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ABSTRACT 

 
The properties of elastomeric materials are strongly influenced by the inclusions resulting from the 

ingredients and the elaboration process. A methodology is proposed to differentiate the inclusions harmful for 

fatigue (larger than a few µm) in elastomers according to their chemical nature, and to characterize them 

quantitatively with sufficient statistics. Three techniques are used and compared: digital optical microscopy (OM), 

scanning electron microscopy (SEM) associated with energy dispersive X-ray spectroscopy, and X-ray micro-

computed tomography (µ-CT). Six materials are used to challenge the methodology. In addition to the usual metal 

oxides and carbon black agglomerates, three atypical types of inclusions are highlighted, generating specific 

detection difficulties. A relevant image analysis procedure is developed to automatically detect the inclusions from 

the acquired images, more objectively and accurately than with the classical thresholding methods. The 

morphology and the spatial distribution of the different inclusions populations are then determined. µ-CT is the 

most comprehensive and accurate method for classification and statistical characterization of inclusions. 

Furthermore, relevant data on the size distribution of inclusions can be obtained using backscattered electrons 

(SEM-BSE) or digital OM. SEM-BSE provides more accurate results than digital OM. 

 

 

INTRODUCTION 

 

The performance of a rubber part is related to the quality of the dispersion of the 

ingredients in the compound. This dispersion depends on the ingredients used and on the 

elaboration process (mixing, injection and curing)1. Typical ingredients used for rubber parts 

include carbon black (CB) or silica fillers and ZnO. A good dispersion of the ingredients is 

important to obtain a homogeneous mixture, good mechanical performances and consistency 

of properties within a batch and between batches. In addition, the inclusions and the 

agglomerates play a key role in the mechanical properties of these materials. For example, 

fatigue damage generally initiates at CB agglomerates2 or at silica agglomerates3, or at metal 

oxides2,4. It is therefore important to be able to characterize the fillers dispersion and the 

inclusions in rubber compounds. Indeed, the knowledge of this dispersion in space and in size 

allows to check the quality of the mix, to optimize the process parameters, and to establish the 

link between the microstructure and the properties of interest. 

Many techniques have been proposed for several decades in the literature to analyze the 

micro- or macro-dispersion of ingredients (essentially of CB) in rubber materials: 

• Observation of a thin slice (a few microns to a few tens of microns in thickness) of 

material by transmitted light optical microscopy (OM)5,6: the method relies on the effect 

of local heterogeneities on the absorption of light; the darker and brighter areas observed 

correspond respectively to CB agglomerates and to agglomerates pulled off during the 

cutting; this method was adopted in the 1960s as a standard (ASTM D-2663 method B).  
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• Observation of the material surface after a manual cut or tear with a hand-held 

magnifying glass, a binocular or an optical microscope6: this method relies on the 

deviation of the breaking or cutting path by CB agglomerates, thus creating holes and 

“bumps”; it is based on the comparison of the rupture surface to a panel of images 

corresponding to different levels of dispersion. The smoother the surface, the better the 

dispersion. The visual inspection of a teared surface is used in the ASTM D-2663 

(method A) standard. The principle of reference images was also used for surfaces 

obtained by cutting with a razor blade7 observed with an oblique incident light. This 

process was then "automated"8 and later became the current DisperGRADER™9. 

• Observation by dark field optical microscopy of the material surface cut with a razor 

blade10,11: the light paths of the illumination coming from the same side as the objective 

and those of observation are separated so that only the rays deviated by surface 

irregularities can reach the objective; the surface defects appear bright on a black 

background. 

• Methods based on the optical properties of CB: due to the difference in light absorbance 

between the CB agglomerates and the elastomer matrix, the more the CB is dispersed, 

the darker the region12,13. This method allows to characterize the dispersion at the 

aggregate scale (i.e. for a size smaller than 1 μm). 

• White light interferometry on the surface of a sample cut with a razor blade14 (ASTM 

D2663 method D standard): this method allows to characterize the surface topography; 

holes and bumps are detected using image processing and height offset.  

• Transmission electron microscopy (TEM): this technique uses an accelerated beam of 

electrons which is transmitted through the sample to form an image; CB appears black 

because of its higher density than the matrix. It has been used to analyze solutions 

obtained by dissolving the elastomer15 or thin slice (~40 nm) of material16. This 

technique offers a very high resolution but the size of the area that can be analyzed is 

limited. The dispersion is therefore evaluated at the aggregate level. 

• Scanning electron microscopy (SEM) in secondary electrons (SE) mode: the filler 

dispersion is measured on the surface of a cut sample, on a larger scale than with TEM6. 

The dispersion is therefore analyzed at the scale of agglomerates (size larger than a few 

µm). The degree of dispersion is usually estimated by visual inspection. If the SEM is 

equipped with an energy dispersive X-ray spectroscopy (EDS) system, the chemical 

composition of the poorly dispersed inclusions can also be determined. 

• X-ray micro-computed tomography (µ-CT)17,18,19,20: the gray levels in the images 

obtained correspond to X-ray attenuation; the inclusions have a higher or lower X-ray  

attenuation coefficient so that they appear lighter or darker than the matrix respectively. 

3D information about the morphology and the spatial distribution of the inclusions can 

be obtained after image processing. Relatively large volumes of material can be 

analyzed. Moreover, no particular sample preparation is required. 

• Roughness measurement of a surface cut with a razor blade: it is assumed that the 

surface roughness is due to the fact that CB agglomerates deflect the cutting path. This 

roughness can be measured using a roughness tester21 as described in the ASTM D-

2663 (method C) standard, or an atomic force microscope (AFM)22, 23. With the first 

technique, it is the CB agglomerates that are analyzed; in the second case, it is the 

aggregates. 

• Electrical resistivity24,25,26: the electrical conductivity of CB is much higher than that of 

rubber alone so that the resistivity increases with the degree of dispersion. The 

measurement is not very sensitive to large "isolated" agglomerates of CB so it can be 

considered that it focuses on the aggregates.  
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The objective of the present work is to establish a relevant methodology that meets the 

six following specifications: 

• Specification 1 – Size of inclusions: the method must be able to characterize the 

inclusions larger than few µm in size, as they mostly determine the fatigue properties of 

rubber materials, especially for crack initiation27,28 (smaller inclusions are not of interest 

here). The methods based on the optical properties of CB, TEM, AFM and electrical 

resistivity are not adapted because they do not allow to characterize the macro-

dispersion at the scale of the agglomerates. 

• Specification 2 – Sensitivity and objectivity: the detection of the inclusions must be as 

objective as possible in order to limit the influence of the operator on the results. For 

example, the method must not be sensitive to sample preparation, biased by artifacts, 

e.g., due to blade marks resulting from the cut, or to user input for image analysis. The 

majority of the techniques presented above are based on surface topographic analysis. 

Detection of surface irregularities, assumed to be due to CB (which is a strong 

assumption), can be done optically (dark field microscopy, interferometric microscopy 

and DisperGRADER™) or mechanically (probe roughness meter). Image processing is 

usually required to analyze the results. The main difficulties are the non-planarity of the 

sample and the presence of cut marks that can be, wrongly, attributed to inclusions. 

Image processing is delicate because it can be highly dependent on the operator. The 

inclusions are generally not automatically detected from SEM images because of the 

complexity of the image. The inspection is then visual and therefore qualitative and 

influenced by the judgment and experience of the operator. The method based on µ-CT 

also uses image processing to detect inclusions. It is often simpler as there is no problem 

with cut marks and surface planarity. However, other types of artifacts can alter the 

detection of inclusions (e.g., artifacts due to very high absorption inclusions17). In 

addition, image processing in tomography is generally based on a simple gray level 

thresholding method that is very dependent on the overall contrast of the images and on 

the user’s choice. 

• Specification 3 – Nature of inclusions: the inclusions must be differentiated according 

to their chemical nature insofar they do not all have the same influence. The techniques 

relying on topographic surface analysis (e.g., DisperGRADER™, interferometric 

microscopy and dark field microscopy) allows characterizing inclusions that are stiffer 

than the matrix. It is important to note that these can remain coated with matrix after 

cutting, leading to an overestimation of the inclusion size. The bumps on the cut surface 

are generally supposed to be only due to CB. However, there can be several populations 

of inclusions more rigid than the matrix. Consequently, these techniques do not make it 

possible to distinguish the different types of inclusions. Using µ-CT, it is possible to 

differentiate inclusions if they have sufficiently different densities. In order to have 

more precise information on the chemical composition of the inclusions, SEM 

associated with EDS can be used. Nevertheless, the CB agglomerates remain difficult 

to distinguish from the matrix because of their close chemical nature.  

• Specification 4 – Quantitative description: the morphology (e.g., size and shape) and 

the spatial distribution of the inclusions must be described accurately and quantitatively, 

in 3D, as these features can influence the effects of the inclusions on the material 

properties. Topographic analysis methods do not allow to determine accurately the 

shape of the inclusions as many inclusions remain coated after cutting so that the 

measurement is not done directly on the inclusion itself. Using transmitted light 

microscopy, the shape of the inclusions can be determined in 2D. µ-CT is the only 

method that allows to observe the inclusions directly and, in addition, in 3D. It is 
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therefore possible to characterize their morphology, orientation and spatial distribution 

in 3D, not only in 2D as with the other techniques mentioned. 

