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This article gives a formula for associated Stirling numbers of the second kind based on the moment of a sum of independent random variables having a beta distribution. From this formula we deduce, using probabilistic approaches, lower and upper bounds for these numbers.

Introduction

Classical Stirling numbers of the second kind S(p, m) counts the number of all partitions of {1, . . . , p} into m nonempty subsets, for p ∈ N >0 and m ∈ N. More generally, the r-associated Stirling number S r (p, m), with r ∈ N >0 , is the number of all partitions of {1, . . . , p}, into m subsets where each subset contains at least r elements [3, p. 221]. Obviously S(p, m) = S 1 (p, m).

There are well-known connections between Stirling numbers of the second kind and probability theory. For example, sequences S 1 (p, m) and S 2 (p, m) are asymptotically normal when p tends to +∞ [START_REF] Czabarka | Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons[END_REF][START_REF] Harper | Stirling behavior is asymptotically normal[END_REF]. More precisely, when r ∈ {1, 2}, the following convergence in distribution occurs , for all m ∈ N >0 .

Otherwise, according to Dobiński's formula, the moment of order p of a Poisson distribution with parameter λ ≥ 0 is p m=1 S 1 (p, m)λ m (see, e.g. [3, p. 211]). However, to our knowledge, there is no close formula in the literature for S r (k, m) based on moments of a sum of independent and identically distributed (i.i.d) random variables. The main result in this article is Theorem 2.1 providing the following new identity

S r (p, m) = p! m!(r!) m (p -rm)! E (X 1 + • • • + X m ) p-rm , (1) 
where X 1 , . . . , X p are i.i.d random variables having beta distribution with parameter (1, r). Note that a beta distribution with parameter (1, 1) is a uniform distribution on [0, 1]. Thus, when r = 1, the above formula is quite simple:

S 1 (p, m) = p m E Z p-m , where Z = m i=1 X i has the Irwin-Hall distribution on [0, m].
Propositions 3.1, 3.2 and 3.3 give upper and lower bounds for

E (X 1 + • • • + X m )
p-rm . These bounds are sharp when one parameter m, r, or p -rm tends to +∞ and provides thus accurate approximations of r-associated Stirling numbers.

Closed formula for Stirling numbers and moments of random variables

The density g r of a beta distribution with parameters (1, r) where r ∈ N >0 is

g r (x) = r(1 -x) r-1 if x ∈ [0, 1] 0 otherwise. . (2) 
Let X 1 , . . . , X m be independent random variables having the same beta (1, r) distribution. The moment of order k ∈ N of the sum of these variables is defined as follows

M r (k, m) = E (X 1 + • • • + X m ) k . (3) 
Theorem 2.1 provides a closed formula for the Stirling numbers of the second kind based on the moment M r (k, m).

Theorem 2.1. Let m, r ∈ N >0 and p ∈ N where p ≥ rm. The Stirling numbers of the second kind satisfy the following identity

S r (p, m) = p! m!(r!) m (p -rm)! M r (p -rm, m).
From Theorem 2.1, one may deduce that

E(Z k ) = S 1 (m + k, m)/ m+k m
where Z has an Irwin-Hall's distribution on [0, m] [START_REF] Hall | The distribution of means for samples of size N drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable[END_REF][START_REF] Jo Irwin | On the frequency distribution of the means of samples from a population having any law of frequency with finite moments, with special reference to Pearson's type II[END_REF]. Note that the moment generating function of Z is k≥0 E(Z k )t k /k! = ((exp(t) -1)/t) m therefore we recover the well-known exponential generating function of the Stirling numbers of the second kind p≥m S 1 (p, m)t p /p! = (exp(t) -1) m /m! (see Theorem 3.3 page 52 in [START_REF] Mansour | Commutation relations, normal ordering, and Stirling numbers[END_REF]). The above expression of S r (p, m) is explicit up to the computation of the moment M r (k, m). Whereas computing explicitly M r (k, m) might be technical, lower bounds, upper bounds and approximations of M r (k, m) are tractable as illustrated in the following section.

Upper and lower bounds

Hereafter, we will use probabilistic approaches to derive upper and lower bounds for the moment M r (k, m).

