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Abstract

In this study, we investigate the real-world schedul-
ing problem of the Medical Day Unit of the Emer-
gency Department (MDU-ED) of Jeanne de Flan-
dres University Hospital in Lille (France). We imple-
mented a heuristic (PRH) based on hospital practi-
tioners’ rules we collected by observing the operation
of MDU-ED. We propose an Integer Linear Program-
ming (ILP) formulation that makes it feasible to solve
small instances. We propose an Adaptive Iterative
Destruction Construction Heuristic (IDCH) solution
approach. The IDCH obtains better solutions than
the PRH within reasonable processing times. We re-
port on experiments performed on instances gener-
ated using real-world patient pathways of the MDU-
ED.

1 Introduction

Emergency departments (ED) are currently subject
to an increasing demand. Optimizing processes in
the ED may help in facing this increase by bet-
ter use of resources. Improving the ED function-
ing can be approached from different views such as

∗This work was carried out within the framework of the
Labex MS2T, which was funded by the French Government
and the French National Research Agency (ANR) as part of
the OIILH project (Ref. ANR-18-CE19-0019). This work also
benefited from an internship grant obtained as part of the PIA3
SFRI Real SU project of the Sorbonne University Alliance.

staffing problems, rostering problems, task scheduling
problems and several approaches have been investi-
gated to address the optimization of such processes
[1, 2, 3, 4, 5, 6, 7].

There are relatively few studies in the literature
dealing with task scheduling problems in an emer-
gency department. Kırış et al. [8] presented a model
for a real-time response. The proposed approach is
based on a parallel machine scheduling model. The
authors consider stochastic patient arrivals and de-
terministic care task processing times. Patients are
grouped into six categories in the triage phase. A
constructive heuristic is proposed to assign patients
to doctors based on arrival time, patient priority, stay
time, and doctor charge. The heuristic dynamically
updates the assignment of patients to doctors as new
patients are checked into triage. Ajmi et al. [9] pro-
posed an approach for patient assignment using dy-
namic planning and considering treatment times to
be stochastic. The scheduling problem is solved by
a genetic algorithm. Azdazeh et al. [10] found that
the timing of follow-up analyses in emergency labs
affects the length of stay of patients in the ED. The
planning of additional patient analyzes was modeled
as a flexible open shop problem. The objective is to
minimize waiting times for analyses and a genetic al-
gorithm is proposed.
Lee and Lee [11] proposed a deep reinforcement learn-
ing algorithm. Each patient is categorized by triage
method and assigned a level of urgency. For each
resource, a list of patients is defined. The learning
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algorithm determines the best method of choosing
patients for each list among several defined meth-
ods. The objective is to minimize the patient’s stay
in the ED. Patient are assigned to an appropriate
medical resource, taking into consideration the level
of urgency. The waiting time value may be different
depending on the severity level of the patient. Lus-
combe and Kozan [12] proposed a combination of a
parallel machine model to handle bed allocation (pa-
tient/bed) and a flexible job shop model to schedule
resources (i.e. medical staff) for the patients. In this
ED organization, once a patient is assigned to a bed,
he/she does not move from it, the place is definitely
assigned. Patients were seen as jobs and their care
tasks (e.g. medical assessment) as operations that
were processed by the resources.

In these previous studies, one can observe that ED
operating rules differ from one country to another. It
depends also on the organization of each ED which
is itself immersed in the general organization of the
hospital. Therefore, no proposed solution can be di-
rectly used and the operation of the service must be
observed first and then modelled.

In the MDU-ED the patient care tasks may require
to be performed at different places inside or outside
the MDU-ED. From their admission until their de-
parture, the patients’ pathways at MDU-ED can be
viewed as a continuous succession of places. Care
tasks are performed, for example, in a box inside
the MDU-ED or in the radiology department outside
the MDU-ED. Waiting tasks are performed in a ded-
icated room, but also in places where care tasks are
performed. This involves that for a patient there can
be no break in the succession of places the patient
occupies.

The processing time of a care task is less than or
equal to the occupancy time of its allocated place.
This should be minimized. The patient can also
wait in the waiting room of the MDU-ED (inside the
MDU-ED). No medical resource is allocated, but we
have to respect the waiting room’s capacity. For a
patient, the period of this allocation is unknown be-
forehand as well and should be minimized.

