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THE STOCHASTIC BESSEL OPERATOR AT HIGH TEMPERATURES

HUGO MAGALDI,∗ CEREMADE, Université Paris Dauphine - PSL

Abstract

We know from Ramírez and Rider [12] that the hard edge of the spectrum of

the Beta-Laguerre ensemble converges, in the high-dimensional limit, to the

bottom of the spectrum of the stochastic Bessel operator. Using stochastic

analysis techniques, we show that, in the high temperatures limit, the

rescaled eigenvalues point process of the stochastic Bessel operator converges

to a limiting point process characterized with coupled stochastic di�erential

equations.

Keywords: Stochastic Bessel operator; Beta-Laguerre ensemble

1. Context and motivation

Coulomb gases, also known as β-ensembles, are probability measures on sets of points. In statistical

physics, these points are elementary particles on the real line con�ned under a random potential while

repelling each other. The Dyson parameter β acts as an inverse temperature and can a�ect both

the shape of the potential and the strength of the repulsive force. In recent years, β-ensembles have

attracted signi�cant interest (see for instance [5], [6], [8], [13], [1], [2], [14], [16], [17], [18]).

We introduce the classical β-Laguerre ensemble of size n, whose ordered points (also called eigenvalues)

λ
(n)
0 ⩽ λ

(n)
1 . . . ⩽ λ

(n)
n−1 have the density on the real line, with respect to the Lebesgue measure:

1

Zn,β,a

∏
i<j

|λ(n)i − λ
(n)
j |β ×

n−1∏
k=0

(λ
(n)
k )

β
2 (m−n+1)−1e−

β
2 λ

(n)
k 1

λ
(n)
k >0

, (1)

where Zn,β,a acts as a normalization constant. When β = 1 (resp. β = 2, β = 4), (1) is the density of

the eigenvalues of a real (resp. complex, unitary) n× n Wishart matrix. This connection to random

matrix theory was extended to any β > 0 by Dimitriu and Edelman [5, Theorem 3.4], adapting earlier

work from Silverstein [15]. They found a set of bidiagonal random matrices
(
Lβ
n,m

)
m⩾n

such that the

density of the (positive) eigenvalues of Lβ
n,m(Lβ

n,m)T is (1).
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Whenm and n tend to in�nity with n/m→ γ ∈]0, 1], the rescaled empirical measure of the eigenvalues

converges weakly a.s. to the Marchenko-Pastur distribution:

µγ(dx) =
1

2πγx

√
(γ+ − x)(x− γ−)1[γ−,γ+](x)dx, γ± = (1±√

γ)2.

We refer to [7] for a review of the asymptotic global statistics of classical β-ensembles.

From now on, we restrict ourselves to the asymptotic regime m − n → a, for a �xed a > 0, thus

γ = 1. The eigenvalues of the β-Laguerre ensemble can't go below γ− = 0 because of the positivity

constraint, so this is called a hard edge. To study the local statistics of the β-Laguerre ensemble at

the hard edge in the high-dimensional limit, Ramírez and Rider [12] introduced a stochastic operator

as limit object for the β-Laguerre ensemble.

De�nition 1. (The stochastic Bessel operator.)

Let B be a standard Brownian motion on R+. For β > 0, the stochastic Bessel operator (known as

SBO) is the random di�erential operator

Gβ
a = − 1

ma(x)

d

dx

( 1

sa(x)

d

dx

)
,

ma(x) = exp
(
− (a+ 1)x− 2√

β
B(x)

)
, sa(x) = exp

(
ax+

2√
β
B(x)

)
,

de�ned on a subset of L2(R+,ma) with Dirichlet and Neumann boundary conditions at 0 and at

in�nity, respectively.

They showed the connection between the eigenvalues of the β-Laguerre ensemble at the hard edge

and the low-lying eigenvalues of the SBO:

Proposition 1. (Limit of the β-Laguerre ensemble at the hard edge [12, Theorem 1].)

With probability one, when restricted to the positive half-line with Dirichlet conditions at the origin,

Gβ
a has a discrete spectrum with single eigenvalues 0 < Λβ,a(0) < Λβ,a(1) < . . . ↑ ∞. Moreover, with

0 < λ
(n)
0 < λ

(n)
1 < . . . < λ

(n)
n the ordered points of the β-Laguerre ensemble of size n,{

nλ
(n)
0 , nλ

(n)
1 , . . . , nλ

(n)
k

}
=⇒

{
Λβ,a(0) < Λβ,a(1) < . . . < Λβ,a(k),

}
(jointly in law) for any �xed k <∞ as n ↑ ∞.

In this research paper, we study the convergence of the lowest eigenvalues of the SBO in the high

temperatures limit, when the inverse temperature parameter β tends to 0.

