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Abstract

Large Language Models (LLMs) have made the ambitious quest for generalist agents sig-
nificantly far from being a fantasy. A key hurdle for building such general models is the
diversity and heterogeneity of tasks and modalities. A promising solution is unification,
allowing the support of a myriad of tasks and modalities within one unified framework.
While few large models (e.g., Flamingo (Alayrac et al., 2022)), trained on massive datasets,
can support more than two modalities, current small to mid-scale unified models are still
limited to 2 modalities, usually image-text or video-text. The question that we ask is: is it
possible to build efficiently a unified model that can support all modalities? To answer this,
we propose UnIVAL, a step further towards this ambitious goal. Without relying on fancy
datasets sizes or models with billions of parameters, the ∼ 0.25B parameter UnIVAL model
goes beyond two modalities and unifies text, images, video, and audio into a single model.
Our model is efficiently pretrained on many tasks, based on task balancing and multimodal
curriculum learning. UnIVAL shows competitive performance to existing state-of-the-art
approaches, across image and video-text tasks. The feature representations learned from
image and video-text modalities, allows the model to achieve competitive performance when
finetuned on audio-text tasks, despite not being pretrained on audio. Thanks to the unified
model, we propose a novel study on multimodal model merging via weight interpolation of
models trained on different multimodal tasks, showing their benefits in particular for out-of-
distribution generalization. Finally, we motivate unification by showing the synergy between
tasks. The model weights and code are available at: https://github.com/mshukor/UnIVAL.

1 Introduction

The advent of Large Language Models (LLMs) (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022;
Tay et al., 2022) represents a significant step towards the development of generalist models. Generally based
on the Transformer architecture (Vaswani et al., 2017) and a single next-token prediction objective, they
continue to astound the world with their remarkable performances in text understanding and generation.
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Which region does the text “Purple 
shirt woman” describe?
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What does the audio describe?
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Figure 1: UnIVAL model. Our sequence-to-sequence model unifies the architecture, tasks, input/output format, and training
objective (next token prediction). UnIVAL is pretrained on image and video-text tasks and can be finetuned to tackle new
modalities (audio-text) and tasks (text-to-image generation) that were not used during pretraining.

Nevertheless, their current limitation to a single modality (text) restricts their understanding and interaction
with the world. This highlights the need for robust multimodal models handling diverse tasks across numerous
modalities. Recently, many works have tried to go beyond single modality, and build powerful multimodal
models (Huang et al., 2023; Driess et al., 2023; Li et al., 2023) that surpass previous task/modality-specific
approaches. However, most of these works focus on image-text tasks and only a handful of approaches aim to
incorporate more than two modalities, such as image/video-text (Alayrac et al., 2022; Wang et al., 2022b).

The prevailing approach for pretraining multimodal models revolves around training them on large, noisy
image-caption datasets (Schuhmann et al., 2021; Jia et al., 2021; Radford et al., 2021), where the model is
tasked with generating or aligning image-captions through causal generation or unmasking. However, this
approach encounters a significant challenge: it relies on extensive datasets to compensate for the inherent
noise and the relatively simple task of caption generation. In contrast, multitask learning (Caruana, 1997) on
relatively small yet high-quality datasets presents an alternative solution to learn efficient models capable of
competing with their large-scale counterparts (Alayrac et al., 2022; Chen et al., 2022b; Reed et al., 2022).

Current small to mid-scale (less than couple of hundred million parameters) vision-language models (Li et al.,
2019; Shukor et al., 2022; Dou et al., 2021; Li et al., 2022b) still have task-specific modules/heads, many
training objectives, and support a very small number of downstream tasks due to the different input/output
format. Recently, the sequence-to-sequence OFA (Wang et al., 2022c) and Unified-IO (Lu et al., 2022a)
have made a noticeable step towards more unified systems that can support a wide range of image and
image-text tasks, with more reasonable scales (e.g. can fit on user-grade GPU). These models are pretrained
on many good quality, public benchmarks. On video-text tasks, LAVENDER (Li et al., 2022c) takes a similar
direction by unifying the pretraining tasks as Masked Language Modeling (MLM). Sequence-to-sequence
unified models are particularly well-suited for open-ended text generation tasks and can readily incorporate
recent LLMs. To guide the model in solving a specific task, a textual prompt resembling an instruction
(Raffel et al., 2020) is added at the beginning of the input sequence. They have the capability to unify tasks
across different modalities, and thus easily supporting new tasks, by representing all inputs and outputs as
sequences of tokens, utilizing an unified input/output format and vocabulary. These tokens can represent
various modalities such as text, image patches, bounding boxes, audio, video, or any other modality, without
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the need for task-specific modules/heads. These strategies are straightforward to scale and manage, as they
involve a single training objective and a single model.

However, existing works are still limited to downstream tasks with no more than 2 modalities (image-text
or video-text). Providing unification across a larger number of tasks and modalities would offers additional
advantages. First, we would benefit from the knowledge transfer across them, by harnessing their collaborative
strengths. Second, once pretraining is done, the model can be finetuned on many different datasets: because
of the wider range of more diverse pretraining data, unification across more tasks would enable better and
more efficient generalization after finetuning on novel tasks and modalities. In this paper, we thus ask the
following question.

Is it possible to efficiently build a unified model that can support all modalities?

A positive answer to this question will pave the way for building generalist models that can potentially solve
any task. To answer this question, we propose UnIVAL, a step further towards generalist modality-agnostic
models. UnIVAL (illustrated in Fig.1) goes beyond two modalities and unifies text, images, video, and
audio into a single model.

Our contributions are multiple:

• To the best of our knowledge, UnIVAL is the first model, with unified architecture, vocabulary,
input/output format, and training objective, that is able to tackle image, video, and audio lan-
guage tasks, without relying on large scale training or large model size. Our 0.25B parameter
model achieves competitive performance to existing modality-customized work. With comparable
model sizes, we achieves new SoTA on some tasks (e.g. +1.4/+0.98/+0.46 points accuracy on
RefCOCO/RefCOCO+/RefCOCOg Visual Grounding, +3.4 CIDEr on Audiocaps) .

• We show the benefits of multimodal curriculum learning with task balancing, for efficiently training
the model beyond two modalities.

• We show the importance of multitask pretraining, compared to the standard single task one, and
study the knowledge transfer between pretrained tasks and modalities. In addition, we find that
pretraining on more modalities makes the model generalizes better to new ones. In particular, without
any audio pretraining, UnIVAL is able to attain competitive performance to SoTA when finetuned
on audio-text tasks.

• We propose a novel study on multimodal model merging via weight interpolation (Izmailov et al., 2018;
Wortsman et al., 2022; Rame et al., 2022). We show that, when weights are finetuned on different
multimodal tasks from our unified pretrained model, interpolation in the weight space can effectively
combine the skills of the various finetuned weights, creating more robust multitask models without
any inference overhead. Thus, in addition to multitask pretraining, averaging differently finetuned
weights is another way to leverage and recycle (Rame et al., 2023a) the diversity of multimodal tasks,
enabling their collaboration. This is the first study of weight interpolation showing its effectiveness
with multimodal foundation models.

2 Related Work

We provide a brief related work, further detailed in Appendix B.

Multimodal pretraining. So far, most of the efforts to build multimodal models have been focused on
vision-language pretraining. Contrastive-based approaches (Radford et al., 2021; Jia et al., 2021) try to
learn a shared and aligned latent space by training on hundreds of millions of pairs. More data-efficient
approaches (Shukor et al., 2022; Li et al., 2021a; 2022b; Dou et al., 2021; Singh et al., 2022) relied on
additional multimodal interaction modules and variety of training objectives such as image-text matching,
masked language modeling and image-text contrastive (Chen et al., 2020c; Kim et al., 2021; Lu et al., 2019;
Zhang et al., 2021). In the video-language community, similar approaches have tried to model the interaction
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between language and frames sequences (Cheng et al., 2022; Wang et al., 2023a; Fu et al., 2021; Zellers et al.,
2021; Yang et al., 2021a). Few works have targeted both image and video language pretraining (Wang et al.,
2022b).

Method PT examples. I (V) Model Size Param. init PT Modalities DS Modalities Unified
V L I-T V-T I-T V-T A-T Arch. I/O Tasks Objective

GIT/2 (Wang et al., 2022a) 0.8B/12.9B 0.7B/5.1B Florence/DaViT Random ✓ ✓ ✓ ✓ ✓

PaLI (Chen et al., 2022b) 12B+ 3B/15B/17B ViT-G mT5 ✓ ✓ ✓ ✓

CoCa (Yu et al., 2022) 4.8B 2.1B Random Random ✓ ✓ ✓

Unified-IO (Lu et al., 2022a) 130M+ 0.2B/0.8B/2.8B Random T5 ✓ ✓ ✓ ✓ ✓ ✓

OmniVL (Wang et al., 2022b) 15.3M (2.8M) 0.2B TimeSformer BERT ✓ ✓ ✓ ✓ ✓

VIOLET (Fu et al., 2021) 3.3M (182.5M) 0.2B VideoSwin BERT ✓ ✓ ✓ ✓

Merlot Reserve (Zellers et al., 2022) (960M) ∼ 0.3B/0.7B ViT/AST - ✓ ✓ ✓ ✓

LAVENDER (Li et al., 2022c) 19M (14.4M) ∼ 0.2B VidSwin BERT ✓ ✓ ✓ ✓ ✓ ✓

BLIP-2 (Li et al., 2023) 129M+ 12.1B EVA/CLIP FlanT5/OPT ✓ ✓ ✓

FLamingo (Alayrac et al., 2022) 2.3B (27M) 3.2B/9.3B/80B CLIP Chinchilla ✓ ✓ ✓ ✓ ✓ ✓ ✓

OFA (Wang et al., 2022c) 60M+ 0.2B/0.5B/0.9B ResNet BART ✓ ✓ ✓ ✓ ✓ ✓

Gato (Reed et al., 2022) 2.2B+ 1.2B ResNet N/A ✓ ✓ ✓ ✓ ✓ ✓

UnIVAL (ours) 21.4M (5M) 0.25B ResNet/ResNeXt BART ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of different foundation models. Our UnIVAL approach is pretrained on a relatively small dataset,
tackles image/video/audio-text modalities, while unifying the 4 different aspects explained in Sec.3 and in Appendix C: unified
model, input/output format, pretraining tasks, and training objective.

