interpreted as investment.

First, it is easy to see that the Slater condition is satisfied. So, we can write the Lagrangian

L = U (c 0 , c 1 ) + µ 0 c 0 + µ 1 c 1 + µ k k 1 + λ 0 (w 0 -c 0 -k 1 ) + λ 1 (w 1 + F (k 1 ) -c 1 ) (4.10)
Since u (0) = ∞, we have c 0 > 0, c 1 > 0 at optimum (@reader: why?), which implies that µ 0 = µ 1 = 0. Therefore, the first-order conditions become

∂U (c 0 , c 1 ) ∂c 0 -λ 0 ⇔ u (c 0 ) = λ 0 ∂U (c 0 , c 1 ) ∂c 1 -λ 1 ⇔ βu (c 1 ) = λ 1 µ k -λ 0 + λ 1 F (k 1 ) = 0 ⇔ λ 0 = λ 1 F (k 1 ) + µ k µ k k 1 = 0, µ k ≥ 0 So, we obtain that u (c 0 ) = βF (k 1 )u (c 1 ) + µ k . At optimum, we must have c 0 + k 1 = w 0 and c 1 = w 1 + F (k 1 )
. Thus, we get that

u (w 0 -k 1 ) = βF (k 1 )u (w 1 + F (k 1 )) + µ k (4.11)
Notice that at this stage, we do not require that F (0) = ∞.

There are two cases.

1. k 1 > 0. In this case, we have µ k = 0 and hence k 1 is determined by

H(k 1 ) ≡ u (w 0 -k 1 ) -βF (k 1 )u (w 1 + F (k 1 )) = 0 (4.12)
The function

H is strictly increasing in k 1 . H(0) = u (w 0 ) -βF (0)u (w 1 ) while H(w 0 ) = ∞ because u (0) = ∞. So, the existence of a strictly positive solution k 1 requires that u (w 0 ) -βF (0)u (w 1 ) < 0.
It means that the productivity F (0), the rate of time preference β, the endowment at initial date w 0 are high and the endowment at date 1 is low.

2. k 1 = 0. Condition (4.11) becomes u (w 0 ) -βF (0)u (w 1 ) ≤ 0.

To sum up, we obtain the following result:

Proposition 5. Assume that above conditions hold. Assume also that u (0) = ∞. The optimal choice k 1 is strictly positive if and only if

u (w 0 ) -βF (0)u (w 1 ) < 0
In such a case, k 1 is the unique solution to the equation H(k 1 ) = 0.

It is useful to consider some particular cases.

1. Assume that u(c) = ln(c), F (k) = Ak α where α ∈ (0, 1), and w 1 = 0. In this case,

F (0) = ∞. We have 1 w 0 -k 1 = βαAk α-1 1 1 w 1 + Ak α 1 = βαAk α-1 1 1 Ak α 1 (4.13) ⇔ k 1 = αβ 1 + αβ w 0 (4.14)
The investment k 1 is increasing in the initial endowment w 0 and the rate of time preference.

2. Assume that u(c) = ln(c), F (k) = Ak, w 1 > 0. We have that:

(a) If w 1 < βAw 0 , then k 1 is strictly positive and we can compute that k 1 = βAw 0 -w 1 A(1+β) . The investment is increasing in the productivity A, the rate of time preference β, the initial endowment but decreasing in the endowment in the future.

(b) If w 1 ≥ βAw 0 , then k 1 = 0. The intuition: when the productivity, the initial endowment, the rate of time preference are low, but the endowment in the future is high, we do not need to save/invest.

Comparative statics. Let conditions in Proposition 5 be satisfied. Then, the optimal physical capital k 1 is determined by

u (w 0 -k 1 ) -βF (k 1 )u (w 1 + F (k 1 )) = 0 (4.15)
Notice that w 0 , w 1 , β are exogenous parameters while k 1 is endogenous and depends on

w 0 , w 1 , β. Denote f (k 1 , w 0 , w 1 , β) ≡ u (w 0 -k 1 ) -βF (k 1 )u (w 1 + F (k 1 )).
Observe that the function f is striclty increasing in k 1 and w 1 , but strictly decreasing in w 0 and β Assume that u and F are continuously differentiable. Applying the implicit functions theorem, the optimal value k 1 determined by f (k 1 , w 0 , w 1 , β) = 0 can be expressed as a differentiable function of w 0 , w 1 , β. We write k 1 = k 1 (w 0 , w 1 , β).

We now look at the role of the initial endowment w 0 . Taking the derivative with respect to w 0 of both sides of the equation f (k 1 , w 0 , w 1 , β) = 0, we have

∂f ∂k 1 (k 1 , w 0 , w 1 , β) ∂k 1 ∂w 0 (w 0 , w 1 , β) + ∂f ∂w 0 (k 1 , w 0 , w 1 , β) = 0
Since ∂f ∂k 1 > 0 and ∂f ∂w 0 < 0, we get that ∂k 1 ∂w 0 (w 0 , w 1 , β) > 0. It means that the optimal value k 1 is increasing in the initial endowment.

Intertemporal choice with productive investment: a general equilibrium approach

We now present a decentralized version of the model in Section 4.1.2 There are two economic agents in this model: a household and a firm. The household maximization problem is max

(c 0 ,c 1 ,k 1 ) U (c 0 , c 1 ) (4.16) subject to: c 0 ≥ 0, c 1 ≥ 0, k 1 ≥ 0 (4.17) c 0 + k 1 ≤ w 0 (4.18) c 1 ≤ w 1 + r 1 k 1 + (1 -δ)k 1 + (P rof it) (4.19)
At date 0, the endowment of household is given. At date 1, he(she) receives a profit because he(she) is the owner of the firm.

r 1 is the rental rate of physical capital. The firm rents physical capital at the rate r 1 . The profit of the firm is endogenously determined by

P rof it ≡ max K 1 ≥0 f (K 1 ) -r 1 K 1 (4.20)
Definition 2. An intertemporal equilibrium is a list (c 0 , c 1 , k 1 , K 1 , r 1 ) satisfying the following conditions:

1. Given r 1 , the allocation (c 0 , c 1 , k 1 ) is a solution to the problem of the household and K 1 is a solution to the firm's problem.

The rental market clears:

K 1 = k 1 (demand=supply).
In equilibrium, we have

u (c 0 ) = λ 0 βu (c 1 ) = λ 1 µ k -λ 0 + λ 1 (r 1 + 1 -δ) = 0 ⇔ λ 0 = λ 1 (r 1 + 1 -δ) + µ k µ k k 1 = 0, µ k ≥ 0
The first order condition of the firm gives

F (K 1 ) = r 1 . So, c 1 = w 1 + r 1 k 1 + (1 -δ)k 1 + F (K 1 ) -r 1 k 1 . Since k 1 = K 1 , we get c 1 = w 1 + (1 -δ)k 1 + f (K 1 ).
We can prove that the outcomes of this model coincides to those of the model in Section 4.1.2 with

F (K) = (1 -δ)K + f (K).

Application: Endowment effect

Consider a particular case where w 1 = 0, u(c) = ln(c), δ = 1 and F (k) = Ak α , where α ∈ (0, 1). In this case, we find that

k 1 = αβ 1 + αβ w 0 (4.21) rental return: r 1 = αA αβ 1 + αβ w 0 α-1 (4.22)
The capital level k 1 is increasing in the initial endowment. However, the rental return is decreasing in w 0 . Assume that due to some reasons (a war, for example), the initial endowment goes down. Then, the capital supply k 1 does down and rental return goes up. Producers have to pay more because the supply goes dow.

Application: Externalities

The conclusion in Section 4.1.3 is no longer the case if there are externalities.

We continue to assume that u(c) = ln(c), δ = 1, f (k) = Ak α where α ∈ (0, 1). We have

r 1 = f (K 1 ) = αAK α-1 1 . Since f (0) = ∞, we have k 1 > 0 at equilibrium. H(k 1 ) ≡ u (w 0 -k 1 ) -βr 1 u (w 1 + f (k 1 )) = 0 (4.23) 1 w 0 -k 1 = βr 1 1 w 1 + Ak α 1 (4.24)
We now assume that there is an externality which represents by the assumption that A depends on the aggregate capital K 1 : A = a(K 1 ).1 In this case, in equilibrium, we have

r 1 = αa(k 1 )k α-1 1 1 w 0 -k 1 = βαa(k 1 )k α-1 1 1 w 1 + a(k 1 )k α 1 (w 0 -k 1 )βαa(k 1 )k α-1 1 = w 1 + a(K 1 )k α 1
Consider a particular case where w 1 = 0, we have 1 w 0 -k 1 = βα 1 k 1 and hence we find the same level of physical capital k 1 = αβ 1+αβ w 0 . However, the output is

Y 1 = f (k 1 ) = a(k 1 )k α 1 = a( αβ 1 + αβ w 0 ) αβ 1 + αβ w 0 α
The output in the case without externalities is

Y * 1 = A αβ 1+αβ w 0 α . Observe that Y * 1 ≥ Y 1 ⇐⇒ A ≥ a αβ 1 + αβ w 0 .
We consider two cases.

1. Positive externality: It means that the aggregate capital has a positive externality on the individual firm's productivity. Assume that a(K) = A+γK with γ > 0. (This is the idea of Romer (1986)'s endogenous growth model.) In this case, we observe that the aggregate output in the case without externalities is lower than the aggregate output of the economy with externality.

2. Negative externality: It means that the aggregate capital has a negative externality on the individual firm's productivity (pollution, for example). Assume that a(K) = M ax(A -γK, 0) with γ > 0. In this case, we observe that the aggregate output in the case without externalities is higher than the aggregate output of the economy with externality.

Negative externality, tax, and optimality

Let us consider the previous model with externality. Assume that there is a negative externality. Assume that we are in a competitive economy. The government sets a tax on the output of the firms and uses the revenue from this tax to help the households.

The representative household's maximization problem is max

(c 0 ,c 1 ,k 1 ) U (c 0 , c 1 ) (4.25) subject to: c 0 ≥ 0, c 1 ≥ 0, k 1 ≥ 0 (4.26) c 0 + k 1 ≤ w 0 (4.27) c 1 ≤ w 1 + r 1 k 1 + (1 -δ)k 1 + (P rof it) + T (4.28)
where T is the transfer from the government. The profit of the firm is now determined by

P rof it ≡ max K 1 ≥0 (1 -τ )f (K 1 ) -r 1 K 1 (4.29) Definition 3. Given τ ∈ [0, 1), an intertemporal equilibrium is a list (c 0 , c 1 , k 1 , K 1 , r 1 , T )
satisfying the following conditions:

1. Given r 1 , the allocation (c 0 , c 1 , k 1 ) is a solution to the problem of the household and K 1 is a solution to the firm's problem.