• Specification 5 – Statistical description: the results must be statistically representative 

of the material. The analyzed area must be as large as possible while keeping a good 

spatial resolution to allow the description of the inclusions. Ideally, it should be larger 

than the representative volume element, i.e., the smallest volume containing all the 

information, from a statistical point of view, characterizing the morphology and the 

distribution of the heterogeneities in the material. µ-CT is the technique with the largest 

analysis area, with the additional advantage of obtaining 3D information. Thus, the 

information obtained by µ-CT can be considered as more representative from a 

statistical point of view. 2D measurements can nevertheless provide results with 

sufficient statistics but for this, it is necessary to make many observations until a 

significant number of inclusions is detected. 

• Specification 6 – Simplicity, robustness and efficiency: the method should be robust and 

efficient, i.e., relatively easy to implement so that it could be applied in an industrial 

context. All the techniques based on topography analysis simply require sample cut with 

a razor blade so that they can be easy and quick to implement. Nevertheless, cutting 

generates artifacts that complicate observation and image analysis. The preparation of 

very thin slices for transmitted light microscopy is very delicate, time-consuming and 

can also suffer from artifacts (e.g. thickness variations) that hinder the analysis. µ-CT 

is insensitive to cutting artifacts. Thus, sample preparation is simple and fast. However, 

µ-CT image acquisition can be long (several hours typically), expensive and requires an 

experienced operator. OM and SEM techniques are less expensive, faster and less 

complex to use although the analysis of the measurements still requires a certain 

expertise. 

Table 1 summarizes this comparison of the different techniques in relation to the six 

specifications set.  

 In the light of this analysis, this paper focuses on three complementary techniques, 

which are now relatively accessible in laboratories: digital OM, SEM associated with EDS and 

µ-CT. These techniques offer spatial resolutions appropriate to the size of the inclusions of 

interest here (> 10 µm typically). The digital OM used allows to make observations almost 

identical to those of dark field microscopy as well as to characterize the surface topography as 

could be done using interferometric microscopy. This technique is investigated because sample 

preparation and data acquisition are simple and fast. Nevertheless, as discussed in more detail 

below, it is not able to differentiate the nature of inclusions. So, SEM is investigated to take 

advantage of the chemical information that can be obtained using EDS. µ-CT is also used 

because of the large amount of information (e.g. representativeness of the results and 3D 

morphology of the inclusions) that it can provide for certain types of inclusions.  

A special effort is made to optimize the image processing in order to characterize the 

inclusions more objectively and exactly that with the usual methods3,4,19. Six materials with six 

types of inclusions with different features are used to challenge the methodology. The automatic 

detection of these inclusions is associated with different types of difficulties, depending on the 

inclusion features such as: small size, low contrast with the matrix, brighter than the matrix in 

some case and darker in other cases, inner cavity, elongated complex shape, artifacts (called 

“metal-induced” artifacts in the following) due to very high density inclusions, inclusions close 

to each other.  

The materials and the experimental procedures used are first described. Then, the 

different types of inclusions observed in the characterized materials are presented. The next 

section describes the tool developed to detect, in an automatic way, the inclusions from the 

images. It also presents the information studied on the morphology and spatial distribution of 
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the detected inclusions. Then, a section presents the information obtained by applying the tool 

to the images from the different techniques (i.e., digital OM, SEM and µ-CT). At last, the 

techniques used are compared against the six specifications defined above.  

 

 

MATERIALS AND EXPERIMENTAL PROCEDURES 

 

MATERIALS AND SPECIMENS  

 

Six rubber materials with different populations of inclusions are investigated. Their 

chemical compositions are given in Table 2. They are all sulfur vulcanized and fully formulated 

according to an industrial process. For confidentiality reasons, all the details of their 

formulation are not explicitly given. Natural rubber (NR, standard Malaysian rubber 10) and/or 

Isoprene rubber (IR), reinforced with N339 CB or N990 CB are used. Materials with hollow 

glass beads (HGB) or solid glass beads (SGB) are also studied to check the consistency of the 

methods on well-calibrated inclusions. The beads are almost perfectly spherical objects of about 

200 µm in diameter. Hourglass-shaped injected specimens, referred to as AE2 in the following, 

are used (Fig. 1). They have a minimum diameter of 9 mm and a notch radius of 2 mm. They 

are representative of the manufacturing process used for automotive anti-vibration parts.  

 

 

DIGITAL OM 

 

The observations by digital OM are made on freshly cut surfaces. Several cutting 

techniques have been tested. It is finally chosen to cut the undeformed sample made with a 

razor blade at room temperature. The razor blade is lubricated with soapy water and introduced 

perpendicular to the sample surface by applying a vertical pressure, following7, i.e., without 

back and forth movement so that the cut surface is minimally degraded.  

The Keyence VHX-5000 digital optical microscope is used. The observation is done 

using coaxial light only (it was not possible to correctly describe the topography of both the 

smallest and the largest bumps). x500 magnification is used. This magnification allows a spatial 

resolution (pixel size) of 0.385 μm sufficiently small to detect clearly small inclusions (~10 

µm) and an observation area large enough to be able to observe large inclusions (~100 µm). 

The 1600x1200 pixels2 images are assembled so that images cover an area of up to 7.7x7.7 

mm2. Nevertheless, the larger the area of analysis, the higher the probability of having cut 

marks, which makes the analysis of the image more complex. The areas of observation are 

carefully chosen such as very few marks are noticeable.  

 

 

SEM 

 

SEM and EDS characterizations are performed on sample surfaces freshly cut using the 

same procedure as for OM observations. The SEM and EDS characterizations are performed 

using the JEOL JSM-6060LA and JEOL JSM-IT300 microscopes (tungsten filament gun). Both 

secondary electrons (SE) and backscattered electrons (BSE) modes are used, in order to obtain 

topographic contrast and chemical (atomic number) contrast, respectively. The observations are 

made at 10-3 Pa pressure. The samples are not metallized before observation, as the electric 

conductivity of samples is sufficiently high due to the presence of CB. The measurements are 

performed with an acceleration voltage of 15 kV. The chemical composition of the surface is 

determined using EDS. The acceleration voltage of 15 kV allows the analysis of the main 
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elements present in the studied materials, i.e., carbon, oxygen, sulfur and zinc. Analysis of zinc 

is based on L-shell emission lines while K-lines are used for the other elements. The 

measurements are reproduced at different positions in the analyzed region, to ensure the 

relevancy of the results.  

Areas of 0.64×0.49 mm2 are observed with a spatial resolution of 0.5 µm (1280x960 

pixels2 images). It is not possible to observe large areas with a very fine resolution since 

automatic assembly of SEM images is complicated. The 0.5 µm resolution chosen allows to 

analyze the largest possible area and to detect inclusions with an equivalent diameter greater 

than 3 μm.  

 

 

µ-CT 

 

Some µ-CT measurements are performed in the gauge region of AE2 specimens. These 

specimens are stretched at a maximum principal strain of about 50% using Plexiglas™ pillars 

to ensure that they are held and thus avoid spurious movement during the acquisition. The 

volume analyzed is approximately a cylinder of 9 mm in diameter and 6 mm in height.  

In order to perform µ-CT measurements with a better resolution, smaller bar samples 

are also used. They are extracted from AE2 specimens using a sharpened metal tube of 4 mm 

diameter. During the cutting process, the tube is rotated with a drill and lubricated with soapy 

water. The analyzed volume is approximately a cylinder of 3 mm in diameter and 2.9 mm in 

height.  

The µ-CT scans are performed using the Zeiss/XRadia Micro XCT 400 micro-

tomography system. The sample is rotated over 360° by an angle of 0.25° so that 1440 images 

are collected on the charge-coupled device detector. The parameters used for image acquisition 

are given in Table 3. Spatial resolutions (voxel size) of 8.3 and 1.7 μm are achieved for the AE2 

specimens and the bar samples, respectively.  

Table 4 summarizes the observed areas and the spatial resolutions of the images 

obtained using the three techniques investigated. 

 

 

NATURE OF INCLUSIONS 

 

As shown in TABLE 5, six different types of inclusions are identified in the six materials 

studied, by associating digital OM, SEM in BSE mode, EDS and µ-CT. In addition to glass 

beads and to the classical metal oxides and CB agglomerates, more atypical inclusions, called 

“geode-type”, type 1 and type 2 in the following, are observed. The strength of adhesion of the 

inclusion with the matrix was qualitatively assessed based on the ease of extracting the inclusion 

from the matrix. The elasticity and brittleness of the inclusion were qualitatively estimated by 

extracting the inclusion and crushing it. The stiffness of the inclusion was compared 

qualitatively to that of the matrix by observing the cut surfaces (if the inclusion generates a 

bump on the surface, it is considered stiffer than the matrix) or by micro-indentation 

measurements (results not presented in this paper). 

The metal oxides are mainly zinc oxides. As they are the densest inclusions in the 

formulation, they are the brightest on µ-CT and SEM-BSE images (Fig. 2). According to the 

observations made, metal oxides have a weak adhesion with the matrix and show a rigid 

behavior. Moreover, the largest ones seem to be brittle. 