Unified models. Building unified systems has been explored first in the NLP community. Raffel et al.
(2020) proposed the T5 transformer model, a text-to-text framework that solves many NLP tasks, each one
being described by a task-specific textual prefix. Since then, building general textual models has been heavily
explored with LLMs (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022). This inspired other
communities to build unified models. In the vision community, the work of Chen et al. (2022a), proposed a
pixel-to-sequence framework to unify different vision tasks such as object detection and instance segmentation.
For multimodal tasks, Cho et al. (2021) proposed to unify vision-language tasks as conditional text generation.
OFA (Wang et al., 2022c) then proposed a large-scale sequence-to-sequence framework and extended previous
approaches to more image-text tasks, including text-to-image generation. Similarly, Unified-IO (Lu et al.,
2022a), in addition to image-text tasks, targets many visual tasks including dense prediction ones. The closest
works to us are indeed OFA (Wang et al., 2022c) and Unified-IO (Lu et al., 2022a), however, we propose to
unify tasks across more modalities, with significantly smaller model and dataset sizes. The differences are
clarified in Tab.1, where we compare different foundation models involving unification.

Weight averaging across multimodal tasks. To combine multiple expert models with diverse special-
izations, we leverage a simple yet practical strategy: linear interpolation in the weight space. We follow
Ilharco et al. (2023); Daheim et al. (2023); Ortiz-Jimenez et al. (2023) suggesting that averaging networks
in weights can combine their abilities without any computational overhead. In particular, weight averaging
(WA) was shown useful in model soups approaches (Wortsman et al., 2022; Rame et al., 2022) to improve
out-of-distribution generalization as an approximation of the more costly averaging of predictions (Laksh-
minarayanan et al., 2017). Recent works extended WA to weights fine-tuned with different losses (Rame
et al., 2022; 2023b; Croce et al., 2023) or on different datasets (Matena & Raffel, 2022; Choshen et al., 2022;
Don-Yehiya et al., 2023; Rame et al., 2023a). In addition, some techniques try to leverage the features learned
on different auxiliary tasks for a given target task. Fusing (Choshen et al., 2022) averages multiple auxiliary
weights to serve as an initialization for the unique finetuning on the target task. In contrast, ratatouille
(Rame et al., 2023a) delays the averaging after the multiple finetunings on the target tasks: each auxiliary
model is finetuned independantly on the target task, and then all fine-tuned weights are averaged. These
approaches consider classification tasks, for a given modality (usually images): interpolating weights of models
trained on different multimodal tasks is very little investigated. The most similar and concurrent work is
the recent Sung et al. (2023) applying a complex architecture-specific merging strategy. This work differs
from us, as we explore WA during finetuning on multimodal downstream tasks, where they merge models
pretrained on different modalities.
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3 Pretraining of UnIVAL

Current multimodal models are pretrained on massive noisy datasets with a limited number of tasks (e.g.,
image-conditioned text generation). We focus on the challenge of achieving reasonable performance without
relying on vast amounts of data. Our approach involves multi-task pretraining on many good-quality
datasets. We hope that the quality mitigates the need for massive datasets, thereby reducing computational
requirements, while enhancing the overall model capability. The adoption of such an approach has become
increasingly easy due to the growing availability of public, human-annotated, or automatically generated
datasets. UnIVAL is unified along the following 4 axes (more detailed in Appendix C); model, input/output
format, pretraining tasks, and training objective.

3.1 Unified model

Our model’s core is a LM designed to process abstract representations. It is enhanced with lightweight
modality-specific projections that enable the mapping of different modalities to a shared and more abstract
representation space, which can then be processed by the LM. We use the same model during pretraining and
finetuning of all tasks, without any task-specific heads. We detail below key components of this architecture,
that are further detailed in Appendix D.

Shared module. To tackle multimodal tasks at small to mid-scale, we employ an encoder-decoder LM, as
its effectiveness for multimodal tasks has been demonstrated compared to decoder-only LMs (Wang et al.,
2021), in addition to its superiority in zero-shot generalization after multitask training (Wang et al., 2022d).
Another advantage of this architecture is the inclusion of bidirectional attention mechanisms in addition to
unidirectional causal attention. This is particularly beneficial for processing various non-textual modalities.
Our model accepts a sequence of tokens representing different modalities as input and generates a sequence
of tokens as output.

Light-weight specialized modules. To optimize data and compute requirements, it is crucial to map
different modalities to a shared representation space, before feeding them into the encoder of the LM. To
achieve this, we employ lightweight modality-specific encoders. Each encoder extracts a feature map, which
is then flattened to generate a sequence of tokens. These tokens are linearly projected to match the input
dimension of the LM. It is important to strike a balance in the choice of encoder complexity. Using overly
simplistic encoders, such as linear projections, may disrupt the LM, impede training speed, and necessitate
larger datasets and then computational resources. Conversely, employing excessively complex encoders can
hinder the benefits of learning a unified representation in the shared module. In our approach, we opt for
CNN encoders as they scale effectively with high-resolution inputs, minimize the number of output tokens,
and exhibit improved efficiency during both inference and training compared to transformers.

3.2 Unified input/output format

The input/output of all tasks consists of a sequence of tokens, where we use a unified vocabulary that contains
text, location, and discrete image tokens.

3.3 Unified pretraining tasks

To train a single model on many tasks, a unified representation of these tasks is necessary. As our model’s
core is a LM, we transform all tasks into a sequence-to-sequence format, where each task is specified by a
textual prompt (e.g., "What does the video describe?" for video captioning).

For pretraining tasks, we pretrain only on relatively small public datasets, such as image captioning (COCO
(Lin et al., 2014), Visual Genome (VG) (Krishna et al., 2017b), SBU (Ordonez et al., 2011), CC3M (Sharma
et al., 2018) and CC12M (Changpinyo et al., 2021) (only in the first stage)), VQA (VQAv2 (Goyal et al.,
2017), GQA (Hudson & Manning, 2019), VG (Krishna et al., 2017b)), Visual Grounding (VGround) and
referring expression comprehension (RefCOCO, RefCOCO+, RefCOCOg (Yu et al., 2016)), video captioning
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(WebVid2M (Bain et al., 2021)) and video question answering (WebVidQA (Yang et al., 2021a)). Note that
we only use the training sets during pretraining. Pretraining tasks are further detailed in Appendix E.

3.4 Unified training objective

We follow other approaches (Wang et al., 2022c; Alayrac et al., 2022) and optimize the model for conditional
next token prediction. Specifically, we use a cross-entropy loss.

3.5 Efficient pretraining

Besides unification across tasks and modalities, we detail different techniques for efficient pretraining.

Multimodal curriculum learning (MCL). Other works train the model on all tasks and modalities
simultaneously (Wang et al., 2022c; Li et al., 2022c). However, we have observed that models trained on more
modalities tend to exhibit better generalization to new ones. To capitalize on this, we employ a different
strategy wherein we gradually introduce additional modalities during training. This approach facilitates
a smoother transition to new modalities by providing a better initialization. Furthermore, this paradigm
significantly reduces computational requirements compared to training on the entire dataset at once. Previous
studies (Wang et al., 2022b) have demonstrated notable performance enhancements when employing this
paradigm for shared visual encoders (applied to both images and videos). In our work, we extend this setting
beyond shared visual encoders, and show its effectiveness for modality-specific projections and unified models.
This approach mainly yields gains in training efficiency. This is important as it allows us to leverage existing
pretrained multimodal models to incorporate new modalities. To validate the approach, we train the same
model on image-text and video-text data for 20 epochs using 2 training approaches; the one-stage approach
where we train on all data from the beginning, and our 2-stage curriculum training where we start to train
on image-text for 10 epochs then we continue training on all data for the next 10 epochs. Tab.2, shows that
the performance of both approaches are comparable. However, the 2-stage approach is more efficient in terms
of training time (18% faster) and memory (25% less GPU memory).

Method Training batch size COCO VQAv2 RefCOCO+ MSR-VTT MSRVTT-QA
Time (avg) (CIDEr) (Acc) (Acc@0.5) (CIDEr) (Acc)

One-stage 2h04m 4K 127.9 73.21 70.89 55.9 42.38
MCL 1h42m 3K 128 73.24 70.19 56.3 42.27

Table 2: Multimodal Curriculum learning (MCL). We show that our multi-stage training is more efficient than the one
stage one and leads to on par results. The training time is for one epoch on the same number of GPUs.

Multimodal task balancing. Contrary to previous work (Wang et al., 2022c), we find it more beneficial
to balance the tasks in the batch, especially when using highly unbalanced datasets. Tab.3 shows some results.
We compare models trained without balancing, where in each batch the number of examples for each task is
proportional to the corresponding dataset size, and with task balancing, where the tasks have similar number
of examples. The results show a consistent improvement after balancing especially with highly unbalanced
datasets (e.g., when adding CC12M, the overall performance drops significantly (B+CC12M)).

Implementation details for pretraining. The architecture of the LM is a typical encoder-decoder
transformer initialized by BART-base (Lewis et al., 2020) with few modifications, following the implementation
details of other work (Wang et al., 2022c). The modality-specific encoders are ResNet-101 pretrained on
ImageNet as image encoder, 3D ResNext-101 (Hara et al., 2018b) pretrained on kinetics 400 as video encoder
and PANN encoder pretrained for audio classification as audio encoder, we do not skip the last block as done
by previous approaches (Wang et al., 2022c). We use Adam optimizer with weight decay 0.01 and linear decay
scheduler for the learning rate starting from 2e − 4. All model parameters are pretrained in 2 stages; first we
train only on image-text tasks for 150k steps and batch size 3200, then we add video-text tasks and continue
training (after removing CC12M) for 90K steps with batch size 4K (2k for each modality). At the end of the
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Data Task Balancing COCO (CIDEr) VQA v2 (Acc) RefCOCO+ (Acc@0.5)
B ✗ 127.0 72.93 66.03
B+CC12M ✗ 126.8 72.79 68.04
B+VQA+Ground. ✗ 129.9 74.43 78.78
B+VQA+Ground. ✓ 130.3 75.44 78.99
B+VQA+Ground.+CC12M ✗ 129.9 75.21 78.85
B+VQA+Ground.+CC12M ✓ 131.3 75.34 79.47

Table 3: Multimodal task balancing. Task balancing significantly improve the performance, especially when using datasets
that largely differ in size (e.g., CC12M). The baseline (B) consists of; VQAv2, RefCOCO+/CC3M/SBU/COCO/VG. VQA;
GQA/VG. Ground.: RefCOCO/RefCOCOg.

last stage, we train the model for additional epoch after increasing the resolution of images from 384 to 480
and the videos from 224 × 224 and 8 frames to 384 × 384 and 16 frames. More details in Appendix G.

