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We know from Ramírez and Rider [12] that the hard edge of the spectrum of the Beta-Laguerre ensemble converges, in the high-dimensional limit, to the bottom of the spectrum of the stochastic Bessel operator. Using stochastic analysis techniques, we show that, in the high temperatures limit, the rescaled eigenvalues point process of the stochastic Bessel operator converges to a limiting point process characterized with coupled stochastic dierential equations.

Context and motivation

Coulomb gases, also known as β-ensembles, are probability measures on sets of points. In statistical physics, these points are elementary particles on the real line conned under a random potential while repelling each other. The Dyson parameter β acts as an inverse temperature and can aect both the shape of the potential and the strength of the repulsive force. In recent years, β-ensembles have attracted signicant interest (see for instance [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF], [START_REF] Dumitriu | Global spectrum uctuations for the β-hermite and β-laguerre ensembles via matrix models[END_REF], [START_REF] Erd®s | Gap universality of generalized Wigner and β-ensembles[END_REF], [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diusion[END_REF], [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], [START_REF] Bourgade | Universality of general β-ensembles[END_REF], [START_REF] Shcherbina | Orthogonal and symplectic matrix models: Universality and other properties[END_REF], [START_REF] Sosoe | Local semicircle law in the bulk for gaussian β-ensemble[END_REF], [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF], [START_REF] Wong | Local semicircle law at the spectral edge for gaussian β-ensembles[END_REF]).

We introduce the classical β-Laguerre ensemble of size n, whose ordered points (also called eigenvalues)

λ (n) 0 ⩽ λ (n) 1 . . . ⩽ λ (n)
n-1 have the density on the real line, with respect to the Lebesgue measure:

1 Z n,β,a i<j |λ (n) i -λ (n) j | β × n-1 k=0 (λ (n) k ) β 2 (m-n+1)-1 e -β 2 λ (n) k 1 λ (n) k >0 , (1) 
where Z n,β,a acts as a normalization constant. When β = 1 (resp. β = 2, β = 4), [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] is the density of the eigenvalues of a real (resp. complex, unitary) n × n Wishart matrix. This connection to random matrix theory was extended to any β > 0 by Dimitriu and Edelman [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF]Theorem 3.4], adapting earlier work from Silverstein [START_REF] Silverstein | The smallest eigenvalue of a large dimensional Wishart matrix[END_REF]. They found a set of bidiagonal random matrices L β n,m m⩾n such that the density of the (positive) eigenvalues of L β n,m (L β n,m ) T is [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF].

When m and n tend to innity with n/m → γ ∈]0, 1], the rescaled empirical measure of the eigenvalues converges weakly a.s. to the Marchenko-Pastur distribution:

µ γ (dx) = 1 2πγx (γ + -x)(x -γ -)1 [γ-,γ+] (x)dx, γ ± = (1 ± √ γ) 2 .
We refer to [START_REF] Duy | On spectral measures of random Jacobi matrices[END_REF] for a review of the asymptotic global statistics of classical β-ensembles.

From now on, we restrict ourselves to the asymptotic regime m -n → a, for a xed a > 0, thus γ = 1. The eigenvalues of the β-Laguerre ensemble can't go below γ -= 0 because of the positivity constraint, so this is called a hard edge. To study the local statistics of the β-Laguerre ensemble at the hard edge in the high-dimensional limit, Ramírez and Rider [START_REF] Ramírez | Diusion at the random matrix hard edge[END_REF] introduced a stochastic operator as limit object for the β-Laguerre ensemble.

Denition 1. (The stochastic Bessel operator.)

Let B be a standard Brownian motion on R + . For β > 0, the stochastic Bessel operator (known as SBO) is the random dierential operator With probability one, when restricted to the positive half-line with Dirichlet conditions at the origin,

G β a = - 1 m a (x) d dx 1 s a (x) d dx , m a (x) = exp -(a + 1)x - 2 √ β B(x) , s a (x) = exp ax + 2 √ β B(x) ,
G β a has a discrete spectrum with single eigenvalues 0 < Λ β,a (0) < Λ β,a (1) < . . . ↑ ∞. Moreover, with 0 < λ (n) 0 < λ (n) 1 < . . . < λ (n)
n the ordered points of the β-Laguerre ensemble of size n, nλ

(n) 0 , nλ (n) 1 , . . . , nλ (n) k =⇒ Λ β,a (0) < Λ β,a (1) < . . . < Λ β,a (k),
(jointly in law) for any xed k < ∞ as n ↑ ∞.

In this research paper, we study the convergence of the lowest eigenvalues of the SBO in the high temperatures limit, when the inverse temperature parameter β tends to 0.