The rental market clears:

K 1 = k 1 (demand=supply). 3. T = τ f (K 1 ).
Again, assume that u(c) = ln(c), w 1 = 0, δ = 1, f (k) = Ak α where α ∈ (0, 1), and there is an externality A = a(k). In equilibrium, we find that

k 1 = k 1 (τ ) ≡ αβ(1 -τ ) 1 + αβ(1 -τ ) w 0 .
The problem of the social planner is max

(c 0 ,c 1 ,k 1 ) ln(c 0 ) + βln(c 1 ) (4.30) subject to: c 1 ≥ 0, c 1 ≥ 0, k 1 ≥ 0 (4.31) c 0 + k 1 ≤ w 0 (4.32) c 1 ≤ a(k 1 )k α 1 (4.33)
Under mild assumptions, we have the first-order condition

1 w 0 -k 1 = β a (k 1 )k α 1 + a(k 1 )αk α-1 1 a(k 1 )k α 1 . (4.34)
Assume that this equation has a unique solution, denoted by k s 1 , and that k s 1 is also the unique solution of the social planner's problem. Proposition 6. Under above assumptions, if the government sets the tax rate τ

1 -τ = k s 1 αβ(w 0 -k s 1 )
,

then we have k s 1 = αβ(1-τ ) 1+αβ(1-τ ) w 0 , i.e., k s 1 = k 1 (τ ).
This means that the capital k 1 in the decentralized economy k 1 (τ ) equals the capital level k s 1 chosen by the social planner. In other words, this tax recovers the optimality of the allocation given that the objective of the government is the welfare of households.

Infinite horizon models à la Ramsey

Although the Harrod and Solow models help us to explain the role of TFP, they have two limits: (1) the rate of saving is exogenous and (2) the rate of growth of the output is also exogenous. The following graphic, taken from the World Bank database, shows the evolution of the saving rate in some countries.

With the Ramsey model, we can endogenize the rate of saving but we do not resolve the question of the exogeneity of the rate of growth of the output. This question will be resolved with endogenous growth models in Section 5.4.

However, before presenting endogenous growth models, we introduce a Ramsey model. We assume there exists a representative consumer who lives for an infinite number of periods. She/he maximizes her/his intertemporal utility under sequential constraints Ramsey model: max

(ct,k t+1 ,It) +∞ t=0 β t u(c t ) subject to: c t + I t ≤ F t (k t ) k t+1 = k t (1 -δ) + I t ,
where k 0 > 0 is given, β ∈ (0, 1) represents the rate of time preference.

Remark 5. As in the Harrod Model, in the Ramsey Model, implicitly, either we consider the number of workers is exogenous and has an exogenous rate of growth, or we consider in fact output per capita and capital per capita.

Assumption 3. The instantaneous utility function u is strictly increasing, strictly concave, twice continuously differentiable, u (0) = +∞.

The production function F t is concave, strictly increasing, twice continuously differentiable, and F t (0) = 0.

Assume also that sup

(ct,k t+1 )≥0 +∞ t=0 β t u(c t ) : c t + k t+1 ≤ F t (k t ) + k t (1 -δ) < +∞.
Note that we allow that the function

F is time-dependent. 2 Exercise 3. +∞ t=0 β t u(c t ) = ∞ if u(c t ) = c σ F t (k) = Ak k t+1 = s(A + 1 -δ)k t c t = (1 -s)(A + 1 -δ)k t β s(A + 1 -δ) σ > 1. However, +∞ t=0 β t u(c t ) < ∞ if u(c t ) = ln(c) F t (k) = Ak, ∀t, of F t (k) = Ak α , α ∈ (0, 1), ∀t.
For more details, see Le [START_REF] Van | Intertemporal equilibrium with financial asset and physical capital[END_REF].

2 See Le [START_REF] Van | Dynamic Programming in Economics[END_REF] for a detailed presentation of optimal growth models.

We will implicitly assume that the Ramsey problem exists a solution. To prove this result, the idea is to show that we are maximizing a continuous function in a compact set (with the product topology, i.e., we say lim n→∞ (x n ) = (x) if lim n→∞ x n t = x t , ∀t). A detailed proof (when F is stationary) can be found in Le [START_REF] Van | Dynamic Programming in Economics[END_REF].

In the following, we focus on the properties of the solution of the Ramsey problem.

Proposition 7. 1. Given the initial capital stock k 0 , there exists a unique solution (c, k) to the optimal growth model. 2. If k 0 > 0, then c t > 0, k t > 0 for any t.

Proof. Part 1. First, observe that, since u is strictly increasing, we have

c t + k t+1 = F t (k t ) + k t (1 -δ)
, ∀t for any solution (c, k). Now, assume that there are two solutions (c, k), (c , k ). Assume that (c, k) = (c , k ). Then there exist a date t such that c t = c t . Indeed, if c t = c t , ∀t, we have

k 1 = k 1 because k 0 = k 0 and c 0 = c 0 . By induction, we have k t = k t , ∀t. It means that (c, k) = (c , k ) which is a contradiction. So, let t such that c t = c t . Let λ ∈ (0, 1). Define (c(λ), k(λ)) by (c(λ), k(λ)) = λ(c, k)+(1-λ)(c , k
). This allocation is feasible (exercise!). Since c t = c t and the function u is strictly concave, we have u(

λc t + (1 -λ)c t ) > λu(c t ) + (1 -λ)u(c t ). We also have u(λc s + (1 -λ)c s ) ≥ λu(c s ) + (1 -λ)u(c s ), ∀s. By consequence, we get that s β s u(λc s + (1 -λ)c s ) > λ s β s u(c s ) + (1 -λ) s β s u(c s ) = s β s u(c s )
which is a contradiction.

Part 2. Let k 0 > 0. It is easy to prove that the consumption path (0, 0, . . . , 0, . . .) is not optimal because u is strictly increasing. So, there exists a date t 1 such that c t 1 > 0.

Claim: If c t+1 > 0, then c t > 0.

Proof of claim: Let c t+1 > 0. Suppose that c t = 0, then by increasing c 1 and decreasing c t+1 , we get a new allocation which can give an intertemporal utility higher than the maximum intertemporal utility (a contradiction). (This is an exercise for Readers.) So, our claim is true. Applying this claim, we obtain that c t > 0 for any t ≤ t 1 . Since c 0 > 0, we can prove that k 1 > 0 (exercise). Then, k 1 > 0 implies that c 1 > 0. By induction, we get that c t > 0, k t > 0 for any t.

Proposition 8. 1. Necessary condition: If (c * t , k * t+1 ) t≥0 is an optimal solution of the above Ramsey problem, then we have the so-called Euler equation:

u (c * t ) = βu (c * t+1 ) 1 -δ + F t+1 (k t+1 ) . (4.35) 2. Sufficient condition: If Euler condition: u (c * t ) = βu (c * t+1 ) 1 -δ + F t+1 (k t+1 ) , ∀t (4.36)
Transversality condition: lim

T →∞ β T u(c * T )k * T +1 = 0 (4.37)
then (c * t , k * t+1 ) t≥0 is an optimal solution of the above Ramsey problem.

Proof. 1. Necessary condition.

Fix t ≥ 0 and consider another allocation (c s , k i,s+1 ) s given by c s = c * s , ∀s ∈ {t + 1}, k s = k * t , ∀s = t + 1, and (c t , c t+1 , k i,t 1 ) is determined by

c * t - c t + k * t+1 + k t+1 = F t (k * t ) + (1 -δ)k * t c * t+1 + F t (k * t+1 + ) -F t (k * t+1 ) + (1 -δ) c t+1 +k * t+2 = F t (k * t+1 + ) + (1 -δ)(k * t+1 + ),
where > 0 is low enough so that c * t -> 0. By the optimality (c * t , k * t+1 ) t , we have

β t u(c * t ) + β t+1 u(c * t+1 ) ≥β i,t u(c t ) + β t+1 u(c t+1 ) β i,t u(c * t ) + β i,t+1 u(c * t+1 ) ≥β i,t u(c * t -) + β t+1 u c * t+1 + F t (k * t+1 + ) -F t (k * t+1 ) + (1 -δ) β i,t u(c * t ) -u(c * t -) ≥β i,t+1 u c * t+1 + F t (k * t+1 + ) -F t (k * t+1 ) + (1 -δ) -u(c * t+1 ) F t (k * t+1 + ) -F t (k * t+1 ) + (1 -δ) × × F t (k * t+1 + ) -F t (k * t+1 ) + (1 -δ) Let tend to zero, we get that u (c * t ) ≥ βu (c * t+1 ) 1 -δ + F t+1 (k t+1 ) . Since k * i,t+1
> 0, we can do as above but with < 0 (chose so that k * t+1 + > 0) and get that u

(c * t ) ≤ βu (c * t+1 ) 1 -δ + F t+1 (k t+1 )
. Therefore, we have the equality.

Sufficient condition.

Consider a feasible allocation (c s , k s+1 ) s . We have

c t + k t+1 ≤ F t (k t ) + k t (1 -δ), ∀t. This implies that c t ≤ F t (k t ) + k t (1 -δ) -k t+1 , ∀t.
We can prove that, ∀T ,

T t=0 β i,t u(c * t ) -β i,t u(c t ) ≥ T t=0 β t u (c * t )(c t -c t ) ≥ -β T u (c * T )k * T +1 .
Proposition 9 (Proposition 2.4.4 in Le [START_REF] Van | Dynamic Programming in Economics[END_REF]). Define the function f

(x) = (1 -δ)x + F (x).
Assume that u : R + → R + be twice continuously differentiable, strictly increasing, strictly concave, u(0) = 0, u (0) = +∞.

Assume that the function f : R + → R + be twice continuously differentiable, strictly increasing, strictly concave,

f (0) = 0, f (+∞) < 1, M ≡ f (0) ≤ +∞. Let k 0 > 0.
Then, we have that 1. The optimal capital stock (k t ) with k 0 > 0 is monotonic.