Data (Modality) Data size Method COCO VQAv2 RefCOCO+ MSR-VTT MSRVTT-QA
(# of examples) (CIDEr) (Acc) (Acc@0.5) (CIDEr) (Acc)

CC3M (I) 2.8M

One-task pretraining

117.3 69.5 55.2 - -
CC12M (I) 10M 120.2 71.6 56.7 - -
CC3M+CC12M (I) 12.8M 123.6 71.7 59.8 - -
COCO+SBU+VG+CC3M (I) 5M 125.8 72.0 56.1 - -
B (I) 5.6M

Multitask pretraining

127.0 72.9 66.0 - -
B+VQA (I) 7.94M 128.9 73.2 71.0 - -
B+Ground (I) 9.3M 129.8 74.4 77.6 - -
B+VQA+Ground (I) 11.6M 129.9 75.1 78.8 - -
B+VQA+Ground+CC12M (I) 21.6M 130.0 75.2 78.9 - -
B (I+V) 8.1M

Multitask pretraining

128.8 73.2 70.1 54.6 42.1
B+WebVidQA (I+V) 10.6M 128.0 73.2 70.2 56.3 42.3
B+VQA+WebVidQA (I+V) 13.9M 131.7 75.0 77.9 57.0 42.6
B+Ground.+WebVidQA (I+V) 17.6M 131.1 75.1 78.1 56.2 42.5

Table 4: Knowledge transfer across tasks and datasets. We show the synergy between different tasks and datasets.
Multitask learning is efficient as it leverages the collaboration across tasks. Models are trained longer on I+V tasks.

Knowledge transfer across tasks and modalities. We investigate the knowledge transfer between
tasks/modalities. We train for 10 epochs on image-text (I) datasets, followed by 10 epochs on image/video-text
(I+V) datasets. The results are shown in Tab.4. We first compare between single and multitask learning.
For single task, the models are trained on different image captioning datasets. For multitask learning, the
models are trained for several tasks such as captioning, VQA or grounding. Overall, multitask learning is
more efficient. as with comparable number of examples, it significantly outperforms models trained on single
task. Second, we investigate the synergy between tasks and datasets. For image-text pretraining, there is a
clear benefit of multitask training. Specifically, training on VQA helps to get +1.9 points on Captioning and
+5 points for Visual Grounding. Similarly training on VGround, we have larger improvements on captioning
and VQA. For image-text and video-text pretraining, VideoQA helps Video Caption and interestingly, Image
VQA helps video tasks. We noticed that large datasets like CC12M does not bring significant improvements,
compared to adding additional task with smaller number of examples. This also demonstrates that multitask
learning is more efficient than large-scale single task learning.

We put in Appendix I our experiments that study further the knowledge transfer across modalities.

4 UnIVAL on Downstream Tasks

In this section, we present the experimental results of UnIVAL following different setups; finetuning on
downstream datasets and direct evaluation without finetuning (e.g. zero-shot). As UnIVAL is unified and
targets more than two modalities, for fair comparison to, we highlight other unified approaches in yellow , and
models targeting more than 2 modalities in red . We did not highlight UnIVAL for clarity of presentation.
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4.1 Finetuning on multimodal tasks

For downstream tasks, we finetune on standard image-text, video-text and audio-text benchmarks (Appendix
G contains more implementation details). To have a fairer comparison with OFA, we finetune the author’s
released checkpoint (denoted as OFA†

Base) using the same hyperparametres as UnIVAL.

4.1.1 Image-text tasks

Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-u test-u

VL-T5 (Cho et al., 2021) - - - - - - - 71.3
UNITER (Chen et al., 2020c) 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLA (Gan et al., 2020) 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71
MDETR (Kamath et al., 2021) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
UniTAB (Yang et al., 2021b) 88.59 91.06 83.75 80.97 85.36 71.55 84.58 84.70
OFABase (Wang et al., 2022c) 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31
OFAHuge 92.04 94.03 88.44 87.86 91.70 80.71 88.07 88.78
UnIVAL (ours) 89.12 91.53 85.16 82.18 86.92 75.27 84.70 85.16

Table 5: Finetuning for Visual Grounding on RefCOCO, RefCOCO+, and RefCOCOg datasets. UnIVAL
achieves the new SoTA results among comparable model sizes. We report Acc@0.5.

Visual Grounding. We evaluate the ability of the model to localise spatially the text in the image. This
task consists of predicting the coordinates of bounding box given an input text. The task is cast as sequence
generation task, where the model outputs a sequence of 4 pixel locations corresponding to the 4 corners of
the bounding box. Tab.5 shows that we achive new SoTA results on all 3 benchmarks. Interestingly, our
scores are better than the reported OFA scores, which additionally pretrain for object detection.

Model VQAv2 SNLI-VE
test-dev test-std dev test

UNITER (Chen et al., 2020c) 73.8 74.0 79.4 79.4
OSCAR (Li et al., 2020b) 73.6 73.8 - -
VILLA (Gan et al., 2020) 74.7 74.9 80.2 80.0
VinVL (Zhang et al., 2021) 76.5 76.6 - -
UNIMO (Li et al., 2020a) 75.0 75.3 81.1 80.6
ALBEF (Li et al., 2021a) 75.8 76.0 80.8 80.9
ViCHA (Shukor et al., 2022) 75.0 75.1 79.9 79.4
METER (Dou et al., 2021) 77.7 77.6 80.9 81.2
Text-generation approaches
VL-T5 (Cho et al., 2021) - 70.3 - -
UniTAB (Yang et al., 2021b) 70.7 71.0 - -
GIT-L (Wang et al., 2022a) 75.5 - - -
OmniVL (Wang et al., 2022b) 78.3 78.4 - -
OFA†

Base (Wang et al., 2022c) 77.0 77.1 78.8 78.6
Large-scale pretraining
SimVLMLarge (Wang et al., 2021) 79.3 79.6 85.7 85.6
Florence (Yuan et al., 2021) 80.2 80.4 - -
PaLM-E 84B (Driess et al., 2023) 80.5 – - -
UnIVAL (ours) 77.0 77.1 78.2 78.6

Model Cross-Entropy Optimization
BLEU@4 METEOR CIDEr SPICE

VL-T5 (Cho et al., 2021) 34.5 28.7 116.5 21.9
OSCAR (Li et al., 2020b) 37.4 30.7 127.8 23.5
UniTAB (Yang et al., 2021b) 36.1 28.6 119.8 21.7
VinVL (Zhang et al., 2021) 38.5 30.4 130.8 23.4
UNIMO (Li et al., 2020a) 39.6 - 127.7 -
GIT-L (Wang et al., 2022a) 42.0 30.8 138.5 23.8
OmniVL (Wang et al., 2022b) 39.8 - 133.9 -
OFA†

Base (Wang et al., 2022c) 42.5 30.6 138.1 23.7
Large-scale pretraining
LEMON (Hu et al., 2022) 41.5 30.8 139.1 24.1
SimVLMLarge (Wang et al., 2021) 40.3 33.4 142.6 24.7
PaLM-E 84B (Driess et al., 2023) – – 138.0 –
UnIVAL (ours) 42.0 30.5 137.0 23.6

Table 6: Finetuning on Image-Text understanding and generation tasks such as VQAv2, SNLI-VE and Image
Captioning. Our text-generation based approach is competitive with other SoTA, while using less pretraining data.

Multimodal understanding tasks. We evaluate on VQA and Visual entailment tasks, that we cast as
text generation. Tab.6 shows a comparison with other approaches. Despite pretraining on less data for less
number of steps, our approach is on par with the previous unified model OFA (Wang et al., 2022c) finetuned
from the author’s released checkpoint (OFA†

Base). For comparable scale, we significantly outperform GITL

(Wang et al., 2022a) that uses CLIP-ViT-L as image encoder. Our model is competitive with other SoTA
models trained on large datasets that casted the task as classification. Note that, we evaluate both our model
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and OFA, with beam search for VQA, instead of all-candidate evaluation. For SNLI-VE, our approach uses
only the image and the text hypothesis, without the text premise as previously done in OFA (Wang et al.,
2022c). The results on SNLI-VE suggest that unified models such OFA and our models underperform on the
visual entailment task.

Multimodal generation tasks. We evaluate the model for image captioning on COCO dataset (Lin et al.,
2014), and report the scores on the Karpathy test split. Tab.6 shows that we are comparable with OFA.
Compared to the previous OmniVL model (Wang et al., 2022b) that pretrain on both image and video text
datasets, we largely outperform it by more than 3 points CIDEr. Our model is very close to other SoTA such
as GIT-L and large-scale trained ones such as LEMON and PaLM-E 84B.

4.1.2 Video-Text tasks

Here we evaluate the model on different video-text tasks.

Method #PT images/videos MSRVTT-QA MSVD-QA

ClipBERT (Lei et al., 2021) 0.15M/- 37.4 -
JustAsk (Yang et al., 2021a) -/69M 41.5 46.3
ALPRO (Li et al., 2022a) 3M/2.5M 42.1 45.9
MERLOT (Zellers et al., 2021) -/180M 43.1 -
VIOLET (Fu et al., 2021) 3.3M/182M 43.9 47.9
All-in-one (Wang et al., 2023a) -/283M 46.8 48.3
GIT (Wang et al., 2022a) 800M/- 43.2 56.8
OmniVL (Wang et al., 2022b) 14M/2.8M 44.1 51.0
LAVENDER (Li et al., 2022c) 14M/14.4M 45.0 56.6

UnIVAL (ours) 14M/2.5M 43.48 49.55

Table 7: Finetuning for VideoQA on MSRVTT-QA and MSVD-QA datasets. The text-generation based UnIVAL
model is competitive with SoTA models customized for videos or trained on significantly larger datasets. We report the accuracy.

Video question answering. We evaluate for VideoQA on MSRVTT-QA and MSVD-QA (Xu et al.,
2017) datasets. Tab.7 shows a comparison with other approaches. On MSRVTT-QA, we outperform large
scale pretrained models like GIT, including models trained on more videos (MERLOT) and customised for
VideoQA (JustAsk). We are competitive with the unified video model LAVENDER with heavier vision
encoder (Video Swin), trained on more videos (and restrict the generated answers to one word), and the
ununified OmniVL targeting both images and videos. On MSVD-QA, we have competitive performance to
previous work.

MSRVTT
Method #PT Image (Video) Data B@4 M R C
UniVL (Luo et al., 2020) (136M) 42.2 28.2 61.2 49.9
SwinBERT (Lin et al., 2022) - 41.9 29.9 62.1 53.8
CLIP4Caption (Tang et al., 2021) - 46.1 30.7 63.7 57.7
MV-GPTT (Seo et al., 2022) (53M) 48.9 38.7 64.0 60.0
LAVENDER (Li et al., 2022c) 14M (14.4M) - - - 60.1
UnIVAL (ours) 14M (2.5M) 46.42 29.01 62.92 60.5

ActivityNet-Captions
Method B@3 B@4 M
DCEV (Krishna et al., 2017a) 4.09 1.60 8.88
DVC (Li et al., 2018) 4.51 1.71 9.31
Bi-SST (Wang et al., 2018a) – – 10.89
HACA (Wang et al., 2018b) 5.76 2.71 11.16
MWSDEC (Rahman et al., 2019) 3.04 1.46 7.23
MDVC (Iashin & Rahtu, 2020b) – 1.46 7.23
BMT (Iashin & Rahtu, 2020a) 4.63 1.99 10.90
MV-GPTT (Seo et al., 2022) – 6.84 12.31
UnIVAL (ours) 7.67 4.76 10.51

Table 8: Finetuning for Video Captioning on MSRVTT and ActivityNet-Captions. UnIVAL is competitive
with other task/modality-customized SoTA that are trained on larger datasets. T : uses in addition text transcript. For
ActivityNet-Captions we use ground-truth action proposals.