2. Our result

Dumaz, Li and Valkó [4, Proposition 7] showed that, if ψ solves the equation Gβ
aψ = λψ with

deterministic initial conditions ψ(0) = c0, ψ
′(0) = c1 then (ψ,ψ′) is the unique strong solution of the
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stochastic di�erential equation system:

dψ(x) = ψ′(x)dx, dψ′(x) =
2√
β
ψ′(x)dB(x) +

(
(a+

2

β
)ψ′(x)− λe−xψ(x)

)
dx,

with the corresponding initial conditions.

Consider the family of coupled di�usions
(
pβλ, λ ∈ R∗

+

)
with initial condition pβλ(0) = +∞:

dpβλ(t) =
2√
β
pβλ(t)dB(t) +

(
(a+

2

β
)pβλ(t)− pβλ(t)

2 − λe−t
)
dt, (2)

where the di�usion pβλ may explode to −∞, in which case it immediately restarts from +∞.

Using a Riccati transform (introduced by Halperin in [9]), Ramírez and Rider [12] showed a funda-

mental connection between the family (pβλ, λ ∈ R∗
+) and the eigenvalues of Gβ

a :

∀k ∈ N,
{
pβλ explodes at most k times on (0,∞)

}
=

{
Λβ,a(k) > λ

}
. (3)

It is crucial to note that the same Brownian motion drives the whole family of SDEs from (2). It

implies important properties such as the monotonicity of the number of explosions of pβλ (which turns

out to be �nite). In fact, the number of explosions of pβλ over R+ corresponds to Nβ
λ , the counting

function of the eigenvalues of the SBO.

When β tends to 0, the smallest eigenvalues get close to the hard edge at 0 at an exponential rate. In

order to get a non trivial limit, we therefore consider the rescaled eigenvalues µβ,a(i) := β ln(1/Λβ,a(i))

for i ⩾ 0 (note that this reverses the ordering of the eigenvalues).

Our main result is the following theorem:

Theorem 1. (Convergence of the low-lying eigenvalues of the SBO.) When β tends to 0, the rescaled

eigenvalue point process of the SBO (µβ,a(i), i ⩾ 0) converges in law towards a random simple point

process on R+ which can be described using coupled SDEs.

The convergence holds for a well chosen topology of Radon measures on R+, corresponding to a left-

vague/right-weak topology (see below for more details). We will also give a characterization (similar

to the one for the SBO eigenvalues) of the limiting point process through coupled di�usions. This

characterization enables one to compute various statistics on the limiting point process.

Usually, one expects that, when the temperature is high, the limiting point process is no longer

repulsive and corresponds to a Poisson point process as the noise becomes dominant. Here, we

get a di�erent result. It comes from the competition between the strong repulsive interaction and

attraction at the hard edge for small β (see (1)). Because of this interaction, the repulsive factor does

not disappear in the limit.
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3. Strategy of proof and limiting point process

3.1. Rescaled di�usions

We study the small beta limit of the family of di�usions (pβλ) from (2) when λ is properly rescaled

with β, i.e. when λ is such that β ln(1/λ) is of order 1. The equality (3) tells us that the number of

explosions of pβλ on R+ is the number of eigenvalues of Gβ
a below λ.

Notice that, when pβλ reaches 0, the random term vanishes and the di�usion drift is negative. It implies

that pβλ never reaches 0 from below. It is easy to check that the hitting times of 0 form a discrete

point process.

Let us �x µ > 0 and set Λβ := exp(−µ/β). Using the property above, we de�ne the di�usion qβµ(t),

which equals

q+µ (t) := β ln
(
pβ
Λβ (t/(4β))

)
when pβ

Λβ (t/(4β)) > 0,

q−µ (t) := −β ln
(
− pβ

Λβ (t/(4β))
)
− µ− t/4 when pβ

Λβ (t/(4β)) < 0,

The di�usions q+µ (t) and q
−
µ (t) follow the SDEs:

dq+µ = dW (t) +
1

4

(
a− exp(q+µ (t)/β)− exp(−(q+µ (t) + t/4 + µ)/β)

)
dt, (4)

dq−µ = dW (t) +
1

4

(
− (a+ 1)− exp(q−µ (t)/β)− exp(−(q−µ (t) + t/4 + µ)/β)

)
dt, (5)

where W is a Brownian motion corresponding to (di�erent) rescaling of the initial Brownian motion

B. The di�usions q±µ may explode to −∞ in a �nite time. By de�nition, the di�usion qβµ alternates

between q+µ and q−µ : it starts to follow q+µ and each time qβµ = q+µ (resp. q−µ ) reaches −∞, qβµ

immediately restarts from +∞ and follows q−µ (resp. q+µ ) .