2. If f (0) ≤ 1 β , then the optimal path (k t ) converges to zero.

3. If f (0) > 1 β , then the optimal path (k t ) converges to k s determined by f (k s ) = 1 β . Remark 6. The value k s is called the "steady state capital stock".

In general, finding solutions of the Ramsey problem is not easy. We will consider two examples where we can explicitly compute the optimal paths and rate of growth.

Example 2 (Logarithmic utility function and AK production function

). Suppose u(c) = ln(c), F t (k) = A t k. Let us denote A t = A t + 1 -δ.
We can prove (exercise) that the optimal path (k t ) is given by k t+1 = β(1 -δ + A t )k t ∀t. Then the optimal output Y * t satisfies

Y * t = β t (A 0 A 1 . . . A t )Y 0 , with Y 0 = A 0 k 0 .
The optimal rate of saving is

s * t = βA t + (1 -δ)(β -1) A t ≤ β < 1, which is increasing in A t . Moreover, if A t ≤ A t+1 , then s * t ≤ s * t+1 .
We can also compute the rate of growth by

Y * t+1 Y * t = β(A t + 1 -δ). Now suppose A t → A > 0 as t → +∞. In this case Y * t+1 Y * t → β(A + 1 -δ) and s * t → s = βA+(1-δ)(β-1) A
. Let us look at two cases:

• If β(A + 1 -δ) > 1 ⇔ sA -δ > 0 then Y * t+1 Y * t → +∞. • If β(A + 1 -δ) < 1 ⇔ sA -δ < 0 then Y * t+1 Y * t → 0.
We get the same results as in the Harrod model: the TFP plays a crucial role on the economic growth.

Example 3 (Logarithmic utility function and Cobb-Douglas production function). Assume that u(c) = ln(c), F t (k) = Ak α , α ∈ (0, 1), and δ = 1. In this case, we can prove that the optimal path is given by k t+1 = βαAk α t ∀t ≥ 0, and the saving rate is αβ. Therefore, the optimal output is (exercise)

y * t+1 = A 1-α t+2 1-α (αβ) α-α t+2 1-α k α t+2 0 .
When t goes to infinity, the output y * t+1 converges to a steady state

y s = A 1 1-α (αβ) α 1-α .
There is no growth in the long run. It is due to the fact the production function is of strictly decreasing returns to scale. However, observe when A increases, the steady state becomes higher.

Chapter 5

Endogenous growth

How to increase TFP and obtain economic growth?

Determinants of TFP So far the TFP A t in period t seems to be a blackbox in a production function of the type

y t = A t k α t N β t ,
where k t , N t are the number of machines and the number of workers. In this modeling, we do not take into account the quality of the machines, nor the skill of the workers. Now, following Le [START_REF] Van | Why does productivity matter?[END_REF], we write the production function as follows

y t = am t (K t ) α (N t ) β ,
where m t is the quality of the management, the macroeconomic environment (stability, law rule), K t is the effective capital stock, N t is the effective labor. Let ζ t denote the technology embedded in the machines, θ t denote the working time, h t the human capital (education, training, health) of the workers. We then have

K t = ζ t k t and N t = θ t h t N t .
The production function now is y t = A t k α t N β t where the TFP is A t ≡ am t ζ α t (θ t h t ) β . If we assume θ t depends positively on wages or bonus (incentive mechanism) then

y t = A t k α t N β t (5.1)
where the TFP

A t = am t ζ α t (θ(w t )h t ) β (5.2)
The TFP A t is not anymore a black box. If we invest in the quality of management,1 in technology, in training, education, health and if the salaries of the workers are sufficiently incentive, we will have a high TFP. Using endogenous growth models [START_REF] Lucas | On the mechanics of economic development[END_REF][START_REF] Romer | Endogenous technological change[END_REF], we can prove that there may be economic growth even with strictly decreasing returns to scale production function.

Ideas, innovation, population

We consider an endogenous growth model à la [START_REF] Romer | Endogenous technological change[END_REF] but we assume constant saving rate. The first block of the model is similar to [START_REF] Solow | Technical change and the aggregate production function[END_REF]:

C t + S t = Y t I t = S t K t+1 = (1 -δ)K t + I t S t = sY t (constant saving rate) L t = L 0 N t (population).
The second block of the model is inspired by [START_REF] Romer | Endogenous technological change[END_REF]: we assume that the output and the productivity are determined by

Y t = A αa t K α k t L α l yt , α i ∈ (0, 1), ∀i = a, k, l (5.3) A t+1 = d a A t + G(A t , λ a L t ) = d a A t + hA γa t (λ a L t ) γ l (5.4)
The final good production process uses 3 inputs: physical capital K t , labor L yt and knowledge A t .

Here, we interpret A t as the stock of knowledge which is non-rival. The knowledge at date t + 1 is produced from the knowledge at date t and labor (researcher, engineer, for instance).

The labor force L t is divided into two parts: L yt = (1 -λ a )L t for the production of the final good and L at = λ a L t for the production of knowledge. Here, we assume that λ a ∈ [0, 1]. If λ a = 0, then we recover the standard Solow model. Proposition 10. Consider the above model. Assume that (Y t , K t , S t , A t ) is a balanced growth path:

Y t = Y * (1 + g y ) t , K t = K * (1 + g k ) t , S t = S * (1 + g s ) t , A t = A * (1 + g a ) t , ∀t.
Then, we have that

g y = g a (5.5) (1 + g a ) γa-1 (1 + n) γ l = 1 (5.6) (1 + g k ) γa = (1 + g a ) γa (1 + n) γ l (5.7) (1 + g a )A * = d a A * + h(λ a L 0 ) γa (A * ) γa (5.8) (1 + g k )K * = (1 -δ)K * + s(λ l L 0 ) α l (A * ) αa (K * ) α k .
(5.9)

Proof. Let (Y t , K t , S t , A t ) be a balanced growth path. Since L yt = (1 -α)L t , the capital accumulative gives

K t+1 = (1 -δ)K t + sA αa t K α k t L α l yt = (1 -δ)K t + sA αa t K α k t ((1 -α)L t ) α l = (1 -δ)K t + sA αa t K α k t ((1 -α)L 0 N t ) α l
Hence, we get a system

K * (1 + g k ) t+1 = (1 -δ)K * (1 + g k ) t + s A * (1 + g a ) t αa K * (1 + g k ) t α k ((1 -α)L 0 N t ) α l A * (1 + g a ) t+1 = d a A * (1 + g a ) t + h A * (1 + g a ) t γa (λ a L 0 N t ) γ l
Then, by using the same argument in Proposition 3, we obtain our result.

Note that we need to impose several assumptions to ensure the existence of balanced growth path. Indeed, condition A * > 0 requires that 1 + g a > d a . Let γ a < 1. In this case, condition 1 + g a > d a becomes

(1 + n) γ l = (1 + g a ) 1-γa > d 1-γa a .
So, the population growth rate must not be too low. For the role of population growth, see also [START_REF] Malthus | An Essay on the Principle of Population[END_REF], [START_REF] Kremer | Population Growth and Technological Change: One Million B.C. to[END_REF], [START_REF] Jones | The End of Economic Growth? Unintended Consequences of a Declining Population[END_REF].

Exercise 4 [START_REF] Frankel | The production function in allocation and growth: a synthesis[END_REF]). Let us study the following system.

Frankel (1962)'s model:

C t + S t = Y t I t = S t K t+1 = (1 -δ)K t + I t (capital accumulation) S t = sY t (constant saving rate) Y t = A t K α t L 1-α t , α ∈ (0, 1) A t = A(K t , L t ) = a 0 K γ t L γ l t L t = L 0 N t , N = 1 + n > 0, (population).
Find the balanced growth path of the Frankel model. How do growth rates depend on parameters? Find conditions under which the balanced growth path is stable.

Proof. Hints: From this system, we get that

K t+1 = (1 -δ)K t + sa 0 K α+γ t L 0 N t 1-α-γ l .

Role of investment in training and education

We investigate the role of investment in training and education. For the sake of tractability, we consider a static model (see [START_REF] Barro | Economic growth[END_REF], [START_REF] Lucas | On the mechanics of economic development[END_REF] among other for infinite-horizon growth models with human capital). The social planner maximizes the intertemporal utility u(c 0 ) + βu(c 1 ) subject to the following constraints

c 0 + k 1 + G ≤ w 0 (5.10a) L 1 ≤ H(L 0 , G) (5.10b) c 1 ≤ F (k 1 , L 1 ) (5.10c) c 0 , c 1 , k 1 , G ≥ 0 (5.10d)
where w 0 > 0 is the initial output and L 0 is the original labor force. We assume that u > 0 > u and u (0) = ∞. This ensures that both consumptions are strictly positive at optimal.

We assume that H(L 0 , G) = L 0 + hG where h > 0 represents the efficiency of investment in training of high-skilled workers or human capital. Assume that L 0 > 0. L 0 is equal to H(L 0 , 0) which is the labor effective when there is no high-skilled worker.

Assume that

F (K, L) = AK α L β .
The maximization problem of the social planner can be rewritten as follows:

max

(c 0 ,c 1 ,S u(c 0 ) + βu(c 1 ) (5.11) c 0 + S ≤ w 0 (5.12) c 1 ≤ G(S) (5.13) c 0 , c 1 , S ≥ 0 (5.14)
where the payoff function G(S) is defined by

G(S) ≡ max (k 1 ,G) Ak α 1 L 0 + hG γ (5.15) k 1 + G ≤ S, k 1 , G ≥ 0 (5.16)

Training or not training?

Let us consider the intermediate problem. This is called static problem.

G(S) ≡ max

(k 1 ,G)
Ak α 1 L 0 + hG γ (5.17)

k 1 + G ≤ S, k 1 , G ≥ 0 (5.18)
By using the standard method, we obtain the following result.

Lemma 1. Let H(L 0 , G) = L 0 + hG. Under these above specifications, we have that

1. If γhS ≤ αL 0 , then G = 0. 2. If γhS > αL 0 , then G = γhS -αL 0 h(α + γ) (5.19) k 1 = α α + γ L 0 + hS h .
(5.20)

According to this result, given the savings S, it is optimal to invest in training high-skilled workers if and only if γhS > αL 0 . So, all γ, h, S, L 0 matter.

Optimal allocation

We now look at the problem (5.10). Notice that at optimum, we have c 0 > 0, c 1 > 0, k 1 > 0 but G may be zero.