Video captioning. We evaluate our model for Video Captioning. Tab.8 shows that our model is very
competitive with other approaches customized for videos, trained on much larger datasets (LAVENDER) and
use speech transcript as additional input (MV-GPT). On ActivityNet-Caption with ground truth proposal,
we outperform previous approaches by significant margin as per the B@4 metric and we are competitive with
the current SoTA MV-GPT.

9



Published in Transactions on Machine Learning Research (12/2023)

Dataset Method BLEU1 BLEU2 METEOR CIDEr SPICE

Audiocaps

(Kim et al., 2019b) 0.614 0.446 0.203 0.593 0.144
(Xu et al., 2021) 0.655 0.476 0.229 0.660 0.168

(MEI et al., 2021) 0.647 0.488 0.222 0.679 0.160
(Liu et al., 2022) 0.671 0.498 0.232 0.667 0.172
UnIVAL (ours) 0.690 0.515 0.237 0.713 0.178

Clotho v1

(Takeuchi et al., 2020) 0.512 0.325 0.145 0.290 0.089
(Koizumi et al., 2020) 0.521 0.309 0.149 0.258 0.097
(Chen et al., 2020a) 0.534 0.343 0.160 0.346 0.108

(Xu et al., 2020) 0.561 0.341 0.162 0.338 0.108
(Eren & Sert, 2020) 0.590 0.350 0.220 0.280 -

(Xu et al., 2021) 0.556 0.363 0.169 0.377 0.115
(Koh et al., 2022) 0.551 0.369 0.165 0.380 0.111
UnIVAL (ours) 0.569 0.367 0.178 0.380 0.114

Table 9: Finetuning on the new audio-text modality for audio-captioning. We compare UnIVAL to other audio-text
models on Audiocaps and Clotho v1 datasets. Despite not using audio-text during pretraining UnIVAL is very competitive
with other customized SoTA. We compare with models that rely only on audio as input. The best and next best scores are
bolded and underlined respectively.

4.1.3 Audio-Text Tasks

In addition to considering only modalities seen during pretraining, we explore if UnIVAL also works well for
potential new ones. To this end, we evaluate the model on the new audio modality. We use an additional audio
encoder pretrained on audio classification and finetune jointly the encoder and the core model pretrained on
our image/video-text data.

Audio captioning. We evaluate the model on standard audio captioning datasets; Clotho v1 and Audiocaps.
Tab.9 shows a comparison with other approaches that take solely the audio as input. Interestingly, we
significantly outperform other approaches on Audiocaps, and we are competitive with the current SoTA on
the small Clotho v1 dataset.

4.2 Evaluation without finetuning

Model VQAv2 COCO Caption RefCOCO+
test-dev Acc Val/Test CIDEr Val Acc@0.5

Unified-IOBase (Lu et al., 2022a) 61.8 104.0/– –
OFABase (Wang et al., 2022c) 68.91 74.47/75.27 30.45
UnIVAL 70.18 90.07/91.04 70.81

Table 10: Evaluation without finetuning. UnIVAL
outperforms OFA and competitive with Unified-IO trained
on more data.

Model OKVQA VizWiz NoCaps MSRVTT-QA MSVD-QA
Val Acc Val Acc CIDEr (out-domain) Test Acc Test Acc

Unified-IOBase (Lu et al., 2022a) 37.8 45.8 – – –
OFABase (Wang et al., 2022c) 40.16 17.33 48.95 – –
LAVENDER (Li et al., 2022c) – – – 4.5 11.6
Flamingo-3B (Alayrac et al., 2022) 41.2 28.9 – 11.0 27.5
UnIVAL 38.91 20.22 47.68 5.84 21.15

Table 11: Zero-Shot Evaluation. Scores in gray means the
dataset is used during pretraining. UnIVAL is competitive with
modality-specific models.

Evaluation on seen datasets. Following Lu et al. (2022a), we directly evaluate the representation learned
during pretraining without task-specific finetuning. We compare our model to different baselines following
the same setup, with the main difference that other baselines pretrain longer, on significantly larger datasets
and more tasks. Tab.10 shows that our approach outperforms the most similar baseline OFA on all tasks.
Compared to Unified-IO, we are significantly better on VQAv2, despite pretraining on less VQA datasets.

Evaluation on unseen datasets (zero-shot). We follow the same previous setup, but we evaluate the
model on new datasets, unseen during pretraining. Tab.11 shows a comparison with other models on several
image and video-text datasets. Our model is very competitive to OFA, and close to Unified-IO (grayed
scores) on OKVQA. However, Unified-IO pretrains on both OKVQA and VizWiz. Compared to the unified
video-language model LAVENDER, we significantly outperform it on video tasks. Our approach attains close
performance to the large-scale Flamingo-3B model on OKVQA and MSVD-QA.
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4.3 Generalization to new tasks and modalities

In this section we investigate the importance of pretraining on different modalities for the generalization to
new tasks and modalities. This is important in scenarios where we we want the model to do well also on
potentially novel tasks or modalities. Specifically, we want to validate the following hypothesis; pretraining
on more modalities, and thus on more tasks, allows to learn more modality and task-agnostic representation.

Modality Multitask Audiocaps
Image-Text ✗ 54.4
Image-Text ✓ 57.6
Text ✗ 53.2
Image-Text ✓ 58.4
Video-Text ✓ 57.4
Image-Text+Video-Text ✓ 58.8

Table 12: Finetuning for Audio Captioning on the Au-
diocaps dataset. We compare different initialization (after
pretraining on Images-Text (I), Videos-Text (V), or Text (T))
for audio captioning. Pretraining on more modalities leads to
better results when finetuning on audio captioning, a task not
seen during pretraining.

Method CLIP score ↑
Text 31.0
Image-Text 31.6
Image-Text+Video-Text 31.3

Table 13: Finetuning for text-to-image gen-
eration on COCO dataset. Multimodal pretrain-
ing improves the results when finetuning on new
text-to-image generation, a task not seen during
pretraining.

Better initialization for new modalities: from vision-language to audio-language tasks. We
finetune our model for audio captioning on the Audiocaps dataset. To compare the effect of pretraining on more
tasks and modalities, we evaluate the same model with different initialization; pretraining on text (the model
initialized from BART), pretraining on image-text (with and without multitask pretraining), pretraining on
video-text and pretraining on both image and video-text. We pretrain for the same number of epochs. Tab.12
shows that pretraining on image-text and video-text data leads to better scores on Audiocaps, compared to
the model pretrained on text. Interestingly, the model pretrained on both modalities attain the best scores.
This support our underlying hypothesis. We also show the importance of multitask pretraining, by comparing
two models trained on image-text tasks; one with single task on CC3M and CC12M (12.8M examples) and
another one with multitask on COCO, VG, SBU, CC3M, VQAv2 and RefCOCO+ (5.6M examples). The
results validates again the importance of multitasking in generalization to new modalities/tasks.

Better initialization for new tasks: from multimodal input to multimodal output. Here, we
investigate if our pretrained model can be a good initialization to add new tasks. We experiment with a
more challenging scenario; text-to-image generation. We finetune the model with different initialization on
the COCO dataset and report the CLIP score (Wu et al., 2022). Tab.13 shows that pretraining on either
image-text or video-text data helps to get additional improvement, with more improvement coming from
pretraining on image-text tasks.

5 Weight Interpolation of UnIVAL Models

Previously, we showed the synergy between tasks and modalities that results from multitask pretraining.
Here, instead, we use interpolation in the weight space to leverage this synergy. We follow the literature
on weight interpolation (Izmailov et al., 2018; Wortsman et al., 2022; Rame et al., 2022) to merge models
finetuned on different multimodal tasks, without inference overhead. Our framework is an ideal candidate for
this investigation, due to the unified architecture and the shared pretraining (Neyshabur et al., 2020), which
naturally enforces linear mode connectivity (Frankle et al., 2020) and thus averegability (without requiring
weight permutation as in Ainsworth et al. (2022)) across finetuned weights. We consider 4 image-text tasks;
Image Captioning (IC), VQA, Visual Grounding (VGround) and Visual Entailment (VE), and provide similar
results for video tasks in Appendix J. Then, given two models with weights W1 and W2 finetuned on 2
different tasks among those 4 image-text tasks, we analyze the performance of a new model whose weights
are W = λ · W1 + (1 − λ) · W2, where λ ∈ [0, 1]. We propose to study the following questions.
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Scenario 1 : can we trade off between 2 different multimodal tasks by weight interpolation? In
Fig.2 we plot the performances of the model whose weights are defined by interpolation (λ ∈ [0, 1]) between
different finetuned weights. All weights were initialized from the same “pretrain init”, which performs badly
on the considered tasks (grey star). By vanilla finetuning (blue stars at the endpoints of the blue line) on a
target task, we consistently improve results on the corresponding metric, yet at the cost of severe performance
degradation on other tasks; this suggests that the different tasks are in tension, and optimizing one degrades
another. Then, by weight interpolation between these two vanilla finetuned endpoints, we reveal a convex
front of solutions that trade-off between the different abilities, validating that we can effectively combine
the skills of expert models finetuned on diverse multimodal tasks. Actually, it is even possible to find an
interpolating coefficient λ so that the interpolated model outperforms the specialized one: e.g., in the first
subplot, the CIDEr score of the model for λ = 0.8 with weights 0.8 · θCap + 0.2 · θV QA is 138.26 vs. 136.10 for
the captioning expert θCap corresponding to λ = 1. We speculate the interpolated model benefits from the
synergy between different tasks.
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Figure 2: Weight interpolation between models trained on different multimodal tasks.

Besides, we also experiment a more costly finetuning approach, ratatouille (Rame et al., 2023a), where each
finetuning leverages the other tasks as auxiliary tasks. For example, when considering VQA as the target
task; (i) we first finetune weights on the auxiliary tasks (VGround, VE and IC); (ii) then we launch multiple
finetunings on VQA from these auxiliary weights; (iii) we uniformly average all the weights finetuned on
VQA to obtain W r

V QA. Similarly, to obtain W r
IC specialized on IC, we apply the same recipe but this time

the final finetunings are on the target task IC. Then, as shown on the left subplot from Fig.2, we plot the
performances for W r = λ · W r

V QA + (1 − λ) · W r
IC where λ ∈ [0, 1]. The obtained (yellow) front is to the right

and above the vanilla (blue) front, validating the superior performances of ratatouille.