Let us de�ne the critical line:

cµ(t) := −µ− t/4 . (6)

Figure 1 shows a sample path of the di�usion qβµ . On this event, the di�usion qβµ explodes one time

as q+µ (blue), then one time as q−µ (red), and then stays above the critical line cµ(t) as q
+
µ (blue) and

does not explode anymore.
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Figure 1: Sample trajectory of the di�usion qβµ .

Roughly, the di�usion q+µ behaves as follows after each explosion time. First, it quickly goes down to

values around 0. Then, it spends some time between the line t 7→ cµ(t) and 0, where it behaves as a

re�ected (downwards) Brownian motion with drift a/4. If it reaches the line t 7→ cµ(t) in a �nite time

then it quickly explodes to −∞ after this hitting time.

The behaviour of the di�usion q−µ is similar except that in the interval [cµ(t), 0], it behaves as a

re�ected (downwards) Brownian motion with drift −(a+ 1)/4. Therefore, it almost surely hits cµ(t)

when a > 0.

There are two types of explosions for qβµ : either q
β
µ explodes at a time ξ+ such that qβµ(ξ

+) = q+µ (ξ
+),

which corresponds to the (rescaled) hitting times of 0 by the initial di�usion pβ
Λβ , or q

β
µ explodes at

time ξ− such that qβµ(ξ
−) = q−µ (ξ

−), in which case we get the (rescaled) explosion times of the initial

di�usion pβ
Λβ .

In the following, we denote by ξ+β (0) < ξ−β (0) < ξ+β (1) < ξ−β (1) < . . . the explosion times of the

di�usion qβµ and by

νβµ :=
∑
i⩾0

δξ−β (i) . (7)

the measure corresponding to the (rescaled) explosions of pβ
Λβ .

We will prove that, for a well-chosen topology, the trajectory of the di�usion qβµ converges in law,

when β tends to 0, towards a non-trivial limit, that we describe in the following paragraph.

3.2. Description of the limiting point process

Let us de�ne now the limiting di�usion rµ, which will characterize the limiting point process. Its

de�nition involves Brownian motions with drift re�ected downwards at 0.

By de�nition, a Brownian motion with drift q re�ected downwards at 0 is a di�usion Markov process



6 Hugo Magaldi

with in�nitesimal operator G : f ∈ D 7→ 1
2f

′′ + qf ′ acting on the domain

D :=
{
f ∈ Cb[0,+∞[, Gf ∈ Cb

(
[0,+∞[

)
, lim

x↓0
f ′(x) = 0

}
,

where Cb

(
[0,+∞[

)
denotes the continuous and bounded functions on [0,+∞[. Using the Skorohod

problem, we can write this di�usion as

(W (t) + qt)− sup
s⩽t

(
W (s) + qs

)
∨ 0 ,

where W is a Brownian motion starting at 0 or any negative point.

The limit di�usion rµ starts at 0 at time 0, i.e. rµ(0) = 0. It then follows a Brownian motion with

drift a/4 re�ected downwards at 0, that we denote r+, until its �rst hitting time of the critical line

cµ(t) from (6). If it reaches t 7→ cµ(t) in a �nite time, then it immediately restarts at 0 at this time

then follows a re�ected downwards at 0 Brownian motion with another drift −(a+ 1)/4, denoted r−,

and so on, alternating between r+ and r− each time it hits t 7→ cµ(t) and restarts at 0. Note that the

probability that r+ reaches the critical line decreases with time. On the other hand, since a > 0, r−

almost surely hits the critical line in a �nite time.

Let us denote by ξ+0 (0) < ξ−0 (0) < ξ+0 (1) < ξ−0 (1) < . . . the hitting times of the critical line by the

di�usion rµ, and de�ne the random measure associated to the point process
(
ξ−0 (k), k ⩾ 0

)
:

ν0µ :=
∑
i⩾0

δξ−0 (i) .

We then use the coupled random measures
(
ν0µ, µ > 0

)
to de�ne a discrete point process on R+. Since

µ ∈ R+ 7→ νµ(R+) decreases from +∞ to 0 almost surely, it is easy to prove the following proposition:

Proposition 2. (Limiting point process.) There is a unique random variable M0 valued on the Borel

sets of ]0,+∞[, such that, for all �xed µ1 < . . . < µk,

M0[µi,+∞[= ν0µi
(R+) .

Almost surely, the measure M0 is discrete, bounded from above and has an accumulation point at 0.

3.3. Convergence towards the limiting measures

We can now state the desired convergence result:

Proposition 3. (Convergence of the explosion times of pβ
Λβ .)

When β tends to 0, the measure νβµ converges in law to the measure ν0µ for the topology of weak

convergence.
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It is immediate to extend this proposition for the joint law of νβµi
when µ1, . . . , µk are �xed positive

numbers. It directly implies the following result on the �nite dimensional laws of the point process{
µβ,a(i), i ⩾ 0

}
. Let us denote by Mβ the measure associated to this point process, i.e. Mβ :=∑

i⩾0 δµβ,a(i).