The Lagrange function is

L = u(c 0 ) + βu(c 1 ) + λ 0 (w 0 -c 0 -k 1 -G) + λ 1 (F (k 1 , H(L 0 , G)) -c 1 ) + µ g G = u(c 0 ) + βu(c 1 ) + λ 0 (w 0 -c 0 -k 1 -G) + λ 1 Ak α 1 (L 0 + hG) β -c 1 ) + µ g G At optimum, we have u (c 0 ) -λ 0 = 0 u (c 1 ) -λ 1 = 0 (k 1 ) : -λ 0 + αλ 1 Ak α-1 1 (L 0 + hG) β = 0 (G) : -λ 0 + hβλ 1 Ak α-1 1 (L 0 + hG) β-1 + µ g = 0 µ g ≥ 0, µ g G = 0.
By solving this system, we get that: Proposition 11. Assume that u(c) = ln(c).

If γβhw

0 ≤ (1 + αβ)L 0 , then G = 0. 2. If γβhw 0 > (1 + αβ)L 0 , then k 1 = αβ 1 + αβ + γβ w 0 + L 0 h (5.21) G = 1 h γβh 1 + αβ + γβ w 0 - 1 + αβ 1 + αβ + γβ L 0 .
(5.22)

Note that both the quantity G and the ratio G w 0 , i.e., the proportion of investment in humain capital to the aggregate income are increasing in the income. This is consistent with data.

A simple endogenous growth model à la Ramsey

We present a simple infinite-horizon endogenous growth model studied in Le [START_REF] Van | Why does productivity matter?[END_REF]. There is a social planer who maximizes the population's intertemporal utility ∞ t=0 β t u(c t ) subject to sequential constraints: c t +S t+1 = G t F (k t ) ∀t ≥ 0, where c t , S t+1 are consumption, savings.

We now assume that the saving S t+1 is shared in investment in physical capital k t+1 and in investment T t+1 in TFP, i.e., k t+1 + T t+1 = S t+1 . G t+1 is a function of T t+1 and we write G(T t+1 ). We rewrite the model as follows max

∞ t=0 β t u(c t ) for t ≥ 1 c t + S t+1 = H(S t ) ≡ max{G(T t )F (k t ) : T t + k t = S t , and T t , k t ≥ 0}
where k t+1 + T t+1 = S t+1 .

For the sake of tractability, we assume that F (k) = k α , α ∈ (0, 1), G(T ) = (λT +1) ξ , ξ > 0, and λ > 0. 2 The parameter ξ measures the quality of the TFP investment technology. The higher ξ the more efficient the TPF investment. The parameter λ measures the utilization of T t . For instance λ is small because of diversion of T t .

Static analysis. We firstly look at the static problem and the properties of the function H. Under our specifications, we have H(S t ) ≡ max{(λT t + 1) 

α k t = µ 1 , ξ λ λT t + 1 + µ 2 = µ 1 , µ 2 T t = 0.
If T t = 0 at optimal, then we have λξ = µ 1 -µ 2 ≤ µ 1 = α/k t = α/S t . Thus, we have S t ≤ α/(λξ).

2 Here, we implicitly assume that u is continuously differentiable, strictly increasing, concave, u (0) = ∞ and ∞ t=0 β t u(Dt) < ∞ where the sequence (Dt) is defined by D0 = H(S0), Dt+1 = H(Dt).

If T t > 0 at optimal, the FOC implies that α kt = ξ λ λTt+1 , i.e., (λT t + 1)α = ξλk t = ξλ(S t -T t ). So, we can compute that

T t = ξλS t -α λ(α + ξ) , k t = α(λS t + 1) λ(α + ξ) H(S t ) = ξ(λS t + 1) α + ξ ξ α(λS t + 1) λ(α + ξ) α = ξ ξ α α (α + ξ) α+ξ (λS t + 1) α+ξ λ α .
Of course, T t > 0 is equivalent to ξλS t -α > 0.

Summing up, we obtain the following result:

Lemma 2. Let S t > 0 be given. Under above specifications, we have that: 

1. If S t ≤ α ξλ then T t = 0.
H(S t ) = a h (λS t + 1) α+ξ λ α ,
where a h ≡ ξ ξ α α (α+ξ) α+ξ depending on (α, ξ). The function H is increasing in λ when S > α ξλ . The lower the level of diversion, the higher the total output.

Notice that the function H(S) is increasing return to scale and convex for any S > α/(ξλ).

This is one way to introduce increasing return to scale technology is growth models (see [START_REF] Romer | Increasing returns and long-run growth[END_REF] for more detailed discussions).

Observe also that in point 2 of Lemma 2, the ratio of investment to the total savings is

Tt St = ξλ-α S t
λ(α+ξ) is increasing in S t . The following graphic shows the evolution of investment in R&D in some countries. Dynamic analysis. We now show the dynamics of the optimal path. It is easy to see that the optimal path (S t ) is monotonic. We then have the convergence of optimal paths. 3 Proposition 12. Assume that βα α ξ 1-α λ 1-α > 1 and α + ξ ≥ 1. Then any optimal sequence {S * t } t , and hence any optimal sequence of outputs {y * t = H(S * t )} converge to infinity. 4 By consequence, there is a date τ such that the country invests in TFP from date τ on (i.e., T t > 0 ∀t ≥ τ ).

According to our result, if the utilization of investment in technology (parameter λ) and the quality of the TFP investment technology (parameter ξ) are high, and we have increasing return to scale (α + ξ ≥ 1) technology, we get growth without bounds. 3 We do not provide a full analysis in this paper. However, more dynamic properties may be obtained by adopting the method in [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF], [START_REF] Bruno | When does a developing country use new technologies?[END_REF].

4 Proof: If S < α ξλ , then we have

H (S) = αS α-1 > α α ξλ α-1 = α α ξ 1-α λ 1-α .
If S > α ξλ , then we have

H (S) = a h (α + ξ)λ (λSt + 1) α+ξ-1 λ α > a h (α + ξ)λ (λ α ξλ + 1) α+ξ-1 λ α = α α ξ 1-α λ 1-α .
(5.23)

Since βα α ξ 1-α λ 1-α > 1, by applying Proposition 4.6. in [START_REF] Kamihigashi | A nonsmooth, nonconvex model of optimal growth[END_REF], we have that every optimal path increasingly converges to infinity.

The rate of growth (

y * t+1 y * t - 1 
) is now endogenous. It is obtained by an optimal share between investing in physical capital and investing in HC, Technology, Management Quality, incentive mechanisms. For that reason, we call these types of models Endogenous Growth Models.

The above results (Lemma 2 and Proposition 12) above deserve some comments.

• The country will wait until some date τ , when the optimal output generates enough saving S τ > α ξλ , before investing in TFP. • If the diversion of the T t is high (i.e. λ is low), the country may never invest in TFP and will not have growth.

• If λ is lower (the diversion exists), the date τ becomes larger. The country has to wait longer before starting to invest in TFP.

Chapter 6

Finance and macroeconomics

Productive sector or financial market

The financial market has been considered as one of main causes of economic recession or/and fluctuation. But, does financial market always cause an economic recession? What is the role of financial market on the productive sector?

We address these questions by using a very simple model (see Le [START_REF] Van | Intertemporal equilibrium with financial asset and physical capital[END_REF] among other for an infinite-horizon model). Consider an agent whose initial endowment is S. Agent has two choices to invest: to produce or to invest in financial asset. She may produce AF (K) units of consumption good by using K units of physical capital. If she buys a units of financial asset with price q, she will receive ξa units of consumption good, where ξ is the dividend of the financial asset. max K,a≥0 AF (K) + ξa (6.1)

K + qa ≤ S (6.2)
At optimum, we must have K + qa = S. So, the problem is equivalent to the following one:

max 0≤K≤S AF (K) + ξ q (S -K) = max 0≤K≤S AF (K) - ξ q K + ξ q S. (6.3)
From this, we can easily obtain the following result.

Proposition 13. Assume that F is concave, strictly increasing, continuously differentiable. Let S > 0, q > 0, A > 0, ξ > 0.

(i) If AF (0) ≤ ξ q , agent does not produce, i.e., K = 0 and a = S.

(ii) If AF (S) ≥ ξ q , agent does not invest in financial asset, i.e., a = 0 and K = s.

(iii) If AF (S) ≤ ξ q ≤ AF (0), agent produces and invests in financial asset. K is determined by AF (K) = ξ q and a = S -K. The intuition is very clear: We invest in the highest return asset. Point (i) says that we do not produce if the maximum return of the productive sector is less than the return of the financial sector. The main implication of Proposition 13 is that the productive sector will be disappeared if its productivity is low.

We can define the notion of economic recession: there is no investment in the productive sector (or the input level is lower than some threshold).

According to this concept, we can see the importance of both productivity and financial return on economic recession.

Credit constraints

We now introduce credit constraints and investigate its effects on the firm's decision and on the whole economy.1 

Individual maximization problem with credit constraints

Let us consider an agent who has S units of good at the initial date. This good can be consumed or used to produce. There is no uncertainty. What he want is to invest in order to maximize its wealth at the next date.

On the one hand, he can produce with technology F (K).

On the other hand, he can also invest in financial asset with gross return is r. If he want to borrow an amount a units of consumption good then: (i) at next date, he must pay back ra, (ii) there is a borrowing constraint (because the financial market is imperfect) under which the agent cannot borrow more than a fraction f < 1 of his project's outcome F (K), where f is an exogenous parameter which is the borrowing limit of the agent.

The maximization problem of the agent is

(P ) π 1 = max K,a F (K) -ra] (6.4) subject to 0 ≤ K ≤ S + a (6.5) ra ≤ f F (K). (6.6)
If we interpret this agent as a country, the parameter f can be interpreted as an index of the country's financial development.

The following table from the Enterprise Surveys (2018)'s panel datasets suggests that borrowing and collateral constraints matter for the development of firms.

Remark 7. Let us compare our credit constraint with those in the literature. [START_REF] Matsuyama | Aggregate Implications of Credit Market Imperfections[END_REF] (Section 2) considers a model with heterogeneous agents, which corresponds to our model with k i = 1, S i = w, a i = 1 -w. However, different from our setup, investment projects in [START_REF] Matsuyama | Aggregate Implications of Credit Market Imperfections[END_REF] are non-divisible.