Scenario 2 : given N models trained on different multimodal tasks, can we obtain a single
model that is good on seen, and new unseen tasks? We consider N = 4 models with weights {Wi}N

i=1
finetuned independently, one for each task. This time, we simply average them uniformly: λ = 1/N , and then
we consider the weight average (WA) 1

N

∑N
i=1 Wi and plot its performance in Fig.3. First, we observe that

this vanilla WA outperforms the “pretrain init”, evaluated on training tasks (in-distribution or ID setting)
but also when evaluated on new tasks (out-of-distribution or OOD setting), without any additional training.
Performances are improved when averaging uniformly ratatouille finetunings 1

N

∑N
i=1 W r

i . We also consider
the fusing (Choshen et al., 2022) strategy, which considers the average the auxiliary weights 1

N

∑N
i=1 Wi as

the initialization for a second step of finetunings on the target tasks to obtain {W f
i }N

i=1, and then report
the performance for 1

N

∑N
i=1 W f

i ; fusing performs better than vanilla fine-tuning in ID, but not OOD. When
comparing fusing and ratatouille, they perform similarly ID; yet, in the OOD setting, ratatouille outperforms
fusing, validating the results from Rame et al. (2023a). In conclusion, these experiments show that uniform
averaging can merge different finetuned models to get one general model that performs well on all seen and
unseen tasks. Though, results could be improved with tailored selection of the interpolation coefficients λ.
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Figure 3: Finetuning for OOD. We uniformly average the models finetuned on 4 image-text tasks and evaluate the resulting
model on the same (ID) and new (OOD) tasks.

6 Discussion

Limitations and discussion. Despite the good quantitative results, we find that UnIVAL suffers from
several limitations. First, UnIVAL can hallucinate; describe objects not present in the image (Rohrbach
et al., 2018), prioritizing coherence in its generation rather than factuality. In the case of VQA, the model
can generate plausible response that can not answered given the image. A similar challenge arises in visual
grounding, where UnIVAL may ground objects that are not mentioned in the text or not present in the image.
Nonetheless, in comparison to other large models like Flamingo (Alayrac et al., 2022), we show in Appendix K
that UnIVAL demonstrates reduced hallucinations. The reason why models such as Flamingo hallucinate
more might be due to using frozen LLMs, a component that is known to be susceptible to hallucinate (Zhang
et al., 2023; Shukor et al., 2023b). Second, it struggles in complex instruction following. We have
observed that the model’s performance is suboptimal to intricate instructions, such as identifying a specific
object in the presence of similar alternatives, detecting small or distant objects, and recognizing numerals.
Other limitations that are also important to address are; social and other biases that can be learned from the
datasets, toxic generations, and explainable generation. These limitations might not be solved by merely
scaling the model, and might need different approaches Shukor et al. (2023b); Rame et al. (2023b). In
Appendix K, we provide a detailed discussion on these limitations and interesting future directions.

Conclusion. In this study, we introduce UnIVAL, the first unified model capable of supporting image,
video, and audio-text tasks. We achieve this with a relatively small model with ∼ 0.25B parameter on dataset
of relatively small sizes. Our unified system, pretrained with multitasking, offers several advantages. It
harnesses the synergies between diverse tasks and modalities, enables more data-efficient training, and exhibits
strong generalization capabilities to novel modalities and tasks. The unification aspect of our strategy paves
the way to interesting techniques to merge models finetuned on different multimodal tasks: we demonstrate
that, in addition to multitask pretraining, merging by weight interpolation can further exploit the tasks
diversity. Ultimately, we aspire that our work inspires the research community and accelerates the progress
toward constructing modality-agnostic generalist assistant agents.
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Appendix

The Appendix is organized as follows:

• Section A: model card.

• Section B: detailed discussion about related work.

• Section C: background on unified models and different unification axes.

• Section D: details about model architecture.

• Section E: image and video-text pretraining tasks.

• Section F: illustration and details about multimodal curriculum learning.

• Section G: datasets and implementation details.

• Section H: finetuning only the linear connection (Parameter-Efficient Finetuning).

• Section I: ablation study including knowledge transfer across modalities and training efficiency.

• Section J: additional quantitative results.

• Section K: discussion of several limitations and future directions.

• Section L: qualitative results of several image-text tasks.

A Model Card

In the following table, we detail our model card (Mitchell et al., 2019).

Model Details

Model Date July 2023
Model Type Transformer encoder-decoder pretrained on text and trained

end-to-end to be conditioned on image, video and audio input.
Modality-specific encoders are based on convnets and pretrained
from classification on public benchmarks. All input tokens are
concatenated and fed to the encoder. The text generation is
conditioned on other modalities via cross-attention. (See Section
for details.)

Intended Uses

Primary Intended Uses The primary use is research on unified multimodal models that
span a wide range of applications such as; image/video/audio
captioning, image/video question answering, grounding/detection
and image generation. In addition, the study of the limitation
and biases of such kind of model, and novel approach for efficient
training and adaptation. Other similar multimodal applications
can also be considered, like multimodal dialogue, and text-guided
robotics applications.

Primary Intended Users The research community. The model will be made public.
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Out-of-Scope Uses Any downstream applications that can cause harm to society, or
without mitigation of associative safety measures.

Factors

Card Prompts – Relevant Factor The model is trained on english and based on BART (Lewis
et al., 2020) language model. The model should not be used any
downstream application without propoer factor analysis.

Card Prompts – Evaluation Factors The model inherits the biases and risks of the pretrained language
model (Lewis et al., 2020). It may also hallucinates some infor-
mation not present in the conditioned modality. On some tasks
we constraints the text generation to predifined set of answers,
however, generally, there is no mechanism that force it to not
produce toxic or racist output on all tasks.

Metrics

Model Performance Measures The performance using standard metrics to evaluate the model per-
formance on several public benchmarks, such as; Visual Question
Answering (accuracy on VQAv2, OKVQA, ,VizWiz, MSVD-QA
and MSRVTT-QA), Visual Grounding (IoU>0.5 on RefCOCO, Re-
fCOCO+ and RefCOCOg), Image Captioning (CIDEr, METEOR,
BLEU, SPICE on MSCOCO, MSR-VTT, Audiocaps and Clotho
v1) and Text to Image Generation (CLIP score on MSCOCO).

Decision thresholds N/A
Approaches to Uncertainty and Vari-
ability

The relatively costly pretraining prevent from doing several runs,
however the different ablation study and the evaluation on many
datasets validate the overall performance of the model.

Evaluation Data

Datasets Check Tab. 15 for more details.
Motivation The datasets span different standard benchamrks across image,

video and audio modalities. This show the overall capability of
the model to process different modalities.

Preprocessing Text is process with BPE tokenizers, audio is transformer to mel
spectorgram and we randomly sample some frames from videos.
Some addition data augmentation techniques are used during
training.

Training Data
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Datasets We only use public datasets, such as image captioning (COCO
(Lin et al., 2014), Visual Genome (VG) (Krishna et al., 2017b),
SBU (Ordonez et al., 2011), CC3M (Sharma et al., 2018) and
CC12M (Changpinyo et al., 2021) (only in the first stage)), VQA
(VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
VG (Krishna et al., 2017b)), Visual Grounding (VGround) and
referring expression comprehension (RefCOCO, RefCOCO+, Ref-
COCOg (Yu et al., 2016)), video captioning (WebVid2M (Bain
et al., 2021)) and video question answering (WebVidQA (Yang
et al., 2021a)). We only use the training sets during pretraining.

Quantitative Analyses

Unitary Results Our unified model is competitive to state of the art approaches
customized for less modalities. It attains state of the art results
on Visual Grounding and Audio Captioning. Please check Sec.4.1
for more details.

Intersectional Results N/A.

Ethical Considerations

Data We use only public benchmarks, however some benchmarks are
not filtered from racist, sexist or otherwise harmful content.

Human Life The model is not intended to be used for safety critical applica-
tions.

Mitigations Constrained text generation can be adapted for some tasks. How-
ever, for open-ended generation post processing or some engineered
prompts might mitigate some of the biases. Overall, filtering the
pretraining data can be ver effective approach.

Risks and Harms We use public datasets. Not all of them are filtered from from
toxic and personal data.

Use Cases Forcing the model (finetuning or prompting) to generate harmful
or racist text. Other use cases regarding general language models
are also relevant.

Table 14: UnIVAL Model Card. We follow the framework of (Mitchell et al., 2019).

B Related Work

Unimodal pretraining Pretraining on large uncurated datasets has been a substantial ingredients in the
vision and NLP communities to develop powerful models that generalize to a wide range of tasks. For vision
models, supervised (Touvron et al., 2021; Dehghani et al., 2023) and self supervised (Chen et al., 2020b;
Caron et al., 2020; Zbontar et al., 2021; He et al., 2022) techniques have extensively investigated , while for
NLP, the widely used training objective is next token prediction (Brown et al., 2020; Hoffmann et al., 2022;
Touvron et al., 2023).

Recently, these domains started to converge on a simple training paradigm; joint scaling of the pretraining
data, model size and compute, while using a unified architecture and training objective. Surpassing a certain
scaling threshold has elicited new emergent capabilities, especially in LLMs (Brown et al., 2020; Chowdhery
et al., 2022), that allows such models to solve new reasoning tasks that were out of reach few years ago. Once
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such models are available, they can be seamlessly adapted without retraining, via prompting such zero-shot
or few-shot In Context Learning. Scaling vision transformer models (Dehghani et al., 2023) lead to be more
robust and aligned to human object recognition.

While being very successful, training such models is hard, extremely costly and need dedicated infrastructure.
However, the public release of many of these models allow to leverage them for variety of tasks. In this work
we leverage unimodal pretrained models for multimodal tasks.

Multimodal pretraining. So far, most of the effort to build multimodal models have been focused on
vision-language pretraining. Contrastive based approaches (Radford et al., 2021; Jia et al., 2021) try to learn
shared and aligned latent space by training on hundred of millions of data. More data efficient approaches
(Shukor et al., 2022; Li et al., 2021a; 2022b; Dou et al., 2021; Singh et al., 2022), have relied on additional
multimodal interaction modules and variety of training objectives such as image-text matching, masked
language modeling and image-text contrastive (Chen et al., 2020c; Kim et al., 2021; Lu et al., 2019; Zhang
et al., 2021). In the video-language community, similar approaches have been mildly adapted to model the
interaction between language and frames sequences (Cheng et al., 2022; Wang et al., 2023a; Fu et al., 2021;
Zellers et al., 2021; Yang et al., 2021a). Few work have targeted both image and video language pretraining
(Wang et al., 2022b).