Almost no CB agglomerates is observed directly on the cut surface, i.e., without rubber 

covering it. However, inclusions extracted from the bumps observed after cutting are found to 

be rigid, brittle, granular and composed essentially of carbon (Fig. 3), which allows to assume 
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that they are CB agglomerates. The presence of CB agglomerates in all the mixtures studied is 

confirmed by µ-CT. 

Inclusions consisting of a cavity surrounded by a spherical envelope are observed in the 

NR-N339 material (FIG. 4). They are called “geodes” because of their resemblance with 

mineralogical geodes. The cavity is lined with material denser than the matrix, with rod-type 

structure. It contains more oxygen, zinc and sulfur than the matrix as well as traces of 

phosphorus. The envelope of the geode is less dense than the matrix while being more rigid. It 

seems to be perfectly bounded to the matrix. It contains carbon and less sulfur and zinc than the 

matrix. A sample containing a geode was maintained for 4h at 100°C in an oven. This 

temperature is below the curing temperature. The envelope around the cavity seems to have 

reduced, while the cavity does not seem to be altered. Moreover, the bump generated by the 

geode on the surface has flattened. Thus, the geodes may consist of low molecular weight 

organic compounds extracted by the heat treatment, such as antioxidants. Nevertheless, the 

origin of the geodes could not be clearly identified. 

Other inclusions, called type 1, are observed in the NR/IR-N339 material (FIG. 5). They 

have a rather elongated complex shape. They present a good adhesion with the matrix. They 

show certain elasticity while being stiffer than the matrix. They are denser than the matrix and 

contain about twice as much zinc oxide as the matrix. These type 1 inclusions are only observed 

in the NR/IR-N339 mixture.  

So-called type 2 inclusions are present in NR/IR-N339 and IR-N339 mixtures (FIG. 6). 

Their spherical shape, elasticity and very good adhesion to the matrix seem to be close to those 

of geode-type inclusions, but they do not have a cavity. Type 2 inclusions are less dense than 

the matrix. They are composed of less sulfur and zinc than the surrounding matrix, like geode-

type inclusions. A heat treatment of 4h at 100°C was applied to a sample containing type 2 

inclusions. A reduction of the inclusion is observed, suggesting that this type of inclusion is 

made of low molecular weight elements such as antioxidants or elements from the IR gum (this 

type of inclusion is only observed in IR-based materials).  

 

 

IMAGE ANALYSIS DEVELOPED TO CHARACTERIZE THE INCLUSIONS  

 

 

IMAGE PROCESSING 

 

The images obtained by digital OM, SEM-BSE or µ-CT are processed to separate the 

sample from the background in case of µ-CT images, and to identify and separate the inclusions 

from the rubber matrix (segmentation) for all types of images. A tool written using the Python 

programming language has been developed for image processing to be able to use, with full 

control, advanced processing and analysis methods adapted to the specific needs of the study. 

Indeed, the Python ecosystem offers a variety of image processing algorithms compatible with 

2D and 3D images29. Several techniques have been tested to perform the image segmentation. 

Fig. 7 shows a block diagram of the image processing protocol finally retained, applied to the 

images from digital OM, SEM-BSE or µ-CT.  

Before segmentation, the images are pre-treated to improve the contrast between the 

inclusions and the matrix, reduce the noise and thus facilitate subsequent segmentation (Fig. 8). 

First, the gray level histogram is stretched, by clipping given percentages of the darkest and the 

lightest pixels/voxels (e.g., 10% for the darkest pixels/voxels and 0.5% for the lightest ones) to 

the gray levels corresponding to black and white, respectively. Then, the gray level histogram 

is rescaled to values between 0 and 1 for practical reasons. The contrast between the inclusions 

and the matrix on µ-CT images depends on the chemical composition of the inclusions. The 
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metal oxides can be clearly identified. However, the contrast between the CB agglomerates and 

the matrix is very small and only the biggest agglomerates can be clearly detected.  

Then, a median filter is applied to the images to reduce the noise while preserving edges. 

The window size used for the median filter is 9x9 pixels2 for digital OM images, 3x3 pixels2 

for SEM images and 3x3x3 voxels3 for µ-CT images. Finally, in the case of µ-CT images, the 

sample is separated from the background by applying a simple threshold on the gray level 

values (Fig. 8 (c)). The threshold value is chosen halfway between the two distinct peaks 

corresponding to the sample and the surrounding void. 

In the case of rubber materials, image segmentation is commonly performed using 

thresholding algorithms3, 4, 19. Threshold selection from the gray level histogram of the image 

can be manual or automatic30. These methods can be effective when the contrast between the 

objects to be segmented (the inclusions in the present case) and the matrix is sharp. However, 

in the present case, the inclusions, brighter than the matrix, are not associated with distinct 

peaks on the gray level histogram, as shown in Fig. 8. Consequently, the chosen threshold has 

a strong influence on the shape and size of the largest inclusions detected (Fig. 9). This point is 

usually not investigated in papers dealing with characterization of inclusions in rubber. 

To make the segmentation more accurate, robust and objective, the random walk 

algorithm31 is used. Image segmentation is treated as an optimization problem on a weighted 

graph, where each node represents a pixel (in 2D) or a voxel (in 3D). First, to initialize the 

algorithm (semi-automatic algorithm), seeds (labeled vertices) belonging clearly either to the 

inclusions or to the matrix are defined by applying thresholds on the gray level. As shown in 

Fig. 10, the threshold value used to define the seeds for the matrix is set to the gray level for 

which the curvature of the grayscale histogram of the whole image changes. More specifically, 

in the right hand part of the peak corresponding mainly to the matrix for inclusions brighter 

than the matrix, and in the left hand part of the peak for darker inclusions. The threshold value 

used to define the seeds for the inclusions is set more or less arbitrary since the grayscale 

histogram usually does not show clear peak for the inclusions (or a small one). To label the 

regions that remain undetermined after this step, the random walk algorithm then computes for 

each pixel/voxel the probability that a random “walker” leaving that pixel/voxel reaches the 

seeded pixels/voxels. The transition probability is inversely proportional to the contrast 

(difference between the intensities of grayscale) between the neighboring pixels so that the 

walker is not allowed to cross the “edges” where the gradient of gray level are high. As shown 

in Fig. 11, the threshold values used to determine the seeds have only very little effect on the 

segmentation. Nevertheless, in the particular case of µ-CT performed on bar samples, the 

segmentation algorithm can partly include the metal-induced artifacts observed around some 

metal oxides. 

The size of the data obtained by µ-CT is large (several gigabytes). In addition, the 

random walk segmentation algorithm requires a lot of memory. The multiprocessor system used 

(8 processors with 24 CPU cores, 6 Tb RAM) was not sufficient to process the volume in one 

go. Therefore, a parallelization of the computations has been implemented for the segmentation 

step. The 3D matrix is divided into 54 sub-volumes with an overlap of 50%. It is divided into 9 

blocks in the plane of the specimen section and 6 blocks on its height. The calculation of each 

block is performed on several processors. 

As illustrated in Fig. 12, after segmentation, only inclusions larger than the window size 

used for the median filter are kept for analysis to avoid artifacts, i.e., inclusions larger than 9x9 

pixels2 for digital OM images, 3x3 pixels2 for SEM images and 3x3x3 voxels3 for µ-CT images. 

Consequently, the inclusions analyzed have an equivalent diameter larger than 5 µm for digital 

OM images, 3 µm for SEM images and 6 μm for µ-CT images. These sizes are relevant to the 

study of the fatigue properties. In addition, incomplete inclusions at the edge of digital OM and 

SEM images are excluded. The application of the median filter allows to "remove" the blade 
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marks when they are thin on OM images. Most of the remaining blade marks are identified after 

segmentation by considering that they correspond to objects whose shape factor (ratio between 

the major axis and the minor axis lengths of the ellipse that has the same moment of inertia as 

the region) is greater than 3. They are then excluded from the analysis (Fig. 12). In the case of 

SEM-BSE images, blade marks are much less visible and they are automatically removed with 

the segmentation processing applied. In the case of µ-CT images obtained on bar samples, the 

sample outer periphery appears bright on a few voxels. To exclude this ring, the image of the 

specimen is eroded by a few voxels. To separate very close inclusions at the end of 

segmentation, an erosion operation is applied followed by a dilation, using the same structuring 

element for both operations (FIG. 13). 

 

 

MICROSTRUCTURAL INDICATORS 

 

Each region detected, assumed to be an inclusion, is labeled and its characteristics are 

then determined. The boundary of the regions is approximated with a set of triangles obtained 

using the marching cubes method32 (Fig. 14). Indeed, estimation of the volume and surface area 

of the inclusions is more accurate with this triangular mesh than with the original square or 

cube representation33. For each region, the following indicators are determined:  

• size: area or volume, equivalent diameter of the circle or the sphere with the same area 

or volume as the region; 

• shape: circularity 4�� ��⁄  in case of 2D analysis with � and � the region area and 

perimeter, respectively, or sphericity �� �⁄ 	6��� �⁄ �⁄  in case of 3D analysis with � and 

� the region volume and surface area, respectively (measure of how much the shape 

deviates from perfect circle or sphere, for which it is equal to 1) and shape factor (ratio 

between the major axis and the minor axis lengths) of the ellipse or ellipsoid with the 

smallest area or volume that encompasses the region; 

• orientation: angles between one global axis of the image and the major axis of the ellipse 

or ellipsoid that has the same second moment as the region; 

• position: coordinates of the centroid of the region bounding box. 