Our result

Dumaz, Li and Valkó [4, Proposition 7] showed that, if ψ solves the equation G β a ψ = λψ with deterministic initial conditions ψ(0) = c 0 , ψ ′ (0) = c 1 then (ψ, ψ ′ ) is the unique strong solution of the stochastic dierential equation system:

dψ(x) = ψ ′ (x)dx, dψ ′ (x) = 2 √ β ψ ′ (x)dB(x) + (a + 2 β )ψ ′ (x) -λe -x ψ(x) dx,
with the corresponding initial conditions.

Consider the family of coupled diusions p β λ , λ ∈ R * + with initial condition p β λ (0) = +∞:

dp β λ (t) = 2 √ β p β λ (t)dB(t) + (a + 2 β )p β λ (t) -p β λ (t) 2 -λe -t dt, (2) 
where the diusion p β λ may explode to -∞, in which case it immediately restarts from +∞. Using a Riccati transform (introduced by Halperin in [START_REF] Halperin | Green's functions for a particle in a one-dimensional random potential[END_REF]), Ramírez and Rider [START_REF] Ramírez | Diusion at the random matrix hard edge[END_REF] showed a fundamental connection between the family (p β λ , λ ∈ R * + ) and the eigenvalues of G β a :

∀k ∈ N, p β λ explodes at most k times on (0, ∞) = Λ β,a (k) > λ . (3) 
It is crucial to note that the same Brownian motion drives the whole family of SDEs from [START_REF] Bourgade | Universality of general β-ensembles[END_REF]. It implies important properties such as the monotonicity of the number of explosions of p β λ (which turns out to be nite). In fact, the number of explosions of p β λ over R + corresponds to N β λ , the counting function of the eigenvalues of the SBO.

When β tends to 0, the smallest eigenvalues get close to the hard edge at 0 at an exponential rate. In order to get a non trivial limit, we therefore consider the rescaled eigenvalues µ β,a (i) := β ln(1/Λ β,a (i))

for i ⩾ 0 (note that this reverses the ordering of the eigenvalues).

Our main result is the following theorem: Theorem 1. (Convergence of the low-lying eigenvalues of the SBO.) When β tends to 0, the rescaled eigenvalue point process of the SBO (µ β,a (i), i ⩾ 0) converges in law towards a random simple point process on R + which can be described using coupled SDEs.

The convergence holds for a well chosen topology of Radon measures on R + , corresponding to a leftvague/right-weak topology (see below for more details). We will also give a characterization (similar to the one for the SBO eigenvalues) of the limiting point process through coupled diusions. This characterization enables one to compute various statistics on the limiting point process.

Usually, one expects that, when the temperature is high, the limiting point process is no longer repulsive and corresponds to a Poisson point process as the noise becomes dominant. Here, we get a dierent result. It comes from the competition between the strong repulsive interaction and attraction at the hard edge for small β (see [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]). Because of this interaction, the repulsive factor does not disappear in the limit.

Strategy of proof and limiting point process

Rescaled diusions

We study the small beta limit of the family of diusions (p β λ ) from (2) when λ is properly rescaled with β, i.e. when λ is such that β ln(1/λ) is of order 1. The equality (3) tells us that the number of explosions of p β λ on R + is the number of eigenvalues of G β a below λ.

Notice that, when p β λ reaches 0, the random term vanishes and the diusion drift is negative. It implies that p β λ never reaches 0 from below. It is easy to check that the hitting times of 0 form a discrete point process.

Let us x µ > 0 and set Λ β := exp(-µ/β). Using the property above, we dene the diusion q β µ (t), which equals

q + µ (t) := β ln p β Λ β (t/(4β)) when p β Λ β (t/(4β)) > 0, q - µ (t) := -β ln -p β Λ β (t/(4β)) -µ -t/4 when p β Λ β (t/(4β)) < 0,
The diusions q + µ (t) and q - µ (t) follow the SDEs:

dq + µ = dW (t) + 1 4 a -exp(q + µ (t)/β) -exp(-(q + µ (t) + t/4 + µ)/β) dt, (4) 
dq - µ = dW (t) + 1 4 -(a + 1) -exp(q - µ (t)/β) -exp(-(q - µ (t) + t/4 + µ)/β) dt, (5) 
where W is a Brownian motion corresponding to (dierent) rescaling of the initial Brownian motion B. The diusions q ± µ may explode to -∞ in a nite time. By denition, the diusion q β µ alternates between q + µ and q - µ : it starts to follow q + µ and each time q β µ = q + µ (resp. q - µ ) reaches -∞, q β µ immediately restarts from +∞ and follows q - µ (resp. q + µ ) .