Sharp upper and lower bounds when m is large

Let X m = (X 1 + • • • + X m )/m,
the Jensen's inequality provides the following lower bound

M r (k, m) = m k E X m k ≥ m k E X m k = m k (r + 1) k . (4) 
This inequality relies on the linearization of the function q(x) = x k at x 0 = E(X m ) = 1 r+1 . Specifically, the following inequality holds for all x ∈ [0, 1]

x k = q(x) ≥ q(x 0 ) + q (x 0 )(x -x 0 ) = 1 (r + 1) k + k (r + 1) k-1 x - 1 r + 1 . (5) 
Moreover one may choose c ≥ 0 for which the following inequality is true for all x ∈ [0, 1] (see Lemma 5.2)

x k ≤ q(x 0 ) + q (x 0 )(x -x 0 ) + c(x -x 0 ) 2 . (6) 
Proposition 3.1 below is a consequence of inequalities ( 5) and (6).

Proposition 3.1. Let r, m ∈ N >0 and k ∈ N. The following inequality holds

m k (r + 1) k ≤ M r (k, m) ≤ m k (r + 1) k + m k-1 (r + 1) k -1 -kr (r + 1) k r(r + 2) .
The leading term when m is large in both the lower and upper bounds is m k /(r + 1) k . Therefore, lower and upper bounds are asymptotically equivalent when k ∈ N ≥0 and r ∈ N >0 are fixed and m tends to +∞. These bounds are accurate when m is large since X m converges to E(X m ) and both inequalities (5) and ( 6) are accurate on the neighbourhood of E(X m ).

Sharp upper and lower bounds when k is large

Asymptotic behaviour of moments, when k is large, depends on the density of X 1 + • • • + X m on the tail, i.e. on the neighbourhood of m. This motivates us to introduce the following inequality proved in Corollary 5.4:

g * m r (x) ≤ (r!) m (mr -1)! (m -x) mr-1 , for all x ∈ [0, m],
where g r is given by ( 2) and g * m r is m-th convolution of g r . Moreover, this inequality is an equality for x ∈ [m -1, m]. We derive from this fact a lower and upper bounds for M r (k, m) given in Proposition 3.2 below. Proposition 3.2. For any r ∈ N >0 , for any k ∈ N for any m ∈ N >0 the following inequalities hold.

Upper bound: M r (k, m) ≤ (r!) m (mr -1)! m 0 x k (m -x) mr-1 dx = k!(r!) m m k+rm (k + mr)! . Lower bound: M r (k, m) ≥ (r!) m (mr -1)! m m-1 x k (m -x) mr-1 dx ≥ k!(r!) m m k+mr (k + mr)! 1 - (m -1) k m k+mr mr i=1 k + mr k + i (m -1) i .
These bounds are accurate when k is large since lim k→+∞

(m-1) k m k+mr mr i=1
k+mr k+i (m -1) i = 0. As a consequence of Proposition 3.2, we observe that S r (p, m) ≤ m p /m!. Moreover, lower and upper bounds are asymptotically equivalent when k tends to +∞ therefore S r (p, m) ∼ m p /m! when p is large. This approximation, well known when r = 1 (see [START_REF] Bleick | Asymptotics of Stirling numbers of the second kind[END_REF]), remains true when r > 1.

Sharp upper bound when r is large

Proposition 3.3 proves that the moment M r (k, m) is bounded, up to an explicit expression, by the moment of a sum of independent random variables having the same standard exponential distribution.

Proposition 3.3. Let k ∈ N, m ∈ N >0 , r ∈ N >1 and E 1 , .
. . , E m be i.i.d random variables having standard exponential distribution with density exp(-x).

i) The following inequality holds

r k M r (k, m) ≤ r r -1 2k E (E 1 + • • • + E m ) k = r r -1 2k (m -1 + k)! (m -1)! .
ii) The upper bound given in i) is sharp since the following limit holds

lim r→+∞ r k M r (k, m) = E (E 1 + • • • + E m ) k = (m -1 + k)! (m -1)! .
It seems difficult for authors to find lower bounds which are sharp when r tends to +∞. Finally, we recap hereafter lower and upper bounds for r-associated Stirling number of the second kind:

• Proposition 3.1 provides the following lower and upper bounds

   S r (p, m) ≥ p!m p-rm m!(r!) m (p-rm)!(r+1) p-rm S r (p, m) ≤ p!m p-rm m!(r!) m (p-rm)!(r+1) p-rm 1 + (r+1) p-rm -1-r(p-rm) mr(r+2)
. These bound are equivalent when p -rm, r are fixed and when m tends to +∞. • Proposition 3.2 provides the following lower and upper bounds

S r (p, m) ≥ m p m! -(m-1) p-rm m! mr i=1 p p-rm+i (m -1) i S r (p, m) ≤ m p m! .
These bound are equivalent when m, r are fixed and when p tends to +∞. • Proposition 3.3 provides the following upper bound when r ≥ 2

S r (p, m) ≤ p!r 2(p-rm) (m -1 + p -rm)! m!(r!) m (p -rm)!(r -1) 2(p-rm) (m -1)! .
This upper bound is equivalent to S r (p, m) when p -rm, m are fixed and when r tends to +∞.

