
HAL Id: hal-04365925
https://hal.science/hal-04365925v1

Submitted on 28 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Craft of Code
Pierre Depaz

To cite this version:

Pierre Depaz. The Craft of Code. 2021. �hal-04365925�

https://hal.science/hal-04365925v1
https://hal.archives-ouvertes.fr


The Craft of Code: Practice and

Knowledge in the Production of Software

Pierre Depaz

January 2021

1 Introduction

Software development as a practice has been developing for the past sixty

years, emerging as a corollary from the field of computer science. In the

21st century, the importance of code in everyday lives has been highlighted

from general-audience journalism[1] to government initiatives[2]. However,

the distinction between programming and computer science is a blurry one.

While a computer science degree does provides the appropriate formation

for a programmer, successful programmers do not necessarily need a com-

puter science background in order to be competent at their jobs. Indeed,

while programming has historically emerged as an occupation which re-

sponded to the ad hoc requirements of computing as a developing field[3],

developing further into a codified and identified practice[4], programming

has nonetheless often been approached in media- and software- studies

with a focus on the phenomenon of computation[5], on the literary[6], or on

the social[7], amongst others, rather than on the practice of programming

as part of a historical tradition.

Starting from this observation, this article proposes to investigate a dif-

ferent tradition than that of the sciences to highlight the specificities of

programming as a practice—the tradition of craftsmanship. Indeed, code

1



isn’t just code, but rather a myriad of socio-technical assemblages com-

posed of programming languages (e.g. Ruby, C, Julia, JavaScript), oper-

ating systems (e.g. Linux, BSD, OSX, Windows) and tools (e.g. IDEs, de-

buggers, compilers and processors). Those assemblages are in turn used

within a cultural context made up of stories, sayings and texts, both from

academic and folklore origins. This approach relies on a shift from a con-

ceptual perspective of code, to one in which the word code implies vari-

eties of activities[8], in which the variety of practices, self-identifications

and narratives from programmers themselves is put at the forefront. The

main distinction this article starts with is between computer scientist, as

the theoretical approach to field of computation and the software devel-

oper, practical implementer, immersed in the practice of writing and reading

code.

While links between craftsmanship and programming have existed as

self-proclaimed ones by programmers themselves, as well as by academics

andwriters [9, 10], they have not yet been elucidated under specific angles.

Indeed, craftsmanship as such is an ever-fleeting phenomenon, a practice

rather than a theory, in the vein of Michel De Certeau’s tactics, bottom-up

actions designed and implemented by the users of a situation, product or

technology as opposed to strategies[11], in which ways of doing are pre-

scribed in a top-down fashion. It is this practical approach that this article

chooses, the informal manners and standards of working, in order to pro-

vide an additional, cultural studies perspective, to its media and software

studies counterparts.

A comparative approach of a broad mode of economic and cultural ac-

tivity (craftsmanship) with a narrower technical know-how (software devel-

opment) asks us first to verify towhat extent such an approach is even valid.

How, then, is the designation by software developers of their own practice

as craftsmanship relevant? Where is the comparison a productive one, and

where does it show its limits? How can such comparison enrich both our

understanding of code as a practice, as well as craftsmanship practices

2



within the highly networked environment that has become the backdrop of

the 21st century? Particularly, how does it re-present processes of knowl-

edge acquisition and aesthetic judgment?

The article proceeds in a comparative fashion, mobilizing texts about

craftsmanship as well as sources from the field of programming, describ-

ing programmers’ self-identification with craftsmanship. From those, I ana-

lyze how those references by programmers enter into a productive dialogue

with our historical and cultural conception of craftsmanship. To do so, I ap-

proach these questions through three different, contiguous topics. First,

the focus is set on the historical unfoldings of craftsmanship and software

development, showing parallels. After inquiring into themodes of organiza-

tion and the economical development of both craftsmanship and software

development, this section focuses on a particular comparison: that of pro-

gramming with building, and in particular its relationship with architecture.

Second, we shift our focus from a broad view to the specific practices of

knowledge acquisition and production. There, we highlight the similarities

in terms of tacit and personal knowledge, as well as the means of educa-

tion and information available both to traditional craftspeople and software

developers. This, in turn allows us to discuss the differences of learning en-

vironments by taking into account the networks of environment that have

developed exponentially with the Internet. Finally, the third section turns

to aesthetic judgment of the crafted product. Building on discussions of

beautiful craft and beautiful code, the focus here is on the standards which

allow practicioners to ascribe beauty to a piece of software; particularly,

this section discusses the materiality of code not in terms of bits, bytes

and languages, but rather as a material that is worked with and worked

through.

