
HAL Id: hal-04366323
https://hal.science/hal-04366323v1

Submitted on 2 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discursive Strategies in Style Guides Negotiation on
GitHub

Pierre Depaz

To cite this version:
Pierre Depaz. Discursive Strategies in Style Guides Negotiation on GitHub. Recherches en sciences
sociales sur Internet/Social science research on the Internet, 2022, 11, �10.4000/reset.3425�. �hal-
04366323�

https://hal.science/hal-04366323v1
https://hal.archives-ouvertes.fr

1

RESET

RECHERCHES EN
SCIENCES SOCIALES
SUR INTERNET

SOCIAL SCIENCE RE-

SEARCH ON THE
INTERNET

reset@openedition.org

http://reset.revues.org

ISSN 4939–0247

ARTICLE

Discursive Strategies in Style Guides Negotiation on
GitHub

PIERRE DEPAZ - PIERRE.DEPAZ@SORBONNE-NOUVELLE.FR

This article examines the discursive strategies at play in style guide negotia-

tion on GitHub. Looking at popular guides for the JavaScript language, we

highlight how source code, executable code, networks of communities and

platform affordances are used as arguments of their own in the adoption and

modification of theoretically immutable documents. Additionally, we show how

programmers display multifaceted practices in a social context of work.

Keywords: Style guides, discursive negotiations, sociolinguistics, computer-

supported cooperative work

Introduction

Written and published in 1983 on a Usenet board, The story of Mel, the Real

Programmer recounts the tale of Mel Kaye, an individual who wrote software

on the 1959 ACT-1 compiler and has become a recurring reference in pro-

grammer’s lore (Nather, 2003). The story focuses on Kaye’s ability to write

both excellently efficient and completely inscrutable code. Code which only its

writer can read, considered as model programming work and informing ideals

of programmers, slowly began to phase out with commercial software.

The evolution, from the individual programmer implementing ad hoc and per-

sonal solutions to a group of programmers coordinating across time to build

and maintain large, distributed pieces of software, brought the necessity to

harmonize and standardize how code is written (van den Boogard, 2008). In

response, style guides started to be published to normalize the visual aspect

of source code, and became a recurring topic in both software development

and computer science research (Kerninghan & Plauger, 1974).

In light of this tension between individual technical prowess and the social

existence of source code, this article examines the communication processes

involved in the construction, distribution and implementation of styleguides for

mailto:contact@recherches-internet.org
http://recherches-internet.org/

2

the JavaScript programming language within a contemporary software deve-

lopment environment—the collaborative platform GitHub1.

While style guides and written documents have been enforced in formal, more

traditional professional institutions heavily involved in writing (Christian et. al.,

2011), GitHub presents a couple of specific aspects. First, as the most popu-

lar repository of open-source software, it is the locus of semi-formal participa-

tion and allows the copying and modifying of any project (forking). Second,

large-scale private companies interact with distributed non-profit organizations

and individual contributors in order to collaborate on software products, both

free of charge and for-profit, which can then be modified by other users of the

platform.

One of the most popular programming languages on GitHub is JavaScript2.

However, the language itself lacks a clear, original style standard, and there-

fore has been the subject of various discussions on what a style guide should

enforce and how it should enforce it. The active discussions taking place on

the GitHub platform therefore represent a wide variety of opinions, skill levels,

and institutional belongings. In this light, this article aims at investigating which

discursive strategies are users by programmers around the formation and im-

plementation of style guides? How are those strategies affected by the speci-

ficity of a socio-technical environment such as GitHub? How are users of

these style guides involved in these negotiations? The answers to these ques-

tions will help qualify the nature of linguistic exchanges in a complex, digital-

first, working environment and uncover the arguments and attitudes towards

writing code.

To do so, I propose to look at three GitHub repositories, each representing

different approaches to style guides: the JavaScript style guide as published

by the Airbnb company, the popular, independent StandardJS and the exclu-

sively format-oriented Prettier. A guiding criterion for narrowing our research

field was to use the common indicators of stars (Borges & Valente, 2018) and

forks (number of users having copied the repository to their own account,

possibly to modify it further, and to submit these changes back into the origi-

nal repository). For the JavaScript language, the top three most popular repo-

sitories are airbnb/javascript (100,000 stars, 19,500 forks), prettier/prettier

(37,400 stars, 2,500 forks) and standard/standard (24,000 stars, 1,900 forks)

in December 2020. Additional JavaScript style guides include the IdiomaticJS

style guide, the Google JavaScript Style Guide and the style presented by

1 The sources for this article are all taken from comments from issues on three different

GitHub repositories. When referencing these comments, the direct URL to the comment or to
the general issue is given as a footnote, along with the status of the user (user, contributor or
member).

2 The State of the Octoverse, https://octoverse.github.com/, retrieved on 10.10.2020

https://octoverse.github.com/

3

Douglas Crockford, but do not meet either the popularity criteria, or do not

exist primarily on GitHub.

These repositories, while sharing the same effective outcome of providing a

style reference for other JavaScript programmers, present differences in their

approaches to achieving that goal, and in their organizational practices. The

airbnb/javascript repository is the public-facing result of the guide used inter-

nally at the Airbnb company, a startup company privately valued at USD31

billion in 2019. It consists of a main document, README.md, the first page

displayed on any GitHub repository, as well as configuration files for linters.

The standard/standard repository is a non-profit open-source organization ai-

ming at providing a non-modifiable, non-extensible way to programmatically

enforce both stylistic choices and technical error-checking through the use of

the standard software, a command-line utility which aims at automatically

checking the style described on an additional RULES.md document. Finally

the prettier/prettier repository limits itself to the strict formatting of source code

and providing a command-line utility to automatically enforce and apply those

changes.

This study focuses on the issues sections of each of these repositories. Tradi-

tionally used to keep track of bugs and technical enhancements for project

maintainers, an issue can be created by and commented on anyone with a

GitHub user account but can only be closed (or « resolved ») by the original

creator, or by project maintainers. While originally designed as a bug-tracker,

research has shown that they are now the locus of more complext discussion,

involving affective rhetoric and over-arching design inquiries, beyond specific

technical fixes (Bissyandé et. al., 2013 ; Tsay et. al., 2014).

Methodology

The methodology employed here to analyze (1) how different actors negotiate

the adoption of both subjective and objective stylistic norms, and (2) the in-

fluence of the technical environment in which those discussions take place, is

based on the discourse analysis of individual issues in each examined reposi-

tory.

This approach will focus mainly on the most commented issues, highlighting

the discursive strategies and patterns of the participants; since the least-

commented issues are related to specific issues and bugs which stand out-

side of the field of argumentation. Specifically, we aim at linking the meanings

of the corpus not just to existing social realities (Bourdieu, 1982), but to kinds

of communicative competences embedded in technical realities. Habermas

provides a typology of arguments deployed through communicative action

(Habermas, 1984). Among these are theoretical discourse (based on logic),

4

practical discourse (based on situational appropriateness), aesthetic criticism

and explicative discourse; we will see how effective each of these are, and

particular how practical discourse is influenced by the socio-technical envi-

ronment in which the communication takes place. Additionally, we use here

Habermas’s notion of a negotiation as a bargain: in which both parties give

up something in order to reach satisfaction, and contrast it with discussion, of

which the result can be the change in stance of one, or both, parties. Regar-

ding the restriction of the analysis to the exclusive locus of issues, we will

consider that a read-only document (such as README.md) is relevant to our

analysis insofar as it addresses a specific user, with a specific voice: if this

linguistic interaction doesn’t imply discussion, it certainly implies discourse.

Several studies have previously looked into the discourses on open-source

communities (Berry, 2006), mostly through the use of large-scale computatio-

nal techniques. The proposed approach examines specifically the nuances

and implicit assumptions within the arguments deployed by the user, working

under the hypothesis that, while broad strategies have been identified for is-

sue resolution (Kavaler et. al., 2017), a more detailed and micro-level ap-

proach in the specific field of styleguide adoption might provide insights in the

daily practices of programmers, and to what extent they implement, re-

appropriate, or hijack (détournent) the broad strategies of technical resolution

assumed by GitHub (De Certeau, 2011).