Proposition 4. (Convergence of the �nite-marginals of the eigenvalue process.)

Fix µ1 < . . . < µk. When β → 0, the random vector
(
Mβ [µ1,+∞[, . . . ,Mβ [µk,+∞[

)
converges in

law to the random vector
(
M0[µ1,+∞[, . . . ,M0[µk,+∞[

)
.

Consider the space of measures on ]0,∞[ with the topology that makes continuous the maps m 7→

⟨f,m⟩ for any continuous and bounded function f with support bounded to the left. In other words,

this is the vague topology towards 0 and the weak topology towards +∞.

The previous proposition shows that the family (Mβ)β>0 is tight: indeed the above convergence

provides the required control on the mass at +∞.

As the �nite-marginals of any limiting point is identi�ed, we deduce the convergence of the left-

vague/right-weak topology of the eigenvalues point process stated in Theorem 1.

The rest of the paper is devoted to the proof of Proposition 3. In Section 4, we control the �rst

explosion time of the di�usion qβµ and deduce the weak convergence of its k �rst explosions times.

Then, in Section 5, we show the tightness of the family (νβµ )β>0. Unless speci�ed otherwise, the limits

and o pertain to the asymptotics β → 0. For lighter notations, we omit the dependency on β of our

variables.

3.4. Useful results

We will use the following estimates for any Brownian motion W :

∀x ⩾ 0, P
(

sup
s∈[0,1]

W (s) > x
)
⩽ P

(
sup

s∈[0,1]

∣∣W (s)
∣∣ > x

)
⩽ 4e−x2/2, (8)

∀x ⩾ 0, P
(

sup
s∈[0,1]

W (s) > x
)
= P

(∣∣W (1)
∣∣ > x

)
⩾ 1−

√
2

π
x. (9)

Consider a di�usion y started from 0 and the same di�usion y re�ected downwards at the origin:

y(t) = y(t)− sup
s⩽t

y(s).

For all δ > 0,
{
y(t) < −δ

}
=

{
∃s < t, y(t)− y(s) < −δ

}
, therefore:

sup
s∈[0,t]

∣∣y(s)∣∣ < δ/2 ⇒ inf
s∈[0,t]

y(s) > −δ. (10)
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4. Control of the explosion times

In this section, we �x µ > 0. Recall the de�nition of the critical line c = cµ in (6). Consider the

�rst two explosion times ξ+ := ξ+β (0) and ξ
− := ξ−β (0) of the di�usion qβµ . Until the �rst explosion

time ξ+, by de�nition qβµ(0) = +∞ and qβµ(t) = q+(t) follows the SDE (4).

Set δ = β1/8 and introduce the �rst hitting times by the di�usion q+:

τ0 := inf
{
t ⩾ 0, q+(t) ⩽ 0

}
and τc := inf

{
t ⩾ 0, q+(t) ⩽ c(t) + δ

}
.

We decompose the trajectory of q+ into three parts. First, it reaches the axis x = 0 in a short time

(descent from +∞). Then, it spends a time of order O(1) in the region [c(t) + δ, 0] and behaves like a

re�ected Brownian motion with a constant drift a/4. Finally, if it approaches the critical line t 7→ c(t)

closer than δ, then it explodes with high probability within a short time (explosion to −∞).

Recall the �rst hitting times ξ+0 (0) < ξ−0 (0) of the critical line c by the di�usion rµ.

Proposition 5. (Limit behavior of the di�usions q+ and q−.)

Set T > 0, independent of β. There exist a deterministic η → 0 and an event E0, P(E0) → 1, on

which, for β small enough:

(a) τ0 < β,

(b) sup
[τ0,τc∧T ]

∣∣q+(t)− r+(t)
∣∣ < δ,

(c) τc < T ⇒ |ξ+ − τc| < η and |ξ+0 (0)− τc| < η.

Properties (a), (b) and (c) also hold for the di�usions q− from (5) and r−, with their corresponding

hitting and explosion times. As a consequence, on the event E0, for β small enough,

ξ− < T ⇒
∣∣ξ− − ξ−0 (0)

∣∣ < 2η. (11)

The control (11) extends to any ξ−β (k) and ξ−0 (k) for k ∈ N and ensures that, for any T > 0,

P(ξ−β (k) ⩽ T ) → P(ξ−0 (k) ⩽ T ), thus identifying the measure ν0µ as the unique possible limit for νβµ .

The rest of this section is dedicated to the proof of Proposition 5. Recall that the di�usion q− di�ers

from its counterpart q+ only by its constant drift component −(a + 1)/4 (instead of +a/4 for q+),

which makes q− decrease faster than q+. We prove the results for the di�usion q+, they extend to the

di�usion q− with the same arguments.