It should be noticed that constraint (6.6) is different from condition (3) in [START_REF] Kiyotaki | Credit cycles[END_REF]. Indeed, [START_REF] Kiyotaki | Credit cycles[END_REF] assume that the borrower's repayment does not exceed the market value of her land quantity while we assume that the repayment does not exceed the market value of the borrower's project. Some authors [START_REF] Buera | Financial Frictions and the Persistence of History: A Quantitative Exploration[END_REF][START_REF] Moll | Productivity Losses from Financial Frictions: Can Self-financing Undo Capital Misallocation?[END_REF] set k i ≤ θw i , where w i ≥ 0 is the agent i's wealth and interpret that θ measures the degree of credit frictions (credit markets are perfect if θ = ∞ while θ = 1 corresponds to financial autarky, where all capital must be self-financed by entrepreneurs). In our framework, S i plays a similar role of wealth w i in [START_REF] Buera | Financial Frictions and the Persistence of History: A Quantitative Exploration[END_REF], [START_REF] Moll | Productivity Losses from Financial Frictions: Can Self-financing Undo Capital Misallocation?[END_REF]. Notice that [START_REF] Buera | Financial Frictions and the Persistence of History: A Quantitative Exploration[END_REF], [START_REF] Moll | Productivity Losses from Financial Frictions: Can Self-financing Undo Capital Misallocation?[END_REF] do not allow to intertemporal borrowing as in our framework.

Another way to introduce credit constraint is to set a i ≤ θk i . This corresponds to constraint (3) in [START_REF] Midrigan | Finance and Misallocation: Evidence from Plant-Level Data[END_REF].

We consider two particular production functions.

1. Linear technology. Assume that the technology is linear F (K) = AK. We study the individual problem (P ).

Lemma 3 (individual problem). Assume that F i (K) = A i K. The solution for agent i's maximization problem is described as follows.

(a) If r > A i , then agent i does not produce goods and invest all her initial wealth in the financial market:

k i = 0, a i = -S i . (b) If A i = r, then the solutions for the agent's problem are all allocations (k i , a i ) such that -S i ≤ a i ≤ f i k i and k i = a i + S i . (c) If A i > r > f i A i ,
then agent i borrows from the financial market and the borrowing constraint is binding.

k i = r r -f i A i S i , a i = f i A i r -f i A i S i . (6.7) (d) If r ≤ f i A i , there is no solution. 2
Proof. At optimal, we have k i = S i + a i . Indeed, if k i < S i + a i , we can increase k i a little bit, keep a i unchanged, and hence and get a higher value of F (k i )-ra i . Therefore, we have

k i = S i + a i . So, A i k i -ra i = A i S i + a i (A -r).
Budget and credit constraint become a i ≥ -S i and (r -

f i A i )a i ≤ f i A i S i .
We consider different cases.

(a) If r > A i , then r > f i A i (because f i < 1). So, our problem constraints becomes -S i ≤ a i ≤ f i A i S i r-f i A i . Since A i k i -ra i = A i S i + a i (A i -r) and A i -r < 0, the optimal value of a i must be -S i which implies that k i = 0. (b) If A i = r, then A i k i -ra i = A i S i + a i (A i -r) = 0 for any a i ≥ -S i and ra i ≤ f i A i k i . So, the solutions for the agent's problem are all allocation (k i , a i ) such that -S i ≤ a i ≤ f i k i and k i = a i + S i . (c) If A i > r > f i A i , then the problem's constraints become a i ≥ -S i and a i ≤ a i ≤ f i A i S i r-f i A i . Since A i k i -ra i = A i S i + a i (A i -r) and A i -r > 0, the optimal value of a i must be f i A i S i r-f i A i which implies that k i = r r -f i A i S i . (d) If r ≤ f i A i , there is no solution. Indeed, if r ≤ f i A i , then agent i may choose a i = +∞ and k i = +∞ and have c i = +∞.
When the productivity is low, i.e., A < r then K = 0, a = S. This agent invests in financial asset, not to produce. When A > r > f A, the agent borrows with maximum level in the sense that the borrowing constraint is binding.

Corollary 1. (Collateral effect) Assume that A > r > f A. At optimum, we have ∂K ∂f > 0, ∂ 2 K ∂ 2 f < 0 (6.8) ∂a ∂f > 0, ∂ 2 a ∂ 2 f < 0 (6.9) ∂π 1 ∂f > 0, ∂ 2 π 1 ∂ 2 f < 0. (6.10)
2. Cobb-Douglas technology Assume that F (K) = AK α where α ∈ (0, 1). The maximization problem of the agent is

(P ) π 1 = max K,a AK α -ra] (6.11) subject to 0 ≤ K ≤ S + a (6.12) ra ≤ f AK α . (6.13)
Different from the linear technology case, we always have that K > 0 at optimum since

F (0) = ∞.
The characterization of the solution is presented in the following result.

Proposition 14. (a) If 1 > f α + r αAS α-1 1 1-α then the borrowing constraint is binding.

In this case, the solution is given by

K 1-α - S K α = f A r , a = K -S. (6.14) (b) If 1 < f α + r αAS α-1 1 1-α
then the borrowing constraint is not binding. In this case, the solution is given by

K = αA r 1 1-α i.e., αAK α-1 = r, (6.15) a = K -S. (6.16) Agent i lends (a ≤ 0) if r ≥ αAS α-1 , and borrows (a ≥ 0) if r ≤ αAS α-1 .
Proof. See [START_REF] Pham | Effects of credit limit on efficiency and welfare in a simple general equilibrium model[END_REF].

Corollary 2. (Collateral effect) Assume that 1 > f α + r αAS α-1 1 1-α . At optimum, we have ∂K ∂f > 0, ∂a ∂f > 0, ∂π 1 ∂f > 0.
(6.17)

The role of financial development f

We have a direct consequence: if the borrowing limit f is high enough in the sense that f > α then the borrowing constraint is not binding whenever the level of r, S, A.

The more interesting case is when the borrowing limit is not so high, i.e., f < α. Note that αAS α-1 = F (S) ≤ F (K) for any K ≤ S. Hence, αAS α-1 is the lowest marginal productivity if the agent cannot borrow. The intuition is that the higher the marginal productivity, the more amount the agent want to borrow. The borrowing constraint is binding when the marginal productivity is high enough.

We consider an economy with 1 -

r αAS α-1 1 1-α > 0, i.e. αAS α-1 > r.
This condition means that the marginal productivity is greater the interest rate. This condition is satisfied if the TFP A is high enough. According to Proposition 14 the borrowing constraint is binding if and only if the borrowing limit is lower than a critical threshold:

f < f ≡ α 1 - r αAS α-1 1 1-α .
We see that

∂ f ∂ r < 0, ∂ f ∂ Ā > 0, ∂ f ∂ S < 0 (6.18)

General equilibrium

Definition 4. Assume that there are m agents. A list of allocations and gross interest rate

((k i , a i ) m i=1 , r
) is a general equilibrium if it satisfies two conditions:

1. For each i,, given r, the allocation (k i , a i ) is a solution to the maximization problem of the agent i is

(P i ) π i = max k i ,a i F i (k i ) -ra i ] (6.19) subject to 0 ≤ k i ≤ S i + a i (6.20) ra i ≤ f i F i (k i ). (6.21)

The financial market clears:

m i=1 a i = 0. (6.22)
Proposition 15 (characterization of general equilibrium). Assume that f i ∈ [0, 1) and

F i (k) = A i k. Assume that A 1 > A 2 .
There are only three different cases (each having a unique equilibrium and with the productive agent being the borrower).

1. If f 1 ≤ A 2 A 1 S 2
S 1 +S 2 , then the borrowing constraint of agent 1 is binding and there exists a unique equilibrium characterized by:

Interest rate: r = A 2 Physical capital: k 1 = A 2 A 2 -f 1 A 1 S 1 , k 2 = - f 1 A 1 A 2 -f 1 A 1 S 1 + S 2
Financial asset:

a 1 = f 1 A 1 A 2 -f 1 A 1 S 1 , a 2 = - f 1 A 1 A 2 -f 1 A 1 S 1 ;
The aggregate output and consumption of each agent are:

Y = A 2 S 2 + A 1 S 1 A 2 -f 1 A 2 A 2 -f 1 A 1 , c 1 = A 1 S 1 A 2 -f 1 A 2 A 2 -f 1 A 1 , c 2 = A 2 S 2 . 2. If A 2 A 1 S 2 (S 1 +S 2 ) < f 1 < S 2
S 1 +S 2 , then the borrowing constraint of agent 1 is binding, and there exists a unique equilibrium characterized by:

Interest rate: r = f 1 A 1 1 + S 1 S 2 Physical capital: k 1 = S 1 + S 2 , k 2 = 0 Financial asset: a 1 = S 2 , a 2 = -S 2 .
The aggregate output and consumption of each agent are:

Y = A 1 (S 1 + S 2 ), c 1 = A 1 (1 -f 1 )(S 1 + S 2 ), c 2 = f 1 A 1 (S 1 + S 2 ). 3. If f 1 ≥ S 2
S 1 +S 2 , then the borrowing constraint is not binding, and there exists a unique equilibrium characterized by:

Interest rate: r = A 1 Physical capital: k 1 = S 2 + S 1 , k 2 = 0 Financial asset: a 1 = S 2 ; a 2 = -S 2
The aggregate output and consumption of each agent are:

Y = A 1 (S 1 + S 2 ), c 1 = A 1 S 1 , c 2 = A 1 S 2 .
Proof. See [START_REF] Pham | Effects of credit limit on efficiency and welfare in a simple general equilibrium model[END_REF].

According to this result, we can present explicit formulas of equilibrium interest rate and aggregate output:

r = r(f 1 ) ≡          A 2 if f 1 ≤ f * 1 f 1 A 1 1 + S 1 S 2 if f * 1 < f 1 < f * * 1 A 1 if f 1 ≥ f * * 1 , (6.23) Y = Y (f 1 ) ≡      A 2 S 2 + A 1 S 1 A 2 -f 1 A 2 A 2 -f 1 A 1 if f 1 ≤ f * 1 A 1 (S 1 + S 2 ) if f * 1 < f 1 . (6.24) We see that the interest rate r is in [A 2 , A 1 ] and Y belongs to [A 1 S 1 + A 2 S 2 , A 1 (S 1 + S 2 )].
Both the interest rate r and the aggregate output Y are increasing in the credit limit f 1 . So, the financial development matters for the economic development.