These works have been following the scaling trend as in unimodal pretraining. Scaling the model went from
couple of billions of parameters (Yu et al., 2022; Wang et al., 2022e;a) to tens of billions (Chen et al., 2022b;
Alayrac et al., 2022).

Unified models Building unified systems has been triggered first in the NLP community. (Raffel et al.,
2020) proposed the T5 transformer model, a text-to-text framework, where the same pretrained model is used
to solve many NLP tasks, each one is described by task-specific textual prefix. Since then, building general
textual models has been heavily investigated by LLMs (Brown et al., 2020; Rae et al., 2021; Chowdhery
et al., 2022). The success of unified Language models, have inspired other communities. In the vision
community, (Chen et al., 2022a) proposed a pixel-to-sequence framework to unify different vision tasks such
as object detection and instance segmentation. For multimodal tasks, (Cho et al., 2021) proposed to unify
vision-language tasks, including discriminative ones, as conditional text generation. This was followed by
(Yang et al., 2021b), which targets also grounded tasks and does not rely on an object detection model. OFA
(Wang et al., 2022c) then proposed a large scale sequence-to-sequence framework, and extended previous
approaches to more image-text tasks, including text to image generation. Similarly, Unified-IO (Lu et al.,
2022a), in addition to image-text tasks, targets many visual tasks including dense prediction such as depth
estimation and image segmentation. The most closest to us is the work of OFA and Unified-IO, however, we
propose to unify tasks across many modalities, and use smaller model and dataset sizes.

Efficient multimodal learning The current paradigm in training multimodal models is to train all model
parameters, even when using pretrained models (Chen et al., 2022b; Wang et al., 2022c; Li et al., 2022b).
Despite attaining SoTA, these approaches are extremely costly to train. To overcome this, recent approaches
showed that pretrained models, generalize well to multimodal tasks, where it is possible to use a frozen LM
with a powerful multimodal encoder such as CLIP, and train only a handful of parameters, such as the vision
encoder (Eichenberg et al., 2021), the vision connector (Merullo et al., 2022; Mañas et al., 2022; Koh et al.,
2023; Li et al., 2023) or additionally the Adapters (Eichenberg et al., 2021; Yang et al., 2022). This paradigm
was then generalized in (Shukor et al., 2023a), to other modalities, such video and audio, where the authors
showed that it is even possible train only a linear projection layer to adapt pretrained unimodal encoder (e.g.,
pretrained on ImageNet) and a language decoder to do multimodal tasks.

Another line of research, is data-efficient approaches, recent work shows that it is possible to get comparable
results by training on significantly less data, by designing better training objectives (Shukor et al., 2022),
data augmentation (Li et al., 2021b) and curriculum learning (Srinivasan et al., 2022). In this work, we focus
on parameter-efficient finetuning, especially, training only the linear connection.

Weight interpolation and mutltimodal tasks. Our strategy enable the training of multiple expert
models with diverse specializations. To combine them, we leverage a simple yet practical strategy: linear
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interpolation in the weight space, despite the non-linearities in the network’s architecture. This weight
averaging (WA) strategy is in line with recent findings on linear mode connectivity (Frankle et al., 2020;
Neyshabur et al., 2020, LMC): weights fine-tuned from a shared pre-trained initialization remain linearly
connected. Recent works (Ilharco et al., 2023; Daheim et al., 2023; Ortiz-Jimenez et al., 2023) suggest
that averaging networks in weights can combine their abilities without any computational overhead; for
instance, the average of an English summarizer and an English-to-French translator will behave as a French
summarizer (Jang et al., 2023). Model soups approaches (Wortsman et al., 2022; Rame et al., 2022) improve
out-of-distribution generalization and show that weight averaging actually approximates predictions averaging
(Lakshminarayanan et al., 2017) when the LMC holds. The LMC was extended to weights fine-tuned with
different losses (Rame et al., 2022; Croce et al., 2023; Rame et al., 2023b) or on different datasets (Matena
& Raffel, 2022; Ilharco et al., 2022; Choshen et al., 2022; Don-Yehiya et al., 2023; Rame et al., 2023a; ?).
Moreover, several other merging approaches (Matena & Raffel, 2022; Yadav et al., 2023) have been proposed,
though with arguably minor empirical gains over the simpler linear interpolation. For example, (Matena &
Raffel, 2022) considers the Fisher information; (Yadav et al., 2023) resolve updates conflicts across weights.
Neuron permutations strategies (Entezari et al., 2022; Ainsworth et al., 2022; Jordan et al., 2023) address the
ambitious challenge of enforcing connectivity across weights with different random initializations, though
so far with moderate empirical results. Most of exisiting WA approaches consider very similar tasks, such
as image classifications from different datasets or text classification/generation. Interpolating weights of
models finetuned on different multimodal tasks, is little investigated, with no work exploring this technique
in multimodal foundation models. The most similar and concurrent work is the recent Sung et al. (2023)
applying a complex architecture-specific merging strategy involving weight averaging for models pretrained
on different modalities. Another difference, is that we explore WA for multimodal downstream tasks.

C Unified Foundation Models: 4 Unification axes

While many previous works have attempted to build unified models, they still have some customization in
terms of architectures and tasks. Our work tries to unify most aspects of the model, following a recent line of
work (Wang et al., 2022c). In the following, we detail the 4 unification axes that distinguish our work from
previous ones.

Unified input/output. To have a unified model, it is important to have the same input and output format
across all tasks and modalities. The common approach is to cast everything to sequence of tokens as in
language models. Multimodal inputs, such as images, videos and audios can be transformed to tokens by
patchifying or using shallow modality-specific projections. Multimodal outputs can also be discritized, by
using VQ-GAN for images and discrete pixel locations for visual grounding. A unified vocabulary is used
when training the model.

Unified model. The unified input/output representation allows to use a single model to solve all tasks,
without the need to any adaptation when transitioning from the pretraining to the finetuning phase (e.g., no
need for task-specific heads). In addition, the current advances in LLMs, especially their generalization to
new tasks, make it a good choice to leverage these models to solve multimodal tasks. The common approach
is to have a language model as the core model, with light-weight modality-specific input projections.

Unified tasks. To seamlessly evaluate the model on new unseen tasks, it is essential to reformulate all
tasks in the same way. For sequence-to-sequence frameworks, this can be done via prompting, where each
task is specified by a particular textual instruction. In addition, discriminaive tasks can be cast to generation
ones, and thus having only sequence generation output.

Unified training objective. Due to the success of next token prediction in LLMs, it is common to use
this objective to train also unified models. An alternative, is to use an equivalent to the MLM loss. The
same loss is used during pretraining and finetuning.
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Figure 4: UnIVAL architecture. We use a typical encoder-decoder transformer, in addition to light-weight
CNN-based modality encoders.

D Model Architecture

To tackle multimodal tasks at small to mid-scale, we employ an encoder-decoder LM (Vaswani et al.,
2017; Lewis et al., 2020) (shown in Fig.4), as its effectiveness for multimodal tasks has been demonstrated
compared to decoder-only models (Wang et al., 2021), and their superiority in zero-shot generalization after
multitask training (Wang et al., 2022d). The encoder consists of stack of blocks of Self-Attention (SA), Layer
Normalization (LN), GELU activations and Feed Forward Network (FFN) layers. The decoder blocks contains
additionally cross-attention (CA) layers to attend to the encoder last layer tokens. Specifically, the output
tokens of the encoder are considered as keys and values in the CA, while the text generated in the decoder is
considered as queries. Following other approaches (Wang et al., 2022c), and to stabilize the training, we add
LN layers after the SA and the FFN, and head scaling to the SA. We use independent absolute and relative
position embeddings for text, images, videos and audios. We add different modality token embeddings to
distinguish text from other modalities. The model parameters are initialized from BART-base model (Lewis
et al., 2020).

For each modality, we use light-weight convolution architectures (e.g., the encoders in orange and green in
Fig.4). For images, we follow other work (Wang et al., 2021; 2022c) and use ResNet-101 trained on ImageNet.
For videos, we use 3D ResNext-101 (Hara et al., 2018a) trained on Kinetics-400 (Kay et al., 2017), and for
audio, we use PANN-CNN14 (Kong et al., 2020) trained on AudioSet (Gemmeke et al., 2017). We do not
skip the last block in the encoders (Wang et al., 2022c), as we find that it reduces the number of tokens and
accelerate the training (see Tab.18).

Each modality is encoded in the modality projection (for text we use linear embedding layer), and then
concatenated to form a sequence of tokens (e.g., textual and visual) before being passed to the encoder (for
some tasks such as VQA, we pass also the question to the decoder). After encoding, the output of the encoder
interact with the decoder via cross-attention. The decoder generates the response auto-regressively starting
from a special BOS token.

E Pretraining Tasks

We pretrain UnIVAL on the following image/video-text tasks:

Image Captioning. The model takes as input an image and "what does the image describe?" as text and
generate a textual description of the image.
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Visual Question Answering (VQA). The model takes as input an image and a question and generates
a textual answer based on the image.

Visual Grounding (VGround.). The model takes an image and "Which region does the <text> describe?"
as text and the model generates the coordinates of the bounding box described by the <text>.

Grounded Captioning (GC). This is similar to image captioning, but the model should generate a
description of a specific region in the image. Specifically, the model takes an image and "what does the region
describe? region: <x1, y1, x2, y2>" as text and generates a caption of the region. <x1, y1, x2, y2> are
coordinates of the region bounding box.

Image-Text Matching (ITM). The model takes an image and a text and should predict if the text
corresponds to the image. For a given image we randomly sample a caption as negative text and consider the
original caption as positive. The input text is "Does the image describe <text>?" and the output is either
"Yes" or "No".

Video Captioning. Similarly to image captioning, the model takes a video and "what does the video
describe?" and generates a video description.

Video Question Answering (VideoQA). The model takes a video and question and should answer the
question based on the video.

Video-Text Matching (VTM). The model should predict if a text corresponds to a given video or not.

Stage 1 Stage 2 Stage 3 Stage N
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Text 
data

LM

Text 
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Figure 5: Multimodal Curriculum Learning. We pretrain UnIVAL in different stages. (1) The first
pretraining is a typical training for language models on corpus of text. (2) Then, the model is trained
on image and text data to obtain an Image-Language Model (ILM). (3) In the third stage, the model is
trained additionally on video-text data to obtain a Video-Image-Language-Model (VILM). To obtain modality
agnostic models the model should be trained on many modalities. Following this setup, UnIVAL can be
used to solve image/video/audio-text tasks.