Let us dene the critical line:

c µ (t) := -µ -t/4 . (6) 
Figure 1 shows a sample path of the diusion q β µ . On this event, the diusion q β µ explodes one time as q + µ (blue), then one time as q - µ (red), and then stays above the critical line c µ (t) as q + µ (blue) and does not explode anymore. Roughly, the diusion q + µ behaves as follows after each explosion time. First, it quickly goes down to values around 0. Then, it spends some time between the line t → c µ (t) and 0, where it behaves as a reected (downwards) Brownian motion with drift a/4. If it reaches the line t → c µ (t) in a nite time then it quickly explodes to -∞ after this hitting time.

The behaviour of the diusion q -

µ is similar except that in the interval [c µ (t), 0], it behaves as a reected (downwards) Brownian motion with drift -(a + 1)/4. Therefore, it almost surely hits c µ (t) when a > 0.

There are two types of explosions for q β µ : either q β µ explodes at a time ξ + such that q β µ (ξ + ) = q + µ (ξ + ), which corresponds to the (rescaled) hitting times of 0 by the initial diusion p β Λ β , or q β µ explodes at time ξ -such that q β µ (ξ -) = q - µ (ξ -), in which case we get the (rescaled) explosion times of the initial diusion p β Λ β . In the following, we denote by

ξ + β (0) < ξ - β (0) < ξ + β (1) < ξ - β (1 
) < . . . the explosion times of the diusion q β µ and by

ν β µ := i⩾0 δ ξ - β (i) . (7) 
the measure corresponding to the (rescaled) explosions of p β Λ β . We will prove that, for a well-chosen topology, the trajectory of the diusion q β µ converges in law, when β tends to 0, towards a non-trivial limit, that we describe in the following paragraph.

Description of the limiting point process

Let us dene now the limiting diusion r µ , which will characterize the limiting point process. Its denition involves Brownian motions with drift reected downwards at 0. By denition, a Brownian motion with drift q reected downwards at 0 is a diusion Markov process with innitesimal operator G : f ∈ D → 1 2 f ′′ + qf ′ acting on the domain

D := f ∈ C b [0, +∞[, Gf ∈ C b [0, +∞[ , lim x↓0 f ′ (x) = 0 ,
where C b [0, +∞[ denotes the continuous and bounded functions on [0, +∞[. Using the Skorohod problem, we can write this diusion as

(W (t) + qt) -sup s⩽t W (s) + qs ∨ 0 ,
where W is a Brownian motion starting at 0 or any negative point.

The limit diusion r µ starts at 0 at time 0, i.e. r µ (0) = 0. It then follows a Brownian motion with drift a/4 reected downwards at 0, that we denote r + , until its rst hitting time of the critical line c µ (t) from ( 6). If it reaches t → c µ (t) in a nite time, then it immediately restarts at 0 at this time then follows a reected downwards at 0 Brownian motion with another drift -(a + 1)/4, denoted r -, and so on, alternating between r + and r -each time it hits t → c µ (t) and restarts at 0. Note that the probability that r + reaches the critical line decreases with time. On the other hand, since a > 0, r - almost surely hits the critical line in a nite time.

Let us denote by ξ + 0 (0) < ξ - 0 (0) < ξ + 0 (1) < ξ - 0 (1) < . . . the hitting times of the critical line by the diusion r µ , and dene the random measure associated to the point process ξ - 0 (k), k ⩾ 0 :

ν 0 µ := i⩾0 δ ξ - 0 (i) .
We then use the coupled random measures ν 0 µ , µ > 0 to dene a discrete point process on R + . Since µ ∈ R + → ν µ (R + ) decreases from +∞ to 0 almost surely, it is easy to prove the following proposition: Proposition 2. (Limiting point process.) There is a unique random variable M 0 valued on the Borel

sets of ]0, +∞[, such that, for all xed µ 1 < . . . < µ k , M 0 [µ i , +∞[= ν 0 µi (R + ) .
Almost surely, the measure M 0 is discrete, bounded from above and has an accumulation point at 0.

Convergence towards the limiting measures

We can now state the desired convergence result: Proposition 3. (Convergence of the explosion times of p β

Λ β .)
When β tends to 0, the measure ν β µ converges in law to the measure ν 0 µ for the topology of weak convergence.

It is immediate to extend this proposition for the joint law of ν β µi when µ 1 , . . . , µ k are xed positive numbers. It directly implies the following result on the nite dimensional laws of the point process µ β,a (i), i ⩾ 0 . Let us denote by M β the measure associated to this point process, i.e. M β := i⩾0 δ µ β,a (i) .

Proposition 4. (Convergence of the nite-marginals of the eigenvalue process.)

Fix µ 1 < . . . < µ k . When β → 0, the random vector M β [µ 1 , +∞[, . . . , M β [µ k , +∞[ converges in law to the random vector M 0 [µ 1 , +∞[, . . . , M 0 [µ k , +∞[ .
Consider the space of measures on ]0, ∞[ with the topology that makes continuous the maps m → ⟨f, m⟩ for any continuous and bounded function f with support bounded to the left. In other words, this is the vague topology towards 0 and the weak topology towards +∞.