The gathered corpus consists of 12780 issues and pull requests, totalling

53673 comments. From these, we discarded the least commented issues, un-

der the assumption that meaningful and diverse discursive interaction takes

place after 15 or more comments, which leaves a core corpus of 80 issues for

airbnb/javascript, 82 issues for standard/standard and 444 for prettier/prettier3.

While these were the main point of focus, this study included cursory browsing

of lesser issues, particularly the chronologically earlier ones.

As a complementary to the studies mentioned above, our approach is qualita-

tive: reading through the lens of Habermas’s arguments typology the most

commented issues and evaluating them on multiple dimensions—the refe-

rence they resort to (the spatio-temporal, and causal contexts), the subject’s

stance (speaking as an individual or on behalf of a group), the user’s back-

ground (shown by their status as either Member, Contributor or User, as by

the other repositories of the corpus they might contribute to), and the ways

that communication is initiated or concluded4. Reaction emojis, used to ex-

press passive agreement or disagreement with a message, are considered

qualifying markers, not creating new meanings in and of themselves.

3 This data was gathered via GitHub’s API; the script to generate the data can be found here:

https://gist.github.com/periode/b7240e5797933d2dbae2dea30716a841
4 Here, Jakobson’s phatic function of language proves particularly useful.

5

A limitation of this study is that the surveyed population might just be a moti-

vated subset of users, putting emphasis on the correct automation of the cor-

rect style of their code. While the findings here might not therefore represent

the broader software development communities, they nonetheless embody

heightened forms of socio-technical interactions, which might be more faintly

manifested in other developers.

In the first part, I will address the origin of style in programming and its need in

contemporary, commercial programming practices, inscribing it further into

both studies of style as social phenomenon, drawing on Simmel and Granger,

as well as the anthropology of the written word, with Goody and Fraenkel.

Building on this dichotomy, I then highlight the intermediary objects (Jeantet,

1998) that are code linters. will conclude on an analysis of the GitHub deve-

lopment platform as a whole, its affordance for read-only and read-write do-

cuments, as well as its hosting of invisible communities, in the development of

style guides.

The need for style in programming

The problem of style might be that « the practical existence of humanity is ab-

sorbed in the struggle between individuality and generality » (Simmel, 1991).

Simmel’s investigation of the topic focuses on the dichotomy between works

of fine art and mass-produced works of applied arts5. Simmel draws a distinc-

tion between unique objects displaying the subjectivity of its maker, and the

industrially produced and replicated, and which are only meant to serve prac-

tical ends.

As these two kinds of work exist at the opposite extremes of a single conti-

nuum, we can insert a third approach: that of the crafted object. It exists in-

between, as a repeated display of its maker’s subjectivity, destined for active

use rather than passive contemplation (Sennett, 2009). So while style can be

seen as a general principle which either mixes with, replaces or displaces in-

dividuality, style in programming doesn’t stand neatly at either extreme. The

work of Gilles-Gaston Granger, and his focus on style as a structuring practice

can help to better apprehend style as a relationship between individual taste

and structural organization (Granger, 1988); we will see how discussions

around style guides are often the result of tensions between individual prefe-

rences and the process of structuring (programming) texts.

5 Incidentally, this is explicitly referred to on one of the examined repository,

https://github.com/airbnb/javascript/issues/102#issuecomment-28157738, retrieved on
28.09.2020

https://github.com/airbnb/javascript/issues/102#issuecomment-28157738

6

Historically, the emergence of style in computer programming is concomitant

of the development of the software industry, starting in the structural shift of

the 1970s (Djikstra, 1972), while retaining the personal, emotional attache-

ment stemming from its relationship to craftsmanship. A self-proclaimed highly

complex undertaking (Knuth, 1997), the understanding of source code by

someone who hasn’t written it (or, being the writer, hasn’t read it in a while) is

particularly difficult.

Programming style guides are then textual documents with both social and

technical components. On the social side, they are only useful if incondition-

ally adopted by all members working on a particular code-base, since « all

code in any code-base should look like a single person typed it, no matter how

many people contributed.»6; in the strict sense, guidelines are therefore refer-

ence documents which should provide an answer to the question of what is

the preferred way of writing a particular statement (e.g. var vs. let, or camel-

Case vs. snake_case). Beyond aesthetic preferences aimed at optimizing the

clarity of a given source code, style guides also include a technical component

which aims at reducing programming errors by catching erroneous patterns in

a given codebase (e.g. variable declaration before intialization, loose refer-

ence to the function-calling context). This technical component, because it can

be judged by an objective standard (i.e. bugs in a program), is however sel-

dom the reason for internal disagreements within teams.

Finally, while coding style hasn’t been explicitely shown to influence metrics

by which programmer productivity is usually assessed (Cox and Fisher, 2008),

it has nonetheless been linked to an improve in program comprehension

(Oman and Cook, 1988), and is regarded as a marker of quality work in the

software development community7.

This phenomenon of explicitly written rules, dependent no longer on their

writer, but rather on the organization to which the writer belongs, presents

similar patterns as those highlighted in the formalization of knowledge as it

happened during the transition of societies from oral to written communication

(Goody, 1986). For instance, the written codification of hitherto implicit, idio-

syncratic rulesets, has had the result of further preventing modification of said

rules, and elevating them from a personal reach to a universal one. However,

the technical context for those studies of the impact of literacy is one in which

the written word, once put down, is not easily modified.

The digital word, stored on and communicated via computers, presents two

important differences. First, it can be as easily modified as it can be retrieved.

6 From the guiding document of a JavaScript style guide,

https://github.com/rwaldron/idiomatic.js/, retrieved on 29.08.2020
7 See the article referred to on Prettier’s documentation:

https://www.smashingmagazine.com/2012/10/why-coding-style-matters/, retrieved on
03.02.2021.

https://github.com/rwaldron/idiomatic.js/

7

Since one of the basic operations of the computing machine are copy and re-

trieval, anything that can be said on a digital medium always holds within itself

the possibility of duplication, modification and, therefore, variation (Manovich,

2001). Second, source code is executable. Beyond the linguistic act of writing

a statement, the result of this writing act can be automatically executed and

enforced, without the need for social performance. Written code exists within

these “chains of acts of writing” (Fraenkel, 2006), and once its validity has

been confirmed and merged into active code bases, its enforcement is signifi-

cantly easier than that of guides and protocols written in human languages

(Brousseau & Moatty, 2003). Fraenkel’s concept will be considered in the con-

text in which components in such writing acts are digitized and automated:

whether by the process of closing an issue, labelling it under a certain cate-

gory, or automatically executing the rules of a style guide, without further hu-

man intervention.

We will see the role that intermediary objects play in the productive activity of

writing source code: as objects that lie in between several elements (source

code, compilation process, IDE), several actors (programmers in the same

team) and successive stages of a work process (drafting code, reviewing it,

and committing it to production) (Vinck & Jeantet, 1995), this study will rely on

this concept to highlight the very active role that linters play in these negotia-

tions.

Automatic writing with code linters

A final relevant element constituting our research field is the code linter. Pre-

sent in every examined repositories, and beyond the JavaScript ecosystem, a

code linter is a software which, given a set of syntactical rules, modifies one or

multiple source code files to match said rules. This programmatic element,

which can be seamlessly integrated into more complex workflows, represents

both a transfer of agency from the human to the non-human, as well as an

improvement in the systematic enforcing of style rules.

Due to the overwhelming presence of automatic tooling in modern develop-

ment (Hilton et. Al, 2016), programming style guides make configuration files

for linters one of the most essential part of their project, effectively connecting

human-readable texts with their machine-executable counterpart. The most

popular of those linters in the JavaScript ecosystem is eslint, with over 13 mil-

lion weekly downloads8. As a tool in a programmer’s workflow, these linters

with their associated configuration files are those intermediary objects (Latour

& Woolgar, 1986), non-human actants contributing essentially to labour and

knowledge-creation. Previous research in the sociology of work focused on

how these intermediary objects affect the work processes (both conception,

8 https://www.npmjs.com/package/eslint, retrieved on 03.08.2020.

https://www.npmjs.com/package/eslint

8

discussion and realization), particularly in establishing a framework within

which work can take place (Vinck, 2009); coupled with the automated norma-

tivity of code (Lessig, 1999; Galloway, 2006), these linters represent a signifi-

cant part of the impact of a style guide.