These incursions in the practices of software development via the lens

of craftsmanship as a cultural practice concludes on the productive dif-

ferences and similarities in terms of knowledge circulation and materiali-

ties when programming code; ultimately resulting in new understandings

3



of both craftsmanship and software development as mutually influencing

practices.

2 Parallels

This section starts by providing an overview of the various perspectives

and realities on craftsmanship, starting from the Late Middle-Ages until the

20th century. This allows us to highlight some initial important features of

craftsmanship: social organization, the nature of work and the transmis-

sion of knowledge. Jumping to the history of software development, start-

ing in the mid-20th century, it looks at the claims that programmers make

about themselves in relation with the term and concept of craftsmanship.

By examining formal and informal texts, we focus on the fact that software

developers ground their practice in passion, know-how and myths. Finally,

we inspect the place of architecture, both in historical craftsmanship and

contemporary software development, in order to qualify further the rela-

tionship between design and implementation in those two fields.

2.1 Craftsmanship through the ages

Craftsmanship in our contemporary discourse seems most tied to a ret-

rospective approach: it is often qualified as that which was before man-

ufacture, and the mechanical automation of production[12]. So while the

practice of developing a skill in order to build something with a functional

design has been considered at its apex of craftsmanship in Western late

Middle-Ages, it should be noted here that non-Western craftsmanship are

as equally rich and unique as their Western counterparts, for instance in

China[13] and Japan[14]; however, these lie beyond the immediate scope

of this article. Following Sennett, we will use his definition of crafts-

manship as hand-held, tool-based, intrinsically-motivated work which pro-

duces functional artefacts, and in the process of which is held the possi-

4



bility for unique mistakes[9].

Late Middle-Ages craftsmanship stands out as such for a couple of rea-

sons: their socio-economic organization, and their relationship to knowl-

edge. First and foremost, craftspeople were indissociable from the guilds

they belonged to[15]. As tightly-knit communities, they exhibited strong

cohesion: vertically, between a master and their apprentices, and horizon-

tally, between equal practicioners, enforcing a uniform quality control as-

surance and price management (Managerial Techniques by Wolek). This

cohesion, in turn, has limited the amount of individual fame and glory that

craftspeople could accumulate, as compared to fine-artists[16].

A key aspect of the craftsmanship of this time is the relationship that

they maintained with explicit, formalized standards. While various crafts

did include specific lexical fields to describe the details of their trade[17],

usually compiled into glossaries, the standards for quality were less explicit.

Cennino Cennini, in his Libro dell’arte, one of the first codexes to map out

technical know-how necessary to a painter in the early Renaissance, lays

out both practical advice on specific painting techniques, but does not ex-

plicitly lay out how to make something good[18]. Further work, at the eve

of the Industrial Revolution, continued on this intent to formalize the prac-

tice of craftsmanship[19]. In this sense, quality work is rooted in implicit

knowledge: a good craftsman knows a quality work when they see it[9].

Another component of craftsmanship is its alleged incompatibility with

manufacture[20, 21]. However, studies have shown that the craftsmanship,

rather than standing at the strict opposite of the industrial[22], has been

integrated into the process of modern industrialization. The practice of the

craftsman, then, integrates into the design and operation of machines and

industrial-scale organizations, informing ways of making in our contempo-

rary world[23, 24].

These characteristics of tight and rigid communities, implicit knowledge,

and ambiguous separation with design, framing the foundation of a desire

for good work are particularly highlighted in the field of the built environ-

5



ment, and later in the development of architecture. Before examining how

such a field has a connection to software development, we take a look at

programming’s emergence as a field of craft.

2.2 Software developers as craftsmen

Computer programming as an activity came to be as an offshoot of com-

puter science, perhaps best illustrated by the collaboration of Charles Bab-

bage and Ada Lovelace on The Analytical Engine, the prototype of themod-

ern computer. With Babbage acting as the overall designer, Lovelace was

key in practically implementing some of the mathematical formulas which

The Analytical Engine was built to solve. What we see here is a dyad of

work, distinguished between design and conception on one side, and im-

plementation and practice on the other side. These two approaches are

echoed throughout the early days of programming (1950s-1970s), with pro-

grammers becoming distinct from computer scientists by their approach to

the problem (they’d rather write code on a terminal than write algorithms

on a piece of paper) and by their background (trained as scientists but

more comfortable with tinkering)[25]. In particular, the group of computer

enthusiasts described as hackers developed organizational features simi-

lar to their historical counterparts: work was being done on distinct topics

and fields in different geographic locations (Stanford, MIT, Bell Labs)[26],

emphasis was put on engagement with tools, inquiring into peers’ work[27]

and later formalized into bottom-up archives1. Additionally, little account-

ability was required when it came to design explicitness. As examples,

both the UNIX operating system and the TCP/IP protocol were originally

realized without overarching supervision and without extensive ongoing

documentation[28, 26].