We observed the operation of the MDU and its
interaction with the other departments of the hospi-
tal. In collaboration with emergency physicians, we

have determined a set of the most common patient
pathways, which detail the sequences of tasks. We
have developed a heuristic based on observed hospi-
tal practitioners’ rules, which also serves as a basis
for comparison.

The operation of an ED is a dynamic process (ad-
missions and departure of patients). It is however
necessary to first consider the static case for model-
ing purposes and to obtain reference solutions which
will serve as a basis for comparison. We propose an
ILP model for this purpose. An ILP solving approach
may face difficulties in computing solutions in times
compatible with the necessary reactivity in the dy-
namic case. In this study, we propose an IDCH-type
heuristic approach and configure it to obtain a good
trade-off between quality of results and computation
time.

2 Problem description

On arrival at the MDU-ED, a patient is first ranked
based on the degree of urgency from among the set
{1: medical resuscitation, 2: high level of urgency, 3:
urgent, 4: less urgent, 5: non-urgent}. An acceptable
timeframe for the first medical assessment performed
by a doctor corresponds to each level of urgency, from
zero for the first (immediate care) to two hours for
the last. The MDU-ED daily takes care (from 8 a.m.
to 9 p.m ) of patients with level of urgency 3, 4 and
5.

From their admission until their departure, every
patient is always in a place that can either be inside
or outside the MDU-ED area (e.g. the radiology de-
partment). Each human resource at MDU-ED has
specific skills related to the tasks they can perform.
Medical staff consists of an emergency doctor, a med-
ical intern, a traumatology intern, a dentistry intern,
two nurses, four caregivers and two hostesses. Each
of them is a unit resource. Inside MDU-ED area, the
medical boxes and the waiting room are the two types
of places. They are four consultation boxes, a suture
box, a plaster box, an Ear-Nose-Throat (ENT) box
and a dentistry box. Each of them is a unit resource.
The waiting room has a limited capacity. We also
consider a place of infinite capacity for the moving
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of patients (transition). The MDU-ED neither has
control on the other medical services it needs for cer-
tain medical tasks, nor has it on the associated places
it does not manage. Thus, external services can be
considered as black boxes and regrouped in one place
of infinite capacity. The external medical staff can as
well be considered as one resource that can be shared
between several patients (i.e. free at all times).

A patient’s pathway can be represented as a di-
rected acyclic graph (DAG) where vertices corre-
spond to tasks and directed edges to precedence con-
straints between tasks. The pathways are the same
until the first medical consultation, next they vary.

As an illustrative example, a schedule of two pa-
tient pathways is depicted on Fig. (1). There are a
Gantt chart for places and a Gantt chart for medical
staff. The Gantt charts show resource occupancy, not
the individual tasks. As can be shown on the Gantt
chart for the places, there is no idle time between the
places for a patient pathway. For each patient, there
is a continuous and successive occupation of places.

There are three types of tasks: care tasks, moving
tasks and waiting tasks. Care tasks use some health
staff resources. Most of them require the patient’s
attendance and require an appropriate place that fits
with the task, others do not. Care tasks can be per-
formed inside or outside the MDU-ED. A staff mem-
ber is required to move a patient from one place to
another. Waiting tasks are used to model the waiting
times of a patient in the dedicated waiting room of
the MDU-ED. They do not require medical resources.

Care tasks can be performed sequentially in a same
place or not. For example, consider a medical con-
sultation followed by a blood sampling. On the
Gantt chart of medical staff, a medical consultation
(performed by “ResidentEnt1”) ends at 08:25, then
it is followed by a blood sampling (performed by
“Nurse2”) that begins at 08:25. In such a case, we
must ensure that the same place is allocated to both
because there is no moving tasks between them (for
this patient pathway, the ‘ORLBox” was used).

For tasks that would require multiple resources in
the real world (e.g. a doctor and a nurse) we decom-
posed them into multiple unit tasks (one for each
resource). Hence, these tasks must start at the same
time but can have different lengths. On the Gantt

chart for medical staff, see resources “ResidentTrau-
mato1” and “Nurse2” (08h10).

Each care task and each moving task has a non-
null length. There are explicit waiting tasks that can
be modelled in a patient pathway. Each of them has
an unknown length to be minimized when computing
the schedule (minimum zero).