• Note that in the literature, the morphology of the inclusions is often described only in 

terms of equivalent diameter. The inclusions are located from their centroid and their 

spatial distribution is then analyzed using the spatial point process statistics34, on the 

basis of: 

• the shortest distance between the centroids of the regions; 

• the Ripley’s K-function35 associated to the centroids of the regions, i.e., the mean 

number of centroids within a given radius � from any other centroid: �	�� =
������ ∑ ∑ ���������

��
���� , where � is the density of events, � is the observed number 

of points, ������ is the indicator function equal to 1 if the distance ��� between the ith 

and the jth points is less than or equal to � and to 0 otherwise, and ��� provides the edge 

correction. The Ripley’s K-function values obtained are compared to those expected for 

a homogeneous Poisson point process consisting in a completely random point pattern 

for which �	�� = ��� in 2D and �	�� = �

�
��� in 3D. For a given search distance, 

values of the K-function above, between or below the envelopes corresponding to a 

homogeneous Poisson point process indicate that the point pattern is clustered, random 

or regular, respectively.   
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APPLICATION TO THE DIFFERENT MATERIALS 

 

The image processing and analysis protocol described above has been applied to digital 

OM, SEM and µ-CT images. This section presents the results obtained from each of the 

techniques. First, the indicators that allow to distinguish or not one type of inclusion from 

another are described. Then, examples of results obtained are presented. The comparative 

analysis of the different techniques is done in the following section. 

 

 

APPLICATION TO DIGITAL OM IMAGES 

 

Digital OM images allows to characterize the bumps visible on the surface but without 

distinction between the types of inclusions at the origin of these bumps.  

Fig. 15 gives an example of digital OM image on the NR-N339 material with the 

segmentation results obtained using the developed image processing. The bumps visible on the 

cut surface are well detected in number and shape by image processing. 3237 bumps are 

counted. Fig. 16 (a, b) shows the associated distributions of bumps’ equivalent diameter and 

circularity. The bumps detected have an equivalent diameter of about 10 µm on average. They 

have in majority a rather circular shape. The populations of inclusions are indistinguishable on 

OM images since they are embedded in matrix. Only the glass beads are distinguishable because 

either they leave a perfectly spherical hole or the gum does not remain bounded to their surface. 

The analysis of large bumps has shown that they can originate from several types of inclusions. 

Numerous small bumps, i.e., a few micrometers in diameter, are observed. In the literature, it 

is commonly assumed that these are CB agglomerates. However, an EDS analysis (which 

somehow allows a depth of about 1 μm to be chemically analyzed) performed over the entire 

surface suggests that most of the small bumps result from zinc oxide inclusions. Moreover, by 

analyzing a surface such as the one shown in Fig. 15, it is possible to characterize a large number 

of small inclusions but only very few inclusions larger than 30 μm. The Ripley’s K-function 

applied to the bumps detected on the same image is shown in Fig. 16 (d), along with the K-

function expected for a homogeneous Poisson point process consisting in a completely random 

point pattern. The spatial distribution of the bumps follows a homogeneous Poisson point 

process. This shows that the ingredients are well distributed in the material without aggregation.  

 

 

APPLICATION TO SEM-BSE IMAGES 

 

SEM-SE images are relatively sensitive to charging effects and most inclusions are not 

highlighted very well. Attempts to process the SEM-SE images did not yield satisfactory 

results. Inclusions denser than the matrix are clearly visible on SEM-BSE images. Thus, only 

SEM-BSE images are analyzed by image processing to characterize the inclusion populations.  

 

 Detection and distinction of the different types of inclusions.–The metal oxides not 

coated with matrix after cutting (potentially due to poor adhesion with the matrix) appear white 

on SEM-BSE images. Those that are embedded in the matrix are associated with a gray level 

between that of the matrix and that of the very bright inclusions.   

CB agglomerates are not visible due to a density too close to that of the matrix and/or 

to a layer of matrix covering the agglomerates that is too thick compared to the penetration 

depth of electrons. The cavity containing phosphorus of the geode-type inclusions appears very 

bright on SEM-BSE images (Fig. 17 (a)). The surrounding area shows a gray level very close 

to that of the matrix. It is nevertheless distinguishable from the matrix because it has a 
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"cauliflower" texture. The thickness of this rim is not the same for all the observed geodes and 

can sometimes be very thin or even unobservable. As for CB agglomerates, type 1 inclusions 

are almost not visible on SEM-BSE images because of their density close to that of the matrix. 

Type 2 inclusions show low contrast with the matrix. However, they can be differentiated from 

the matrix thanks to their texture, and from geodes because they do not present a cavity whose 

periphery appears very bright (Fig. 17 (b)). The glass beads appear lighter than the matrix on 

SEM-BSE images. They are distinguishable from other types of inclusions (metal oxides and 

geode cavity) because they are spherical and have a calibrated diameter of about 200 μm. 

Nevertheless, the two types of beads used (i.e., solid and hollow) cannot be distinguished from 

each other.  

Finally, the metal oxides, the geode cavity and the glass beads are detected automatically 

by processing of SEM-BSE images. The CB agglomerates, the area surrounding the cavity of 

geode-type inclusions, type 1 inclusions and type 2 inclusions cannot be detected automatically 

because of their low contrast with the matrix. The bright inclusions observed in Fig. 18 are 

metal oxides and the largest one is probably the periphery of the cavity of a geode. However, 

the automatic processing used does not allow to distinguish between these two types of 

inclusions.  

 

Characteristics of the inclusions.–Fig. 18 shows an example of SEM-BSE image 

obtained on the NR-N339 material, segmented using the image processing previously 

described. 326 inclusions are detected. Some of their characteristics are given in Fig. 19. Their 

average equivalent diameter is about 4 μm. The detected inclusions are rather circular. The 

average shortest distance between the centroids of the inclusions with a size larger than 3.2 µm 

is about 20 µm. The inclusions' centroids follow a homogeneous Poisson point process, 

showing that they are randomly distributed. 

 

 

APPLICATION TO µ-CT IMAGES 

 

Detection and distinction of the different types of inclusions.–The type of sample and 

the resolution of the µ-CT are chosen according to the nature of the inclusions studied and 

according to the volume necessary for the results to be representative, depending on the size of 

the targeted inclusions. Thus, the µ-CT performed with a resolution of 1.7 µm on bar specimens 

are used to analyze geodes and CB agglomerates because the detection of these inclusions 

requires a very good resolution. The µ-CT carried out with a resolution of 8.3 µm on AE2 

specimens are used to analyze the type 1 inclusions and the glass beads because their large size 

imposes to analyze a large volume. FIG. 20 shows examples of the different types of inclusions 

observed by µ-CT.  

The inclusion populations show different features generating different types of 

difficulties for automatic detection from the images, which allows evaluating the capabilities 

and limitations of the method. Table 6 summaries the characteristics considered to detect and 

distinguish the different types of inclusions.  

It is relatively easy to detect glass beads because of their spherical geometry, their size 

and their gray level (in the volume of SGB or in the periphery of HGB) clearly lighter than that 

of the matrix (FIG. 20 (a)). Bright inclusions with an equivalent diameter greater than 150 μm 

are assumed to be glass beads. Indeed, metal oxides are smaller, there is no type 1 inclusions in 

the materials containing glass beads and the potential geode-type inclusions cannot be observed 

due to the insufficient resolution of the concerned µ-CT. However, glass beads are numerous 

and therefore close to each other. The main difficulty is therefore to separate them 
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Most of the glass beads are well detected (FIG. 21 (a)). Nevertheless, two or three glass 

beads or a glass bead with metal oxides stuck to it are sometimes detected as a single entity 

(FIG. 21 (b)).  

Metal oxides are the brightest regions on µ-CT images (FIG. 20 (b)). It is relatively easy 

to distinguish them from the matrix (the different types of metal oxides cannot be distinguished 

from each other). However, they can be small, some of them are surrounded by metal-induced 

artifacts and they are sometimes close to each other, which makes separation difficult. It is 

considered that metal oxides correspond to solid objects (i.e., without cavity) and of smaller 

dimensions than type 1 inclusions and glass beads. In the case of materials without type 1 

inclusions and glass beads, no size limit is set to identify metal oxides. Metal-induced artifacts 

observed around some metal oxides are partly detected by the segmentation algorithm (FIG. 22) 

used so that the size of metal oxides with pronounced metal-induced artifacts is slightly 

overestimated. 

For CB agglomerates, the main difficulty is that it is difficult to distinguish them from 

the matrix. CB agglomerates cannot be identified on µ-CT images with a resolution of 8.3 μm. 

However, as shown in FIG. 3 (a) and FIG. 20 (c), CB agglomerates larger than about 40 µm can 

be distinguished from the matrix in µ-CT images with a resolution of 1.7 μm, by the absence 

of metal oxides at these locations and by a few dark voxels probably corresponding to porosities 

within the agglomerate. To our knowledge, Kallungal et al.19 were the only ones to date that 

have reported in the literature results clearly showing CB agglomerates in elastomers in µ-CT 

performed using a non-synchrotron source. Because the gray level histogram of the CB and the 

matrix are similar, it was not possible to automatically detect CB agglomerates by image 

processing. The detection and analysis of CB agglomerates (larger than approximately 40 µm) 

are performed manually. Thus, only the number and size of these inclusions are analyzed. 