As computer science solidified as a distinct field in the 1960s[29], there
1Themost famous of which is the Jargon File, later to be published as the The NewHacker’s

Dictionary: http://www.catb.org/jargon/html/

6



was a process of formalizing the hitherto ad hoc techniques of program-

ming computers. As a response to the myth of carefully hand-made code2

and unconstrained approaches to writing code came the structured pro-

gramming approach, initally proposed by E. W. Djisktra[4]. With the op-

erating system and the personal computer revolutions, access to tools

became widespread, and transformed tightly communities into a global

network of exchange, first via Usenet, then through the Web. Inquiries

into the relationship of craftsmanship with programming started to take

place in the mid-1970s from an educational perspective[30], from an or-

ganizational perspective[31] and an inter-personal perspective[32], and

culminated with the publication of several trade books[33, 34], explicitly

connecting the craft of programming with previous craft activities, and

emphasizing the need for intrinsic motivation and the aim of a job well-

done[35, 36].

Comparisons of software development with craftsmanship are abun-

dant, and relate thenmostly to the relationship between unstructured prac-

tice and formalized theory; as such, it is used to self-categorize program-

mers as skilled makers rather than passive thinkers3.

2.3 The case of architecture

The field of architecture helps us tie these two traditions together a lit-

tle more explicitly. Architecture as a field and the architect as a role have

been solidified during the Renaissance[37], consecrating a separation of

abstract design and concrete work, in which the craftsman is relegated to

the role of executioner, until the arrival of civil engineering and blueprints

overwhelmingly formalized the discipline.

The classical architect, here, serves as the counterpart to the computer
2See The Story of Mel, A Real Programmer, a folktale of early programmers: https://www.

cs.utah.edu/~elb/folklore/mel.html
3See code monkey: http://www.techopedia.com/definition/31469/code-monkey

7



scientist, except in an inverse relation: the architect emerged from cen-

turies of hands-on work, while the computer scientist (formerly known as

mathematician) was first to a whole field of practicioners as programmers,

followed by a need to regulate and structure those practices. Different se-

quences of events, perhaps, but nonetheless mirroring each other. On one

side, construction work without an explicit architect, under the supervision

of bishops and clerks, did indeed result in significant results (Notre Dame

de Paris, Basilica of Sienna). On the other side, letting go of structured

and restricted modes of working characterizing computer programming up

to the 1980s resulted in a comparison described in the aptly-named The

Cathedral and the Bazaar. This essay described the Linux project, the

open-source philosophy it propelled into the limelight, and how the quantity

of self-motivated workers without rigid working structures (which is not to

say without clear designs) can result in better work than if made by a few,

select, highly-skilled individuals[26, 38].

What we see, then, is a similar result: individuals can cooperate on a

long-term basis out of intrinsic motivation, and without clear, individual

ownership of the result; a parallel seen in the similar concepts of collec-

tive craftsmanship in the Middle-Ages and the egoless programming of

today[31]. The further sections will investigate how such a phenomena of

building complex structures through horizontal networks is possible, from

both epistemological and aesthetic perspectives.

3 Knowledge acquisition and production

3.1 Bus factor and implicit knowledge

The problem of knowledge in software development can be examplified

by the ”bus factor”4. It describes the risk of crucial information being lost

due to the disappearance or incapacity of one of the programmers of the
4https://en.wikipedia.org/w/index.php?title=Bus_factor

8



project, and aims at the problem of essential complexity5. Given the inher-

ent complexity of programming as a task, along with the compulsive be-

haviours sometimes exhibited by programmers as a by-product of intrinsic

motivation[39], the gap between design and implementation—the domain

of the craftsman—often relies on tacit knowledge[40].

Explicit knowledge, in programming as in most disciplines, is carried

through books, academic programs and, more recently, web-based con-

tent that is either structured (e.g. MOOCs, Codeacademy, Khan Academy)

or unstructured (e.g. blog posts, forums, IRC channels), but both seem to

be insufficient to reach an expert level[41]. As demonstrated by a popular

comic, the road to good code is unclear, particularly when communicated

in such a highly-formal language as diagramming. Given the fact that an

individual can become a programmer through non-formal training—as op-

posed to, say, an engineer or a scientist—, the learning process must in-

clude implicit knowledge.