A model with exogenous borrowing limit

To provide a sharper comparison in terms of equilibrium outcomes between our model and the setup with exogenous borrowing limit, we replace constraint (6.6) by a i ≤ āi . The problem of agent i now becomes

(Q i ) : π i = max (k i ,a i ) [F i (k i ) -ra i ] subject to: 0 ≤ k i ≤ S i + a i (6.25a)
and a i ≤ āi . (6.25b)

Recall that in the problem (P i ) with credit constraint (6.6), the bound of a i depends on the future value of the investment project and on the interest rate. Consequently, agent i cannot borrow if her project is not productive. By contrast, under exogenous borrowing limit setup (the problem (Q i )), agent i can always borrow an amount āi whether she has a project or not.

Notice that a i ≥ -S i ∀i. At optimal, we must have k i = S i + a i . Then, π i = A i S i + (A ir)a i . Consequently, we obtain the following result which is similar to Lemma 3.

Lemma 4 (individual problem). The solution of the problem (Q i ) is given by the following.

1. If A i < r, then agent i does not produce goods and invest all her wealth in the financial market:

k i = 0, a i = -S i .
2. If A i > r, then agent i borrows from the financial market and the borrowing constraint is binding:

a i = āi , k i = S i + āi .
3. If A i = r, then the solutions for the agent's problem include all sets (k i , a i ) such that -S i ≤ a i ≤ āi and k i = a i + S i .

Notice that, in each case, the allocation does not depend on the interest rate. This is the main difference between this model and one with credit constraint.

Proposition 16 (general equilibrium with two agents). Assume that there are two agents with production function

F i (k) = A i k i ∀i and A 1 > A 2 . 1. If S 2 > ā1 , then r = A 2 .
2. If S 2 = ā1 , then any r ∈ [A 2 , A 1 ] is an equilibrium interest rate. Equilibrium indeterminacy arises.

3. If S 2 < ā1 , then r = A 1 . (High borrowing limit ā1 .)

Proof. See [START_REF] Pham | Effects of credit limit on efficiency and welfare in a simple general equilibrium model[END_REF]. Since i a i = 0, Lemma 4 implies that r ∈ [A 2 , A 1 ].

There are three cases. If r = A 2 , then r < A 1 which implies that a 1 = ā1 and k 1 = S 1 + ā1 . By using market clearing condition, we have a 2 = -ā 1 , and hence k 2 = S 2 -ā1 . Therefore, we need condition S 2 -ā1 ≥ 0.

If r = A 1 , then r > A 2 which implies that k 2 = 0, a 2 = -S 2 . By using market clearing condition, we have a 1 = S 2 , and hence k 1 = S 1 + S 2 . We also need a 1 ≤ ā1 , i.e., S 2 ≤ ā1 .

If r ∈ (A 2 , A 1 ), then a 1 = ā1 and k 1 = S 1 + ā1 . By using market clearing condition, we have a 2 = -ā 1 , and hence k 2 = S 2 -ā1 . However, A 2 < r implies that k 2 = 0. Therefore, we need condition S 2 -ā1 = 0.

It is easy to verify that, if S 2 -ā1 = 0, then any r ∈ [A 2 , A 1 ] is an equilibrium interest rate. In this case, we have

c 2 = A 2 k 2 -ra 2 = A 2 S 2 + (A 2 -r)a 2 = rS 2 (6.26) c 1 = A 1 k 1 -ra 1 = A 1 S 1 + (A 1 -r)a 1 = A 1 S 1 + (A 1 -r)S 2 . (6.27)
Observe that c 1 is decreasing in r.

It should be noticed that multiple equilibria arises but it is not totally generic because we need S 2 = ā1 .

According to Proposition 16, we can compute individual consumptions and the aggregate

Y = A 2 S 2 + A 1 S 1 + (A 1 -A 2 )ā 1 if ā1 < S 2 A 1 S if ā1 ≥ S 2 c 2 =        A 2 S 2 if ā1 < S 2 rā 1 if ā1 = S 2 A 1 S 2 if ā1 ≥ S 2 and c 1 =        A 1 S 1 + (A 1 -A 2 )ā 1 if ā1 < S 2 A 1 S 1 + (A 1 -r)ā 1 if ā1 = S 2 A 1 S 1 if ā1 ≥ S 2 where r ∈ [A 2 , A 1 ].
There are two main differences between the model with exogenous borrowing limits and that with credit constraints (6.6).

• According to Proposition 16, multiple equilibria arises (but it is not totally generic because it only happens when ā1 = S 2 ). However, our model with credit constraint (6.6) has a unique equilibrium.

• Both individual consumptions are increasing in exogenous borrowing limits ā1 . However, our model with credit constraint (6.6), the consumption of borrower has an inverted U-sharp form and that of lender is increasing in credit limit. The intuition is that the borrowing amount that an agent can borrow are exogenous in the problem (Q i ) while it is endogenous and depends on the interest rate r in the problem (P i ) with credit constraint (6.6).

These points suggest that the forms of borrowing constraints (credit constraint or exogenous borrowing limit) matter for the equilibrium analysis.

When do we do default?

There is an agent living in two periods: 0 and 1. At initial period, agent has a debt level a -1 . Agent maximizes her utility u(c 0 ) + βu(c 1 ).

(6.28)

At date t = 0, 1, agent has w t > 0 units of consumption good. Agent has 2 choices: to default or to repay debt.

1. If agent does default, i.e., she does not pay debt, and she cannot participate to the financial market but she can only consume her endowment. In this case, her utility is U (endowment) = u(w 0 ) + βu(w 1 ).

2. If agent repays her debt, she can smooth her consumption by selling or buying an asset with price q 0 . If agent buys/sells 1 unit of financial asset at date 0 with price q 0 then at date 1, she will receive/repay 1 unit of consumption good. There is no borrowing constraint. In this case, agent chooses c 0 , c 1 , a 0 to maximize her utility max c 0 ,c 1 u(c 0 ) + βu(c 1 ) (6.29) c 0 + a -1 ≤ w 0 + q 0 a 0 (6.30) c 0 + a 0 ≤ w 1 (6.31)

If we write q 0 = 1 1 + r , then r is the net interest rate.

Assume that u(c) = ln(c). Then the solution of this maximization problem (if exist) is given by

c 0 = w 0 + q 0 w 1 -a -1 1 + β (6.32) c 1 = βc 0 q 0 . (6.33)
Agent chooses to repay her debt if and only if u(c 0 ) + βu(c 1 ) ≥ u(w 0 ) + βu(w 1 ) (6.34) (6.35) This condition is equivalent to

w 0 + q 0 w 1 -a -1 1 + β 1+β β β ≥ w 0 (q 0 w 1 ) β .
a -1 ≤ D := w 0 + q 0 w 1 -(1 + β)w 1 1+β 0 q 0 w 1 β β 1+β .
Proposition 17. There exists a level D * such that if a -1 > D * then agent choose to do default.

D * = sup D : The utility of problem ( 2) is greater than U(endowment)

Proposition 18. Assume that r is large enough then ∂D ∂w 0 > 0, ∂D ∂w 1 < 0, i.e., default level D increases when w 0 increase or w 1 decreases.

Chapter 7

International macroeconomics

International macroeconomics: a general equilibrium approach

The general equilibrium theory is widely used in international macroeconomics. In this section, we present a general equilibrium model with a finite number of countries to investigate the role of globalization and the direction of capital flow.

Definition 5. Consider a world model with m countries. Assume that there are two periods.

Each country i has endowments w i,0 and w 0,1 at period 0 and 1 respectively. A general equilibrium is a positive list (r, (c i,0 , c i,1 , k i , a i ) m i=1 ) satisfying the following conditions:

(1) Given r, for each i, the allocation (c i,0 , c i,1 , k i , a i ) is a solution to the agent (country) i' maximization problem:

max (c i,0 ,c i,1 ,k i ,a i ) u i (c i,0 ) + βu i (c i,1 ) (7.1)
budget constraints :

c i,0 + k i + a i ≤ w i,0 , (7.2) c 1,i ≤ w i,1 + F i (k i ) + ra i (7.3) k i ≥ 0. (7.4) (2) Market clearing conditions m i=1 (c i,0 + k i ) = m i=1 w i (7.5) m i=1 c i,1 = m i=1 F i (k i ) + w i,1 (7.6) (Financial market): m i=1 a i = 0. (7.7)
Computing explicitly the equilibrium is not easy. We will present some special cases. At equilibrium, under standard conditions, we have the first order conditions u i (c i,0 ) = λ i,0 (7.8)

β i u i (c i,1 ) = λ i,1 (7.9) λ i,0 = λ i,1 F i (k i ) + λ(k i ) (7.10) λ(k i )k i = 0 (7.11) λ i,0 = rλ i,1 (7.12)
We work under the following specification:

Assumption 4. u i (c) = ln(c). F i (k) = A i k α i .
Remark 8. Here, we assume that the international financial market is perfect (there is no borrowing constraint). We may introduce borrowing constraints as in Section 6.2.

According to the FOCs, we see that

F i (k i ) = r for any i. Hence k i = αA r 1 1-α .
We also have λ i,0 = rλ i,1 which becomes w i,1 

+ A i k α i i + ra i = rβ i (w i,0 -k i -a i ). Hence we obtain w i,1 + A i k α i i + rβ i k i 1 + β i + ra i = r β i w i,0 1 + β i . (7.13) Combining with k i = αA r 1 1-α , we get w i,1 1 + β i + (1 + α i β i ) 1 + β i α α i 1-α i i A 1 1-α i i r α i 1-α i + ra i = r β i w i,0 1 + β i . ( 7 
w i,1 1 + β i 1 r + m i=1 (1 + α i β i ) 1 + β i α α i 1-α i i A 1 1-α i i r 1 1-α i = m i=1 β i w i,0 1 + β i . (7.15)
Comparative statics. It is easy to see that, for each i, the interest rate is increasing in endowment e i,1 at the second date and agent' TFP A i , decreasing in endowment e i,0 at initial date and rate of time preference β i .

Corollary 3 (Endowment effects in an exchange world). Assume that A i = 0 for every i. The world interest rate is determined by

m j=1 w j,1 1 + β j 1 r = m j=1 β j w j,0 1 + β j ⇔ r = m j=1 w j,1 1+β j m j=1 β j w j,0 1+β j (7.16)
We can also compute a i and c i,0

a i = β i w i,0 1 + β i - w i,1 1 + β i 1 r (7.17a) c i,0 = w i,0 1 + β i + w i,1 1 + β i 1 r (7.17b) c i,1 = r β i w i,0 1 + β i + β i w i,1 1 + β i . (7.17c)
Let us consider two countries i = j, we have

∂c i,0 ∂w j,0 > 0, ∂c i,1 ∂w j,0 < 0. (7.17d)
Let us mention an implication of this result. Assume that there is a disaster in the country j that makes its endowment w j,0 at date 0 decreases. Assume also that there is no international aid. In this case, the equilibrium consumption of other countries at date 0 decreases but that at date 1 increases because the equilibrium interest rate increases.