F Multimodal Curriculum Learning

Training on many tasks and modalities is computationally expensive, especially when considering long videos
ore audios. To overcome this, we propose a multistage curriculum training approach (depicted in Fig.5) in
which we progressively add more modalities. In stage 1, the model is trained on large corpus of text following
typical next token prediction or other LM training. Thanks to the many open sourced pretrained language
models, it is easier to leverage and initialize from existing LMs (e.g., BART (Lewis et al., 2020) as in our
case). In stage 2, the model is trained on many tasks of images and texts. Afterwards, video-text datasets
are added and the model is trained on both image-text and video-text data. This is a general paradigm to
efficiently train multimodal models on many modalities. Training on many tasks is more efficient, however,
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the standard training on image-text alignment on image captioning can be also considered. Note that, to
keep good performance on unimodal tasks, it is better to add also unimodal data.

While this training scheme is more efficient than training on all data from the beginning, using more efficient
approaches from the continual learning community (Wang et al., 2023b) is extremely useful in this context,
to limit the number of examples as we add more modalities, especially if the objective is to obtain modality
agnostic models. Training only on the new modalities will make the model forget about previous ones.

G Data and Implementation Details

Table 15: Downstream tasks and datasets. We show the size of different splits used in our work.

Dataset Modality Task Size (Train/Val/Test)

COCO (Lin et al., 2014) Image-Text Image Captioning 113K/5K/5K
nocaps (Agrawal et al., 2019) Image-Text Image Captioning –/4.5K/–
VQAv2 (Goyal et al., 2017) Image-Text VQA 443K/214K/453K
OKVQA (Marino et al., 2019) Image-Text VQA –/5K/–
VizWiz (Gurari et al., 2018) Image-Text VQA –/4.3K/–
SNLI-VE (Xie et al., 2019) Image-Text Visual Entailment 30K/1K/1K
RefCOCO (Yu et al., 2016) Image-Text Visual Grounding 120K/6K/5K
RefCOCO+ (Yu et al., 2016) Image-Text Visual Grounding 120K/6K/5K
RefCOCOg (Yu et al., 2016) Image-Text Visual Grounding 80K/5K/10K
COCO (Lin et al., 2014) Image-Text Text to Image Generation 80K/64K/30K

MSR-VTT (Xu et al., 2016) Video-Text Video Captioning 6.5K/0.5K/3K
ActivityNet-Caption (Krishna et al., 2017a) Video-Text Video Captioning 37.5K/–/17K
MSRVTT-QA (Xu et al., 2017) Video-Text VideoQA 156K/12K/70K
MSVD-QA (Xu et al., 2017) Video-Text VideoQA 30K/6K/12K

Audiocaps (Kim et al., 2019a) Audio-Text Audio Captioning 47K/0.5K/1K
Clotho v1 (Drossos et al., 2020) Audio-Text Audio Captioning 17.5K/1K/–

G.1 Implementation details of downstream tasks.

For image-text tasks, we keep the hyperparameters during finetuning close to those in OFA (Wang et al.,
2022c). The downstream datasets are detailed in Tab.15.

VQA. We finetune on VQAv2 dataset and cast the task as text generation. The model is trained for 5
epochs with a batch size of 256 using Adam optimizer. We use a learning rate of 1e − 4 with linear decay and
label smoothing of 0.1. The image resolution is increased to 480 and we use exponential moving average with
0.9999 decay. We use Trie based search to constraint the generated answers to the top 3.1k answers. We
freeze the encoder and decoder embeddings during finetuning. The question is passed to both the encoder
and decoder as prompt.

Image Captioning. We finetune on MSCOCO karpathy split and report standard captioning metrics. The
model is trained for 4 epochs with a batch size of 128. The image resolution is set to 480 and the learning
rate to 1e − 5 with linear decay. We use an encouraging (Zhao et al., 2022) cross entropy loss with label
smoothing of 0.1. We freeze the encoder and decoder embeddings during finetuning.

Visual Grounding. We finetune on RefCOCO, RefCOCO+ and RefCOCOg for 8 epochs with batch size
of 256. The images are resized to 512 and the learning rate start with 5e − 5 and decreases linearly. We train
with cross entropy and label smoothing of 0.1. We limit the generation length to 4 and report the Acc@0.5.

Visual Entailment. The model is trained for 4 epochs with batch size of 256 and learning rate of 5e-5
that deacreases linearly. The image resolution is set to 480. The model takes only the image and the text
hypothesis, without the text premise, and the generation is constrained to yes/maybe/no using Trie-based
search. The text is passed to both the encoder and decoder as prompt.

31



Published in Transactions on Machine Learning Research (12/2023)

VideoQA. The model is trained for 25 epochs on MSRVTT-QA and 40 epochs on MSVD-QA with a
batch size of 128 and learning rate of 1e − 4 that decreases linearly. We sample randomly 8 frames with
resolution 384. We train with cross entropy with encouraging loss and label smoothing of 0.1. We use
exponential moving averaging model pass the question to both the encoder and the decoder. The answer
generation is constrained to the set of possible answers via Trie-based search. We freeze the encoder and
decoder embedding layers.

Video Captioning. We train on MSR-VTT for 15 epochs and a batch size of 256 with a starting learning
rate of 1e − 5 that decreases linearly. We randomly sample 16 frames with resolution 384 and train with
an encouraging cross entropy loss and label smoothing of 0.1. We freeze both the encoder and the decoder
embedding layers.

Audio Captioning. We train for 10 epochs on Audiocaps and Clotho v1 with a batch size of 128 and
starting learning rate of 1e − 4 (5e − 5 for clotho v1). The mel bins is set to 64 and the hop size to 200. We
train with encouraging cross entropy loss with label smoothing of 0.1 and freeze the encoder and decoder
embedding layers.

Text-to-Image Generation. We follow previous work (Wang et al., 2022c) and finetune the model on the
train set of MSCOCO and evaluate on 30K images from its validation set. We use the discrete tokens of
VQ-GAN that are then passed to a frozen VQ-GAN decoder to generate the images. We start by training
with cross-entropy loss for 50K steps and batch size of 512 (∼ 60 epochs) and lr 1e-3, followed by CLIP score
optimization for 5K steps and batch size of 128 and lr 1e-6. When evaluating the model we select the best
image, among 24 generations based on CLIP score. We report Inception score (IS) (Salimans et al., 2016),
Fréchet Inception Distance (FID) (Heusel et al., 2017) and CLIP simliarity score (CLIPSIM) (Wu et al.,
2022).

H Parameter Efficient Fine-Tuning (PEFT): Training only the Linear Connection.

Method PT modality Model size COCO VQA v2 val MSR-VTT MSRVTT-QA Audiocaps
PromptFuse (Liang et al., 2022) Text 0.22B - 34.1 - - -
FrozenBiLM (Yang et al., 2022) Video-Text 0.89B - - - 47.0 -
eP-ALM (Shukor et al., 2023a) Text 2.8B 97.2 53.3 50.7 36.7 63.6
UnIVAL (ours) Image-Text (S1) 0.25B 129.8 71.6 39.8 19.1 47.5
UnIVAL (ours) Image+Video-Text (S2) 0.25B 132.7 71.6 51.8 33.6 49.5

Table 16: Finetuning only the linear connection on different image/video/audio-text tasks. Despite the significantly
smaller size of UnIVAL, the model can achieve reasonable performance when finetuned on new modalities. Scores in gray are
for models pretrained on the same target modality.

Once we have powerful pretrained models, it becomes important to develop highly efficient approaches
that can be adapted to various tasks and modalities. Recent studies (Shukor et al., 2023a; Merullo et al.,
2022) have demonstrated the possibility of efficiently adapting unimodal pretrained models to multimodal
tasks, by training only a linear layer. The key idea is to project modality-specific tokens onto the input
text space of a language model, effectively transforming them into textual tokens, while keeping all the
pretrained parameters frozen. While this approach has proven effective with large models containing billions
of parameters, in this section, we explore this setup with smaller models comprising several hundred million
parameters. Following UnIVAL pretraining, we train only the linear projection responsible for mapping the
output of the modality-specific encoders to the input of the LM encoder.

As shown in Tab.16, UnIVAL achieves reasonable performance on new tasks and modalities despite the
smaller parameter count. However, these results suggest that achieving competitive performance with only
the linear connection may require larger models or training on larger datasets.
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Pretrain Modality COCO VQA v2 RefCOCO+ MSR-VTT MSRVTT-QA
✗ 37.9 62.1 6.4 47.7 23.0
I 128.0 73.1 70.5 47.3 29.0
V 96.6 68.4 24.3 54.5 41.9

I+V 128.0 73.2 70.2 56.3 42.3

Table 17: Knowledge transfer across modalities. Training on images helps significantly the video tasks. However, training
on videos does seem to have a significant effect on image tasks.

I Ablation Study

Knowledge transfer across modalities. Here we investigate the knowledge transfer between modalities,
in other words, how learning a new modality can affect the performance of the model on other modalities.
We test the following hypothesis; pretraining on more modalities should improve the overall performance on
all tasks.

Tab.17 shows that in general learning a new modality, improves the performance on other modalities. Besides,
it significantly helps to solve the downstream tasks of the same modality. Compared to model initialized from
scratch, training solely on image-text datasets help VideoQA. In addition, training on video-text datasets (V)
significantly helps image-text tasks on VQAv2, COCO and RefCOCO+. Finally, training on both image and
video-text datasets improve the performance on video-text task (w.r.t to pretraining on video) and did not
degrade the performance on image-text tasks.

Efficiency during training. Another important aspect of our approach is the significantly shorter training
time. In Tab.18, we compare the training time (finetuning for one epoch) with the previous unified model
OFA (Wang et al., 2022c). Compare to OFA, our training time is significantly reduced, especially with tasks
requiring high image resolution (e.g., 512×512 with RefCOCO+). This is mainly due to the small number of
visual tokens passed to the LM, that results from using additional convolution block in the image encoder.
In addition to the training time, UnIVAL requires a ∼ 20 GB/GPU memory when finetuned on COCO
with batch size of 16. During inference (on 1 GPU AMD Instinct™ MI250X with batch size of 1), the model
requires 1.2GB of GPU memory and ∼ 0.015 seconds to generate a COCO caption.

Method COCO VQA v2 RefCOCO+
OFA 5.7 11.5 1.3
UnIVAL 3.1 8.0 0.7

Table 18: Estimated finetuning time in GPUh for one epoch training. UnIVAL is significantly more efficient than
OFA, especially with tasks using high image resolution. The total time is divided by the number of training GPUs.