Numerical experiments

Upper and lower bounds of Stirling numbers of the second kind

According to Propositions 3.1 and 3.2, for all m ∈ N and all p ∈ N >0 , Stirling numbers of the second kind do satisfy the following inequalities:

S 1 (p, m) ≤ min m p m! , p m m 2 p-m 1 + 2 p-m + m -p -1 3m U (p,m) , S 1 (p, m) ≥ max m p m! - (m -1) p-m m! m i=1 p m -i (m -1) i , p m m 2 p-m L(p,m)
.

First of all we are going to compare these bounds U (m, p) and L(p, m) to bounds given in Rennie and Dobson [START_REF] Rennie | On Stirling numbers of the second kind[END_REF] reported below: In Figure 3 Note that U (p) ≤ +∞ m=0 m p /m! = eB(p) (the last equality is due to the Dobiński formula). In Figure 4 we shows that U (p)/B(p) is very close to e when p is large. 

1 2 (m 2 + m + 2)m p-m-1 -1 L rd (p,m) ≤ S 1 (p, m) ≤ 1 

Proofs

Proof of Theorem 2.1

The identity given in Lemma 5.1 below, combined with the multinomial formula, allows us to complete the proof of Theorem 2.1.

Lemma 5.1. Let m, r ∈ N >0 and p ∈ N where p ≥ rm. The r-associated Stirling numbers of the second kind satisfy the following equality

S r (p, m) = p! m! i1+•••+im=p-rm 1 (r + i 1 )! × . . . × (r + i m )! ,
where the sum is computed over all the integers i 1 , . . . , i m ∈ {0, . . . , p -rm} satisfying i

1 + • • • + i m = p -rm. Proof. Given i 1 , . . . , i m ∈ N such that i 1 + • • • + i m = p -rm, let
us count the number of ordered partitions of {1, . . . , p} in m parts where the first part has r + i 1 elements, the second part has r + i 2 elements and so on. There are p r+i1 possibilities for the first part. There are p-r-i1 r+i2 possibilities for the second part and so on. Therefore the number of ordered partitions where the first part has r + i 1 elements, the second part has r + i 2 elements and so on is

p! (r + i 1 )! × . . . × (r + i m )! .
Consequently, the number of ordered partitions of {1, . . . , p} in m parts having at least r elements is

i1+•••+im=p-rm p! (r + i 1 )! × . . . × (r + i m )! .
Finally, when the order is not taken into account, by dividing by m!, one may deduce that

S r (p, m) = p! m! i1+•••+im=p-rm 1 (r + i 1 )! × . . . × (r + i m )! .
Let us recall the multinomial formula. Given x 1 , . . . , x m ∈ R and k ∈ N, we have

(x 1 + • • • + x m ) k = i1+•••+im=k k! i 1 ! × • • • × i m ! x i1 1 × . . . × x im m .
Let k = p -rm. Since E(X s 1 ) = s!r! (s+r)! , the multinomial formula and Lemma 5.1 give

E (X 1 + • • • + X m ) k = i1+•••+im=k k! i 1 ! × • • • × i m ! E(X i1 1 ) × . . . × E(X im m ), = (r!) m k! i1+•••+im=k 1 (r + i 1 )! × • • • × (r + i m )! , = m!(r!) m k! (k + rm)! S r (k + rm, m) = m!(r!) m (p -rm)! p! S r (p, m),
which finishes the proof of Theorem 2.1.

Proof of Proposition 3.1

Proposition 3.1 is a consequence of the following lemma.

Lemma 5.2. Let k ≥ 2, a ∈ (0, 1) and f :

x ∈ [0, 1] → a k + ka k-1 (x -a) + c(x -a) 2 where c ≥ 0 is such that f (1) = 1 (namely c = a k-1 (ak-a-k)+1 (1-a) 2 ). Then f (x) ≥ x k for all x ∈ [0, 1]. x y x → x k x → f (x) a 1 1 Fig 5.
Illustration of the inequality given in Lemma 5.2.