The previous proposition shows that the family (M β ) β>0 is tight: indeed the above convergence provides the required control on the mass at +∞.

As the nite-marginals of any limiting point is identied, we deduce the convergence of the leftvague/right-weak topology of the eigenvalues point process stated in Theorem 1.

The rest of the paper is devoted to the proof of Proposition 3. In Section 4, we control the rst explosion time of the diusion q β µ and deduce the weak convergence of its k rst explosions times. Then, in Section 5, we show the tightness of the family (ν β µ ) β>0 . Unless specied otherwise, the limits and o pertain to the asymptotics β → 0. For lighter notations, we omit the dependency on β of our variables.

Useful results

We will use the following estimates for any Brownian motion W :

∀x ⩾ 0, P sup s∈[0,1] W (s) > x ⩽ P sup s∈[0,1] W (s) > x ⩽ 4e -x 2 /2 , ( 8 
)
∀x ⩾ 0, P sup s∈[0,1] W (s) > x = P W (1) > x ⩾ 1 - 2 π x. (9) 
Consider a diusion y started from 0 and the same diusion y reected downwards at the origin:

y(t) = y(t) -sup s⩽t y(s).
For all δ > 0, y(t) < -δ = ∃s < t, y(t) -y(s) < -δ , therefore:

sup s∈[0,t] y(s) < δ/2 ⇒ inf s∈[0,t] y(s) > -δ. (10) 

Control of the explosion times

In this section, we x µ > 0. Recall the denition of the critical line c = c µ in [START_REF] Dumitriu | Global spectrum uctuations for the β-hermite and β-laguerre ensembles via matrix models[END_REF]. Consider the rst two explosion times ξ + := ξ + β (0) and ξ -:= ξ - β (0) of the diusion q β µ . Until the rst explosion time ξ + , by denition q β µ (0) = +∞ and q β µ (t) = q + (t) follows the SDE (4). Set δ = β 1/8 and introduce the rst hitting times by the diusion q + :

τ 0 := inf t ⩾ 0, q + (t) ⩽ 0 and τ c := inf t ⩾ 0, q + (t) ⩽ c(t) + δ .
We decompose the trajectory of q + into three parts. First, it reaches the axis x = 0 in a short time (descent from +∞). Then, it spends a time of order O(1) in the region [c(t) + δ, 0] and behaves like a reected Brownian motion with a constant drift a/4. Finally, if it approaches the critical line t → c(t) closer than δ, then it explodes with high probability within a short time (explosion to -∞).

Recall the rst hitting times ξ + 0 (0) < ξ - 0 (0) of the critical line c by the diusion r µ .

Proposition 5. (Limit behavior of the diusions q + and q -.)

Set T > 0, independent of β. There exist a deterministic η → 0 and an event E 0 , P(E 0 ) → 1, on which, for β small enough:

(a) τ 0 < β, (b) sup [τ0,τc∧T ] q + (t) -r + (t) < δ, (c) τ c < T ⇒ |ξ + -τ c | < η and |ξ + 0 (0) -τ c | < η.
Properties (a), (b) and (c) also hold for the diusions q -from (5) and r -, with their corresponding hitting and explosion times. As a consequence, on the event E 0 , for β small enough,

ξ -< T ⇒ ξ --ξ - 0 (0) < 2η. (11) 
The control [START_REF] Magaldi | Beta-ensembles and their high-temperature limit[END_REF] extends to any ξ - β (k) and ξ - 0 (k) for k ∈ N and ensures that, for any T > 0,

P(ξ - β (k) ⩽ T ) → P(ξ - 0 (k) ⩽ T )
, thus identifying the measure ν 0 µ as the unique possible limit for ν β µ .

The rest of this section is dedicated to the proof of Proposition 5. Recall that the diusion q -diers from its counterpart q + only by its constant drift component -(a + 1)/4 (instead of +a/4 for q + ), which makes q -decrease faster than q + . We prove the results for the diusion q + , they extend to the diusion q -with the same arguments.

We introduce the stationary diusion q on R + , which we use to approximate q + in the region where the drift component exp -1 β c(t) + q + (t) becomes negligible as β tends to 0:

dq(t) = dW (t) + 1 4
a -e q(t)/β dt.

4.1. Descent from +∞: proof of (a)

It suces to prove property (a) for the diusion q, which bounds the diusion q + from above. Set the level l 1 := β 3/4 , so that β = o(l 1 ). As β tends to 0, when the diusion q is above the level l 1 , the term of leading order in the right-hand side of ( 12) is e q(t)/β .