3.2 Apprentices and masters

The acquisition of such implicit knowledge in craftsmanship takes place

in two different ways: the apprentice-master relationship, and the act of

copying. First comes the apprentice-master relationship, in which a learner

starts by imitating the way of working of the master (Sennett), resulting

in a teaching by showing, where important aspects of the craft are being

demonstrated to the apprentice by a more experienced practicioner, rather

than formalized and learned a priori of the practice. Sometimes, this rela-

tionship to a master is implemented explicitly through practices such as

pair programming[42] or corporate mentorship programmings (IBM’s Mas-

ter programmer initiative). Other times, it is re-interpretated through fic-

tional accounts designed to impart wisdom on the readers, and taking in-

spiration from Taoism and Zen[43, 44]. From higher-level programming
5See the No Silver Bullet essay in The Mythical Man-Month, op.cit.

9



Figure 1: Source: https://xkcd.com/844/

10



wisdom featuring leading programmers such as Marvin Minsky and Donald

Knuth, this sort of informal teaching by showing has been implemented in

various languages as a practical learning experience6. Without the pres-

ence of an actual master, the programming apprentice nonetheless takes

the program writer as their master to achieve each of the tasks assigned to

them. The experience historically assigned to the master craftsman is del-

egated into the code itself, containing both the problem, the solution to the

problem and hints to solve it, straddling the line between formal exercises

and interactive practice.

Code’s ability to be copied and executed on various machines provides

a counterpoint to the argument of software as craftsmanship in terms of

knowledge transmission. Traditionally, since craftsmanship has been un-

derstood as that which is done by hand, and since craftsmen were working

with unique artefacts (i.e. no artefact can be perfectly copied), copying

someone else’s realization was physically inconceivable. The realm of soft-

ware, on the opposite, relies heavily on the technical affordance of code

to be duplicated, uploaded, downloaded and executed on multiple plat-

forms through source code files[45]. The first immediate consequence of

this is the ability for all to inspect and use source code, both on an in-

stitutional level (as guaranteed by projects such as GNU7), and on a ver-

nacular level (as enabled by Web 2.0 platforms such as StackOverflow and

GitHub). Even though the ability to perfectly copy anyone else’s work be-

came widely available to programmers, the difference between amateur

and expert programmers lied in the extent to which they indeed blindly

copy external code, or write their own, inspired by the external code8.

Practices from Eastern craftsmanship further qualify these essentially

different approaches to copying. Moxie, a Chinese term for copying and
6See, for instance: http://rubykoans.com/
7See: https:gnu.org
8See the discussions on https://softwareengineering.stackexchange.com/

questions/36978

11



practice, is a key concept to understand how an apprentice can equal his

master through thougtful replication [46], an approach equally present in

Japanese crafts histor[14]. Here again, manually copying from established

quality work to seize their elusive essence is an essential aspect to crafts-

manship.

3.3 The problemwith copying

If implicit knowledge can be acquired through a showing and copying of

code, software development as a craft presents an additional dimension to

this, a sort of piecemeal knowledge. Best represented by Stack Overflow, a

leading question and answer forum for programmers, on which code snip-

pets are made available as part of the teaching by showing methodology,

this piecemeal knowledge can both help programmers in solving issues as

well as deter them in solving issues properly[47]. Code as such is freely

and easily accessible as piecemeals, but often lacks the essential context.

So while programmers are to acquire implicit knowledge through a pro-

cess of learning by doing (realizing koans, coding small projects, re-using

copied code), we now need to assess how much of it happens through

observing. Implied in the apprentice-master relationship is that what is

observed should be of good quality; one learns through ones own mis-

takes, and through ones presentation with exmaples of good work. Coming

back to the relationship between architecture and software development,

Christopher Alexander asks, in the preface of Richard P. Gabriel’s Patterns

of Software[48],

For a programmer, what is a comparable goal? What is the

Chartres of programming? What task is at a high enough level

to inspire people writing programs, to reach for the stars?

If a craftsman learns their trade by comparing their work with work of a

higher quality (either their master’s, or publicly available works, assembled

12



as a canon[49]), the programmer is faced with a different problem: a lot of

examples, but a few good ones. Copyright stands in theway of pedagogical

copying. With software becoming protectable under copyright laws in the

1980s[50], great works of programming craft became unacessible to pro-

grammers, despite the value they would bring in knowledge acquisition[51].

One of the most famous examples is Lions’ Commentary on UNIX 6th Edi-

tion, with Source Code by John Lions, an annotated edition of the UNIX

source code, which was circulated illegaly in classrooms for twenty years

before its official publication was authorized by the copyright owners[52].

With implicit knowledge being a key component in both disciplines, its

manifestation through the copying of source code in software develop-

ment is hampered either by decontextualized, uploaded code snippets or

by copyrighted protection on works, leading to a lack in an established

canon of great works. Nonetheless, the other advice given to begin-

ner programmers—practice9—hints at another aspect: direct engagement

with code.