The GitHub Development Platform

Along with these low barriers to reproducibility and enforceability of code, ano-

ther difference between organizations centered primarily on code and soft-

ware and those in which code only constitutes a technical background is the

porosity of the distinction between public and private. Particularly, when orga-

nizations maintain, or depend on, open-source software, the delimitation of

which individual contributes to the organization’s product becomes more fluid

and temporary than in more traditional organizations (Hendry, 2008). At its

most radical form, it is entirely non-hierarchical and horizontal (Benkler, 2006),

a structure in which anyone can comment on the product and suggest modifi-

cations, even though actual contribution remains subject to additional social

and economic constraints (Dabbish et. al., 2012). This configuration directly

affects the scope of a style guide. If anyone can potentially contribute to any

code base within a given language, then the scope for any style guide is that

of universal adoption. This relatively loose set of mutually-beneficial work rela-

tions constitutes the background of our research field and is accentuated by

the specificity of the GitHub platform.

As all platforms, GitHub connects multiple actors and provides the backdrop

for economic, social and cultural practices (Gillespie, 2010). Economically, Gi-

tHub provides a way to store, retrieve and modify text files (often source code)

for distributed teams of contributors, grouped into projects (repositories),

themselves administrated by either personal or organizational accounts. Any

public repository is accessible to anyone, and these projects can then be built

upon add to the value of a given commercial product. Socially, GitHub re-

quires user registration to contribute to any of those repositories, and main-

tains a transparency policy which makes available all of a user’s contributions

on any public repository. These contributions overwhelmingly take the form of

commits (direct modification of text files), pull requests (requests to a organi-

zation to integrate suggested changes to a text file), and issue creation and

comment (asking or answering a question on a project repository). Culturally,

user interactions on GitHub depend on agreed-upon practices and discourses,

specifically when a user raises an issue, responds to it, or concludes (closes)

it (Tsay et. al., 2014).

GitHub is also a combination of read-write texts and read-only texts. The read-

only texts consisting of the main text files of the repository, while the read-

write texts are composed of all the discussions and suggestions taking place

in the issues and pull requests sections. Drawing from literary theory, this dis-

9

tinction allows us to identify the more authoritative text and the more nego-

tiable ones (Barthes, 1970).

We now turn to the analyses of the three repositories, in order to highlight

which kinds of strategies are deployed by the parties taking part in discus-

sions over style guide design and implementation.

Airbnb

As pointed out by a user, the airbnb/javascript issues presents itself as much

as a question-and-answer platform rather than as a traditional bug-reporting

and fixing platform9: « Hi! First off, thanks for this package. Also, I’ll preface

this with: I’m not 100% sure I’m using the react/whitespace option correctly, so

this is more of a question than a bug report. » (mylestan, user)

The airbnb/javascript style guide consists of bug reports on eslint10, individual

projects11 or the guide itself12, even though all issues that are labeled as

“bugs” represent less than 1% of the total issues opened. In this case, bugs

are understood as inconsistencies between the eslint output and

airbnb/javascript’s guidelines. What would be deemed inconsistencies internal

to the guide itself are labeled as editorial, reflecting a broader concern with

communication and understanding of concepts, individual perspective, and

paradigms over strict technical implementation issues.

Indeed, the unique aspect of airbnb/javascript is its dependency on the inter-

nal, well-organized structure of a private company. The constitution of the

rules are, therefore, not up to debate. Such an implicit, private, out-of-reach

existence of the origin of the guide is made explicit both by the creator of the

publicly available guide, for whom the pronouns we and our do not refer to the

open-source community of commenters and contributors, but rather to the in-

ternal team at Airbnb1314, as well as references by both parties in discussions

to the practices of the company (« airbnb pushes for […] » (KayakinKoder,

user)15, « I’d like to see this covered by Airbnb’s standards » (rdsedmundo,

user)16) or to the codebase from which the styleguide emerged17.

9 https://github.com/airbnb/javascript/issues/1953#issue-379414953, retrieved on

03.08.2020.
10 https://github.com/airbnb/javascript/issues/1967, retrieved on 02.08.2020
11 https://github.com/airbnb/javascript/issues/2261, retrieved on 02.08.2020
12 https://github.com/airbnb/javascript/issues/828, retrieved on 02.08.2020
13 https://github.com/airbnb/javascript/pull/455, retrieved on 02.08.2020
14 https://github.com/airbnb/javascript/issues/1532#issuecomment-326755515, retrieved

on 02.08.2020
15 https://github.com/airbnb/javascript/issues/1365#issuecomment-350163209, retrieved

on 03.08.2020
16 https://github.com/airbnb/javascript/issues/1660#issuecomment-419087604, retrieved

on 05.08.2020
17 https://github.com/airbnb/javascript/issues/1185#issuecomment-262994841, retrieved

on 04.08.2020

https://github.com/airbnb/javascript/issues/1953#issue-379414953
https://github.com/airbnb/javascript/issues/1967
https://github.com/airbnb/javascript/issues/2261
https://github.com/airbnb/javascript/issues/828
https://github.com/airbnb/javascript/pull/455
https://github.com/airbnb/javascript/issues/1532#issuecomment-326755515
https://github.com/airbnb/javascript/issues/1365#issuecomment-350163209
https://github.com/airbnb/javascript/issues/1660#issuecomment-419087604
https://github.com/airbnb/javascript/issues/1185#issuecomment-262994841

10

On a chronological level, we see that the actual discussions which happened

on the repository’s issues (mostly issues #1-#40) are those in which most of

the interactions happen between Airbnb employees and take place as multi-

sided discussions on how to improve the guide through group decision (« I

vote we go with parseInt because it’s explicit. », hshoff, member)181920 or on

bug- and tool-fixing21. What we see here is a private company using the tools

and infrastructure of open-source processes embedded in GitHub to improve

their productivity by writing internally consistent code (Kalliamvakou et. al.,

2015), while, in a second moment, asking community members for their inputs

without promising to implement them22.

From this early period of a public interaction between fellow members of the

same private organization, to the current situation of a large-scale interaction

of distributed individuals and organizations over one of the most popular Ja-

vaScript styleguides, the discursive strategies of both the maintainers and of

the commenters and contributors have shifted. This is due in part to the fact

that the creation of the styleguide is not collaborative, in the open-source

sense of the term. Since a negotiation leading to a possible change of mind of

the maintainer isn’t possible, the alternative chosen by the Airbnb team is the

didactic explanation of non-negotiable rules, shifting the interactions from a

negotiation to an explanation, in which the outcome of the exchange is ultima-

tely the alignment of the user to the views of the maintainer.

18 https://github.com/airbnb/javascript/issues/4, retrieved on 02.08.2020
19 https://github.com/airbnb/javascript/issues/18, retrieved on 02.08.2020
20 https://github.com/airbnb/javascript/issues/9, retrieved on 02.08.2020
21 https://github.com/airbnb/javascript/pull/10, retrieved on 02.08.2020
22 https://github.com/airbnb/javascript/issues/1089, retrieved on 05.08.2020

https://github.com/airbnb/javascript/issues/4
https://github.com/airbnb/javascript/issues/18
https://github.com/airbnb/javascript/issues/9
https://github.com/airbnb/javascript/pull/10
https://github.com/airbnb/javascript/issues/1089

11

One other example is featured in the explanation of an early issue opened on

the styleguide about the broader need for styleguides; the creator responds

with a pedagogical métaphore filée of painters and fine artists rather than logi-

cally, rationally approaching the need for consistent codebases23.

Along with this desire for the maintainers of the project to explain, rather than

discuss, the conclusion of this particular argumentation also sheds light on the

forking mechanism as used in a discursive situation; forking acts as an end-all

conclusion to the debate, in which another discussion is created, taking as its

axiom the contentious proposals evoked in the base branch242526.