Consider the ordinary dierential equation on R + :

dy(t) := 1 4 (a - 1 2 e y/β )dt, y(0) = +∞,
which has for solution y(t) = -β ln 1 2a (1 -e -at/4β ) . The time t 1 at which y reaches the level l 1 /2 has the asymptotics

t 1 = 8βe -l1/(2β) + o(βe -l1/β ).
Introduce the diusion q 1 (t) := q(t) -W (t). Its evolution writes:

dq 1 (t) = 1 4
a -e q 1 (t)+W (t) /β dt.

Let E ′ 1 := sup [0,t1] W (t) ⩽ β 2 .
By the Brownian tail bound (8), P(E ′ 1 ) -→ 1.

On the event E ′ 1 , e (q 1 (t)+W (t))/β ⩾ e -1/β e q 1 (t)/β , so the diusion q 1 is bounded from above by y for β small enough and hits the level l 1 /2 before time t 1 . Since q 1 (t) -q(t) ⩽ β 2 before time t 1 , for β small enough, the diusion q hits the level l 1 before time t 1 .

After the level l 1 is reached, we use the Brownian motion W (t 1 + •) -W (t 1 ) to reach x = 0 in a short additional time. Set the event

E ′′ 1 := inf [0,β/2] W (t 1 + t) -W (t 1 ) + a 4 t < -l 1 , on which τ 0 < t 1 + β/2. Since P E ′′ 1 ⩾ P inf [0,β/2] W (t 1 + t) -W (t) < -l 1 -a 8 β
, the lower bound (9) and the asymptotics β = o(l 1 ) and

l 1 = o( √ β) imply that P E ′′ 1 -→ 1, thus proving the property (a) on the event E 1 = E ′ 1 ∩ E ′′ 1 .

Convergence to r + : proof of (b)

The bound [START_REF] Erd®s | Gap universality of generalized Wigner and β-ensembles[END_REF] shows that the probability of the following event tends to 1 as β tends to 0:

E ′ 2 = sup t∈[0,β] |W (t)| ⩽ β 1/4 .
Note that β 1/4 = o(δ) and that the diusion r + (τ 0 + t) -r + (τ 0 ) is equal in law to the diusion r + , by the strong Markov property. Thus, to prove property (b), it suces to show that, with overwhelming probability as β tends to 0, for β small enough,

sup [0,τ ′ c ∧T ] q + 0 (t) -r + (t) < δ/2, (13) 
where q + 0 denotes the diusion q + started from x = 0 at time t = 0 and τ ′ c its rst hitting time of c(t) + δ. We write q 0 the stationary diusion q from (12) started from x = 0 at time t = 0. For t ∈ [0, τ ′ c ∧ T ], q + 0 (t) ⩾ c(t) + δ, so we have the bounds:

∀t ∈ [0, τ ′ c ∧ T ], q 0 (t) -e -δ/β T ⩽ q + 0 (t) ⩽ q 0 (t).

Since e -δ/β = o δ , to prove property [START_REF] Ramírez | Beta ensembles, stochastic Airy spectrum, and a diusion[END_REF], it is enough to show that, on an event E ′ 2 of probability going to 1 as β tends to 0, for β small enough,

sup [0,τ ′ c ∧T ] q 0 (t) -r + (t) < δ/4. ( 14 
)
To that end, we bound the diusion q 0 (t) from below and above by two reected diusions r + 1 and r + 2 that converge to r + as β tends to 0.

We set the level l 2 := β 1/6 , so that l 2 = o(δ) and δ = o( √ l 2 ).

Lower bound

For any stochastic process Z, we denote by L x t (Z) its local time at position x and time t. Since the element of drift -e q 0 (t)/β is decreasing on -∞, -l 2 , we have the lower bound:

∀t ∈ [0, τ ′ c ∧ T ], q 0 (t) ⩾ r + 1 (t), (15) 
where r + 1 (t) is the following diusion (reected downwards at the barrier -l 2 ):

r + 1 (t) := -l 2 + W (t) + at/4 -e -δ β T /4 -L 0 t W (t) + at/4 -e -δ β T /4 , It is straightforward that ∀t ∈ [0, τ ′ c ∧ T ], r + (t) -e -δ β T /4 -l 2 ⩽ r + 1 (t) ⩽ r + (t) -l 2 .
Since e -δ β = o(l 2 ), for β small enough,

sup [0,τ ′ c ∧T ] r + (t) -r + 1 (t) < 2l 2 .

Upper bound

We wish to bound the diusion q 0 (t) from above by the diusion r + (t) + l 2 . To prove that this upper bound holds with high probability as β tends to 0, we use the following result, that shows how unlikely it becomes for the diusion q 0 (t) to hit the level l 2 before any negative level.