4 Material aesthetics

At the heart of knowledge transmission and acquisition stands the prac-

tice, and inherent in the practice is the good practice, the one leading to

a beautiful result. This section investigates the aesthetics of code within

the broader context of the aesthetics of craftsmanship, highlighting code’s

specificity as a material.

4.1 The beauty of a thing well-made

A traditional perspective is that of the motor skills, with dexterity, care and

experience as essential features of a craftsman’s ability to realize some-
9https://quora.com/What-are-some-of-the-best-ways-to-learn-

programming

13



thing beautiful[53], along with self-assigned standards of quality[54, 9].

These qualitative standards which, when pushed to their extreme, result in

a craftsperson’s style, are to be gained through practice and experience,

rather than by explicit measurements[54] 10. Two things are concerned

here: tools and materials[54]. A craftsperson should have a deep, implicit

knowledge of both, what they use to manipulate (chisels, hammers, ovens,

etc.) as well as what they manipulate (stone, wood, steel, etc).

This relationship to tools andmaterials is expected to have a relationship

to the hand, and at first seems to exclude the keyboard-based practice of

programming. But even within a world in which automated machines have

replaced hand-held tools, Osborne writes:

In modern machine production judgement, experience, ingenu-

ity, dexterity, artistry, skill are all concentrated in the program-

ming before actual production starts.[53]

He opens here up a solution to the paradox of the hand-made and the

computer-automated, as programming emerges from the latter as a new

skill. This very rise of automation has been criticized for the rise of a Os-

borne’s “soulless society”[53], and has triggered debates about authorship,

creativity and humanity at the cross-roads between artificial intelligence

and artistic practice[55]. One avenue out of this debate is human-machine

cooperation, first envisioned by Licklider and proposed throughout the de-

velopment of Human-Computer Interaction[56, 57]. If machines, more and

more driven by computing systems, have replaced traditional craftsman-

ship’s skills and dexterity, this replacement can nonetheless suggest pro-

gramming as a distinctly 21st-century craftsmanship, as well as other forms

of cratsmanship-based work in an information economy.
10See Pye’s account of craftsmanship, and his intent to make explicit the question of qual-

ity craftsmanship and ”answer factually rather than with a series of emotive noises such as

protagonists of craftsmanship have too often made instead of answering it.”

14



4.2 Code as material

Beautiful code, code well-written, is indeed an integral part of software

craftsmanship[58]. More than just function for itself, code among program-

mers can, and should be held to beauty standards[59]. Such standards are

another relationship with traditional craftsmanship—form following func-

tion.

A craftsman’s material consciousness is recognized by the anthropo-

morphic qualities ascribed by the craftsman to the material[9]. In the case

of code, adjectives such as ”clean”, ”elegant”, ”smelly” occur over and over

in online discussions of programmers. Clean code, elegant code, are indi-

cators not just of the awareness of code as a raw material that should be

worked on, but also of the necessities for code to exist in a social world. As

software craftsmen assemble in loose hierarchies to construct software,

the aesthetic standard is the respect of others[60].

Another unique feature of software craftsmanship is its blending be-

tween tools and material: code, indeed, is both. This is, for instance,

represented at its extreme by languages like LISP, in which functions and

data are treated in the same way[61]. In that sense, code is a material

which can be almost seamlessly converted from information to information-

processing, and vice-versa. Disregarding for now the very real impact of

computing on the environment[62], code as a material is perhaps the only

non-finite material that craftspeople can work with—along with words.

Code, then, is not just an overarching, theoretical concept which can

only be reckoned with in the abstract, but also the very material founda-

tion from which the reality of software craftsmanship evolves. An analy-

sis of computing phenomena, from software studies to platform studies,

should therefore take into account the close relationship to their material

that software developers can have. As Fred Brooks put it,

The programmer, like the poet, works only slightly removed from

pure thought-stuff. He builds his castles in the air, from air, cre-

15



ating by exertion of the imagination. Few media of creation are

so flexible, so easy to polish and rework, so readily capable of

realizing grand conceptual structures.[31]

4.3 The implications of beautiful code

So while there are arguments for developing a more rigorous, engineering

conception of software development[25], a crafts ethos based on amateri-

ality of code holds some implications both for programmers and for society

at large.

On the one side, since craftsmanship aesthetic standard relies on the

process and the immediate usage of the product, little attention might be

given to the long-term consequences of such a product. When computing

systems start to get entangled with complex domains such as culture[63]

or education[64], programmers play a significant role in the development

of these systems[65], and their intrinsic motivation to work with code

for its own sake without a broader perspective might lead to undesired

outcomes—a situation in which the function of the product is no longer

beautiful.