The main complication for geode-type inclusions is related to their complex structure 

with a cavity whose border appears clearly lighter than the matrix surrounded by a zone only 

slightly darker than the matrix. Geodes cannot be clearly highlighted on 8.3 μm resolution µ-

CT because the cavity and the area surrounding it cannot be distinguished so that only a bright 

area is observed. On 1.7 μm resolution µ-CT images, geodes are distinguishable from other 

types of inclusions due to their cavity border appearing bright and the area surrounding the 

cavity appearing slightly darker than the matrix (FIG. 4 (a) and FIG. 20 (d)). Only the cavity of 

the geodes is detected by automatic processing of 1.7 μm resolution µ-CT images. Indeed, the 

part slightly darker than the matrix surrounding the cavity is not systematically visible 

especially for the smallest geodes. Therefore, the size of the geodes is underestimated by a 

factor of 1.5 to 3. 

Type 1 inclusions have the particularity of presenting a complex and elongated shape 

(FIG. 5 (a) and FIG. 20 (e)). They appear lighter than the matrix, like metal oxides. Type 1 

inclusions are generally larger than metal oxides. However, in the case of large metal oxides 

(i.e., larger than 100 μm), important metal-induced artifacts usually appear. Thus, it is 

considered that bright inclusions of more than 100 µm and not associated with metal-induced 

artifacts are type 1 inclusions. 

Last, as shown in FIG. 6 (a) and FIG. 20 (f), unlike the other inclusion populations, type 

2 inclusions appear darker than the matrix. Type 2 inclusions are detectable by image 

processing only from µ-CT performed on AE2 specimens made of NR/IR-N339. In the IR-

N339 material, these inclusions are visible on 1.7 μm resolution µ-CT. On the other hand, in 

this material, they cannot be detected automatically by image processing for µ-CT with a 

resolution of 8.3 μm because the contrast with the matrix is very low. In the NR/IR-N339 

material, these inclusions are visible in µ-CT with resolutions of 1.7 μm and 8.3 μm. 

Nevertheless, in the case of µ-CT with a resolution of 1.7 μm, the contrast of these inclusions 

with the matrix is also too low for them to be detected by image processing. Thus, only the 8.3 
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μm resolution µ-CT images obtained for the NR/IR-N339 material were processed 

automatically. Image processing leads to the detection of many small objects. Based on the 

observations made (section Nature of inclusions), only objects with an equivalent diameter 

larger than 60 µm or a sphericity index higher than 0.7 are supposed to be type 2 inclusions. 

 

Characteristics of the inclusions.–Fig. 23 shows the 201109 metal oxides and the 165 

geodes detected in a NR-N339 bar sample by processing 1.7 µm resolution µ-CT images. Some 

of their characteristics are illustrated in Fig. 24. Table 7 gives the characteristics of the 

inclusions detected in the six materials analyzed, i.e., the minimum, mean and maximum values 

as well as the standard deviation (std) of the equivalent diameter, the sphericity and the distance 

to the nearest neighbor centroid of the inclusions, in addition to their number and their volume 

fraction. 

 

Glass beads.–As shown in Table 7 (a), the volume fraction of glass beads is higher in 

the NR-N339&HGB material than in the NR-N339&SGB material, in accordance with the 

similar mass of glass beads incorporated. Due to the difficulty to separate some of the glass 

beads, the number of glass beads is underestimated in both materials, in particular in NR-

N339&HBG. In both materials, the average equivalent diameter is about 210 μm, i.e., close to 

the theoretical diameter of 200 μm. The results indicate sphericity indexes of glass beads of 

0.82 in the NR-N339&HGB mixture and of 0.85 in the NR-N339&SGB material. The 

sphericity value depends on the spatial discretization of the inclusion. For a perfect sphere, this 

index is theoretically 0.925 for images with a spatial resolution of 8.3 μm. The slight difference 

between the average sphericity obtained and that of a perfect sphere is due to the poor detection 

of glass beads very close to each other. The distance from each glass bead to its nearest neighbor 

is on average 334 μm in NR-N339&HGB and 364 μm in NR-N339&SGB. This difference can 

be explained directly by the larger number of glass beads in NR-N339&HGB. This value is 

overestimated because a number of glass beads are detected as a single entity. The Ripley’s K-

function shows that the glass beads arrange themselves according to an aggregation process in 

both materials (Fig. 25).  

 

Metal oxides.–The results in Table 7 (b) show that the average size of the detected metal 

oxides depends on the resolution of the µ-CT. In the different materials, the average diameter 

is estimated to be 45 μm from 8.3 μm resolution µ-CT and 13 μm from 1.7 μm resolution µ-

CT. The volume fraction of metal oxides is lower according to 8.3 μm resolution µ-CT of AE2 

specimens than according to 1.7 μm resolution µ-CT of bar samples. Indeed, in the latter, more 

metal oxides of small dimensions are detected. The size distributions obtained with the two 

scales of analysis are consistent (for inclusions larger than 30 µm). The number of inclusions 

per unit volume obtained on the AE2 specimens (resolution of 8.3 μm) is close to that obtained 

on the bar samples (resolution of 1.7 μm) for inclusions smaller than 40 μm but higher for 

inclusions larger than 40 μm. This is mainly due to strong metal-induced artifacts and to a bad 

detection of the inclusions very close to each other in the case of 8.3 μm resolution µ-CT (Fig. 

22). The results show that the addition of glass beads, the type of CB or the gum used do not 

significantly influence the size distribution of metal oxides. According to the sphericity values, 

the metal oxides have a rather spherical shape independently of the scale of observation and the 

mixtures considered. The distribution of metal oxides follows a homogeneous Poisson point 

process for the six materials studied, as illustrated in Fig. 24 (d) for the NR-N339 material. The 

nearest neighbor distance is approximately 120 μm for metal oxides larger than 30 μm, and 32 

μm for oxides larger than 6 μm. No influence of the gum type, CB type or glass bead addition 

is observed. 
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CB agglomerates.–Materials made of a single type of gum contain more large CB 

agglomerates in number and volume fraction (Table 7 (c)). Very few CB agglomerates are 

observed in the NR/IR-N339 mixture. Very large CB agglomerates can be observed in the IR-

N339 material in larger volume fraction and smaller number than in NR-N339.  

 

Geode-type inclusions.–The 165 geodes detected in a NR-N339 bar sample by 

processing 1.7 µm resolution µ-CT images are illustrated in Fig. 23. Some of their statistical 

characteristics are shown in Fig. 24.  As indicated in Table 7 (d), the geode cavity has an 

equivalent diameter of 41 μm on average and of 76 µm at the maximum. It can be assumed that 

the maximum equivalent diameter of geodes may exceed 100 μm when considering the portion 

that encompasses the cavity. The geodes are more numerous and have a larger volume fraction 

than the CB agglomerates. As suggested by the mean sphericity index and its standard 

deviation, the cavity of the geodes is not spherical, with some variability in shape from one 

inclusion to another. The distance to their nearest neighbor is 301 μm on average, which is 3 

times greater than for the metal oxides in the same specimen. Fig. 24 (d) shows the Ripley’s K-

function determined for a 1656x1656x1656 µm3 cube taken in the analyzed volume. The K-

function of the 38 analyzed geodes seems to be slightly below the theoretical curve for a 

homogeneous Poisson point process. This is due to the small number of geodes analyzed. 

Indeed, the K-function of the geodes is in the interval of the K-function following a Poisson 

process of intensity equal to 38 	1656 × 1656 × 1656�⁄ . The spatial distribution of the geodes 

can thus be considered as approximately random.  

 

Type 1 inclusions.–According to the µ-CT performed on the NR/IR-N339 AE2 

specimen, type 1 inclusions are fewer in number and lower in volume fraction than the metal 

oxides, but larger in size (Table 7 (e) to be compared to Table 7 (b)). Their equivalent diameter 

is 129 μm on average and 288 µm at maximum. The sphericity index shows that type 1 

inclusions are less spherical than metal oxides. Type 1 inclusions are ellipsoidal, with a shape 

factor of 2.1 on average. As shown in Fig. 26, about half of the inclusions have a shape factor 

greater than 2. Therefore, the equivalent diameter is not an appropriate indicator for these 

inclusions. The inclusions have a privileged orientation along the axis of the AE2 specimen. 

The more the inclusion is elongated, the closer its orientation is to the AE2 specimen axis. The 

preferential orientation of type 1 inclusions seems to be driven by the material flow during 

injection. The average distance between two type 1 inclusions is 661 μm, i.e., about 3 times 

greater than for metal oxides in the same specimen. According to the Ripley’s K-function, they 

are randomly distributed (homogeneous Poisson point process).  

 

Type 2 inclusions.–The characteristics of the type 2 inclusions obtained are given in 

Table 7 (f). In the analyzed AE2 sample, type 2 inclusions are as numerous as type 1 inclusions. 