Lemma 1. (Levels hitting times for the diusion q 0 (t).)

For any γ < 0,

P inf t ⩾ 0, q 0 (t) = l 2 < inf t ⩾ 0, q 0 (t) = γ -→ 0.
Lemma 1 is proved in the Appendix using standard tools of diusion analysis.

The choice of level γ = -µ(T ) in Lemma 1 provides the existence of an event E ′ 2 of probability going to 1 as β tends to 0 on which the diusion q 0 (t) hits the barrier c(t) before the level l 2 , and thus:

∀t ∈ [0, τ ′ c ∧ T ], q 0 (t) ⩽ r + (t) + l 2 . (16) 
4.2.3. Conclusion Gathering ( 15) and ( 16), we get that, on E ′ 2 , for β small enough,

∀t ∈ [0, τ ′ c ∧ T ], r + 1 (t) ⩽ q 0 (t) ⩽ r + (t) + l 2 , which implies sup [0,τ ′ c ∧T ]
q 0 (t) -r + (t) < 2l 2 . This in turn implies [START_REF] Shcherbina | Orthogonal and symplectic matrix models: Universality and other properties[END_REF] and thus proves property (b).

Explosion to -∞: proof of (c)

We denote by q + δ (resp. q + -δ ) the diusion q + started at time t = 0 from position -µ + δ (resp. -µ -δ). We introduce the rst hitting time τ δ of the level c(t) -δ by the diusion q + +δ , and the explosion time τ -∞ of the diusion q + -δ to -∞. Recall that l 2 = β 1/6 . To prove property (c), we choose η := 2l 2 and show that there exists an event of probability going to 1 as β tends to 0 on which, for β small enough, τ δ < η/2 and τ -∞ < η/2.

4.3.1. Control of τ δ Recall that δ = β 1/8 , so that l 2 = o(δ) and δ = o( √ l 2 ).
We use the variations of the Brownian motion W to cross the critical line c(t). The upper bound

q + δ (t) ⩽ -µ + δ + W (t) + a 4 t implies that τ δ < l 2 on the event E 3 := inf [0,l2] W (s) + a 4 s + 1 4 s + 2δ < 0 ,
and the Brownian tail bound from [START_REF] Halperin | Green's functions for a particle in a one-dimensional random potential[END_REF] shows that P E 3 → 1.

Note that the inclusion of events E ′ 3 ⊂ inf t ⩾ 0, r + (t) + t/4 ⩽ -2δ < l 2 ensures that, on a subevent of E 2 (where |q + (τ c ) -r + (τ c )| < δ if τ c < +∞) of probability going to P(E 2 ) as β tends to 0, the diusion r + hits the critical line t → c(t) while the diusion q + crosses this line, between times τ c and τ c + η.

Control of τ -∞

On each Brownian trajectory, the diusion q + -δ is bounded from above by the diusion z, with

dz(t) := dW (t) + 1 4 a -e -1 β t/4+µ β +z(t) dt, z(0) = -µ -δ. Dene the diusion z 1 (t) = z(t) + µ -W (t) -at/4, with evolution dz 1 (t) := - 1 4 e -1 β z1(t)+t/4+W (t)+at/4 dt, z 1 (0) = -δ.
Consider the event

E ′ 3 := sup [0,β] |W (t)| ⩽ δ/4 , with P E ′ 3 → 1. On E ′ 3 , for β small enough: ∀t ⩽ β, W (t) + a + 1 4 t ⩽ δ/2,
so the diusion z 1 is bounded from above by the diusion z 2 with evolution

dz 2 (t) := - 1 4 e -1 β z2(t)+δ/2 dt, z 2 (0) := -δ.
The diusion z 2 has the solution

z 2 (t) = -δ/2 + β ln e -δ/(2β) - t 4β ,
which explodes to -∞ in a time 4βe -δ/(2β) , smaller than β for β small enough. This remains true for z 1 and thus for z, since |z 1 -z| ⩽ µ + aβ/4 + β while t ⩽ β. Since β = o(η), this proves the desired control on τ -∞ .