On the other side, this engagement with code-as-material opens up

possibilities for the acknowledgement of a different moral standard. As

Pye puts it,

[...] but still the quality of the result is clear evidence of com-

petence and assurance, and it is an ingredient of civilization to

be continually faced with that evidence, even if it is taken for

granted and unremarked.[54]

If most commentators on the history of craftsmanship, following Ruskin,

lament the disappearance of a better, long-gone way of doing things, be-

fore computers came to automate everything, locating software as a con-

temporary iteration of the age-old ethos of craftsmanship opens-up the

16



possibility for a more conscious, careful and diligent way of building the

future.

5 Conclusion

After qualifying a relationship to craftsmanship that has been claimed by

software developers since the mid-1980s by a parallel with craftsman

building and programming work, we’ve shown how these practicioners

evolve in a somewhat different environment. First, their relation to knowl-

edge and the need to acquire and transfer tacit knowledge has been limited

by both the disappearance of strict master-apprentice relationships, and

the removal from the public domain of some of software development’s

greatest achievements. Second, their relationship to code, as both materi-

als and tools, while holding intrinsically the possibility for better, and more

moral work, re-states the importance of code as a product which can be

studied, learned and perfected.

References

[1] Paul Ford. What Is Code? If You Don’t Know, You Need to Read This.

Bloomberg.com, 2015.

[2] Cameron Wilson. Hour of code—a record year for computer science.

ACM Inroads, 6(1):22, February 2015.

[3] Wendy Hui Kyong Chun. On Software, or the Persistence of Visual

Knowledge. Grey Room, 18:26–51, January 2005. Publisher: MIT

Press.

[4] Edsger W. Dijkstra. Chapter I: Notes on structured programming. In

Structured programming, pages 1–82. Academic Press Ltd., 1972.

17



[5] David M. Berry. The Philosophy of Software: Code and Mediation in

the Digital Age. Palgrave-Macmillan, 2011.

[6] N. Katherine Hayles. My Mother Was a Computer: Digital Subjects

and Literary Texts. University of Chicago Press, March 2010. Google-

Books-ID: lwaRyOZfBzgC.

[7] Adrian Mackenzie. Cutting Code: Software and Sociality. Peter Lang,

2006. Google-Books-ID: 083BUgMnLKQC.

[8] Brian Hayes. Cultures of Code, February 2017.

[9] Richard Sennett. The Craftsman, volume 1. Yale University Press, New

Haven, CT, 2009.

[10] Vikram Chandra. Geek Sublime: The Beauty of Code, the Code of

Beauty. Graywolf Press, September 2014.

[11] Michel de Certeau, Luce Giard, and Pierre Mayol. L’invention du quo-

tidien. Gallimard, 1990. Google-Books-ID: GAwEAQAAIAAJ.

[12] Daniel V. Thompson. The Study of Medieval Craftsmanship. Bulletin

of the Fogg Art Museum, 3:3–8, 1934. Publisher: [Harvard University

Art Museums, Harvard Art Museums, The President and Fellows of

Harvard College].

[13] Ganlin Zhang, Zhou Cheng, and Qingli Wang. Jingdezhen’s Ceramic

Civilization: the Past and Today. pages 9–14. Atlantis Press, Septem-

ber 2015. ISSN: 2352-5398.

[14] Brenda G. Jordan and Victoria Louise Weston. Copying the Master

and Stealing His Secrets: Talent and Training in Japanese Painting.

University of Hawaii Press, January 2003. Google-Books-ID: TMCH-

pmDXUeIC.

18



[15] Antony Black. Guilds and Civil Society in European Political Thought

from the Twelfth Century to the Present. Methuen, 1984. Google-

Books-ID: oQMOAAAAQAAJ.

[16] Daniel Varney Thompson. The Materials and Techniques of Me-

dieval Painting. Courier Corporation, January 1956. Google-Books-ID:

I1DFuGQeG10C.

[17] Associate Conservator Department of Decorative Arts and Sculpture

Conservation Jane Bassett, Jane L. Bassett, Peggy Fogelman, David A.

Scott, Getty Conservation Institute (Los Angeles Calif.), and Ronald C.

Schmidtling. The Craftsman Revealed: Adriaen de Vries. Getty Publi-

cations, 2008. Google-Books-ID: E8oxCwAAQBAJ.

[18] Cennino Cennini. The Craftsman’s Handbook. Courier Corporation,

April 2012. Google-Books-ID: 4Z2jAQAAQBAJ.

[19] John R. Pannabecker. Diderot, the Mechanical Arts, and the Ency-

clopdie: In Search of the Heritage of Technology Education. Journal

of Technology Education, 6:45–57, 1994.