Nevertheless, their volume fraction is five times lower. Indeed, they are smaller (average 

equivalent diameter of about 90 μm). The average size obtained after image processing for the 

NR/IR-N339 AE2 specimen is close to the one obtained by manual analysis for the NR/IR-

N339 and IR-N399 bar samples. The standard deviation on the equivalent diameter is two times 

smaller than that of type 1 inclusions. Thus, the size of type 2 inclusions appears to be 

homogeneous. The shape of these inclusions seems rather spherical and homogeneous. Type 2 

inclusions are more widely spaced on average than type 1 inclusions and metal oxides. The 

spatial pattern of type 2 inclusions follows a homogeneous Poisson point process.  

 

 

COMPARISON OF THE DIFFERENT TECHNIQUES 
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This section compares digital OM, SEM and µ-CT, associated with the developed image 

processing, according to the six specifications mentioned in the Introduction. As summary is 

made in TABLE 8, as done in TABLE 1 for the techniques reported in the literature. 

The second specification (sensitivity and objectivity) is from our point of view reached 

for the three techniques thanks to the image analysis protocol developed. The simplicity, 

robustness and efficiency (sixth specification) of the three techniques have already been briefly 

discussed in the Introduction. In summary, µ-CT requires simpler sample preparation than 

digital OM and SEM. However, the technique is less accessible and acquisition can be longer 

and more expensive, which can complicate its implementation in an industrial environment. 

For the three techniques, robustness and efficiency are improved by the developed image 

processing. The following discussion focuses on the four other specifications. Finally, a short 

discussion is conducted on the comparison between 2D and 3D measurements. 

 

 

SIZE OF INCLUSIONS (SPECIFICATION 1) 

 

Fig. 27 (a) compares the size distribution of the inclusions analyzed by digital OM (Fig. 

15, pixel size 0.385 µm) and SEM-BSE (Fig. 18, pixel size 0.5 µm) in the NR-N339 material. 

The size of the inclusions is larger according to optical OM observations than according to 

SEM-BSE observations. Indeed, the inclusions remain covered with matrix and it is the bumps 

that the inclusions generate on the cut surface that are measured on OM images and not the 

inclusions themselves. Thus, analysis based on digital OM tends to overestimate the size of the 

inclusions. To determine the exact size of the inclusion from OM observations, it would be 

necessary to know the thickness of the gum that coats the inclusion, the shape of the inclusion, 

its orientation and the position of the cutting plane in the height of the inclusion. The number 

of inclusions larger than 5 μm per unit area is 108 mm-2 for the SEM-BSE image in Fig. 18 and 

830 mm-2 for the digital OM image in Fig. 15. To obtain the number of inclusions larger than 5 

μm per unit area determined by digital OM, all the detected inclusions larger than 3.2 μm should 

be considered in the SEM image. This suggests that the analysis of digital OM images leads to 

an overestimation of about 2 µm of the equivalent diameter of the inclusions on average, due 

to a ~1 µm-thick matrix coating covering the small metal oxides. It is therefore considered that 

analysis based on SEM-BSE images is more accurate than that based on digital OM images. 

However, a bias may also exist in the case of SEM-BSE for the inclusions that are coated. 

Indeed, because of the limited emission depth of BSE, the probability of measuring the largest 

dimension of the inclusion is lower when it is covered, so that its size is underestimated.  

 

 

NATURE OF INCLUSIONS (SPECIFICATION 3) 

 

Table 9 summarizes the ability of the different techniques to differentiate inclusions by 

nature. The digital OM technique gives access to the population of inclusions that are more 

rigid than the matrix. However, it does not allow to distinguish the nature of the inclusions 

(except glass beads) since they remain coated by the matrix after cutting.  

The SEM technique in the BSE mode allows the differentiation of inclusions composed 

of elements of high atomic number such as zinc, phosphorus and silicon. Thus, the geode cavity 

(containing phosphorus), metal oxides and glass beads (silica) can be distinguished from the 

matrix, the type 2 inclusions and the CB agglomerates. However, they cannot be differentiated 

from each other automatically. Type 2 inclusions can be observed but not be detected 

automatically by image processing. CB agglomerates and type 1 inclusions cannot be detected. 

To detect them, it could be considered that all inclusions not visible in BSE mode but generating 
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a visible bump in SE mode are CB agglomerates and/or type 1 inclusions. Nevertheless, this 

would not allow differentiating these two types of inclusions in materials where they coexist. 

Using µ-CT, it is possible to observe all the types of inclusions found in the materials 

used in this study, i.e., metal oxides, large CB agglomerates, geodes, and type 1 and type 2 

inclusions and glass beads. All these types of inclusions can be detected automatically by image 

processing, expect CB agglomerates which must be detected manually. The different 

populations of inclusions can be  differentiated from each other with certain assumptions about 

their morphologies. µ-CT is thus the best method for the classification of inclusions with respect 

to their nature (once the features of the different types of inclusions are known). 

 

 

QUANTITATIVE AND STATISTICAL DESCRIPTION (SPECIFICATIONS 4 AND 5) 

 

For the NR-N339 material, ten times fewer inclusions are detected from the SEM-BSE 

image shown in Fig. 18 than from the digital OM image shown in Fig. 15, in part because the 

observation area is 14 times smaller. It must be mentioned that when the analysis resolution for 

SEM-BSE is improved, the number of small bright inclusions (probably metal oxides) detected 

increases. The µ-CT illustrated in Fig. 23 (volume analyzed: cylinder of approximately 3 mm 

in diameter and 3 mm in height) allows to detect 62 times more inclusions than the digital OM 

image in Fig. 15 (surface analyzed: 7.7x7.7 mm2).  

The number of inclusions per unit volume detected by µ-CT in the NR-N339 material 

is shown in Fig. 27 (b) versus the inclusion size. Fewer inclusions per unit length than with OM 

and SEM are detected, due to the lower spatial resolution. A greater fraction of inclusions larger 

than 15 μm is observed compared with digital OM and SEM-BSE-based observations. On the 

one hand, µ-CT makes it possible to examine a volume and thus to obtain results supposed to 

be representative. On the other hand, in addition to the limited size of the analyzed surface, 

digital OM and SEM-BSE observations are performed on cross-sections that do not necessarily 

intersect the inclusions at their largest dimension. This leads to a tendency to underestimate the 

proportion of large inclusions and to overestimate the proportion of small inclusions. 

Stereological methods36 could be used to refine the determination of the inclusion's size 

distribution from results of 2D observations.   

The comparison of Fig. 16 (b) and Fig. 19 (b) shows that the inclusions detected from 

SEM-BSE images are slightly less circular than those detected by digital OM. Indeed, the 

bumps appearing in OM images tend to be rounded by the matrix covering the inclusions while 

SEM-BSE images are expected to better reflect the real shape of the inclusions, in 2D. µ-CT 

provides more direct information on the 3D morphology of the inclusions. For example, as 

shown in Fig. 24 (b), the metal oxides analyzed in the NR-N339 material have a rather spherical 

shape, while the cavity of the geodes is more tortuous. 

The three techniques used, i.e., digital OM (Fig. 16 (d)), SEM-BSE (Fig. 19 (d)) and µ-

CT (Fig. 24 (d)), lead to the same conclusion about the type of spatial distribution of the 

inclusions detected, i.e., a random distribution (homogeneous Poisson point process), except 

for the glass beads. The distances to the nearest neighbor determined from digital OM (Fig. 16 

(c)) and SEM-BSE (Fig. 19 (c)) are very close. They are smaller than those evaluated by µ-CT 

(Fig. 24 (c)) in particular because the spatial resolutions of digital OM and SEM measurements 

are better, and therefore allow the identification of a larger number of small inclusions per unit 

area. µ-CT has nevertheless the advantage of characterizing the spatial distribution in 3D. 

 

 

2D VERSUS 3D MEASUREMENTS 
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The comparison of surface techniques, i.e., digital OM and SEM-BSE, and the volume 

µ-CT technique is not direct since the inclusions are not detected in the same way. Thus, in 

order to investigate the link between 3D and 2D measurements, the characteristics of the 

inclusions present on a randomly chosen slice (2D) of the µ-CT are compared to the results 

obtained on the whole volume, for the NR-N339 material. Only metal oxides and geodes are 

considered here and these two types of inclusions are not differentiated, since a surface 

measurement makes it difficult to do so. 771 inclusions are detected on the 2D slice, and 201274 

in the whole volume. Fig. 28 (a) compares the distributions of the equivalent diameter of the 

inclusions obtained from the 2D and the 3D measurements. The results are almost identical. 

This suggests that the number of inclusions analyzed is sufficient to be representative of the 

entire volume. The rather spherical shape of the detected inclusions favors this equivalence. 

The 2D and 3D analyses agree to show that the spatial distribution of the inclusions follows a 

homogeneous Poisson point process. However, Fig. 28 (b) shows that the analysis of a single 

slice of the µ-CT leads to an overestimation of the average and maximum distances to the 

nearest neighbor by about a factor of two. A surface measurement can thus give a good estimate 

of the average size of the inclusions if they are rather spherical, randomly distributed and 

counted in sufficient number, but the evaluation of the distance to the nearest neighbor is biased. 