However, if a disaster affects the initial endowment of both countries. Then, its effect on these two countries' consumption would be different; it strontly depends on the disaster's size.

Corollary 4 (The world interest rate in an exchange world). Assume that A i = 0, β i = β for every i. 

Y 0 = 1+ Y 1 -Y 0 Y 0 = 1+R,
where R can be interpreted as the world growth rate. Then the world interest rate is

r = (1 + i)(1 + R). (7.19)
We recover a version of the Fisher formula.

Development level and direction of capital flows

Corollary 5. Assume that w i,1 = 0 and α i = α ∈ (0, 1) for every i. Assume that borrowing constraints are not binding. Then, the equilibrium price is determined by

m i=1 (1 + αβ i )α α 1-α A 1 1-α i 1 + β i = r 1 1-α m i=1 β i w i 1 + β i . (7.20)
Corollary 6. Assume that w i,1 = 0, β i = β, α i = α for every i. We continue to consider equilibrium where borrowing constraints are not binding. We have

(1 + αβ)α α 1-α 1 + β m i=1 A 1 1-α i = r 1 1-α m i=1 w i . (7.21)
In this case, the direction of capital flows is given by:

a i < 0 ⇔ w i m j=1 w j < A 1 1-α i m j=1 A 1 1-α j .
(7.22)

Corollary 7 (The role of countries' size). Assume that w i,1 = 0, β i = β, α i = α for every i. We continue to consider equilibrium where borrowing constraints are not binding. Assume that there are two countries H and F . We have

a H < 0 ⇔ w H w F < A H A F 1 1-α . (7.23)
In particular, if w H = 0.25w F and α = 1/3, then the country H borrows if and only if A H > 0.4A F .

Implication. This result leads to several implications in international macroeconomics. Assume that there are two countries H and F with e i,1 = 0, β i = β, α i = α for each i = H, F . We continue to consider equilibrium where borrowing constraints are not binding. We have that

a H < 0 ⇔ e H e F < A H A F 1 1-α (7.24) ⇔ αA H e α-1 H < αA F e α-1 F (7.25)
When the two countries have the same initial endowment (i.e., e H = e F ), then the country with higher level of TFP will borrow from the country with lower level of TFP. If we interpret that the country having higher level of TFP is the more developed country and the other is the less developed country, then our result suggests that capital moves to the more developed country.

When the two countries have the same TFP (i.e., A H = A F ), the country with lower level of initial endowment will borrow. If we interpret that the country with higher level of initial endowment as the developed country and the other is the less developed country, then our result suggests that capital moves to the less developed country.

These two above points about capital flows are not opposite since the development level of a country is characterized by a vector of many indices, not only one unique parameter. In our simple example, the development level of country i is characterized by the vector (e i , A i ) of initial endowment and TFP. By the way, our theoretical result suggests that we should be careful when interpreting the relationship between the development level of a country and the direction of capital flows.

We point out here that when we consider two countries with different levels of endowments and TFPs, the analysis would be more complicated. Let us consider an example. Let α be 1/3, a reasonable parameter. Assume that, at initial date, the country F is four times richer that the country H, i.e. e F = 4e H . In this case, the country H borrows if and only if A H > 0.4A F .

Foreign aid and economic growth in a Solow model

Framework

The official development assistance (ODA) is important for low income countries as shown in the following graphics taken from the World Bank's website.

We consider a model à la Solow with exogenous saving rate but we introduce foreign aid in order to investigate the effects of foreign aid on the economic development of the recipient country. As usual, we assume that

c t + S t = Y t (7.26a) S t = sY t (7.26b) Y t = F (k t ) (7.26c) k t+1 = (1 -δ)k t + I t (7.26d)
where c t , S t , I t are consumption, saving, investment at date t (t = 0, 1, . . . , +∞), s ∈ (0, 1) is the exogenous saving rate, k t is the physical capital at date t (k 0 > 0 is given), δ ∈ [0, 1] is the capital depreciation rate, Y t is the output.

Following [START_REF] Chenery | Foreign assistance and economic development[END_REF], we assume that the total investment of the recipient country equals the sum of its savings and foreign aid:

I t = S t + a t .
(7.27)

Here, foreign aid is used to complement the domestic investment. From the above relationships, we get c t = (1 -s)F (k t ) and

k t+1 = (1 -δ)k t + sF (k t ) + a t (7.28)
Assume that the foreign aid at period t, denoted by a t , will be disappeared once the physical capital of the recipient country is high enough. Formally, we set the following rule:

a t = a if k t < b 1 , and a t = 0 if k t ≥ b 1 . (7.29)
Here, we do not consider the foreign aid in form of loans. For the effects of loans, see Le [START_REF] Van | Effects of development aid (grants and loans) on the economic dynamics of the recipient country[END_REF].

We set the following assumption that plays a key role on our analyses.

Assumption 5. Assume that F (k) = Af ((k -b 0 ) + ) where b 0 > 0 and f is a strictly increasing, concave function with f (0) = 0.

It means that the the economy has to pay a fixed cost before the production process takes place. The existence of this fixed cost may due to the lack of infrastructure.

Avoiding a collapse with a permanent aid

With foreign aid, the dynamics of physical capital becomes

k t+1 = (1 -δ)k t + sAf k t -b 0 ) + + a t if k t < b 1 (1 -δ)k t + sAf k t -b 0 ) + if k t ≥ b 1 (7.30)
Notice that the dynamical system of physical capital is not continuous (at the point b 1 ). Providing a full characterization of this system is not easy.

Let k 1 a be determined by 1. Assume that there is no foreign aid. Then the economy collapses for any initial value k 0 (formally, lim t→∞ k t = 0 for any k 0 > 0).

2. Assume that there is foreign aid. k t does not converge to zero (the economy never collapses). Moreover, if 0 < k 0 ≤ k 2 a , then k t converges to k 1 a and a t = a ∀t. In this context, we are considering a poor country having a low TFP. If there is no fixed cost, we recover a standard Solow growth model: the capital path converges to a steady state whatever the initial value of capital.

The situation is different when there is a fixed cost in the production. Without foreign aid, its economy will collapse because its production process is not efficient. Interestingly, a positive amount of foreign aid helps this country to overcome the fixed cost b 0 and the GDP may converge to a strictly positive steady state.

Proof of Proposition 20. We have So, the sequence k t converges to K satisfied K = (1 -δ)K + sAf ((K -b 0 ) + ). This implies that K = 0. Point 2 (with foreign aid). We have the dynamical system

k t+1 = (1 -δ)k t +
k t+1 = (1 -δ)k t + sF (k t ) + a t (7.35) =        (1 -δ)k t + a if k t < b 0 (1 -δ)k t + sAf (k t -b 0 ) + a if b 0 ≤ k t < b 1 (1 -δ)k t + sAf (k t -b 0 ) if k t ≥ b 1 (7.36)
It is easy to see that k t ≥ min(a, (1 -δ)b 1 + sAf (b 1 -b 0 )) > 0 ∀t ≥ 1. So, the sequence k t never converges to zero. We now suppose that 0 < k 0 ≤ k 2 a . We will prove, by induction, that k t < k 2 a ∀t. Assume that k t < k 2 a , then k t < b 1 . So, we have

k t+1 = (1 -δ)k t + a if k t < b 0 (1 -δ)k t + sAf (k t -b 0 ) + a if b 0 ≤ k t < b 1 (7.37) ≤ (1 -δ)k 2 a + sAf (k 2 a -b 0 ) + a = k 2 a .
(7.38) So, we get that k t < k 2 a ∀t. Hence k t < b 1 ∀t. So, the system becomes

k t+1 = (1 -δ)k t + a if k t < b 0 (1 -δ)k t + sAf (k t -b 0 ) + a if b 0 ≤ k t (7.39)
which is continuous. We will prove that k t converges to k 1 a . To do so, we consider two cases. Case 1: k 0 ≤ k 1 a . In this case, we have k 1 = (1 -δ)k 0 + a ≥ k 0 because a = δk 1 a ≥ δk 0 . Moreover, we have k 1 = (1 -δ)k 0 + a ≤ (1 -δ)k 1 a + a = k 1 a . By induction, we can check that k t ∈ [k 0 , k 1 a ] and (k t ) is a increasing sequence. Therefore, it converges. By consequence, it converges to k 1 a . Case 2: k 1 a < k 0 ≤ k 2 a . We firstly prove that k 1 a < k t ≤ k 2 a ∀t. Indeed, without loss of generality, we prove this for t = 1. We have

k 1 = (1 -δ)k 0 + a if k 0 < b 0 (1 -δ)k 0 + sAf (k 0 -b 0 ) + a if b 0 ≤ k 0 (7.40) > (1 -δ)k 1 a + a = k 1 a (7.41)
and (7.43) We secondly prove that (k t ) is a decreasing sequence. Without loss of generality, we prove this for t = 1.

k 1 = (1 -δ)k 0 + a if k 0 < b 0 (1 -δ)k 0 + sAf (k 0 -b 0 ) + a if b 0 ≤ k 0 (7.42) < (1 -δ)k 2 a + sAf (k 2 a -b 0 ) + a = k 2 a .
If k 0 < b 0 , we have To sum up, k t must converge to some value. It is easy to see that this value must be k 1 a .

k 1 (1 -δ)k 0 + a = k 0 + a -δk 0 ≤ k 0 + a -δk 1 a = k 0 . ( 7 

Escaping poverty trap with foreign aid only at the early stages

We now consider a different situation: when there is no foreign aid, the dynamics of capital path is given by the following graphic (where we can see that there are positive two steady states). We have that

k t+1 = (1 -δ)k t if k t < b 0 (1 -δ)k t + sAf (k t -b 0 ) if b 0 ≤ k t (7.47)
1. If k 0 < k low , it is easy to see that k t < k t+1 ∀t. So, k t converges to zero.

2. If k 0 > k low , we can see that k 0 ≤ (≥)k high , then k t increasingly (decreasingly) converges to k high .

Our result is formalized as follows.