[20] John Ruskin. The seven lamps of architecture. With illustrations drawn

by the author. London Waverley Book Co, 1920.

[21] George Sturt. The Wheelwright’s Shop. Cambridge University Press,

Cambridge ; New York, revised ed. edition edition, January 1963.

[22] Matthew L. Jones. Reckoning with Matter: Calculating Machines,

Innovation, and Thinking about Thinking from Pascal to Babbage.

University of Chicago Press, Chicago ; London, 1st edition edition,

November 2016.

[23] Robert B. Gordon. Who Turned the Mechanical Ideal into Mechani-

cal Reality? Technology and Culture, 29(4):744–778, 1988. Publisher:

[The Johns Hopkins University Press, Society for the History of Tech-

nology].

19



[24] David McGee. From Craftsmanship to Draftsmanship: Naval Architec-

ture and the Three Traditions of Early Modern Design. Technology and

Culture, 40(2):209–236, 1999. Publisher: [The Johns Hopkins Univer-

sity Press, Society for the History of Technology].

[25] Nathan L. Ensmenger. The Computer Boys Take Over: Computers,

Programmers, and the Politics of Technical Expertise. The MIT Press,

Cambridge, Mass., August 2012.

[26] Eric S. Raymond. The Cathedral & the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. ”O’Reilly Media, Inc.”,

2001. Google-Books-ID: W2t2d2KP6HsC.

[27] Steven Levy. Hackers: Heroes of the Computer Revolution - 25th

Anniversary Edition. ”O’Reilly Media, Inc.”, May 2010. Google-Books-

ID: mShXzzKtpmEC.

[28] Peter Seibel. Coders at Work: Reflections on the Craft of Program-

ming. Apress, September 2009.

[29] Matti Tedre. The development of computer science: a sociocultural

perspective. In Proceedings of the 6th Baltic Sea conference on Com-

puting education research: Koli Calling 2006, Baltic Sea ’06, pages

21–24, New York, NY, USA, February 2006. Association for Computing

Machinery.

[30] Edsger W. Dijkstra. “Craftsman or Scientist?”. In Edsger W. Dijkstra,

editor, SelectedWritings on Computing: A personal Perspective, Texts

and Monographs in Computer Science, pages 104–109. Springer, New

York, NY, 1982.

[31] Frederick Phillips Brooks and Frederick P. Brooks Jr. TheMythicalMan-

month: Essays on Software Engineering. Addison-Wesley Publishing

Company, 1975. Google-Books-ID: gWgPAQAAMAAJ.

20



[32] Gerald M. Weinberg. The Psychology of Computer Programming.

Dorset House Pub., 1998. Google-Books-ID: j_MJAQAAMAAJ.

[33] Robert C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Pearson Education, August 2008. Google-Books-ID:

_i6bDeoCQzsC.

[34] Mike Hendrickson and Pete McBreen. Software Craftsmanship: The

New Imperative. Addison-Wesley Professional, 2002. Google-Books-

ID: C9vvHV1lIawC.

[35] Dave Hoover and Adewale Oshineye. Apprenticeship Patterns: Guid-

ance for the Aspiring Software Craftsman. ”O’Reilly Media, Inc.”, Octo-

ber 2009. Google-Books-ID: I3xFAoZT_5AC.

[36] Pete Goodliffe. Code Craft: The Practice of Writing Excellent Code.

No Starch Press, 2007. Google-Books-ID: i4zCzpkrt4sC.

[37] N. Pevsner. The Term ’Architect’ in the Middle Ages. Speculum,

17(4):549–562, 1942. Publisher: [Medieval Academy of America, Cam-

bridge University Press, University of Chicago Press].

[38] Erik Henningsen and Håkon Larsen. The Joys of Wiki Work: Crafts-

manship, Flow and Self-externalization in a Digital Environment. In

Ragnar Audunson, Herbjorn Andresen, and Cicilie Fagerlid, editors, Li-

braries, Archives and Museums as Democratic Spaces in a Digital Age,

pages 345–362. De Gruyter Saur, September 2020.

[39] Joseph Weizenbaum. Computer Power and Human Reason: From

Judgment to Calculation. W H Freeman & Co, San Francisco, 1st edi-

tion edition, March 1976.

[40] Harry Collins. Tacit and Explicit Knowledge. University of Chicago

Press, June 2010. Google-Books-ID: ONzRalXOtEMC.

21



[41] Simon P. Davies. Models and theories of programming strategy. In-

ternational Journal of Man-Machine Studies, 39(2):237–267, August

1993.