Tightness of the explosion times measures

In this section, we x µ > 0. Recall the measure of the explosion times ν β µ from [START_REF] Duy | On spectral measures of random Jacobi matrices[END_REF] . We prove in this section that there are β 0 > 0 and α > 0, such that, for all ϵ > 0, there exist a nite time T ϵ and a nite number of explosions N ϵ so that:

inf β⩽β0 P ν β µ [0, αT ϵ ] ⩽ N ϵ ν β µ [αT ϵ , +∞[ = 0 > 1 -ϵ. (17) 
Introduce L β µ , the law of the random measure ν β µ . The bound [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF] gives us the tightness condition:

∃β 0 , ∀ϵ > 0, ∃K ϵ compact, sup β<β0 L β (K ϵ ) ⩾ 1 -ϵ.
Indeed, the closure K ϵ of µ ∈ P, µ([0, αT ϵ ]) ⩽ N ϵ and µ [αT ϵ , +∞[ = 0 , where P is the space of locally nite measures on R + , satises the Kallenberg criterion for weak relative compactness (see [START_REF] Kallenberg | Random Measures[END_REF]):

sup µ∈Kϵ µ(R + ) < +∞, inf t>0 sup µ∈Kϵ µ [t, +∞[ = 0.
The rest of this section is dedicated to the proof of [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF], which uses Prokhorov theorem to prove the relative compactness of the family (L β ) β<β0 in M 1 (P), the set of probability measures on P, and thus concludes the proof of Proposition 3.

We show a preliminary result that will be helpful to control the number of explosions. Recall that

ξ + = ξ + β (0)
is the rst explosion time of the diusion q + from (4), started from +∞ at time 0.

Lemma 2. (Lower bound on the explosion time of q + .)

For β small enough, ∀t > 0, P ξ + > t ⩾ 1 -4e -µ 2 /(32t) .

Proof. We x a deterministic δ 0 such that 0 < δ 0 < µ/4. Recall the denition of the critical line c µ in [START_REF] Dumitriu | Global spectrum uctuations for the β-hermite and β-laguerre ensembles via matrix models[END_REF]. When the diusion q + is in the region between -c µ (t) + δ 0 and -δ 0 , we have the lower bound, for β small enough:

a -e q + (t)/β -e -1 β (µ(t)+q + (t)) ⩾ a -2e -δ0/β ⩾ a/2. ( 18 
)
Introduce the diusion q on R + , started from -δ 0 at time 0 and reected downwards at -δ 0 : q(t) := -ϵ + W (t) + at/8 -L 0 t W (t) + at/8 .

The bound [START_REF] Wong | Local semicircle law at the spectral edge for gaussian β-ensembles[END_REF] shows that, for β small enough, the diusion q + is bounded from below by the diusion q on each Brownian trajectory, up until the rst hitting time of c µ (t) + δ 0 by the diusion

q + .
Set t > 0 and introduce the event E := sup s∈[0,t] W (t) < µ/4 . By the Brownian tail bound (8), we have P(E) ⩾ 1 -4e -µ 2 /(32t) . Besides, on the event E, using [START_REF] Kallenberg | Random Measures[END_REF],

∀s ∈ [0, t], q(s) > -δ 0 -µ/2.
This means that the diusion q stays above -µ until time t. Thus, for β small enough so that [START_REF] Wong | Local semicircle law at the spectral edge for gaussian β-ensembles[END_REF] holds, on the event E, we have ξ + > t. □

We now turn to the proof of [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF]. Fix ϵ > 0. We control the diusion q β µ with two diusions. The rst diusion Q 1 starts at time T ϵ at position -1 and is reected below the horizontal line -1 with drift a/8. The second diusion Q 2 starts at time 2T at position c µ (T ϵ ), has a drift a/8 as well and is also reected below -1.

We can choose T ϵ high enough such that the diusions Q 1 and Q 2 do not hit c µ (t) + 1 with probability greater than 1 -ϵ/10. Indeed, the sublinearity of the Brownian motion

W (T ϵ + t) -W (T ϵ ) is such that ∃ T 0 , ∀t ⩾ T 0 , |W (T ϵ + t) -W (T ϵ )| < t/16 with probability greater than 1 -ϵ/40. (19) 
On the event where (19) holds, the diusion Q 1 stays above -1 -t/8 after time T 0 , and thus above the critical line c µ (t). We now choose T ϵ high enough so that |W (T ϵ + t) -W (t)| < c µ (T )/4 with probability greater than 1 -ϵ/40 until time T 0 , thus Q 1 stays above c µ (t) before time T 0 as well.

Therefore, on an event of probability greater than 1 -ϵ/20, the diusion Q 1 never hits c µ (t). Similar arguments can be used for the second diusion Q 2 .

The term -(a + 1)/4 in the drift of the diusion q -implies the existence of α > 0 such that, almost surely, when started before time 2T ϵ + 1, the diusion q -explodes before time αT ϵ .

If, at time T ϵ , the diusion q β µ evolves as the diusion q -, then it almost surely explodes before time αT ϵ , after which it evolves as q + and stays above Q 1 (for β small enough such that 2e -1/β < a/8) and does not explode anymore.

If, at time T ϵ , the diusion q β µ evolves as the diusion q + , then we distinguish between three cases: First, if the diusion q β µ hits -1 between times T ϵ and 2T ϵ , then q β stays above Q 1 and therefore does not explode.