However, this is not sufficient to take into account
hidden waiting times that occur in real situation. For
the sake of explanation, consider a single care task
that needs a human resource and this care task needs
to be performed in a box. Assume the patient be
moved from one place to the box with the aim of
performing the care task. The human resource may
or may not be available when the patient arrives in
the box. In this later case, the patient waits inside the
box before the arrival of the resource. Consider next,
that the care task is performed, so the patient needs
to be moved from the box to the waiting room, this
requires another human resource that may or may
not be available. In this later case, the patient waits
inside the box after the departure of the resource.

Each care task with the patient’s attendance has
a length and needs an appropriate place. Hence, the
length of occupancy of the place must be greater than
or equal to this length. Length of a task must be
equal to length of a place occupancy in the following
cases.

For the tasks performed outside the MDU-ED with
the patient’s attendance, MDU-ED has no control
and the processing time of such tasks has been esti-
mated to include waiting periods that occur outside
the MDU-ED. For the tasks that do not need the pa-
tient’s attendance because the patient is not present
for these tasks.

The objective is to shorten the waiting periods by
taking into account the priority of each patient so
as to minimize the Length of Stay (LOS) and also
to shorten the Door-to-Doctor-Time (DTDT) waiting
time while considering the place capacities and all the
other medical resources.
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Figure 1: A schedule of the tasks of two patient pathways, places usage on top, medical staff resources used
on bottom

3 ILP Formulation

The planning horizon is composed of T periods t of
five minutes each. We denote the set of patients as J .
For a patient, j the set of tasks which require their
attendance is denoted as Ij = Iinj ∪ Iouj , where Iinj is
the set of tasks that are performed inside the MDU-
ED whereas Iouj is the set of tasks that are performed
outside the MDU-ED. We denote similarly, the set of
waiting tasks as Wj = W in

j ∪W ou
j , the set of care task

as Cj = Cin
j ∪Cou

j and the set of moving tasks as Dj =

Din
j ∪Dou

j . Hence, we also have Ij = Wj ∪ Cj ∪Dj .
The set of tasks that do not require the j patient
attendance is denoted as Ej . We denote the set of
places as L and the set of types of resources as G.
The number of resources of type g is denoted as Rg.
We specifically denote as gext the type corresponding
to external resources.

Given a task i of a patient j, we denote the set of
places where i can be performed as Lij and the set of
types of resource that can perform i as Gij . The set
of precedence tasks of i is denoted Γ−1

ij , and the set
of successor tasks as Sij . Some tasks may require to
be performed in the same place as i and others may
need to start at the same time as i. Hence, we denote
the set of tasks that should be performed in the same
place as i as Λij , and the set of tasks that need to
start at the same time as i as Ωij .

The primary decision variables are as follows:

xijlt one if patient j enters in place l to perform task
i at time t, zero otherwise ;

zijgrt one if resource r of type g is used to begin task
i of patient j at time t, zero otherwise.

Excluding waiting tasks, each task is processed
within the occupancy time of its allocated place and
needs a resource to be performed. The beginning of
the occupancy time is expressed by the xijlt decision
variables and the beginning of the processing of a task
i by the zijgrt decision variables.

uiji′j′l one if place l is used to perform task i of pa-
tient j before patient j′ for task i′, zero otherwise
;

δij one if the length of task i of patient j in a place
is greater than zero, zero otherwise.

The uiji′j′l variables are used to manage the dis-
junction of the place usages. For a patient j, the
occupancy time of waiting tasks Wj are to be min-
imized. The δij variables are used to manage the
following case: for a patient j, a waiting task i of
null time may use any place regardless of its occu-
pation by other patients. Thus, the patient enters a
place and immediately leaves it.