Proposition 21 (without foreign aid). Let Assumption 5 be satisfied. Assume that f (0) = ∞, f (∞) = 0, and b 0 > 0. Assume also that max k≥0 sAf ((k -b 0 ) + ) -δk > 0. Then the equation K = (1 -δ)K + sAf K -b 0 ) + has two solutions, k low < k high , and these solutions are higher than b 0 .

1. If the initial capital k 0 is strictly lower than k low , then k t converges to zero.

2. If the initial capital k 0 is strictly higher than k low , then k t converges to k high .

According to Proposition 21, the value k low can be interpreted as a poverty trap. We now assume that the country receives an aid. The following result shows the role of this aid in fighting poverty trap.

Proposition 22 (poverty trap and foreign aid). Let Assumption 5 be satisfied. Assume that f (0) = ∞, f (∞) = 0, and b 0 > 0. Assume also that max k≥0 sAf ((k -b 0 ) + ) -δk > 0.

Then the equation K = (1 -δ)K + sAf K -b 0 ) + has two solutions, k low < k high , and these solutions are higher than b 0 .

Assume that the country receives an amount of aid given by (7.29). Assume that b 1 < b 0 . Assume that the initial capital is lower that the threshold b 1 , i.e., k 0 < b 1 . Then a 0 = a > 0 and we have that:

1. If (1 -δ)b 1 + sY 0 + a < k low , then k t ≤ k low ∀t. Moreover, if a < δb 1 and k 0 < a/δ, then k t converges to a/δ and the aid amount is always positive: a t = a ∀t ≥ 1.

2. If (1-δ)k 0 +a > k low , then k t converges to k high (which is higher than k low ). Moreover, the foreign aid is vanished from date 1: a t = 0 ∀t ≥ 1. Proof of Proposition 22. Since b 1 < b 0 , the dynamics of capital path becomes

k t+1 =        (1 -δ)k t + a if k t < b 1 (1 -δ)k t if b 1 ≤ k t < b 0 (1 -δ)k t + sAf (k t -b 0 ) if b 0 ≤ k t (7.48) 1. If (1-δ)b 1 +sY 0 +a < k low , we have k 1 = (1-δ)k 0 +sY 0 +a ≤ (1-δ)b 1 +sY 0 +a < k low . If k 1 ≥ b 0 , then k 2 = (1 -δ)k 1 + sAf (k 1 -b 0 ) < (1 -δ)k low + sAf (k low -b 0 ) = k low . If k 1 ∈ [b 1 , b 0 ), then k 2 = (1 -δ)k 1 < (1 -δ)k low < k low . If k 1 ≤ b 1 , then k 2 = (1 -δ)k 1 + a < (1 -δ)b 1 + a < k low .
By using induction argument, we obtain that k t < k low ∀t.

We now consider the case where k 0 < a/δ. Since a/δ < b 1 , tt is easy to prove that k t increasingly converges to a/δ.

2. If (1 -δ)k 0 + a > k low , then k 1 = (1 -δ)k 0 + a > k low > b 0 . First, we prove that k t > k low ∀t ≥ 1. Indeed, this is true for t = 1. Suppose that it is true until t, i.e., k t > k low . Consider date t + 1 we have

k t+1 = (1 -δ)k t + sAf (k t -b 0 ) > (1 -δ)k low + sAf (k low -b 0 ) = k low . (7.49)
By consequence, we get that k t > k low ∀t ≥ 1.

Second, it is easy prove that k t converges to k high .

FDI, new industry, and economic development A simple example

In developing countries, FDI has been also viewed as an important factor in the economic growth as shown by the following graphic (source: The World Bank).1 However, is attracting FDI spillovers the key to developing of their own industries? Should the host country develop a new industry or continue to work for multinational firms? What are the roles of different macroeconomic variables such as development level, FDI spillovers, return of training, and heterogeneity of firms.

To address these questions, we present here a very simple model (see Nguyen-Huu and Pham (2023) for an infinite-horizon models with multinational and domestic firms where we explain how a host country can benefit from FDI spillovers). Assume that we have L units of labor. We get salary with wage w (in term of consumption good) if we work for multinational firm. There is a fixed cost L if we want to create a new firm in this industry. For simplicity, I begin by assuming that labor is the unique input and the production function of our firm is (7.51) 

F (L d ) = A d (L d -L) + ,
L d + L e ≤ L,
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  = (1 -δ)k + a. (7.31) It means that k 1 a = a δ . Denote k 2a be the smallest solution of the following system:k 2 a : k = (1 -δ)k + sAf (k -b 0 ) + a and k > b 0 (7.32)Proposition 20. Let Assumption 5 be satisfied. Assume that max k≥0 sAf ((k-b 0 ) + )-δk < 0. Assume also that b 1 > k 2 a > b 0 > k 1 a .
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Figure 7

 7 Figure 7.1: LHS: a low foreign aid (point 1 of Proposition 22). RHS: a high foreign aid (point 2 of Proposition 22).

  where A is the productivity. I formalize the problem by the following simple model max L d ,Le p d A d (L d -L) + + wL e (7.50)

  

  

  

  

  

  0}. Solving this problem is equivalent to solving the following problem whose objective function is strictly concave max{ξln(λT t + 1) + αln(k t ) : T t + k t = S t , and T t , k t ≥ 0}. (T t , k t ) is an optimum point if and only if there are non-negative values µ 1 , µ 2 such that

ξ k α t : T t + k t = S t , and T t , k t ≥

  It is not optimal to invest in TFP when S t is small. In this case S t = k t and H(S t ) = S α t .

2. If

S t > α ξλ then T t > 0. (If S t is high enough then it is worthwhile to invest in TFP.) In this case

  The world interest rate is determined by In the exchange world, we write β = 1 1+i where i is the interest rate of time preference and can be interpreted as riskless interest rate. is the world output at date t. We write Y 1

					m
			r =	1 β	i=1 m	w i,1 w i,0	(7.18)
					i=1
	Interpretation: Let us denote Y t :=	m	w i,t		
		i=1			

  sF (k t ) + a

t (7.33) Point 1. Without aid, we have

k t+1 = (1 -δ)k t + sAf ((k t -b 0 ) + ) < (1 -δ)k t + δk t = k t ∀t ≥ 0

(7.34) 

Alternatively, we can assume that consumption also depends on interest rate (this is interest rate between present and future) because consumers face a trade-off between present consumption and future consumption. If the interest rate i increases, the present consumption C decreases. In this case, we write C = C(Y -T, i).

Another version of the LM curve is describe by the following equation M = P Y × L(i), where M is the money demand, P is the level of price, and L is a decreasing function of i.

Source: https://www.ecb.europa.eu/mopo/intro/transmission/html/index.en.html

https://www.federalreserve.gov/monetarypolicy/monetary-policy-what-are-its-goals-how-does-it-work.htm

Source: https://www.stlouisfed.org/in-plain-english/a-closer-look-at-open-market-operations

Billions of Dollars).

High depreciation rates are observed in some developing countries. For instance, according to[START_REF] Bu | Fixed capital stock depreciation in developing countries: Some evidence from firm level data[END_REF], for machinery and equipment in Ghana, the depreciation rate exceeds 0.5 for half of the firms during 1992-1993.

See also[START_REF] Golosov | Optimal Taxes on Fossil Fuel in General Equilibrium[END_REF] who present a dynamic stochastic general-equilibrium (DSGE) model with an externality from using fossil energy.

[START_REF] Bloom | Does management matter? Evidence from Inida[END_REF] ran a management field experiment on large Indian textile firms and provided free consulting on management practices to randomly chosen treating plants. By comparing the performance of these plants to a set of control plants, they found that adopting these management practices raised the TFP by 17% in the first year.

The literature on this topic is quite large. We can mention, among others,[START_REF] Kiyotaki | Credit cycles[END_REF],[START_REF] Kiyotaki | Credit and business cycles[END_REF],[START_REF] Buera | Financial Frictions and the Persistence of History: A Quantitative Exploration[END_REF] [START_REF] Midrigan | Finance and Misallocation: Evidence from Plant-Level Data[END_REF],[START_REF] Moll | Productivity Losses from Financial Frictions: Can Self-financing Undo Capital Misallocation?[END_REF], Le[START_REF] Van | Intertemporal equilibrium with financial asset and physical capital[END_REF],[START_REF] Pham | Impacts of (individual and aggregate) productivity and credit shocks on equilibrium aggregate production[END_REF] who work in infinite-horizon general equilibrium models.

However, in the case of Cobb-Douglas technology, we have f (∞) = 0, then the feasible set is compact, which implies that the individual problem always has a solution.

See Harrison and Rodriguez-Clare (2010) for a complete review.

where L d is labor utilized to produce the consumption good, L e is labor working for the multinational firm.

We have the following result showing the optimal quantities of labor L e , L d . Point (i) shows that if the initial labor cannot cover the fixed cost, no domestic firm cannot be created in this industry for every level of the productivity A d . Point (ii) says that even the initial labor is greater than the fixed cost, we invest in this industry if and only if the productivity A d reaches a critical threshold wL L -L . Moreover, the multinational firm may be eliminated by the domestic one.

Appendix A Karush-Kuhn-Tucker theorem for finite dimensional maximization problems

In many economic models, we need to maximize a function subject to several constraints (physical constraint, financial constraint, legal constraint, ...). We present here the result concerning the following maximization problem (P ):

where f 0 : R n → R is a concave function, I, J and K are finite and possibly empty sets, for all i ∈ I, f i is convex, non-affine function from R n into R, for all i ∈ J ∪ K, g i is a non-null affine function.

Definition 6. The Lagrangian of Problem (P ) is the function

where p = card(I), q = card(J) and r = card(J ∪ K).

Theorem 7 (Kuhn-Tucker theorem (maximization problem)). Assume that functions f i , g i are differentiable.

Assume that Slater Condition is satisfied for Problem (P ). Then x is a solution to (P ) if, and only if, there exists coefficients (λ i ) i∈I , (µ i ) i∈J∪K which, together with x, satisfy Kuhn-Tucker Conditions for Problem (P ), i.e.,

∀i ∈ I, λ

for any x.

If f 0 , (f i ) i∈I , (g i ) i∈J∪K are differentiable, then condition (A.1) is replaced by

Proof. See Florenzano and Le [START_REF] Florenzano | Finite dimensional convexity and optimization[END_REF].