Else, following the proof of property (c) from Proposition 5 in Section 4, we can choose a deterministic level δ 1 > 0 so that, if q β µ reaches t → c µ (t) + δ 1 between time T ϵ and 2T ϵ , then it explodes before time 2T ϵ + 1 with probability greater than 1 -ε/10. After that, q β µ behaves as q -and almost surely explodes one last time before time αT ϵ , as previously.

Finally, if the diusion q β µ starts above c µ (T ϵ ) + δ 1 at time T ϵ and stays in the interval [c µ (t) + δ 1 , -1] for all t ∈ [T ϵ , 2T ϵ ], then it is bounded from below by a Brownian motion with a positive drift a/8, and therefore it will be above c µ (T ) at time 2T ϵ with probability greater than 1 -ϵ/10. In this event, q β µ stays above the diusion Q 2 after time 2T ϵ and thus does not explode.

Gathering the dierent cases, we thus obtain the existence of an event of probability greater than 1 -ϵ/2 on which q β µ explodes at most once after time T ϵ and does not explode after time αT ϵ .

To conclude the proof of the tightness criterion [START_REF] Valkò | Continuum limits of random matrices and the brownian carousel[END_REF], we apply Lemma 2 to get the existence of a nite N ϵ and of an event of probability greater than 1 -ϵ/2 on which the diusion q β µ explodes at most N ϵ -1 times before time T ϵ .

Conclusion

We proved that, in the high temperatures limit β → 0, the properly rescaled point process of the low-lying eigenvalues of the Stochastic Bessel operator converges towards a simple point process on R + , described using coupled SDEs. This limit point process keeps a repulsive factor and therefore diers from the Poisson point process found by Dumaz and Labbé [START_REF] Dumaz | The stochastic airy operator at large temperature[END_REF] as the high temperatures limit of the Stochastic Airy Operator. Our result opens research perspectives to understand the properties of this new point process.

Appendix: Proof of Lemma 1

Recall that l 1 = β 3/4 and l 2 = β 1/6 . In this proof we denote by q the diusion q + 0 . Set γ < 0, τ := inf t ⩾ 0, q + 0 (t) = l 2 and τ ′ := inf t ⩾ 0, q + 0 (t) = γ . Let f β (x) := 1 4 a -exp(x/β) . To compute the hitting times of q, introduce the scale functions s β and s: Furthermore, s β l 2 -→ +∞.

Since s β q(•) is a local martingale, s β q(• ∧ τ (q) ∧ τ ′ (q) is a martingale. By the stopping theorem, we get: P τ < τ ′ = s β (γ) -s β 0 s β (γ) -s β l 2 .

Lemma 3 readily implies that this probability tends to 0 as β tends to 0.

Proof of Lemma 3. We have, for all x ⩽ 0, A study of the variations of ln s ′ β shows that s ′ β decreases before β ln(2a) and increases afterwards. For β small enough, ln s ′ β (l 1 ) ⩾ βe l1/β , which tends to +∞ as β tends to 0, and s ′ β increases on l 1 , l 2 , so that:

s β l 2 ⩾ l2 l1 s ′ β (v)dv ⩾ l 2 -l 1 s ′ β (l 1 ),
therefore s β l 2 -→ +∞. □

  dened on a subset of L 2 (R + , m a ) with Dirichlet and Neumann boundary conditions at 0 and at innity, respectively. They showed the connection between the eigenvalues of the β-Laguerre ensemble at the hard edge and the low-lying eigenvalues of the SBO: Proposition 1. (Limit of the β-Laguerre ensemble at the hard edge [12, Theorem 1].)

Figure 1 :

 1 Figure 1: Sample trajectory of the diusion q β µ .

2 -e ax/ 2 .

 22 The following lemma explicits the asymptotic behavior of s β . Lemma 3. (Convergence of the scale functions.)For any x 0 < 0,s ′ β -→ s ′ and s β -→ s uniformly on [x 0 , 0].

  β dv ⩽ β -→ 0, which means that ln s ′ β converges uniformly to ln s ′ on ] -∞, 0]. Besides, the functions ln s ′ β and ln s ′ are bounded on [x 0 , 0], and x → e x is uniformly continuous on [x 0 , 0] so s ′ β converges uniformly to s ′ on [x 0 , 0]. Therefore, s β converges uniformly to s on [x 0 , 0]. Now turning to s β l 2 . We can compute explicitly: β dv = -2ax + 2β e x/β -1 .

Acknowledgements

I wish to thank Laure Dumaz for her precious help throughout this research project.

Funding information

This research paper presents results found during my PhD thesis [11], funded with a research grant from the SDOSE Doctoral School and PSL University.

Competing interests

There were no competing interests to declare which arose during the preparation or publication process of this article.