The problem can be formulated as the following
integer linear program.
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Min

∑
j∈J

 T∑
t=1

∑
l∈Lφjj

t · xφjjlt −
T∑

t=1

∑
l∈L1j

t · x1jlt

 (1)

+
∑
j∈J

ωj

 T∑
t=1

∑
g∈Gdjj

Rg∑
r=1

t · zdjjrt − aj

 (2)

s.t.

xijlt, zijgrt, uiji′j′l, δij ∈ {0, 1} (3)
γ1j∑

t=β1j

∑
l∈L1j

(t · x1jlt) = aj ∀j ∈ J (4)

γij∑
t=βij

∑
l∈Lij

xijlt = 1∀j ∈ J, ∀i ∈ Ij (5)

γij∑
t=βij

∑
g∈Gij

Rg∑
r=1

zijgrt = 1∀j ∈ J,∀i ∈ Dj ∪ Cj ∪ Ej

(6)∑
j∈J

∑
i∈Dj∪Cj∪Ej

min{γij ,t}∑
τ=max{βij , t−pij+1}

zijgrτ ≤ 1

∀g ∈ G \ {gext},∀r ∈ {1, . . . , Rg}, ∀t ∈ {1, . . . , T}
(7)

γij∑
t=βij

∑
l∈Lij

(l · xijlt)−
γi′j∑

t=βi′j

∑
l∈Li′j

(l · xi′jlt) = 0

∀j ∈ J, ∀i ∈ Ij , ∀i′ ∈ Λij (8)
γij∑

t=βij

∑
g∈Gij

Rg∑
r=1

(t · zijgrt)−
γi′j∑

t=βi′j

∑
g∈Gi′j

Rg∑
r=1

(t · zi′jgrt) = 0

∀j ∈ J, ∀i ∈ Cj , ∀i′ ∈ Ωij (9)
γij∑

t=βij

∑
l∈Lij

(t · xijlt)−
γi′j∑

t=βi′j

∑
l∈Li′j

(t · xi′jlt) = 0

∀j ∈ J, ∀i ∈ Ij , ∀i′ ∈ Ωij (10)∑
l∈Lij

(t · xijlt)−
∑

t∈Li′j

(t · xi′jlt) = 0

∀t ∈ {max(βij , βi′j), . . . ,min(γij , γi′j)},
∀j ∈ J, ∀i ∈ Ij , ∀i′ ∈ Ωij (11)

γij∑
t=βij

∑
l∈Lij

(t · xijlt)−
γi′j∑

t=βi′j

∑
l∈Li′j

(t · xi′jlt) ≥ 0

∀j ∈ J, ∀i ∈ Ij , ∀i′ ∈ Γ−1
ij ∩Wj (12)

γij∑
t=βij

∑
l∈Lij

(t · xijlt)−
γi′j∑

t=βi′j

∑
g∈Gi′j

Rg∑
r=1

(t · zi′jgrt) ≥ pi′j

∀j, ∀i ∈ Ij , ∀i′ ∈ Γ−1
ij ∩ (Cin

j ∪ Ej) (13)
γij∑

t=βij

∑
l∈Lij

(t · xijlt)−
γi′j∑

t=βi′j

∑
g∈Gi′j

Rg∑
r=1

(t · zi′jgrt) = pi′j

∀j ∈ J, ∀i ∈ Ij , ∀i′ ∈ Γ−1
ij ∩ (Dj ∪ Cou

j ) (14)
γij∑

t=βij

∑
g∈Gij

Rg∑
r=1

(t · zijgrt)−
γi′j∑

t=βi′j

∑
g∈Gi′j

Rg∑
r=1

(t · zi′jgrt) ≥ pi′j

∀j ∈ J, ∀i ∈ Ej , ∀i′ ∈ Γ−1
i′j ∩ (Cj ∪Dj ∪ Ej) (15)

γij∑
t=βij

∑
g∈Gij

Rg∑
r=1

(t · zijgrt)−
γij∑

t=βij

∑
l∈Lij

(t · xijlt) ≥ 0

∀j ∈ J, ∀ i ∈ Cin
j (16)

γij∑
t=βij

∑
g∈Gij

Rg∑
r=1

(t · zijgrt)−
γij∑

t=βij

∑
l∈Lij

(t · xijlt) = 0

∀j ∈ J, ∀ i ∈ Dj ∪ Cou
j (17)