Additionally, a particular aspect of airbnb/javascript is the progressive inclu-

sion of why such a rule has been decided in the read-only README.md27. By

coupling exhaustivity with justification, the main task remaining for the main-

tainers of the project is to continue the explanation of why things are the way

they are28. The case of prefer-default-exports highlights the pattern of a main-

tainer repeating the same justification for recurring questions (« […] a default

export is what a module is, and named exports is what a module has[...] »29,

« it’s either what the module is, and thus the default export, or it’s something

the module has, and thus a named export »30, « As to your specific question -

a default export is what a module is, and a named export is what a module

has »31, ljharb, collaborator). The development of explicative discourse in

which the bugs opened are presented as misunderstandings from the com-

23 https://github.com/airbnb/javascript/issues/102#issuecomment-28157738, retrieved on

05.08.2020
24 https://github.com/airbnb/javascript/issues/102#issuecomment-28259657, retrieved on

05.08.2020
25 https://github.com/airbnb/javascript/issues/1365#issuecomment-663973664, retrieved

on 05.08.2020
26 https://github.com/airbnb/javascript/issues/1982#issuecomment-451191979, retrieved

on 05.08.2020
27 https://github.com/airbnb/javascript/issues/269, retrieved on 03.08.2020
28 https://github.com/airbnb/javascript/issues/1880, retrieved on 07.08.2020
29 https://github.com/airbnb/javascript/issues/2302#issuecomment-703436286, retrieved

on 05.08.2020
30 https://github.com/airbnb/javascript/issues/2191#issuecomment-596139441, retrieved

on 08.08.2020
31 https://github.com/airbnb/javascript/issues/1842#issuecomment-400194978, retrieved

on 08.08.2020

https://github.com/airbnb/javascript/issues/102#issuecomment-28157738
https://github.com/airbnb/javascript/issues/102#issuecomment-28259657
https://github.com/airbnb/javascript/issues/1365#issuecomment-663973664
https://github.com/airbnb/javascript/issues/1982#issuecomment-451191979
https://github.com/airbnb/javascript/issues/269
https://github.com/airbnb/javascript/issues/1880
https://github.com/airbnb/javascript/issues/2302#issuecomment-703436286
https://github.com/airbnb/javascript/issues/2191#issuecomment-596139441
https://github.com/airbnb/javascript/issues/1842#issuecomment-400194978

12

menter’s point of view, asking the maintainers, not to justify their style choices,

but rather to explain how one can write code that would better match the gui-

delines explained32. If that explanation fails, as in the prefer-default-export

examples above, another strand of conversation is engaged in by one of the

core maintainers, user ljharb—himself a former Airbnb employee, and then

member of TC39, the technical commitee in charge of the design of ECMAS-

cript, of which JavaScript is an offshoot. These conversations essentially con-

sist in him providing ad hoc explanations when external users are confused

about the purpose of a rule or, even further, in re-organizing their code3334. In

this case, ljharb not only acts as a community manager rather than a project

maintainer per se, but also eschews any discussions based on subjective pre-

ferences by providing a technical solution to any question asked, therefore

showing that the airbnb/javascript style guide is not only exhaustive, consis-

tent, but also implementable.

This shift, from the stylistic to the technically feasible, is a recurring pattern

which we’ll also observe under different manifestations in the stan-

dard/standard and prettier/prettier projects.

In airbnb/javascript, then, the technical environment of GitHub issues have

been re-purposed from actual bug-tracking for Airbnb’s employees, towards a

didactic platform focused on explicative discourse, in a balance of both clo-

sed-source documents and open-source practices. The combination between

one canonical document—uneditable beyond those with privileges, despite

GitHub’s pull request mechanism—which exhaustively covers almost all con-

32 https://github.com/airbnb/javascript/issues/21, retrieved on 08.08.2020
33 https://github.com/airbnb/javascript/issues/1103#issuecomment-400711388, retrieved

on 08.08.2020
34 https://github.com/airbnb/javascript/issues/851#issuecomment-215479719, retrieved on

08.09.2020

https://github.com/airbnb/javascript/issues/21
https://github.com/airbnb/javascript/issues/1103#issuecomment-400711388
https://github.com/airbnb/javascript/issues/851#issuecomment-215479719

13

troversial use-cases in the language, along with a skilled maintainer explai-

ning issues to the commenters individually, and, ultimately, the recourse to the

process of forking as a concluding argument.

Standard

While airbnb/javascript provides a main README.md, with all the style rules

immediately available at first glance, along with an eslint configuration file as

the result of the closed-source work of a private company, standard/standard

puts forth the standard software, an immediate, “out-of-the-box” solution which

applies the project’s rules to any file where the program is executed35—while

airbnb/airbnb only describes, standard/standard implements. The overall ap-

proach comes out of a more traditional open-source pattern, initiated and

spearheaded by a single individual, feross, which then turned into a proper

organization once enough community traction had been garnered3637.

The self-stated goal of standard/standard of « no configuration »3839 has led

its maintainers (mainly feross, along with rotating members such as linusU

and rstacruz) to inflect their discourse under the influence of technical effi-

ciency, rather than rule justification as airbnb/javascript does. Indeed, the

rules themselves are both stated by feross as well as discussed by the com-

munity—groups of users, members and contributors—for each release of the

package. By leaving open the possibility of modifying their style rules, and

subsequently making them immediately enforceable by their standard binary,

the discursive focus isn’t so the number of discussions of so-called “religious”

issues, known for the amount of devotion and heat that they attract

(e.g. semicolons, « I was so caught up in negative thought loops that I did not

think to research for community-forked modifications of "standard" that bless

the use of semicolons. », PythonProdigy, contributor40, along with paren-

theses4142, indentation43), but rather on technical implementation, alternative

possibilities and community support, in a form of practical discourse. This em-

phasizes that the most productive issues are those based on a discussion

35 https://github.com/standard/standard/issues/94#issuecomment-87332587, retrieved on

13.08.2020
36 https://github.com/standard/standard/issues/846, retrieved on 13.08.2020
37 https://github.com/standard/standard/issues/259#issuecomment-141881255, retrieved

on 13.08.2020
38 https://github.com/standard/standard/blob/master/README.md, retrieved on 10.08.2020
39 https://github.com/standard/standard/issues/3#issuecomment-71952384, retrieved on

13.08.2020
40 https://github.com/standard/standard/issues/962, retrieved on 13.08.2020
41 https://github.com/standard/standard/issues/414#issuecomment-183459932, retrieved

on 14.08.2020
42 https://github.com/standard/standard/issues/219#issuecomment-170877700, retrieved

on 14.08.2020
43 https://github.com/standard/standard/issues/58#issuecomment-77710035, retrieved on

13.08.2020

https://github.com/standard/standard/issues/94#issuecomment-87332587
https://github.com/standard/standard/issues/846
https://github.com/standard/standard/issues/259#issuecomment-141881255
https://github.com/standard/standard/blob/master/README.md
https://github.com/standard/standard/issues/3#issuecomment-71952384
https://github.com/standard/standard/issues/962
https://github.com/standard/standard/issues/414#issuecomment-183459932
https://github.com/standard/standard/issues/219#issuecomment-170877700
https://github.com/standard/standard/issues/58#issuecomment-77710035

14

around implementation, rather than a negotiation around style itself, again a

prevalence of practical discourse over a theoretical, or aesthetic one.

The first category of arguments laid out in the standard/standard repository is

related to the actual, technical feasibility of the arbitrary44, but not non-

sensical, rules laid out in the README.md. The status of feross as « benevo-

lent dictator » (jprichardson, member)454647 nullifies most of the arguments

(e.g. « All very subjective though. I think @feross will just have to pick some-

thing :) » 48), the remaining of which can sometimes be thoroughly assessed

(« The reason being is that with only a single argument, the function is much

easier to read without parens. Some folks who don't like this might argue

about expansion and having a bigger diff when adding arguments down the

road. », KevinGrandon, contributor)49. Given this status of most rules being

somewhat indiscutable, upon what does the agreement of standard/standard

rules rely? The status of the project as a convenient wrapper (i.e. a seamless

intermediary object in a developer’s workflow) around eslint poses that core

technology as one of the final assessments of the validity of a given argument

(e.g. « Probably better off making your case at eslint first, then coming back

here » (dcousens, member) 50). While this effectively avoids bikeshedding51 in

cases where the ultimate goal is to settle with one choice rather than debating

multiple of them, this technological dependency also prevents some changes

wished for by the community52.

44 https://github.com/standard/standard/issues/3#issuecomment-71950165, retrieved on

15.08.2020
45 https://github.com/standard/standard/issues/108#issuecomment-90990325, retrieved on

15.08.2020
46 https://github.com/standard/standard/issues/710#issuecomment-521095379, retrieved

on 15.08.2020
47 https://github.com/standard/standard/issues/628#issuecomment-366484860, retrieved

on 15.08.2020. This term is also used to refer to Linus Torvalds, the creator and, principal
maintainer of the Linux project.