We introduce the stationary di�usion q on R+, which we use to approximate q+ in the region where

the drift component exp
[
− 1

β

(
c(t) + q+(t)

)]
becomes negligible as β tends to 0:

dq(t) = dW (t) +
1

4

(
a− eq(t)/β

)
dt. (12)
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4.1. Descent from +∞: proof of (a)

It su�ces to prove property (a) for the di�usion q, which bounds the di�usion q+ from above. Set

the level l1 := β3/4, so that β = o(l1). As β tends to 0, when the di�usion q is above the level l1, the

term of leading order in the right-hand side of (12) is eq(t)/β .

Consider the ordinary di�erential equation on R+:

dy(t) :=
1

4
(a− 1

2
ey/β)dt, y(0) = +∞,

which has for solution y(t) = −β ln
(

1
2a (1 − e−at/4β)

)
. The time t1 at which y reaches the level l1/2

has the asymptotics

t1 = 8βe−l1/(2β) + o(βe−l1/β).

Introduce the di�usion q1(t) := q(t)−W (t). Its evolution writes:

dq1(t) =
1

4

(
a− e

(
q1(t)+W (t)

)
/β
)
dt.

Let E ′
1 :=

{
sup
[0,t1]

∣∣W (t)
∣∣ ⩽ β2

}
. By the Brownian tail bound (8), P(E ′

1) −→ 1.

On the event E ′
1, e

(q1(t)+W (t))/β ⩾ e−1/βeq1(t)/β , so the di�usion q1 is bounded from above by y for

β small enough and hits the level l1/2 before time t1. Since
∣∣q1(t) − q(t)

∣∣ ⩽ β2 before time t1, for β

small enough, the di�usion q hits the level l1 before time t1 .

After the level l1 is reached, we use the Brownian motion W (t1 + ·)−W (t1) to reach x = 0 in a short

additional time. Set the event

E
′′

1 :=
{

inf
[0,β/2]

{
W (t1 + t)−W (t1) +

a

4
t
}
< −l1

}
,

on which τ0 < t1 + β/2. Since P
(
E ′′

1

)
⩾ P

(
inf

[0,β/2]
W (t1 + t)−W (t) < −l1 − a

8β
)
, the lower bound (9)

and the asymptotics β = o(l1) and l1 = o(
√
β) imply that P

(
E ′′

1

)
−→ 1, thus proving the property (a)

on the event E1 = E ′
1 ∩ E ′′

1 .

4.2. Convergence to r+: proof of (b)

The bound (8) shows that the probability of the following event tends to 1 as β tends to 0:

E ′
2 =

{
sup

t∈[0,β]

|W (t)| ⩽ β1/4
}
.

Note that β1/4 = o(δ) and that the di�usion r+(τ0+ t)− r+(τ0) is equal in law to the di�usion r+, by

the strong Markov property. Thus, to prove property (b), it su�ces to show that, with overwhelming

probability as β tends to 0, for β small enough,

sup
[0,τ ′

c∧T ]

∣∣q+0 (t)− r+(t)
∣∣ < δ/2, (13)
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where q+0 denotes the di�usion q+ started from x = 0 at time t = 0 and τ ′c its �rst hitting time of

c(t) + δ. We write q0 the stationary di�usion q from (12) started from x = 0 at time t = 0. For

t ∈ [0, τ ′c ∧ T ], q+0 (t) ⩾ c(t) + δ, so we have the bounds:

∀t ∈ [0, τ ′c ∧ T ], q0(t)− e−δ/βT ⩽ q+0 (t) ⩽ q0(t).

Since e−δ/β = o
(
δ
)
, to prove property (13), it is enough to show that, on an event E ′

2 of probability

going to 1 as β tends to 0, for β small enough,

sup
[0,τ ′

c∧T ]

∣∣q0(t)− r+(t)
∣∣ < δ/4. (14)

To that end, we bound the di�usion q0(t) from below and above by two re�ected di�usions r+1 and

r+2 that converge to r+ as β tends to 0.

We set the level l2 := β1/6, so that l2 = o(δ) and δ = o(
√
l2).

4.2.1. Lower bound For any stochastic process Z, we denote by Lx
t (Z) its local time at position x and

time t. Since the element of drift −eq0(t)/β is decreasing on
]
−∞,−l2

]
, we have the lower bound:

∀t ∈ [0, τ ′c ∧ T ], q0(t) ⩾ r+1 (t), (15)

where r+1 (t) is the following di�usion (re�ected downwards at the barrier −l2):

r+1 (t) := −l2 +W (t) + at/4− e−
δ
β T/4− L0

t

(
W (t) + at/4− e−

δ
β T/4

)
,

It is straightforward that

∀t ∈ [0, τ ′c ∧ T ], r+(t)− e−
δ
β T/4− l2 ⩽ r+1 (t) ⩽ r+(t)− l2.