γsj∑
t=βsj

∑
l∈Lsj

(t · xsjlt)−
γij∑

t=βij

∑
l∈Lij

(t · xijlt) ≥ δij

∀ j ∈ J, ∀i ∈ Ij , s ∈ Sij ∩ Ij (18)
γsj∑

t=βsj

∑
l∈Lsj

(t · xsjlt)−
γij∑

t=βij

∑
l∈Lij

(t · xijlt) ≤ δij ·D

∀ j ∈ J, ∀i ∈ Ij , s ∈ Sij ∩ Ij (19)

uiji′j′l + ui′j′ijl ≥
γij∑

t=βij

xijlt +

γi′j′∑
t=βi′j′

xi′j′lt + δij + δi′j′ − 3

∀j ∈ J, ∀i ∈ Iinj , ∀j′ ∈ J \ {j},
∀i′ ∈ Iinj′ ,∀l ∈ Lij ∩ Li′j′ (20)

uiji′j′l + ui′j′ijl ≤ 1

∀j ∈ J, ∀i ∈ Iinj ,∀j′ ∈ J \ {j},
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∀i′ ∈ Iinj′ ,∀l ∈ Lij ∩ Li′j′ (21)
γi′j′∑

t=βi′j′

(t · xi′j′l′t)−
γsj∑

t=βsj

∑
l∈Lsj

t · xsjlt ≥ (uiji′j′l′ − 1) ·M

∀j ∈ J, ∀i ∈ Iinj , ∀j′ ∈ J \ {j}, ∀i′ ∈ Iinj′ ,

∀l′ ∈ Lij ∩ Li′j′ , s ∈ Sij ∩ Ij (22)

The objective function minimizes the LOS (1) and
the DTDT (2). For a patient j, the last task is φj ,
the priority penalty that relates to the degree of ur-
gency is ωj , the first task requiring a doctor is dj ,
and the arrival time is aj . Constraints (3) require
the variables to be either zero or one. Constraints
(4) ensure that each patient j is in a place at the aj
arrival time. Constraints (5) ensure that each task is
processed in one place. Constraints (6) ensure that
one resource is used by the care and moving tasks.
Thus, constraints (5) and (6) ensure that each task is
performed only once for a patient’s pathway. Except
for external resources, constraints (7) ensure that a
resource allocated for a task i of a patient j cannot be
allocated for any other patient during the processing
time of the i task.

Constraints (8) ensure that a same place is used by
the tasks which need it. Constraints (9) ensure that
a same start time is used by the tasks which need it.

A patient j can enter a place for a task i when all
the Γ−1

ij precedence tasks are completed. Constraints
(12)-(14) ensure the precedence constraints accord-
ing to each type of tasks that precedes task i (wait-
ing, care, moving). For the tasks that do not require
the patient’s attendance, constraints (15) ensure the
precedence relations. Constraints (16) ensure that a
care task can begin after the patient is in one of the
convenient places. For moving tasks, constraints (17)
make sure that the patient is immediately handled by
the resource. Constraints (18)-(19) ensure that a δij
is equal to zero if the i task has a null length. Con-
straints (20)-(22) ensure the disjunction constraints.
We denote Obj(S) as the function that assesses a so-
lution S as presented in equations (1)-(2).

4 PRH and IDCH heuristics
We spent several days in the MDU-ED to observe its
operation and we discussed at length with the medi-
cal staff. From these field observations, we have seen
that some hospital practitioners’ rules are used to
manage patients, their pathway and the care tasks
within the pathway. These rules are used whatever
the cases are that makes it possible to mimic the over-
all strategy and we denoted as PRH the constructive
heuristic we implemented. Given an initial solution
computed by PRH, we propose an Iterative Destruc-
tion/Construction Heuristic (IDCH) to improve the
schedule. Algorithm 1 shows the IDCH proposed ap-
proach.

Algorithm 1 IDCH for MDU-ED
Input: Scur computed by PRH
Parameters: MaxIter, Dlimit

Iter ← 0; Dmax ← Dinit; Sbest ← Scur;
while Iter < MaxIter do

k ← rand(1, Dmax);
Ldes ← PatientRandomDestruction(Scur, k);
PatientPriorityAndSort(Ldes);
Scur ← BestInsertionPatient(Scur,Ldes);
if Obj(Scur) < Obj(Sbest) then

Sbest ← Scur; Dmax ← Dinit;
Iter ← 0;

else
Dmax ← min(Dmax + 1, Dlimit);
Iter ++ ;

return Sbest;