48 https://github.com/standard/standard/issues/309#issuecomment-152899586, retrieved
on 15.08.2020

49 https://github.com/standard/standard/issues/309#issuecomment-180208214, retrieved
on 15.08.2020

50 https://github.com/standard/standard/issues/720#issuecomment-266878246, retrieved
on 15.08.2020

51 https://github.com/standard/standard/issues/1356#issue-480058723, retrieved on
15.08.2020

52 https://github.com/standard/standard/issues/257#issuecomment-142417059, retrieved
on 15.08.2020

https://github.com/standard/standard/issues/3#issuecomment-71950165
https://github.com/standard/standard/issues/108#issuecomment-90990325
https://github.com/standard/standard/issues/710#issuecomment-521095379
https://github.com/standard/standard/issues/628#issuecomment-366484860
https://github.com/standard/standard/issues/309#issuecomment-152899586
https://github.com/standard/standard/issues/309#issuecomment-180208214
https://github.com/standard/standard/issues/720#issuecomment-266878246
https://github.com/standard/standard/issues/1356#issue-480058723
https://github.com/standard/standard/issues/257#issuecomment-142417059

15

If the stylistic preference of a commenter still weighs more than the ease-of-

use of the standard/standard package, then the strategy of the maintainers to

solve this negotiation is to redirect them towards another part of the ecosys-

tem, be it the direct configuration file which implements all of the style rules53,

or the adoption of other packages maintained by the standard organiza-

tion54555657, bypassing the forking argument seen in airbnb/javascript.

Different from the dismissive tone of the airbnb/javascript maintainer’s reposi-

tory, this redirection is an acknowledgement of the fact that opinions matter

less than building a community, in line with the open-source ethos of group

participation (e.g. the use of the we pronoun by feross58). Indeed, the word

community is used most often on airbnb/javascript by the commenters, while it

is used most often on standard/standard by the maintainers (given an equiva-

lent number of issues on each, respectively 3459 vs. 3960). This emphasis on

community-building as a part of the overall strategy of standard/standard also

affects their discursive strategy.

With a set of rules overwhelmingly decided upon by feross, some rational ar-

gumentations for the modification of these rules, the reliance on eslint as a

53 https://github.com/standard/standard/issues/240#issuecomment-224125128, retrieved

on 15.08.2020
54 https://github.com/standard/standard/issues/771#issuecomment-375609384, retrieved

on 15.08.2020
55 https://github.com/standard/standard/issues/1155#issuecomment-399769283, retrieved

on 16.08.2020
56 https://github.com/standard/standard/issues/962#issuecomment-319714580, retrieved

on 16.08.2020
57 https://github.com/standard/standard/issues/1500#issuecomment-648019851, retrieved

on 15.08.2020
58 https://github.com/standard/standard/issues/1356#issue-480058723, retrieved on

15.08.2020
59 https://github.com/airbnb/javascript/issues?q=is%3Aissue+is%3Aclosed+community, re-

trieved on 12.08.2020
60 https://github.com/standard/standard/issues?q=is%3Aissue+is%3Aclosed+community,

retrieved on 12.08.2020

https://github.com/standard/standard/issues/240#issuecomment-224125128
https://github.com/standard/standard/issues/771#issuecomment-375609384
https://github.com/standard/standard/issues/1155#issuecomment-399769283
https://github.com/standard/standard/issues/962#issuecomment-319714580
https://github.com/standard/standard/issues/1500#issuecomment-648019851
https://github.com/standard/standard/issues/1356#issue-480058723
https://github.com/airbnb/javascript/issues?q=is%3Aissue+is%3Aclosed+community
https://github.com/standard/standard/issues?q=is%3Aissue+is%3Aclosed+community

16

ground for whether or not a rule can be applied, and the redirection of unsatis-

fied, or unconvinced community members towards other packages of the

standard ecosystem, such as standard/standardx, standard/semistandard or

standard/doublestandard, the last remaining kind of argument deployed for

the adoption or rejection of style rules is the extent to which the community is

using the existing rules.

On the one hand, this project has garnered visibility and is deeply embedded

in an institutional network of projects using the standard/standard guide61, in-

cluding GitHub itself, and such a network provides credibility by association;

these have been documented in order to further grow the community of

users62.

In practice, the biggest role that the community has in the negotiation of style

guides is in whether or not any change in the guide would be a breaking

change, and for how many projects using standard/standard, a requirement

also known as backwards compatibility in the software industry. Used by pro-

ject maintainers (« This is one of those decisions that we can’t revisit. Nearly

every repo that uses standard would break, and that’s not acceptable – even

with major version bump. » (feross, member)63, « Although personally I agree

with the fundamental reasons that you argue for this. As it stands, this would

be so much of a breaking change, it will never be accepted. » (dcousens,

member)64). The closing argument is then the number of existing projects

which would have to refactor their code in order to comply with the new rule,

and is often the last comment to take place on an issue before that issue is

closed6566.

The discursive strategies that the commenters and maintainers deploy in

standard/standard revolve around issues of convenience, which have enabled

a certain form of technical path-dependency67. The figure and work of feross,

both agreeable and engaging in his exchanges and unilateral in his decisions,

include in their discourse references to technical limitations in order to bypass

subjective issues. Indeed, while the affordances of eslint are inherently digital,

61 https://github.com/standard/standard#who-uses-javascript-standard-style, retrieved on

11.08.2020
62 https://github.com/standard/standard/issues/744#issue-200237553, retrieved on

12.08.2020.
63 https://github.com/standard/standard/issues/219#issuecomment-127446961, retrieved

on 12.08.2020
64 https://github.com/standard/standard/issues/240#issuecomment-135968036, retrieved

on 12.08.2020
65 https://github.com/standard/standard/issues/298#issuecomment-179571496, retrieved

on 12.08.2020
66 https://github.com/standard/standard/issues/720#issuecomment-515722463, retrieved

on 13.08.2020
67 https://github.com/prettier/prettier/issues/40#issuecomment-271769512, retrieved on

12.08.2020

https://github.com/standard/standard#who-uses-javascript-standard-style
https://github.com/standard/standard/issues/744#issue-200237553
https://github.com/standard/standard/issues/219#issuecomment-127446961
https://github.com/standard/standard/issues/240#issuecomment-135968036
https://github.com/standard/standard/issues/298#issuecomment-179571496
https://github.com/standard/standard/issues/720#issuecomment-515722463
https://github.com/prettier/prettier/issues/40#issuecomment-271769512

17

the adherence of silent majority of standard/standard users is represented in a

quantified manner, through unit tests resulting in a percentage of organiza-

tions and packages failing or passing said tests; such an approach seems to

manifest itself as the reification of community choices in order to increase its

effective discursive power; effectively, they rely on the extensive adoption of

the rules, while airbnb/javascript relies on their extensive applicability.

Prettier

Prettier is developed by Facebook employees, itself the maintainer of the

react project, the most popular front-end development framework by the end

of 201968. Along with this institutional backing and internal success69, pret-

tier/prettier presents two specificities which differentiate from airbnb/javascript

and standard/standard. First, it doesn’t offer a clear and accessible style guide

itself, and its README.md only contains one example to show the kind of

work prettier/prettier does. Second, what it does is essentially different than

the two previous examples looked, since it analyzes the source code, parses

it and its inconsistencies and entirely reformats it according to internal rules—

neither airbnb/javascript nor standard/standard offer default reformatting solu-

tions. Such a language-independent approach (dealing directly with Abstract

Syntax Trees, a context-free structure) might explain its popularity across dif-

ferent languages, while the two other projects focus mainly on JavaScript. So,

while not a style guide de jure70, it is one de facto, through its enforcement of

rules, much more thorough than its alternatives.

Along with the absence of a clear, read-only, styleguide announcing, if not ex-

plaining, the individual style decisions, the maintainers of the project (e.g.

jlongster, vjeux, founders of the project while Facebook employees) tend to

engage in conversations about the possibility to change existing styling

rules717273.