 

 

CONCLUSIONS 

 

Three techniques, now commonly accessible in laboratories, are thoroughly investigated 

to characterize the inclusions larger than a few µm in elastomers: digital OM, SEM in BSE 

mode and associated with EDS analysis, and µ-CT. Six materials, with different types of matrix 

(NR, IR and NR/IR) and of CB (N339 and N990) and with or without addition of glass beads, 

are used to challenge the methodology. By combining the three techniques, six different types 

of inclusions were identified. In addition to the glass beads, and to the metal oxides and the CB 

agglomerates classically observed in such materials, three types of atypical inclusions called 

geode-type, type 1, type 2 inclusions, were found in some of the formulations.  

The different populations of inclusions have different features, generating several types 

of difficulties for automatic detection from digital OM, SEM-BSE or µ-CT images, e.g., small 

size, low contrast with the matrix, inner cavity, elongated complex shape, metal-induced 

artifacts or inclusions close to each other. An efficient and robust image analysis procedure was 

implemented to automatically detect the inclusions from digital OM, SEM-BSE and µ-CT 

images, more objectively and accurately than with the more classical thresholding method. The 

size, the shape, the orientation and the spatial distribution of the different populations of 

inclusions were determined with good statistics for the six materials studied, from µ-CT 

analysis in particular. It was thus possible to study the influence of the addition of glass beads, 

the type of matrix and the type of CB on the populations of inclusions.  

Inclusions that are stiffer than the matrix can be detected by digital OM but their nature 

cannot be identified. This technique does not only evaluate the macro-dispersion of CB 

agglomerates as sometimes considered in the literature but also that of inclusions of different 

natures. SEM-BSE allows to characterize the inclusions in a more precise way than the digital 

OM, and allows to differentiate certain types of inclusions. µ-CT makes it possible to observe 

all the types of inclusions, and to differentiate them. To our knowledge, this is one of the first 

times that CB agglomerates have been highlighted by µ-CT using a non-synchrotron source. 

The inclusions could be detected in an automatic way from µ-CT images, with the exception of 

CB agglomerates. The results obtained by µ-CT tend to be more statistically representative than 

those obtained with the 2D techniques because of the 3D nature of the observations, the greater 

number of inclusions detected and the larger size of the zone analyzed. Unlike digital OM and 
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SEM, µ-CT allows the measurement of many inclusions larger than 30 μm. The morphology of 

the inclusions and their spatial arrangement can be determined with more accuracy from µ-CT. 

Nevertheless, a relatively good estimate of the size of the inclusions can be obtained from digital 

OM and SEM-BSE measurements when the analyzed inclusions are in sufficient number, 

randomly distributed and have a rather spherical shape. However, it is more difficult to obtain 

reliable and statistically representative information on the spatial distribution of inclusions from 

surface measurement.  
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FIG. 26. — Histogram of the shape factor of type 1 inclusions detected on a 8.3 µm resolution µ-CT obtained for 
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FIG. 1. — Hourglass-shaped specimen (AE2) used (dimensions in mm). 
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FIG. 2. — Metal oxides observed by SEM-BSE. 
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FIG. 3. — CB agglomerate (a) at the surface of a sample observed by µ-CT, and (b, c) extracted from the sample 

observed by SEM-SE at different magnifications. 
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FIG. 4. — Geode-type inclusion observed (a) by µ-CT at the surface of a sample and (b) by SEM-SE after surface 

erosion. 
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FIG. 5. — Type 1 inclusions observed (a) by µ-CT (0.54 µm resolution) and (b) by SEM-SE after being cut. 
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FIG. 6. — Type 2 inclusion observed (a) by µ-CT (voxel size: 1.7 µm) and (b) by SEM-SE after being cut. 
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FIG. 7. — Block diagram showing the main steps of the image processing.  
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FIG. 8. — Image preprocessing on a µ-CT image (associated gray level histogram shown on the right): (a) initial 

image, (b) image after gray level histogram stretching, (c) image after application of a 3x3x3 voxels3 median 

filter.  
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FIG. 9. — Segmentation of an inclusion on a µ-CT image using a thresholding method: sensitivity to the 

threshold value (for gray level histogram close to the one shown in Fig. 8(c)).  
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FIG. 10. — Inclusion (brighter than the matrix) segmentation from a µ-CT image: gray level histogram (left), 

seeds used to initialize the random walk algorithm (middle), segmentation result (black edges) overlaid on the 

denoised image (right). 
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FIG. 11. — Segmentation of an inclusion on a µ-CT image using the random walk algorithm: sensitivity to the 

threshold values applied to determine the seeds for the inclusions and the matrix used for initialization of the 

algorithm. 
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FIG. 12. — Segmentation of a digital OM image (with a vertical blade mark on the right): (a) original image; (b) 

result of segmentation with selection of the objects according to their size, shape and position (orange edges: 

deleted objects, blue edges: kept objects). 
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FIG. 13. — Separation by erosion and dilation of close inclusions detected on a digital OM image. 
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FIG. 14. — Inclusion represented (a) by voxels and (b) by a triangular mesh obtained using the marching cubes 

algorithm. 
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FIG. 15. — Analysis of a digital OM image obtained for the NR-N339 material: (a) raw image, (b) binarized 

image after segmentation and zoom showing the segmentation result (blue edges) overlaid on the original image. 
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FIG. 16. — Characteristics of the 3237 bumps detected on the digital OM image shown in Fig. 15 obtained for 

the NR-N339 material: (a) histogram of the equivalent diameter of the circles having the same area as the bumps, 

(b) histogram of the circularity of the ellipses with the same area as the bumps, (c) shortest distance between the 

centroids of the bumps, (d) Ripley’s K-function applied to the centroids of the bumps, compared to the one for a 

homogeneous Poisson point process (random point pattern). 
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FIG. 17. —  (a) Geode-type inclusion (only the envelope slightly darker than the matrix and the contour of the 

cavity brighter than the matrix are visible; the cavity is not) and (b) type 2 inclusion observed by SEM-BSE. 
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FIG. 18. — SEM-BSE image obtained for the NR-N339 material, with the segmentation result overlaid. 
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FIG. 19. — Characteristics of the 326 inclusions detected on the SEM-BSE image shown in Fig. 18 (b) obtained 

for the NR-N339 material: (a) histogram of the equivalent diameter of the circles having the same area as the 

inclusions, (b) histogram of the circularity of the ellipses with the same area as the inclusions, (c) shortest 

distance between the centroids of the inclusions with a size larger than 3.2 µm, (d) Ripley’s K-function applied 

to the centroids of the inclusions, compared to the one for a homogeneous Poisson point process. 
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FIG. 20. — Inclusions observed by µ-CT: (a) glass beads (HGB on top, SGB on bottom), (b) metal oxide, (c) CB 

agglomerate, (d) geode-type, (e) type 1 and (f) type 2 inclusions. 
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FIG. 21. — Examples of glass beads detected on the 8.3 µm resolution µ-CT images obtained for the NR-

N339&SGB material: (a) glass beads well detected, (b) two glass beads and one metal oxide merged. 
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FIG. 22. — Metal-induced artifacts and metal oxides merged after segmentation of 8.3 µm resolution µ-CT 

images obtained on NR-N339 and IR-N339 materials. 
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FIG. 23. — Metal oxides and geode cavities detected in a NR-N339 material bar sample (21.8 mm3) from 1.7 µm 

resolution µ-CT. 

  



45 

 
FIG. 24. — Characteristics of the 201109 metal oxides and the 165 geode cavities detected on the 1.7 µm 

resolution µ-CT shown in Fig. 23 obtained for the NR-N339 material: (a) histogram of the equivalent diameter 

of the spheres having the same volume as the inclusions, (b) histogram of the sphericity of the smallest ellipsoids 

encompassing the inclusions, (c) shortest distance between the centroids of the inclusions, (d) Ripley’s K-

function applied to the centroids of the inclusions, compared to the one for a homogeneous Poisson point 

process, for a 1656x1656x1656 µm3 cube taken in the analyzed volume. 
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FIG. 25. — Glass beads detected on the 8.3 µm resolution µ-CT obtained for the NR-N339&SGB material: 

Ripley’s K-function applied to the centroids of the inclusions, compared to the one for a homogeneous Poisson 

point process. 
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FIG. 26. — Histogram of the shape factor of type 1 inclusions detected on a 8.3 µm resolution µ-CT obtained for 

the NR/IR-N339 material (AE specimen). 
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FIG. 27. —  (a) Number of inclusions per unit area detected by digital OM and SEM-BSE and (b) number of 

inclusions per unit volume detected by µ-CT, versus the inclusion’s equivalent diameter, for the NR-N339 

material. 
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FIG. 28. — Comparison of the normalized histograms of (a) the equivalent diameter and (b) the shortest distance 

between the centroids of the inclusions (metal oxides and geodes) detected on a slice of the µ-CT (771 

inclusions) and on the whole volume (201274 inclusions), for the NR-N339 material. 
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TABLES 
  

TABLE 1 

COMPARISON OF THE MOST COMMON TECHNIQUES USED IN THE LITERATURE TO STUDY THE DISPERSIONS OF 

INCLUSIONS (CB IN PARTICULAR) IN RUBBER MATERIALS IN RELATION TO THE SIX SPECIFICATIONS DEFINED IN 

THIS PAPER: + WHEN THE TECHNIQUE IS ABLE TO MEET THE SPECIFICATION, - WHEN IT IS NOT, +/- WHEN IT CAN 

MEET IT PARTIALLY. 

Technique 
1. Size of 

inclusions 

2. 