Provided a feasible solution Scur, at each itera-
tion, we first remove at random a number k of pa-
tients and place them into a list Ldes. At most,
Dmax patients are removed at each overall iteration
(k ≤ Dmax). Dmax acts as a degree of diversification.
It is incremented after each non-improving overall
iteration up to Dlimit. We make use of this adap-
tive diversification mechanism to explore the neigh-
borhood of the new solution as soon as an improve-
ment is found and to explore more distant zones
by increasing Dmax whenever the search is trapped
in a local optimum. This aims at better exploring
the solutions space toward a good solution. Then,
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the PatientPriorityAndSort(Ldes) sorts Ldes, in as-
cending order of the patients’ contribution to the
objective function. Next, the patients of Ldes are
scheduled using BestInsertionPatient to obtain a
new solution Scur. When a better solution is found,
we update Sbest, and we reset the iteration counter
Iter to zero and Dmax to its initial value. Whenever
we perform a non-improving iteration, we increment
Dmax if it has not yet reach Dlimit. The algorithm
stops when MaxIter iterations have been performed
without any improvement.

Algorithm 2 (BIP) shows the
BestInsertionPatient. Given a partial solu-
tion Scur, we aim at scheduling in turn the tasks i
of each patient p ∈ Ldes. For the task i of a patient
p, we compute Si,p,t6 the set of 6-tuplets indiced by
t6. One tuple can be used to schedule the task i of
patient p. A tuple t6 contains a place, a resource, an
entry time in the place, an exit time from the place,
a treatment start time and a treatment end time.
The BIP selects the earliest feasible tuple to schedule
i, next the resources and the places’ availability are
updated.

The directed acyclic graph that corresponds to the
pathway of a patient p should be strictly respected
to schedule the tasks.

We chose to experiment with an IDCH because
such a destruction/construction approach will be eas-
ier to adapt in the dynamic case. It will be necessary
to destroy an ongoing schedule at each occurrence of
an event at time t that forces to recalculate a task
scheduling in an efficient way. The computing time
should be reasonable to fit with the high level of re-
activity required in an emergency department.

5 Computational Experiments

In our experiments, our objectives were: (i) to pro-
vide an overview of how to adjust IDCH parameter
for best performance, (ii) to compare performances
between the ILP model and the IDCH approach
within a 1800 seconds time limit. Tests were done
using C++ and Standard Template Library (STL),
compiled with GCC under Linux, on a machine with
an Intel(R) Xeon(R) Gold 6138 CPU @ 2.00 GHz.

Algorithm 2 Best Insertion Patient (BIP)
Input: Scur, Ldes ordered list of patients to be

scheduled
while (Ldes ̸= nil) do
p← Ldes.pop_front();
// L(p)

des, for a patient p, the list of tasks to be
scheduled
while (Lp

des ̸= nil) do
// Si,p,t6 for task i of the patient p, set of 6-
uplets
// (place, resource, entry time in the place,
// exit time from the place,
// treatment start time, treatment end time)
Compute(Si,p,t6);
Schedule the task i of patient p in Scur in the
earliest possible time using Si,p,t6;
Update places and resources availability;

return Scur

We used CPLEX 12.10 [13] solver.

Datasets overview

We were given at our disposal data from the ED of
the Jeanne de Flandres University Hospital in Lille.
The level of urgency and the code diagnostic filled
in after the first medical assessment were used. We
modeled the most representative patient pathways
(about twenty) and fixed the lengths of the care tasks
in accordance with the medical staff. We decided to
generate instances based on these pathways. To gen-
erate an instance with a set of patients, we draw up
patients arrivals according to a nonstationary Pois-
son process and the patients pathways are chosen at
random.

Parameter tuning
The IDCH solution approach uses the parameter

MaxIter, the maximum number of iterations with-
out any improvements. This influences the quality
of solutions and CPU times. To make adaptive this
parameter with an instance, we formulate MaxIter

as α.

⌈ ∑
j |Ij |

max(|L|,
∑

g |Rg|)

⌉
, α ∈ N. Given an instance,

the ratio increases as the total amount of tasks and
decreases as the amount of places or the amount of
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type of resources for care tasks. To tune α, we per-
formed preliminary experiments on a subset of ran-
domly chosen instances from among the generated
ones. As IDCH is a randomized search method, the
experiments were repeated five times with a differ-
ent random seed. We evaluate the results using the
Relative Percentage Error (RPE) defined as follows:
RPE = 100 · Zbest−Zmin

Zbest
. For an instance, Zmin is

min(ZAllRuns, ZILP ) where ZAllRuns is the best solu-
tion obtained on all the executions carried out during
tuning and ZILP is the optimal solution attained by
the ILP, if any. Then, we calculate the average RPE
for the runs for the ten chosen instances for the tun-
ing. As shown in Figure 2, the average RPE decreases
as α increases and the CPU time increases with the α
value. The average RPE stabilizes when α is greater
than or equal to 130, we chose α = 130, which is
a good trade-off between solution quality and CPU
time.