[42] Laurie Williams and Robert R. Kessler. Pair Programming Illu-

minated. Addison-Wesley Professional, 2003. Google-Books-ID:

LRQhdlrKNE8C.

[43] Geoffrey James. The Tao of Programming. InfoBooks, 1987. Google-

Books-ID: idkNAAAACAAJ.

[44] Eric S. Raymond and Guy L. Steele. The New Hacker’s Dictionary. MIT

Press, 1996. Google-Books-ID: g80P_4v4QbIC.

[45] Lev. Manovich. The language of new media. MIT Press, Cambridge,

MA, 2001.

[46] Eva Kit Wah Man. Influence of Global Aesthetics on Chinese Aes-

thetics: The Adaptation of Moxie and the Case of Dafen Cun. In Eva

Kit Wah Man, editor, Issues of Contemporary Art and Aesthetics in

Chinese Context, Chinese Contemporary Art Series, pages 95–103.

Springer, Berlin, Heidelberg, 2015.

[47] C. Treude and M. P. Robillard. Understanding Stack Overflow Code

Fragments. In 2017 IEEE International Conference on Software Main-

tenance and Evolution (ICSME), pages 509–513, September 2017.

[48] Richard P. Gabriel. Patterns of Software: Tales from the Software

Community. Oxford University Press, 1998. Google-Books-ID: uwFLP-

wAACAAJ.

[49] Paul Taylor. Patterns as Software Design Canon. ACIS 2001 Proceed-

ings, January 2001.

[50] Ralph Oman. Computer Software as Copyrightable Subject Matter:

Oracle V. Google, Legislative Intent, and the Scope of Rights in Digi-

22



tal Works. Harvard Journal of Law and Technology, 31(Special Issue

Spring 2018):639–652, 2018.

[51] Richard P. Gabriel and Ron Goldman. Mob Software: The Erotic Life of

Code, 2001.

[52] John Lions. Lions’ Commentary on UNIX 6th Edition with Source

Code. Peer-to-Peer Communications, 1996. Google-Books-ID:

OlZ3QgAACAAJ.

[53] Harold Osborne. The Aesthetic Concept of Craftsmanship. British

Journal of Aesthetics, 17(2):138, 1977. Publisher: Oxford University

Press.

[54] David Pye. The Nature and Art of Workmanship. Herbert Press, illus-

trated edition edition, July 2008.

[55] Marian Mazzone and Ahmed Elgammal. Art, Creativity, and the Po-

tential of Artificial Intelligence. Arts, 8(1):26, March 2019. Number: 1

Publisher: Multidisciplinary Digital Publishing Institute.

[56] J. C. R. Licklider. Man-Computer Symbiosis. IRE Transactions on Hu-

man Factors in Electronics, HFE-1(1):4–11, March 1960. Conference

Name: IRE Transactions on Human Factors in Electronics.

[57] Jonathan Grudin. From Tool to Partner: The Evolution of Human-

Computer Interaction. Synthesis Lectures on Human-Centered Infor-

matics, 10(1):i–183, December 2016. Publisher: Morgan & Claypool

Publishers.

[58] Andy Oram and Greg Wilson, editors. Beautiful Code: Leading Pro-

grammers Explain How They Think. O’Reilly Media, Beijing ; Se-

bastapol, Calif, 1st edition edition, July 2007.

[59] Erik Pineiro. The aesthetics of code : on excellence in instrumental

action. PhD thesis, KTH, Superseded Departments, Industrial Eco-

23



nomics and Management., 2003. Publisher: Industriell ekonomi och

organisation.

[60] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure

and Interpretation of Computer Programs - 2nd Edition. Justin Kelly,

1979. Google-Books-ID: MXZQAwAAQBAJ.

[61] John McCarthy, Michael I. Levin, Paul W. Abrahams, Massachusetts

Institute of Technology Computation Center, and Daniel J. Edwards.

LISP 1.5 Programmer’s Manual. MIT Press, 1965. Google-Books-ID:

68j6lEJjMQwC.

[62] Patrick Kurp. Green computing. Commun. ACM, 51(10):11–13, October

2008.

[63] Nick Seaver. Captivating algorithms: Recommender systems as traps.

Journal ofMaterial Culture, 24(4):421–436, December 2019. Publisher:

SAGE Publications Ltd.

[64] Carlo Perrotta. Programming the platform university: Learning analyt-

ics and predictive infrastructures in higher education. Research in Ed-

ucation, page 0034523720965623, October 2020. Publisher: SAGE

Publications Ltd STM.

[65] Pierre Lévy. De la programmation considérée comme un des beaux-

arts. Textes à l’appui. Anthropologie des sciences et des techniques.

Éd. la Découverte, Paris, 1992.

24