68 https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190, retrieved on

19.07.2020
69 https://github.com/prettier/prettier/issues/5377#issuecomment-566173911, retrieved on

17.08.2020
70 https://github.com/prettier/prettier/issues/5246#issuecomment-429788464, retrieved on

17.08.2020
71 https://github.com/prettier/prettier/issues/7884#issuecomment-605519802, retrieved on

18.08.2020
72 https://github.com/prettier/prettier/issues/73#issuecomment-272537791, retrieved on

17.08.2020
73 https://github.com/prettier/prettier/issues/187#issuecomment-313229534, retrieved on

23.08.2020

https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://github.com/prettier/prettier/issues/5377#issuecomment-566173911
https://github.com/prettier/prettier/issues/5246#issuecomment-429788464
https://github.com/prettier/prettier/issues/7884#issuecomment-605519802
https://github.com/prettier/prettier/issues/73#issuecomment-272537791
https://github.com/prettier/prettier/issues/187#issuecomment-313229534

18

This willingness to change the behavior of their tool, along with its automation

power and the founders institutional capital might explain the fact that the pret-

tier/prettier repository has about four times more issues in total than the two

other repositories examined, with more thoughtful, thorough and rational ex-

planations74, including detailed description of desired behaviour75. Still, these

strategies do not always suffice to overcome personal preferences : « The so-

lution is simpler than it looks: don't use Prettier. », odahcam, collaborator76. In

particular, prettier/prettier distinguishes itself by allowing contributors to open

up discussions and negotiate changes not through pure discursive argumen-

tation, but rather by offering implementations of an alternative77, including al-

ternatives which concern “religious” issues78—in effect, long and elaborate

argumentation always require code examples7980.

74 https://github.com/prettier/prettier/issues/840#issuecomment-689978905, retrieved on

24.08.2020
75 https://github.com/prettier/prettier/issues/3368#issuecomment-357312678, retrieved on

23.08.2020
76 https://github.com/prettier/prettier/issues/4125#issuecomment-519068525, retrieved on

23.08.2020
77 https://github.com/prettier/prettier/issues/3368#issuecomment-374764905, retrieved on

22.08.2020
78 https://github.com/prettier/prettier/issues/736, retrieved on 24.08.2020
79 https://github.com/prettier/prettier/issues/7884#issuecomment-605898046, retrieved on

26.08.2020
80 https://github.com/prettier/prettier/issues/5814#issuecomment-468978755, retrieved on

23.08.2020

https://github.com/prettier/prettier/issues/840#issuecomment-689978905
https://github.com/prettier/prettier/issues/3368#issuecomment-357312678
https://github.com/prettier/prettier/issues/4125#issuecomment-519068525
https://github.com/prettier/prettier/issues/3368#issuecomment-374764905
https://github.com/prettier/prettier/issues/736
https://github.com/prettier/prettier/issues/7884#issuecomment-605898046
https://github.com/prettier/prettier/issues/5814#issuecomment-468978755

19

The process seems to be as follows: prettier/prettier formats a given code, the

developer who might not agree with such a formatting result opens up an is-

sue, argues for her opinion through the presentation of practical use-cases

and actionable pull-requests and, depending on the technical soundess of the

solution and the size of the community already using the package, might get

their change accepted. Finally, while the thoroughness and politeness of most

replies on this repository point towards a healthy community, it should be no-

ted that the verbosity of some of the contributions are perceived as intimida-

ting for comments who consider they English level sub-par (« I didn’t read the

whole conversation above because you guys really know how to speak En-

glish well slightly_smiling_face Makes me envy a bit » (seahindeniz, commen-

ter)81). While prettier/prettier is the location of the most discussion of the three

projects examined, the room left for discussion incidentally creates a space in

which only those with communicative competence are heard.

Without a reference document, and with the recurring statement that “readabi-

lity” and “preference” are subjective arguments, prettier/prettier also relies on

technical arguments to solve debates, sometimes even before they happen.

Before they even happen, because the seamlessness of the integration, as

both a visible and invisible mediation, can eschew those debates altogether (

« Hi @jlongster, just would like to chime in and let you know that your project

has hit the jackpot and solved something that even (the self-proclaimed)

Standard and Semi-Standard couldn’t solve for me […] Easy team-wide style

enforcement that’s based on an unbiased 3rd party algorithm to produce a

one and only definitive way to indent absolutely each line of code » (gsklee,

user) 82). This immediacy of programmatic action, and its adoption in return, is

reminiscent of the power of interfaces in their ambiguity, in which a self-

implementing tool acts as its own rationale (Galloway, 2012). Once again, the

81 https://github.com/prettier/prettier/issues/7884#issuecomment-619147696, retrieved on

22.08.2020
82 https://github.com/prettier/prettier/issues/40#issuecomment-271804674, retrieved on

21.08.2020

https://github.com/prettier/prettier/issues/7884#issuecomment-619147696
https://github.com/prettier/prettier/issues/40#issuecomment-271804674

20

negotiation over the stylistic validity of the automated style guide is superse-

ded by its immediate technical applicability.

Indeed, most of the official discourse of prettier/prettier (through its website

and through oft-referenced conference talks) presents the project not as a

style-guide per se, but as an AST-parser and printer. These definitions again

steer the debate towards technical argumentation, rather than adoption by the

community (such as standard), or explanation of practical rationale (such as

airbnb); explicitly mentioning AST representation often becomes the grounds

for the final stylistic decision (« it will be interesting to figure this out because

the way it formats it now is because of how the AST is structured, which is ba-

sed on operator precedence » (jlongster, member)83848586), and sometimes

even used as counter-examples87.

prettier/prettier’s argument is that it is both opionated and efficient, which has

led to the early development of a “no-options” philosophy88, a position which

has moved from a read-write text, discussed by both maintainers and com-

menters, to a read-only text, as a canonical, if incomplete, text on the official

website89, used subsequently as an argument to respond negatively to re-

quests for personal additions (« @JoshMcCullough We won't add options un-

less extremely necessary. Please read https://prettier.io/docs/en/option-

philosophy.html », diuailibe, member909192), combined with a request of res-

ponding through programming languages, rather than human languages93. It

has been shown that, while standard/standard shares this approach of « no-

options », their justification is rather by broadening the scope of what is consi-

dered acceptable (standard/standardx, standard/doublestandard), therefore

growing the community, and not relying on the fact that only one single project

should exist. This particular phenomenon echoes practices found in the

83 https://github.com/prettier/prettier/issues/2#issuecomment-269872486, retrieved on

25.08.2020
84 https://github.com/prettier/prettier/issues/5814#issuecomment-468827633, retrieved on

25.08.2020
85 https://github.com/prettier/prettier/issues/9358#issuecomment-705940711, retrieved on

25.08.2020
86 https://github.com/prettier/prettier/issues/187#issuecomment-281097771, retrieved on

25.08.2020
87 https://github.com/prettier/prettier/issues/7884#issuecomment-605755932, retrieved on

26.08.2020
88 https://github.com/prettier/prettier/issues/40, retrieved on 25.08.2020
89 https://prettier.io/docs/en/option-philosophy.html, retrieved on 05.08.2020
90 https://github.com/prettier/prettier/issues/8559#issuecomment-643796145, retrieved on

25.08.2020
91 https://github.com/prettier/prettier/issues/187#issuecomment-627906479, retrieved on

26.08.2020
92 https://github.com/prettier/prettier/issues/840#issuecomment-458280945, retrieved on

27.08.2020
93 https://github.com/prettier/prettier/issues/840#issuecomment-482353176, retrieved on

27.08.2020

https://github.com/prettier/prettier/issues/2#issuecomment-269872486
https://github.com/prettier/prettier/issues/5814#issuecomment-468827633
https://github.com/prettier/prettier/issues/9358#issuecomment-705940711
https://github.com/prettier/prettier/issues/187#issuecomment-281097771
https://github.com/prettier/prettier/issues/7884#issuecomment-605755932
https://github.com/prettier/prettier/issues/40
https://prettier.io/docs/en/option-philosophy.html
https://github.com/prettier/prettier/issues/8559#issuecomment-643796145
https://github.com/prettier/prettier/issues/187#issuecomment-627906479
https://github.com/prettier/prettier/issues/840#issuecomment-458280945
https://github.com/prettier/prettier/issues/840#issuecomment-482353176

21

airbnb/javascript project in Goody’s investigations of the immutability and ca-

nonization of written texts. Because the tool gets its value and usefulness

from its invariability—and the communities which depend on its invariabili-

ty94—, discussions around the tool itself can be made moot.