Proof. First note that for all x ∈ [0, 1] the condition f (x) ≥ x k is equivalent to

ka k-1 (x -a) + c(x -a) 2 ≥ x k -a k = (x -a)(x k-1 + ax k-2 + • • • + a k-1 ).
Note that this inequality holds if and only if By Lemma 5.2, for a = E(X m ) = 1 r+1 , r > 0, for all x ∈ [0, 1] we get that

ka k-1 + c(x -a) ≥ x k-1 + ax k-2 + • • • + a k-1 for all x ∈ [a, 1] and, ka k-1 + c(x -a) ≤ x k-1 + ax k-2 + • • • + a k-1 for all x ∈ [0, a]. Let d(x) = ka k-1 + c(x -a) and p(x) = x k-1 + ax k-2 + • • • + a k-
x k ≤ E(X m ) k + kE(X m ) k-1 x -E(X m ) + c x -E(X m ) 2 ≤ 1 (r + 1) k + k (r + 1) k-1 x - 1 r + 1 + c x - 1 r + 1 2 , where c = (1 + 1 r ) 2 1 -kr+1 (r+1) k . This inequality implies that M r (k, m) = m k E(X k m ) ≤ m k E(X m ) k + cvar(X m ) = m k (1 + r) k + c rm k-1 (1 + r) 2 (2 + r) = m k (r + 1) k + (r + 1) k -1 -kr (r + 1) k r(r + 2) m k-1 .

Proof of Proposition 3.2

We use in the proof a well-known beta integral (see, for example, [START_REF] Arjun | Handbook of beta distribution and its applications[END_REF]): let a, b ∈ N and x ∈ R >0 then we have

x 0 (x -t) a t b dt = a!b! (a + b + 1)! x a+b+1 . (7) 
To compute explicitly the density of

X 1 + • • • + X m on the tail [m -1, m],
we use the following technical lemma. Let h r be the following density

h r (x) = rx r-1 if x ∈ [0, 1] 0 otherwise. . (8) 
Actually, h r is the density of 1 -X where the density X is g r (2). Convolution computations are slightly easier to handle with h r than g r .

Lemma 5.3. Let m ∈ N >0 then the following equality and inequality hold

h * m r (x) = (r!) m (mr-1)! x mr-1 , for all x ∈ [0, 1], (9) 
h * m r (x) ≤ (r!) m (mr-1)! x mr-1 , for all x ∈ R ≥0 .

Proof. Let us prove (9) by induction. When m = 1, one may notice that whatever x ∈ [0, 1] we have h * m r (x) = h r (x). Let m ∈ N >0 such that

h * m r (x) = (r!) m (mr -1)! x mr-1 ∀x ∈ [0, 1].
Therefore for x ∈ [0, 1] we have that

h * m+1 r (x) = R h * m r (x -t)h r (t)dt = x 0 h * m r (x -t)rt r-1 dt, = r(r!) m (mr -1)! x 0 (x -t) mr-1 t r-1 dt, = r(r!) m (mr -1)! (mr -1)!(r -1)! ((m + 1)r -1)! x (m+1)r-1 , = (r!) m+1 ((m + 1)r -1)! x (m+1)r-1 .
The proof of (10) by induction is quite similar than the proof of [START_REF] Mansour | Commutation relations, normal ordering, and Stirling numbers[END_REF]. When m = 1, the result is straightforward. Let m ∈ N >0 such that

h * m r (x) ≤ (r!) m (mr -1)! x mr-1 ∀x ∈ R ≥0 .
Therefore for x ∈ R ≥0 we have

h * m+1 r (x) = R h * m r (x -t)h r (t)dt = x 0 h * m r (x -t)h r (t)dt, ≤ r(r!) m (mr -1)! x 0 (x -t) mr-1 t r-1 dt, ≤
r(r!) m (mr -1)! (mr -1)!(r -1)! ((m + 1)r -1)!

x (m+1)r-1 , ≤ (r!) m+1 ((m + 1)r -1)!

x (m+1)r-1 .

Note that the only difference between the proof of ( 9) and ( 10) is the majorization of h r (t) by rt r-1 . We are now ready to prove the explicit formula for the m-th convolution g * m r on [m -1, m] and an upper bound on [0, m].