Since e−
δ
β = o(l2), for β small enough,

sup
[0,τ ′

c∧T ]

∣∣r+(t)− r+1 (t)
∣∣ < 2l2.

4.2.2. Upper bound We wish to bound the di�usion q0(t) from above by the di�usion r+(t) + l2. To

prove that this upper bound holds with high probability as β tends to 0, we use the following result,

that shows how unlikely it becomes for the di�usion q0(t) to hit the level l2 before any negative level.

Lemma 1. (Levels hitting times for the di�usion q0(t).)

For any γ < 0,

P
(
inf

{
t ⩾ 0, q0(t) = l2

}
< inf

{
t ⩾ 0, q0(t) = γ

})
−→ 0.

Lemma 1 is proved in the Appendix using standard tools of di�usion analysis.

The choice of level γ = −µ(T ) in Lemma 1 provides the existence of an event E ′
2 of probability going

to 1 as β tends to 0 on which the di�usion q0(t) hits the barrier c(t) before the level l2, and thus:

∀t ∈ [0, τ ′c ∧ T ], q0(t) ⩽ r+(t) + l2. (16)
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4.2.3. Conclusion Gathering (15) and (16), we get that, on E ′
2, for β small enough,

∀t ∈ [0, τ ′c ∧ T ], r+1 (t) ⩽ q0(t) ⩽ r+(t) + l2,

which implies sup
[0,τ ′

c∧T ]

∣∣q0(t)− r+(t)
∣∣ < 2l2. This in turn implies (14) and thus proves property (b).

4.3. Explosion to −∞: proof of (c)

We denote by q+δ (resp. q+−δ) the di�usion q+ started at time t = 0 from position −µ + δ (resp.

−µ − δ). We introduce the �rst hitting time τδ of the level c(t) − δ by the di�usion q++δ, and the

explosion time τ−∞ of the di�usion q+−δ to −∞.

Recall that l2 = β1/6. To prove property (c), we choose η := 2l2 and show that there exists an event

of probability going to 1 as β tends to 0 on which, for β small enough, τδ < η/2 and τ−∞ < η/2.

4.3.1. Control of τδ Recall that δ = β1/8, so that l2 = o(δ) and δ = o(
√
l2).

We use the variations of the Brownian motion W to cross the critical line c(t). The upper bound

q+δ (t) ⩽ −µ+ δ +W (t) + a
4 t implies that τδ < l2 on the event

E3 :=

{
inf
[0,l2]

{
W (s) +

a

4
s+

1

4
s+ 2δ

}
< 0

}
,

and the Brownian tail bound from (9) shows that P
(
E3
)
→ 1.

Note that the inclusion of events E ′
3 ⊂

{
inf

{
t ⩾ 0, r+(t) + t/4 ⩽ −2δ

}
< l2

}
ensures that, on a

subevent of E2 (where |q+(τc) − r+(τc)| < δ if τc < +∞) of probability going to P(E2) as β tends to

0, the di�usion r+ hits the critical line t 7→ c(t) while the di�usion q+ crosses this line, between times

τc and τc + η.

4.3.2. Control of τ−∞ On each Brownian trajectory, the di�usion q+−δ is bounded from above by the

di�usion z, with

dz(t) := dW (t) +
1

4

(
a− e−

1
β

(
t/4+µβ+z(t)

))
dt, z(0) = −µ− δ.

De�ne the di�usion z1(t) = z(t) + µ−W (t)− at/4, with evolution

dz1(t) := −1

4
e−

1
β

(
z1(t)+t/4+W (t)+at/4

)
dt, z1(0) = −δ.

Consider the event E ′

3 :=
{
sup
[0,β]

|W (t)| ⩽ δ/4
}
, with P

(
E ′

3

)
→ 1.

On E ′

3, for β small enough:

∀t ⩽ β, W (t) +
a+ 1

4
t ⩽ δ/2,

so the di�usion z1 is bounded from above by the di�usion z2 with evolution

dz2(t) := −1

4
e−

1
β

(
z2(t)+δ/2

)
dt, z2(0) := −δ.
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The di�usion z2 has the solution

z2(t) = −δ/2 + β ln
(
e−δ/(2β) − t

4β

)
,

which explodes to −∞ in a time 4βe−δ/(2β), smaller than β for β small enough. This remains true for

z1 and thus for z, since |z1 − z| ⩽ µ+ aβ/4 + β while t ⩽ β. Since β = o(η), this proves the desired

control on τ−∞.