J Additional Results

J.1 Text-to-image generation

Model Model Size Pretrain FID↓ CLIPSIM↑ IS↑
DALLE (Ramesh et al., 2021) 12B ✓ 27.5 - 17.9
CogView (Ding et al., 2021) 4B ✓ 27.1 33.3 18.2
GLIDE (Nichol et al., 2022) 3.5B ✓ 12.2 - -
Unifying (Huang et al., 2021) 0.2B ✗ 29.9 30.9 -
NÜWA (Wu et al., 2022) 0.9B ✓ 12.9 34.3 27.2
OFA†

Base (Wang et al., 2022c) 0.2B ✓ 13.9 34.0 26.7
UnIVAL (ours) 0.2B ✗ 15.4 33.6 25.7

Table 19: Text-to-image generation on MSCOCO. Pretrain: image generation is included during pretraining.

We finetune UnIVAL on MSCOCO train set and compare the performance with other approaches. Tab.19,
shows that our model is competitive with previous approaches, despite being significantly smaller in size
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and does rely on image generation during pretraining. Compared to OFA, we have very close performance,
especially w.r.t the CLIPSIM score.

J.2 Linear interpolation of weights

To complement our study from the main paper, we show in Fig.6 more results when interpolating weights
finetuned on different multimodal tasks. These results (on both image-text and video-text tasks) confirm
those previously reported in the main paper.
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Figure 6: Addition weight interpolation results.

J.3 Finetuning for OOD generalization.

Fig.20 explores the generalization abilities of different finetunings strategies after zero-shot evaluation. We
evaluate the OOD performances on 3 datasets that were not seen during pretraining nor during finetuning;
OKVQA (a VQA task), VizWiz (a VQA task) and nocaps (an IC task). We use the model trained on
VQAv2 for OKVQA/VizWiz and on COCO Captioning for nocaps. While fusing outperforms on VizWiz the
vanilla finetuning (on VQAv2), it lags behind on the other 2 evaluation datasets. Ratatouille, significantly
outperforms both vanilla and fusing finetuning on all OOD datasets, which echos the observation from
Rame et al. (2023a). The reason being that features diversity (promoted by delayed averaging in ratatouille)
increases robustness, and thus helps OOD generalization.

Model OKVQA VizWiz NoCaps
Val Acc Val Acc CIDEr (out-domain)

Vanilla 38.06 13.57 94.39
Fusing 35.12 15.63 93.58
Ratatouille 38.97 18.48 95.28

Table 20: Zero-shot evaluation of different finetunings strategy.

K Discussion

In this section we discuss some of the limitations and interesting future directions.
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K.1 Limitations

Hallucinations, abstention and other biases. We find that our model suffers from different kind of
hallucinations (Fig.9), however, similar to OFA, it is less inclined to hallucinate (especially after finetuning)
compared to other multimodal models (Tab.21), including larger models like Flamingo (Alayrac et al., 2022)
(Fig.7). Reducing hallucinations remains an ongoing challenge within the research community, which has
become more prominent with the emergence of large-scale multimodal models. While certain recent studies
(Biten et al., 2022; Dai et al., 2022) have proposed partial solutions to address this problem, an effective
approach for mitigating hallucinations in large-scale pretrained models has yet to be established. Additionally,
refraining from generating answers (Dancette et al., 2023) or visual grounding can be promising directions
to enhance factuality and diminish hallucinations. Nevertheless, despite the progress made by the research
community, there is still much work to be done in this area. Other biases and limitations that are crucial to
address, and have not been covered in our work are; social biases, toxic generation, and explainable generation.
As shown in (Shukor et al., 2023b), these limitations might not be solved by merely scaling the models and
more dedicated approaches (Rame et al., 2023b; Sun et al., 2023) might be useful to address some of these
issues.

Method CIDEr↑ CHAIRS ↓ CHAIRI ↓
OSCARBase (Li et al., 2020b) 117.6 13.0 7.1
VinVLLarg (Zhang et al., 2021) 130.8 10.5 5.5
BLIPLarge (Li et al., 2022b) 136.70 8.8 4.7
OFA (Wang et al., 2022c) 75.27 4.36 3.98
UnIVAL 91.04 4.44 3.64
OFA Ft (Wang et al., 2022c) 138.1 3.06 2.03
UnIVAL Ft 137.0 3.26 2.20

Table 21: Hallucinations. Comparison with different foundation models. SoTA results from (Dai et al., 2023b).

Q: what is on the phone screen?  Q: what can you see out the window? Q: whom is the person texting?

A: a text message from a friend A: a  parking lot A: the driverFlamingo:

A: nothing A: restaurant A: manUnIVAL:

Figure 7: Hallucinations with open-ended VQA. UnIVAL is less prone to hallucinate compare to Flamingo-80B (Alayrac
et al., 2022).

Complex instructions following. UnIVAL exhibits good performance when presented with straightfor-
ward instructions commonly encountered in standard benchmarks. However, it encounters difficulties when
faced with complex instructions, such as delivering intricate image descriptions or providing explanations for
memes. To overcome this challenge, finetuning the model using a substantial number of diverse instructions
can serve as a potential solution (Xu et al., 2022; Liu et al., 2023a; Dai et al., 2023a).
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Q: do you know who drew this painting?

A: no

Q: what does the image describe in 
details?

A: a group of people riding skis down a 
snow covered street

Q: what does the image describe? 

A: man loads up his car with clothes

Q: what is funny about this image?

A: how many cookies are there

Figure 8: Limitations of UnIVAL in following user instructions. UnIVAL is unable to follow complex instructions.

Unimodal tasks. We noticed that training solely on aligned multimodal tasks can degrade the performance
of the model in tackling unimodal ones. This problem is usually addressed by adding unimodal data, such as
corpus of text or image, during pretraining (Singh et al., 2022; Lu et al., 2022a; Wang et al., 2022c).

Zero-shot evaluation and efficient finetuning. The ideal scenario is for the model to demonstrate
strong performance and generalization across multiple tasks following the pretraining phase. However, we
have observed that refraining from finetuning or solely training the linear connection (Shukor et al., 2023a)
results in unsatisfactory performance compared to SoTA approaches. This issue can be tackled by training
larger models on a greater number of instructions/tasks or by employing alternative parameter-efficient
finetuning techniques (Hu et al., 2021; Lester et al., 2021).

K.2 Future Directions

Model scaling and better LM initialization. In this study, we conduct experiments using a relatively
small BART-initialized encoder-decoder transformer. Nonetheless, numerous intriguing language models have
recently been introduced (Raffel et al., 2020; Zhang et al., 2022; Touvron et al., 2023), which could potentially
enhance performance when fine-tuned for multimodal tasks. Another aspect involves reasonably scaling the
model size and training it on larger datasets, which could unveil more capabilities like In-Context Learning
(Dong et al., 2022) and the ability to tackle more complex tasks (Lu et al., 2022b).

More modalities and tasks. Our study demonstrated the feasibility of training a unified model capable of
addressing tasks involving image, video, audio, and text modalities. As a result, we posit that incorporating
additional modalities, either during the pretraining phase or solely during finetuning, can be accomplished
straightforwardly. Furthermore, expanding the scope of tasks within each modality, such as incorporating a
broader range of visual tasks (Lu et al., 2022a; Zou et al., 2023) or tasks necessitating complex reasoning
abilities (Liu et al., 2023a), represents a natural extension of this work. Ideally, we hope that in the future,
there will be modality-agnostic models, bridging the gap between domains and modalities.

Towards embodied and generalist multimodal assistant agents. Modality-agnostic models hold
the potential to facilitate the development of embodied agents capable of addressing real-world challenges,
including navigation and robotics manipulation, which demand the simultaneous handling of multiple
modalities. Furthermore, while there has been notable progress in the NLP community regarding the
construction of generalist agents, such as chatbots (Liu et al., 2023b), these advancements remain constrained
in terms of their ability to accept diverse input modalities and generate outputs beyond textual form.

Better training schemes for multitask multimodal training. While growing the number of tasks and
modalities, it is important to devise new efficient training schemes to better leverage the collaboration between
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tasks, and continually support more modalities. We believe that there is more efficient approaches than our
multimodal curriculum learning, to continually add more modalities while avoiding forgetting previous ones.

L Qualitative Results
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a broken accordion sits 
on the floor

a close up of a doughnut 
with ketchup on it

a park with benches 
and a fire hydrant

the family photo the Tokyo Skytree the woman wearing 
blue

Q: Is the woman wearing 
green happy? A: no

Q: Where people are 
eating? A: restaurant

Q: Whom is the person 
texting? A: man

Figure 9: Limitations of UnIVAL. We show the limitations on different image-text tasks; (row 1) objects hallucinations
(Image Captioning), (row 2) inability to capture nuanced description, object hallucinations, and struggle with far/small objects
(Visual Grounding) and (row 3) answer hallucination (VQA).

38



Published in Transactions on Machine Learning Research (12/2023)

Which region does the 
“the man sitting on 

the ground“ describe? 

Which region does the 
“the girl with blonde 

hair” describe? 

Which region does the” 
a bicycle behind the 

bench” describe? 

Which region does the” 
bedside lamp above 
the bed” describe? 

Which region does the 
“the man sitting on 

the ground” describe? 

Which region does the 
“bedside lamp above 

the bed” describe? 

Which region does the 
“the snow on the 

mountains” describe? 

Which region does the 
“the red vehicle” 

describe?  

Which region does the 
“the sheep standing 

to the right” describe?  

Figure 10: Visual Grounding. Image from COCO val 2014 set. Texts constructed manually.
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a small bird sitting on 
top of a skateboard

a close up of a banana 
and a bagel 

two laptops sitting on 
top of a white box

Q: what does the image 
describe?

Q: what does the image 
describe?

Q: what does the image 
describe?

a baseball player 
holding a bat on a field

a wooden table topped with 
three vases filled with flowers

a group of young men 
playing a game of soccer

Q: what does the image 
describe?

Q: what does the image 
describe?

Q: what does the image 
describe?

a man riding skis down 
a snow covered slope

a herd of sheep grazing 
on a lush green field

a man sitting on a bench 
surrounded by pigeon

Q: what does the image 
describe?

Q: what does the image 
describe?

Q: what does the image 
describe?

Figure 11: Image Captioning. Image from COCO val 2014 set.
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Q: why the people are 
happy? 

Q: is there a basketball 
hoop in the image?

Q: is this a vegetarian 
plate?

A: they’re graduating A: yes A: no

Q: how many players 
are in the court?

Q: hat does the street 
sign say?

Q: what is the colour of 
the man’s shirt?

A:  2 A: walk A: orange

Q: what is the woman 
watching?

Q: what is the man 
doing?

Q: what is the woman 
wearing black doing? 

A:  polar bear A: riding motorcycle A: walking

Figure 12: VQA. Image from COCO val 2014 set. Question constructed manually.
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