Sensitivity, 

objectivity 

3. Nature 

of 

inclusions 

4. 

Quantitative 

description 

5. 

Statistical 

description 

6. 

Simplicity, 

robustness, 

efficiency 

Transmitted light OM + +/- - +/- +/- +/- 

DisperGRADER™ + +/- - +/- +/- + 

Dark field OM + +/- - +/- +/- + 

Optical properties of CB - +/- - - - +/- 

White light interferometry + +/- - +/- +/- +/- 

TEM - +/- +/- +/- - - 

SEM-SE + +/- +/- +/- +/- +/- 

µ-CT + + +/- + + +/- 

Roughness tester + +/- - - +/- +/- 

AFM - +/- - +/- - +/- 

Electrical resistivity - + +/- - - + 
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TABLE 2 

COMPOSITION OF THE STUDIED MATERIALS IN PER HUNDRED OF RUBBER. 

 NR-N339 NR/IR-N339 IR-N339 NR-N990 
NR-

N339&HGB 

NR-

N339&SGB 

NR 100 75 - 100 100 100 

IR - 25 100 - - - 

N339 29 29 29 - 29 29 

N990 - - - 36 - - 

HGB - - - - 10 - 

SGB - - - - - 10 

Processing agent 7 7 7 7 7 7 

Anti-ozone wax 3.4 3.4 3.4 3.4 3.4 3.4 

Antioxidant 3 3 3 3 3 3 

Zinc oxide 4.1 4.1 4.1 4.1 4.1 4.1 

Stearic acid 2 2 2 2 2 2 

Sulfur 3.4 3.4 3.4 3.4 3.4 3.4 

Accelerator 1 1 1 1 1 1 
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TABLE 3 

PARAMETERS USED FOR µ-CT.  

 AE2 specimens Bar samples 

Voltage 40 kV 40 kV 

Power 10 W 4 W 

Exposition time 30 s 20 s 

Magnification 1 4 

Source-object distance 60 mm 40 mm 

Object-detector distance 35 mm 40 mm 
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TABLE 4 

AREAS OBSERVED AND SPATIAL RESOLUTIONS OF THE IMAGES FOR THE THREE TECHNIQUES USED .  

Technique Digital OM SEM µ-CT 

AE2 specimens Bar samples 

Area observed 7.7 × 7.7 mm2 0.64 × 0.49 mm2 �4.5� × 6 mm3 �1.5� × 2.9 mm3 

Pixel or voxel size 0.385 µm 0.5 µm 8.3 µm 1.7 µm 
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TABLE 5 

TYPES OF INCLUSIONS OBSERVED IN THE STUDIED MATERIALS: YES IF OBSERVED, NO IF NOT. 

Material 
Metal 

oxides 

CB 

agglomerates 

Geode-

type 
Type 1 Type 2 Glass beads 

NR-N339 yes yes yes no no no 

NR/IR-N339 yes yes no yes yes no 

IR-N339 yes yes no no yes no 

NR-N990 yes yes no no no no 

NR-N339&HGB yes yes no no no yes 

NR-N339&SGB yes yes no no no yes 
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TABLE 6 

CHARACTERISTICS CONSIDERED TO DISTINGUISH THE INCLUSION TYPES FROM EACH OTHER ON µ-CT IMAGES.  

Inclusion type Characteristics 

Metal oxides Solid, bright, size < type 1 and glass beads; no size limit if no type 1 and glass beads 

CB agglomerates Absence of metal oxides in the area, few dark voxels (porosities?) 

Geode-type Bright cavity border, size > 27 voxels (resolution 1.7 µm) 

Type 1 Solid, bright, equivalent diameter > 100 µm 

Type 2 Solid, dark, equivalent diameter > 60 µm, sphericity > 0.7 

Glass beads Bright, equivalent diameter > 150 µm 

 

  



56 

TABLE 7 

CHARACTERISTICS OF THE (A) GLASS BEADS, (B) METAL OXIDES, (C) CB AGGLOMERATES LARGER THAN 40 µM, (D) 

CAVITY OF THE GEODE-TYPE INCLUSIONS, (E) TYPE 1 INCLUSIONS AND (F) TYPE 2 INCLUSIONS, IN THE STUDIED 

MATERIALS, DETERMINED FROM µ-CT PERFORMED ON BAR SPECIMENS WITH A RESOLUTION OF 1.7 µM AND/OR ON 

AE2 SPECIMENS WITH A RESOLUTION OF 8.3 µM: VOLUME ANALYZED, NUMBER, VOLUME FRACTION, EQUIVALENT 

DIAMETER AND SPHERICITY OF THE INCLUSIONS DETECTED AND DISTANCE TO THE NEAREST NEIGHBOR CENTROID.  

Material 

Specimen 

type / vol. 

(mm3) 

Number 

Volume 

fraction 

(%) 

Equivalent 

diameter (µm) 

min/mean±std/max  

Sphericity (-)  

min/mean±std/max 

Shortest distance 

(µm) 

min/mean±std /max 

 

(a) Glass beads 

NR-N339&HGB AE2 / 286 1989 3.6 152/212±26/397 0.40/0.82±0.10/0.92 204/334±80/758 

NR-N339&SGB AE2 / 285 1260 2.2 151/209±21/333 0.49/0.85±0.07/0.92 212/364±110/965 

 

(b) Metal oxides 

NR-N339 
AE2 / 252 40717 0.94 31/45±12/315 0.45/0.88±0.05/0.94 41/110±32/343 

bar / 22 201109 1.9 6/13±6/77 0.23/0.85±0.06/0.94 8/29±8/91 

NR/IR-N339 
AE2 / 235 6394 0.18 31/46±14/100 0.55/0.87±0.04/0.93 45/190±71/623 

bar / 16 132392 1.1 6/12±5/96 0.40/0.84±0.05/0.93 9/34±10/88 

IR-N339 
AE2 / 253 60658 1.67 31/47±20/237 0.45/0.87±0.06/0.95 25/100±26/242 

bar / 18 293811 3.1 6/12±6/116 0.22/0.85±0.07/0.93 9/28±7/77 

NR-N990 bar / 17 115233 1.4 6/13±12/137 0.42/0.87±0.06/0.95 9/31±9/88 

NR-N339&HGB AE2 / 286 28619 0.65 30/46±13/150 0.54/0.89±0.04/0.95 43/125±39/356 

NR-N339&SGB AE2 / 285 26356 0.51 30/44±12/149 0.56/0.89±0.04/0.95 40/129±41/370 

 

(c) CB agglomerates larger than 40 µm 

NR-N339 bar / 22 15 0.016 47/65±26/155 - - 

NR/IR-N339 bar / 16 3 0.002 51/56±4/61 - - 

IR-N339 bar / 18 9 0.05 54/88±56/238 - - 

NR-N990 bar / 22 7 0.002 40/47±8/60 - - 

 

(d) Cavity of the geode-type inclusions 

NR-N339 bar / 22 165 0.03 24/41±11/76 0.40/0.74±0.11/0.90 119/301±104/590 

 

(e) Type 1 inclusions 

NR/IR-N339 
AE2 / 235 166 0.10 100/129±32/288 0.53/0.74±0.07/0.87 163/1363±251/1363 

bar / 16 1 0.03 216/216±0/216 0.51/0.51±0/0.51 - 

 

(f) Type 2 inclusions 

NR/IR-N339 AE2 / 235 120 0.02 60/90±16/120 0.70/0.78±0.03/0.84 123/708±277/1504 
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TABLE 8 

EVALUATION OF THE APPLICABILITY OF THE TECHNIQUES USED, ASSOCIATED WITH THE IMAGE PROCESSING 

DEVELOPED, TO CHARACTERIZE THE INCLUSIONS IN RELATION TO THE SIX SPECIFICATIONS DEFINED IN THIS PAPER: 

+ WHEN THE TECHNIQUE IS ABLE TO MEET THE SPECIFICATION, - WHEN IT IS NOT, +/- WHEN IT CAN MEET IT 

PARTIALLY. 

Technique 
1. Size of 

inclusions 

2. 

Sensitivity,  

objectivity 

3. Nature 

of 

inclusions 

4. 

Quantitative 

description 

5. 

Statistical 

description 

6. 

Simplicity, 

robustness, 

efficiency 

Digital OM with the image 

processing developed 
+ +/- - +/- +/- +/- 

SEM-BSE with the image 

processing developed 
+ +/- +- + +/- +/- 

µ-CT with the image 

processing developed 
+ + + + + +/- 
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TABLE 9 

ABILITY OF THE TECHNIQUES USED TO OBSERVE, DETECT AND DISTINGUISHED THE INCLUSIONS FROM THE MATRIX 

AND FROM EACH OTHER: O IF VISUALLY OBSERVABLE, D IF DETECTABLE BY IMAGE PROCESSING (OR MANUALLY 

OR VISUALLY), X IF NATURE CANNOT BE IDENTIFIED.  
Digital OM SEM-BSE µ-CT 

Metal oxides x O & D O & D 

CB agglomerates x x O & manual D (resolution 1.7 µm, size > 40 µm) 

Geode-type x O & ≈D (cavity) O & ≈D (resolution 1.7 µm, cavity) 

Type 1 x x O & D 

Type 2 x O O & D (resolution 8.3 µm) 

Glass beads O & visual D O & D O & D 
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