5. Tightness of the explosion times measures

In this section, we �x µ > 0. Recall the measure of the explosion times νβµ from (7) . We prove in

this section that there are β0 > 0 and α > 0, such that, for all ϵ > 0, there exist a �nite time Tϵ and

a �nite number of explosions Nϵ so that:

inf
β⩽β0

P
({

νβµ
(
[0, αTϵ]

)
⩽ Nϵ

}⋂{
νβµ

(
[αTϵ,+∞[

)
= 0

})
> 1− ϵ. (17)

Introduce Lβ
µ, the law of the random measure νβµ . The bound (17) gives us the tightness condition:

∃β0, ∀ϵ > 0, ∃Kϵ compact, sup
β<β0

Lβ(Kϵ) ⩾ 1− ϵ.

Indeed, the closure Kϵ of
{
µ ∈ P, µ([0, αTϵ]) ⩽ Nϵ and µ

(
[αTϵ,+∞[

)
= 0

}
, where P is the space

of locally �nite measures on R+, satis�es the Kallenberg criterion for weak relative compactness (see

[10]):

sup
µ∈Kϵ

µ(R+) < +∞,

inf
t>0

sup
µ∈Kϵ

µ
(
[t,+∞[

)
= 0.

The rest of this section is dedicated to the proof of (17), which uses Prokhorov theorem to prove the

relative compactness of the family (Lβ)β<β0
in M1(P), the set of probability measures on P, and

thus concludes the proof of Proposition 3.

We show a preliminary result that will be helpful to control the number of explosions. Recall that

ξ+ = ξ+β (0) is the �rst explosion time of the di�usion q+ from (4), started from +∞ at time 0.

Lemma 2. (Lower bound on the explosion time of q+.)

For β small enough,

∀t > 0, P
(
ξ+ > t

)
⩾ 1− 4e−µ2/(32t).

Proof. We �x a deterministic δ0 such that 0 < δ0 < µ/4. Recall the de�nition of the critical line cµ

in (6). When the di�usion q+ is in the region between −cµ(t)+ δ0 and −δ0, we have the lower bound,

for β small enough:

a− eq
+(t)/β − e−

1
β (µ(t)+q+(t)) ⩾ a− 2e−δ0/β ⩾ a/2. (18)
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Introduce the di�usion q̂ on R+, started from −δ0 at time 0 and re�ected downwards at −δ0:

q̂(t) := −ϵ+W (t) + at/8− L0
t

(
W (t) + at/8

)
.

The bound (18) shows that, for β small enough, the di�usion q+ is bounded from below by the

di�usion q̂ on each Brownian trajectory, up until the �rst hitting time of cµ(t) + δ0 by the di�usion

q+.

Set t > 0 and introduce the event E :=
{
sup

s∈[0,t]

∣∣W (t)
∣∣ < µ/4

}
. By the Brownian tail bound (8), we

have P(E) ⩾ 1− 4e−µ2/(32t). Besides, on the event E , using (10),

∀s ∈ [0, t], q̂(s) > −δ0 − µ/2.

This means that the di�usion q̂ stays above −µ until time t. Thus, for β small enough so that (18)

holds, on the event E , we have ξ+ > t. □

We now turn to the proof of (17). Fix ϵ > 0. We control the di�usion qβµ with two di�usions. The

�rst di�usion Q1 starts at time Tϵ at position −1 and is re�ected below the horizontal line −1 with

drift a/8. The second di�usion Q2 starts at time 2T at position cµ(Tϵ), has a drift a/8 as well and is

also re�ected below −1.

We can choose Tϵ high enough such that the di�usions Q1 and Q2 do not hit cµ(t)+1 with probability

greater than 1 − ϵ/10. Indeed, the sublinearity of the Brownian motion W (Tϵ + t) −W (Tϵ) is such

that

∃ T0,∀t ⩾ T0, |W (Tϵ + t)−W (Tϵ)| < t/16 with probability greater than 1− ϵ/40. (19)

On the event where (19) holds, the di�usion Q1 stays above −1 − t/8 after time T0, and thus above

the critical line cµ(t). We now choose Tϵ high enough so that |W (Tϵ + t) −W (t)| < cµ(T )/4 with

probability greater than 1 − ϵ/40 until time T0, thus Q1 stays above cµ(t) before time T0 as well.

Therefore, on an event of probability greater than 1− ϵ/20, the di�usion Q1 never hits cµ(t). Similar

arguments can be used for the second di�usion Q2.

The term −(a+ 1)/4 in the drift of the di�usion q− implies the existence of α > 0 such that, almost

surely, when started before time 2Tϵ + 1, the di�usion q− explodes before time αTϵ.

If, at time Tϵ, the di�usion q
β
µ evolves as the di�usion q−, then it almost surely explodes before time

αTϵ, after which it evolves as q+ and stays above Q1 (for β small enough such that 2e−1/β < a/8)

and does not explode anymore.