A final feature of the prettier/prettier discussions stems from both their ex-

haustiveness, the popularity of the project and the maintainers’ decision to no

longer accept options95. This results in several seemingly intractable discus-

sions with over 100 comments, while the majority of other issues have less

than 10 comments each)96979899. These issues bring up the original tension of

a styleguide, in which each writer has an opinion100 on what is the best way to

solve a given dilemma101, either as emotional, subjective statements102 («

This issue is ridiculous. Just fix that » (thalesfsp, user)103), or along with

examples104 and suggestions of pull requests.

The pattern we see here is that, due to the popularity of the project, first-time

users weigh in on complicated debates, engage in the conversation with other

commenters for a couple of replies, and then drop out of the discussion alto-

gether. Coupled with the original intent of the maintainers to integrate com-

munity-argued changes, these issues remain open for all to chime in.

94 https://github.com/prettier/prettier/issues/5377#issuecomment-646868677, retrieved on

27.08.2020
95 https://github.com/prettier/prettier/pull/8540, retrieved on 25.08.2020
96 https://github.com/prettier/prettier/issues/5377, retrieved on 23.08.2020
97 https://github.com/prettier/prettier/issues/187, retrieved on 25.08.2020
98 https://github.com/prettier/prettier/issues/840, retrieved on 25.08.2020
99 https://github.com/prettier/prettier/issues/5814, retrieved on 26.08.2020
100 https://github.com/prettier/prettier/issues/187#issuecomment-282690495, retrieved on

27.08.2020
101 https://github.com/prettier/prettier/issues/187#issuecomment-345493031, retrieved on
25.08.2020
102 https://github.com/prettier/prettier/issues/5377#issuecomment-669877250, retrieved on

25.08.2020.
103 https://github.com/prettier/prettier/issues/187#issuecomment-385114296, retrieved on

25.08.2020
104 https://github.com/prettier/prettier/issues/187#issuecomment-350849520, retrieved on

24.08.2020

https://github.com/prettier/prettier/issues/5377#issuecomment-646868677
https://github.com/prettier/prettier/pull/8540
https://github.com/prettier/prettier/issues/5377
https://github.com/prettier/prettier/issues/187
https://github.com/prettier/prettier/issues/840
https://github.com/prettier/prettier/issues/5814
https://github.com/prettier/prettier/issues/187#issuecomment-282690495
https://github.com/prettier/prettier/issues/187#issuecomment-345493031
https://github.com/prettier/prettier/issues/5377#issuecomment-669877250
https://git/
https://git/
https://github.com/prettier/prettier/issues/187#issuecomment-350849520

22

On the one hand, these discursive strategies seem to parallel the pattern of

the dreaded bikeshedding105, in which anyone can chime in, and including lin-

guistic patterns such as « just my two cents », « IMHO » (“in my humble opi-

nion”), « just gonna weigh in here », apparently. As such, they don’t seem to

appear very productive at first glance due to repeated arguments106107 and af-

fect the maintainer’s ability to discuss (« The Prettier issue tracker naturally

attracts and concentrates code style discussions. They’ve been moved from

basically everywhere to here. I think this is a big factor to the maintainer bur-

nout I’ve seen lately. » lydell, contributor 108).

On the other hand, however, the overall quality of arguments presented (com-

bining use cases, opinions and responses to previous proposals) has led to a

switch in the discursive strategy in which the discussion is summed up by the

maintainers (« Summarizing a bit, it seems we have a handful of motivating

examples and another handful of solutions now. », rattrayalex, mem-

ber)109110111 in order to provide moderation to the debate or to be pursued ex-

clusively by the maintainers (« I've temporarily limited conversation the issue

from spam/off topic so we can discuss between @prettier/core developers, I

would like to hear everyone here, this problem has been present for a very

long time and we need to give an official answer. » alexander-akait, mem-

ber112113). The result is that, emerging from community-created discursive

noise inherent to any popular open-source projects, the prettier/prettier team

engages less in terms of justifying the existing style, but in gauging how fea-

sible an alternative is, once this discursive noise reaches a particular thres-

hold, acting as a filter to turn quantitative input into a qualitative theoretical ar-

gument.

Conclusion

105 https://www.freebsd.org/doc/en/books/faq/misc.html#bikeshed-painting, retrieved on

15.07.2020
106 https://github.com/prettier/prettier/issues/187#issuecomment-383546996, retrieved on

26.08.2020
107 https://github.com/prettier/prettier/issues/5814#issuecomment-597403394, retrieved on

26.08.2020
108 https://github.com/prettier/prettier/issues/840#issuecomment-522295504, retrieved on

24.08.2020
109 https://github.com/prettier/prettier/issues/840#issuecomment-618186522, retrieved on

26.08.2020
110 https://github.com/prettier/prettier/issues/5814#issuecomment-469736563, retrieved on

26.08.2020
111 https://github.com/prettier/prettier/issues/5377#issuecomment-650607819, retrieved on

28.08.2020
112 https://github.com/prettier/prettier/issues/5377#issuecomment-669877250, retrieved on

28.08.2020
113 https://github.com/prettier/prettier/issues/5377#issuecomment-650153308, retrieved on

28.08.2020

https://www.freebsd.org/doc/en/books/faq/misc.html#bikeshed-painting
https://github.com/prettier/prettier/issues/187#issuecomment-383546996
https://github.com/prettier/prettier/issues/5814#issuecomment-597403394
https://github.com/prettier/prettier/issues/840#issuecomment-522295504
https://github.com/prettier/prettier/issues/840#issuecomment-618186522
https://github.com/prettier/prettier/issues/5814#issuecomment-469736563
https://github.com/prettier/prettier/issues/5377#issuecomment-650607819
https://github.com/prettier/prettier/issues/5377#issuecomment-669877250
https://github.com/prettier/prettier/issues/5377#issuecomment-650153308

23

Style guides existing on GitHub have to tend to the specific issue of convin-

cing individual users with strong subjective preference of adopting their re-

commendations in the midst of a technical environment which favors copying

and customization. Starting from an approach of arguments based on the ty-

pology of communicative competence, we’ve highlighted that, beyond emotio-

nal and subjective statements as well as social justification of institutional ori-

gin or belonging, rational statements and commands are being affected by the

technical milieu in which programmers write, read and work.

Particularly, we can see that there are multiple strategies which involve close-

ly either source code examples, or executable code. Source code examples

acts as a prime argument when human languages fail to communicate the ob-

jectivity of their statement, and is often required by all parties of a discussion

to base their statements on. Still, those comments are often overlooked: the

requirement of readability, crucial to a decision in style guides, re-appears in

all its subjectivity when it comes to reading the source code example provi-

ded, pitting the argument in multi-sided subjective perspectives. In

airbnb/javascript’s case, when re-written code can act as an argument to the

validity of the style guide, it is because previous code didn’t comply, and be-

came compliant again through ljharb’s work.

If source code seems to be a novel type of argument, adding to the realm of

human rhetoric, and yet remains trapped in subjective appreciation, execu-

table code can act as its own argument. In standard/standard and pret-

tier/prettier, both of the projects rely on the fact that their style guides work,

that they are efficient in what they do, and any change must first and foremost

comply with the feasibiliy of the argument, no matter how sound the concep-

tual proposal is; as we’ve seen, prettier/prettier can replace a didactic guide

by an efficient tool, while airbnb/javascript has to rely on a strict didactic ap-

proach, on top of providing an eslint configuration file, leading us to the consi-

deration that code as actionable words is perhaps the most efficient in the

adoption of a project, and therefore shifting a process of negotiation in which

all parties are equal, to one in which the maintainer has a larger bargaining

power and, more often than not, only accepts to discuss why such a decision

has been made, and not whether it should be changed.

In terms of GitHub as a platform, the structure within which these projects take

place, we’ve observed a multiplicity of approaches, preventing a unilateral in-

terpretation of how technical environments can entirely shape the nature of a

discussion. GitHub’s platform seems to be able to provide multiple kinds of

discussions, ultimately geared by the social role of the maintainers and the

ability to toggle between references to read-only (canonical) texts rather than

keeping the discussion within read-write (discussion) texts.