Figure 2: Tuning of α, effect of α on RPE (in %) and
CPU time (in s).

Results
The instances in datasets are ranged according to

the number of patients. So, instances are denoted as
a_XX(a/b/c), the (a/b/c) notation is used whether
two distinct instances have the same number of pa-
tients. In Table 1, for each instance, column P(T)
shows the number of patients and tasks and column
PRH shows the result of the constructive heuristic
that mimics the practicians’ rules. Under the ILP
heading, Obj, t(s) and g% columns indicate the ob-
jective function value, the computing time and the

gap recorded by the CPLEX solver. Under the IDCH
heading, we show the Min, Max and Avg values
that we obtained within the 10 runs. Column t(s)
shows the average processing times in second. We
use (Min − Obj)/Obj reported in column headings
as Ig(%) to compare results of IDCH with those of
ILP, if any.

The ILP approach finds optimal solutions and finds
feasible solutions for some instances, but faces dif-
ficulties to obtain feasible solutions for some other
within the 1800s time limit. The IDCH approach
found a feasible solution for each instance within less
than 30s. All the optimal solutions are obtained and
strictly improves all the other solutions compared to
PRH and ILP.

Instance P (T) PRH
ILP IDCH

Obj t(s) g(%) Min Max Avg Ig(%) t(s)
u_06 6(97) 2505 2615 1800 27.18 2175 2430 2291 -16.83 18.57
u_07* 7 (91) 1955 1850 16.41 0.00 1850 1850 1850 0.00 0.28
u_08* 8 (82) 2380 1940 183.38 0.00 1940 1950 1945 0.00 0.51
u_09* 9 (92) 6500 3205 526.08 0.00 3205 3205 3205 0.00 0.81
u_10(a) 10 (87) 3625 2835 379.80 0.00 2835 2835 2835 0.00 0.36
u_10(b) 10 (155) 20560 – 1800 – 7715 8030 7855 – 23.59
u_10(c)* 10 (76) 4385 4085 184.22 0.00 4085 4085 4085 0.00 0.28
u_11(a) 11 (132) 6260 – 1800 – 3800 4080 3911 – 2.49
u_11(b) 11 (100) 7275 7360 1800 1915.76 6020 6350 6170 -35.64 1.79
u_11(c) 11 (110) 7190 5190 1800 1666.67 4335 4595 4485 -16.47 1.37
u_12(a) 12 (169) 12960 – 1800 – 5095 5215 5170 – 22.81
u_12(b) 12 (133) 5450 – 1800 – 3990 4050 4030 – 2.61
u_12(c)* 12 (88) 5405 4310 125,95 0.00 4310 4515 4380 0.00 0.41

Table 1: Results, PRH, ILP and IDCH

6 Conclusion and future work

In this paper, we have addressed the scheduling
problem of care tasks of the Medical Day Unit of
the Emergency Department (MDU-ED) of Jeanne
de Flandres University Hospital in Lille (France).
We proposed an ILP model and an IDCH approach.
Computational experiments are performed on gener-
ated instances based on actual patients’ pathways.
We compared the results obtained between the pro-
posed mathematical model and the IDCH approach.

The results show that IDCH obtained strictly bet-
ter results within short processing time. The tuning
permits to achieve a good trade-off between the qual-
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ity of the solution and the processing time. In col-
laboration with the practitioners of the MDU-ED of
Jeanne de Flandres University Hospital, we are cur-
rently in the process of adapting this approach to the
dynamic context that requires high reactivity.

A future research direction would be to consider a
broader problem by considering non-standard capac-
ity such as stretchers that can exceptionally be used
for a short time as a place for a few patients, or extra
capacity that can be mobilized to face a longer term
stress situation as for the Covid pandemic.
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