If, at time Tϵ, the di�usion q
β
µ evolves as the di�usion q+, then we distinguish between three cases:

First, if the di�usion qβµ hits −1 between times Tϵ and 2Tϵ, then qβ stays above Q1 and therefore does

not explode.
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Else, following the proof of property (c) from Proposition 5 in Section 4, we can choose a deterministic

level δ1 > 0 so that, if qβµ reaches t 7→ cµ(t) + δ1 between time Tϵ and 2Tϵ, then it explodes before

time 2Tϵ + 1 with probability greater than 1− ε/10. After that, qβµ behaves as q− and almost surely

explodes one last time before time αTϵ, as previously.

Finally, if the di�usion qβµ starts above cµ(Tϵ)+ δ1 at time Tϵ and stays in the interval [cµ(t)+ δ1,−1]

for all t ∈ [Tϵ, 2Tϵ], then it is bounded from below by a Brownian motion with a positive drift a/8,

and therefore it will be above cµ(T ) at time 2Tϵ with probability greater than 1− ϵ/10. In this event,

qβµ stays above the di�usion Q2 after time 2Tϵ and thus does not explode.

Gathering the di�erent cases, we thus obtain the existence of an event of probability greater than

1− ϵ/2 on which qβµ explodes at most once after time Tϵ and does not explode after time αTϵ.

To conclude the proof of the tightness criterion (17), we apply Lemma 2 to get the existence of a �nite

Nϵ and of an event of probability greater than 1 − ϵ/2 on which the di�usion qβµ explodes at most

Nϵ − 1 times before time Tϵ.

6. Conclusion

We proved that, in the high temperatures limit β → 0, the properly rescaled point process of the

low-lying eigenvalues of the Stochastic Bessel operator converges towards a simple point process on

R+, described using coupled SDEs. This limit point process keeps a repulsive factor and therefore

di�ers from the Poisson point process found by Dumaz and Labbé [3] as the high temperatures limit

of the Stochastic Airy Operator. Our result opens research perspectives to understand the properties

of this new point process.
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Appendix: Proof of Lemma 1

Recall that l1 = β3/4 and l2 = β1/6. In this proof we denote by q the di�usion q+0 . Set γ < 0,

τ := inf
{
t ⩾ 0, q+0 (t) = l2

}
and τ ′ := inf

{
t ⩾ 0, q+0 (t) = γ

}
. Let fβ(x) := 1

4

(
a − exp(x/β)

)
. To

compute the hitting times of q, introduce the scale functions sβ and s:

sβ(x) :=

∫ x

−1

exp
(
− 2

∫ u

0

fβ(v)dv
)
du,

s(x) :=

∫ x

−1

exp
(
− 2

∫ u

0

a

4
dv

)
du =

2

a

(
ea/2 − eax/2

)
.

The following lemma explicits the asymptotic behavior of sβ .

Lemma 3. (Convergence of the scale functions.)

For any x0 < 0,

s′β −→ s′ and sβ −→ s uniformly on [x0, 0].

Furthermore, sβ
(
l2
)
−→ +∞.

Since sβ
(
q(·)

)
is a local martingale, sβ

(
q(· ∧ τ(q) ∧ τ ′(q)

)
is a martingale. By the stopping theorem,

we get:

P
(
τ < τ ′

)
=

sβ(γ)− sβ
(
0
)

sβ(γ)− sβ
(
l2
) .

Lemma 3 readily implies that this probability tends to 0 as β tends to 0.

Proof of Lemma 3. We have, for all x ⩽ 0,∣∣∣∣ ∫ x

0

fβ(v)−
a

4
dv

∣∣∣∣ ⩽ ∫ 0

x

ev/βdv ⩽ β −→ 0,

which means that ln s′β converges uniformly to ln s′ on ]−∞, 0]. Besides, the functions ln s′β and ln s′

are bounded on [x0, 0], and x 7→ ex is uniformly continuous on [x0, 0] so s′β converges uniformly to s′

on [x0, 0]. Therefore, sβ converges uniformly to s on [x0, 0].

Now turning to sβ
(
l2
)
. We can compute explicitly:

ln s
′

β(x) = −2

∫ x

0

fβ(v)dv = −2ax+ 2

∫ x

0

ev/βdv = −2ax+ 2β
(
ex/β − 1

)
.

A study of the variations of ln s′β shows that s′β decreases before β ln(2a) and increases afterwards.

For β small enough, ln s′β(l1) ⩾ βel1/β , which tends to +∞ as β tends to 0, and s′β increases on
[
l1, l2

]
,

so that:

sβ
(
l2
)
⩾

∫ l2

l1

s′β(v)dv ⩾
(
l2 − l1

)
s′β(l1),

therefore sβ
(
l2
)
−→ +∞. □
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