24

Furthermore, GitHub does provide the interesting case of a highly-networked,

highly-transparent working environment. This study has examined the role of

a quantified community in argumenting for or against a particular stylistic

choice, particularly present in standard/standard’s strategy; it is necessary to

mention the entangled nature of cross-references to other projects hosted on

GitHub. Beyond naming exisiting alternatives114, being able to reference ano-

ther style guide on an issue115, or to mention explicitly the name of a maintai-

ner of one given style guide on a different one116, facilitates the interactions of

maintainers117 and allows for an intricate web of intertextualities, allowing dis-

cussions happening on a given repository to act as arguments for another re-

pository, or vice-versa. This added layer of complexity is beyond the scope of

the current study, but offers a promising field for future research.

114 https://github.com/prettier/prettier/pull/123#issuecomment-272029925, retrieved on

22.08.2020
115 https://github.com/prettier/prettier/issues/3806#issuecomment-451615213, retrieved on

21.08.2020
116 https://github.com/standard/standard/issues/811#issuecomment-294034120, retrieved

on 04.08.2020
117 https://github.com/prettier/prettier/issues/3503#issuecomment-352538566, retrieved on

21.08.2020

https://github.com/prettier/prettier/pull/123#issuecomment-272029925
https://github.com/prettier/prettier/issues/3806#issuecomment-451615213
https://github.com/standard/standard/issues/811#issuecomment-294034120
https://github.com/prettier/prettier/issues/3503#issuecomment-352538566

25

Bibliographie

BARTHES, Roland. (1970), S\Z, Éditions du Seuil, collection « Tel quel », p. 10.

BENKLER, Yochai (2006). The Wealth of Networks: How Social Production

Transforms Markets and Freedom. New Haven and London: Yale Uni-

versity Press.

BERRY, David M. (2004), « The Contestation of Code - A preliminary investiga-

tion into the discourse of the free/libre and open source movements »

in Critical Discourse Studies Vol.1 pp. 65-89.

BISSYANDE, T. F., LO, D., JIANG, L., REVEILLERE, L., KLEIN, J., & TRAON, Y. L.

(2013). « Got issues? Who cares about it? A large scale investigation

of issue trackers from GitHub », in IEEE 24th International Symposium

on Software Reliability Engineering (ISSRE), pp. 188–197.

BORGES, H., & VALENTE, M. T. (2018). « What’s in a GitHub Star? Understan-

ding Repository Starring Practices in a Social Coding Platform », in

Journal of Systems and Software, vol. 146, pp. 112–129.

BOURDIEU, Pierre (2018). Ce que parler veut dire, Paris :Fayard, pp.3-5.

BROUSSEAU, E. et Moatty F. (2003). « Perspectives de recherche sur les TIC

en sciences sociales: Les passerelles interdisciplinaires d’Avignon », in

Sciences de la société, vol. 59, pp. 3-33.

CERTEAU, Michel de. (2011). « The Practice of Everyday Life ». Translated by

Steven F. Rendall. 3rd ed. Berkerley: University of California Press.

CHRISTIAN, Darrell, JACOBSEN Sally A., & DAVID Minthorn. (2011) « Asso-

ciated press 2011 stylebook and briefing on media law ». New York:

 Associated Press.

COX, Anthony, FISHER, Maryanne. « Programming Style: Influences,

 Factors and Elements » in Second International Conferences on

Advances in Computer-Human Interaction, pp.82-89.

DABBISH, L., STUART, C., TSAY, J., & HERBSLEB, J. (2012). « Social Coding in

GitHub: Transparency and Collaboration in an Open Software Repository »

in Proceedings of the ACM 2012 Conference on Computer Supported Coo-

perative Work, pp. 1277–1286.

DIJKSTRA, Edsger W. (1972) « Chapter I: Notes on Structured Programming. »

In Structured Programming, Academic Press Ltd., pp. 1–82.

FRAENKEL, Béatrice. (2006). « Written Acts and Speech Acts: Performativity

and Writing Practices », in Études de communication, no 29(1), pp. 69-

93.

GALLOWAY, Alexander R., (2006). Protocol: how control exists after decentrali-

zation. Cambridge, Mass: MIT.

GALLOWAY, Alexander. R. (2012). The Interface Effect. New York :Polity.

GRANGER Gilles-Gaston (1988). Essai d’une philosophie du style. Paris,

JACOB.

26

GILLESPIE, T. (2010). « The politics of ‘platforms.’ » in New Media & Society,

vol. 12(3), pp. 347–364.

GOODY, Jack. (1986) The Logic of Writing and the Organization of Society.

Studies in Literacy, the Family, Culture and the State. Cambridge,

MA :Cambridge University Press.

HABERMAS, J. (1984). The Theory of Communicative Action: Reason and the

Rationalization of Society (Vol. 2). Boston, MA: Beacon Press.

HENDRY, Georges, (2008) « Public participation in proprietary software deve-

lopmentthrough user roles and discourse », in International Journal of

Human-Computer Studies, vol. 66,no. 7, pp. 545–557.

HILTON, M., TUNNELL, T., HUANG, K., MARINOV, D., & DIG, D. (2016). « Usage,

Costs, and Benefits of Continuous Integration in Open-Source Pro-

jects » in Proceedings of the 31st IEEE/ACM International Conference

on Automated Software Engineering, pp. 426–437.

JEANTET Alain. (1998) « Les objets intermédiaires dans la conception.

 Éléments pour une sociologie des processus de conception », in

Sociologie du travail, 40ᵉ année n°3, Juillet- septembre 1998. pp. 291-316.

KAVALER, D., SIROVICA, S., HELLENDOORN, V., ARANOVICH, R., & FILKOV, V.

 (2017). « Perceived Language Complexity in GitHub Issue Discus-

sions and Their Effect on Issue Resolution », in Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engi-

neering, pp. 72–83.

KERNIGHAN, BRIAN W., PLAUGER, Philip J. (1974). « Programming Style:

 Examples and Counterexamples. ACM Computing Survey Vol. 6,

issue 4 (Dec. 1974), pp. 303-319.

KNUTH, Donald E. (1997) The Art of Computer Programming, Volume 1: Fun-

damental Algorithms. (3rd Ed.) USA: Addison Wesley Longman Publis-

hing Co., Inc.

LATOUR, Bruno, & WOOIGAR, Steve (1986). Laboratory Life: The Construction

of Scientific Facts. Princeton, New Jersey: Princeton University Press.

LESSIG, Lawrence. (1999). Code and Other Laws of Cyberspace. New York

City, NY:Basic Books, Inc.

MANOVICH, Lev. (2001). The language of new media. Cambridge, MA: MIT

Press.

OMAN, Paul, COOK, Curtis (1988) A Paradigm for Programming Style

 Research, ACM SIGPLAN Notices, vol. 23, pp.69-73.

SENNETT, Richard (2009), The Craftsman, New Have, CO :Yale University

Press, pp..45-47.

SIMMEL, Georg. (1991) « The Problem of Style. » in Theory, Culture & Society

vol. 8, no. 3 (August 1991): pp. 63–71.

TSAY, J., DABBISH, L., & HERBSLEB, J. (2014). « Influence of Social and Tech-

nical Factors for Evaluating Contribution in GitHub » in Proceedings of

27

the 36th International Conference on Software Engineering, pp. 356–

366.

TSAY, J., DABBISH, L., & HERBSLEB, J. (2014). « Let’s Talk about It: Evaluating

Contributions through Discussion in GitHub » in Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pp. 144–154.

VAN DEN BOOGAARD, Adrienne (2008). « Stijlen van programmeren, 1952-

1972 » in Studium, vol. 1 issue 2, pp.128–144.

VINCK, Dominique (2009). « De l’objet intermédiaire à l’objet-frontière: Vers la

prise en compte du travail d’équipement » in Revue d’anthropologie

des connaissances, vol. 3, issue 1, pp. 51-72.

VINCK Dominique & JEANTET Alain (1995). « Mediating and Commissioning

Objects in the Sociotechnical Process of Product Design : a conceptual

approach », in MacLean D., Saviotti P., and Vinck D. (eds.), Management

and New Technology: Design, Networks and Strategy, Bruxelles: COST So-

cial Science Series.pp. 111-129.

Webographie

NATHER Edouard (1983). The story of Mel, a Real Programmer, FOLDOC, re-

trieved on 16.07.2020, URL :

https://www.cs.utah.edu/~elb/folklore/mel.html

https://www.cs.utah.edu/~elb/folklore/mel.html