Corollary 5.4. For all x ∈ [0, m] we have that

g * m r (x) ≤ (r!) m (mr -1)! (m -x) mr-1 . Moreover if x ∈ [m -1, m] then g * m r (x) = (r!) m (mr -1)! (m -x) mr-1 . Proof. By Lemma 5.3, it suffices to prove that g * m r (x) = h * m r (m -x) for all x ∈ [0, m]. Let x ∈ [0, m] and set z = m -x, because the density of (1 -X 1 ) + • • • + (1 -X m ) is h * m r then the following equalities occur ∂ ∂z P((1 -X 1 ) + • • • + (1 -X m ) ≤ z) = h * m r (z), ∂ ∂z P(X 1 + • • • + X m ≥ m -z) = h * m r (z), g * m r (m -z) = h * m r (z), g * m r (x) = h * m r (m -x).
One may notice that if r = 1 and x ∈ [m -1, m], then g * m r (x) = (m -x) m-1 /(m -1)! which is the density in the tail of the Irvin-Hall distribution (see [START_REF] Hall | The distribution of means for samples of size N drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable[END_REF][START_REF] Jo Irwin | On the frequency distribution of the means of samples from a population having any law of frequency with finite moments, with special reference to Pearson's type II[END_REF]).

Upper and lower bounds given in Proposition 3.2 are straightforward consequences of Corollary 5.4. Indeed, the upper bound is just the beta integral of

m 0 (r!) m (mr -1)! (m -x) mr-1 x k dx.
The lower bound is derived from the following computations ) whose moment of order k is (m-1+k)! (m-1)! . This inequality completes the proof of i).

(r!) m (mr -1)! m-1 0 x k (m -x) mr-1 dx = (r!) m (mr -1)! m-1 0 x k (1 + (m -1) -x) mr-1 dx, = (r!) m (mr -1)! m-1 0 x k mr-1 i=0 mr -1 i (m -1 -x) i dx, = (r!) m (mr -1)! mr-1 i=0 mr -1 i k!i!(m -1) k+i+1 (k + i + 1)! , = (r!) m k! (k + mr)! mr i=1 k + mr k + i (m -1) k+i . Because M r (k, m) ≥ (r!) m ( 
ii) The density of the random variable (r-1)X 1 converges pointwise to the density of E 1 namely lim r→+∞ f (x) = exp(-x), for all x ∈ [0, +∞). Therefore, the following limit holds lim r→+∞ x k f * m (x) =

x m+k-1 exp(-x) (m -1)! . 
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 1 Fig 1. This figure report ln(L(p, m))-ln(L rd (p, m)) as a function of m (on the x-axis) and p (on the y-axis). One may observe that for most integers the lower bound L(p, m) is a better approximation of S 1 (p, m) than L rd (p, m) (as ln(L(p, m))-ln(L rd (p, m)) > 0).

Figure 2

 2 Figure 2 provides a comparison between L(p, m), U (p, m) and S 1 (p, m).

Fig 2 .

 2 Fig 2. This figure report ln(S 1 (p, m)) -ln(L(p, m)) (on the left) and ln(U (p, m)) -ln(S 1 (p, m)) (on the right) as a function of m and p. These numerical experiments comply with Propositions 3.1 and 3.2 since both lower and upper bounds accurately approximate S 1 (p, m) when p is large and m is small or when m is large and p -m is small.

  we compare U (p) with the upper bound: B(p) ≤ U bt (p) = 0.792p ln(p+1) p given in Berend and Tassa [1].

Fig 3 .

 3 Fig 3. This figure report ln(U bt (p)) -ln(U (p)) as a function of p. One may observe that when p ≥ 13, U (p) is more accurate upper bound for S 1 (p, m) than U bt (p) (as ln(U bt (p)) -ln(U (p)) > 0 for p ≥ 13).

Fig 4 .

 4 Fig 4. This figure report U (p)/B(p) as a function of p. One may observe that U (p)/B(p) is approximately equal to e when p is large.

1 .

 1 Thus p(a) = d(a) and p(1) = d(1), by construction of c. Because p is convex and d is affine, one may deduce that d(x) ≤ p(x) once x ∈ [0, a] and d(x) ≥ p(x) once x ∈ [a, 1], which completes the proof.

4 . 1 . 1 k

 411 mr-1)! m m-1 x k (m -x) mr-1 dx one may deduce the following inequalityM r (k, m) ≥ k!(r!) m m k+mr (k + mr)! 1 -(m -1) k m k+mr mr i=1 k + mr k + i (m -1) i .Let us assume that k > mr, then k+mr k+i Proof of Proposition 3.3Proof. i) Note that the density of the random variableY i = (r -1)X i on [0,r -Due to the following inequality for all x ∈ [0, r -1] (m -1 + k)! (m -1)! , since m i=1 E i has an Erlang distribution (the density of m i=1 E i is h(x) = x m-1 exp(-x) (m-1)!

Finally
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