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This article is concerned with a dual-mixed formulation of the Navier-Stokes equations which is based on the introduction of the pseudostress as a new unknown. The problem is approximated by a mixed finite element method in two and three dimensions: Raviart-Thomas elements of index k ≥ 0 for the pseudostress tensor, and piecewise discontinuous polynomials of degree k ≥ 0 for the velocity and the pressure. An existence result for the finite-element solution and convergence results are proved near a nonsingular solution. Finally, quasi-optimal error estimates, which improve those existing in the literature, are provided.

Introduction

Let Ω be an open, bounded and connected subset of R d (d = 2 or 3) with a Lipschitz continuous boundary ∂Ω. We consider the stationary Navier-Stokes equations, describing the movement of a viscous fluid in Ω with velocity u, pressure p and homogenous Dirichlet boundary conditions

     -ν∆u + (u • ∇) u + ∇p = f in Ω, div u = 0 in Ω, u = 0 on ∂Ω, (1) 
where f is a body force and ν > 0 is the kinematic viscosity.

A tremendous amount of work has been done over many years on the computation of Navier-Stokes equations based on the velocity-pressure formulation (see, e.g., the books by Girault and Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF], Pironneau [START_REF] Pironneau | Finite Element Methods for Fluids[END_REF], Gunzburger [START_REF] Gunzburger | Finite Element Methods for Viscous Incompressible Flows[END_REF], and the references therein). However in some applications like turbulent or non-Newtonian flows, the auxiliary unknown stress tensor is more relevant and is the data that has to be transferred into other equations coupled with [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF]. In such cases, the introduction of the stress tensor as a new unknown might be preferred, as long as it provides a better accuracy for this tensor. Recently, the practical need of the stress tensor has motivated extensive studies of dual mixed finite element methods based on the stressvelocity-pressure formulation (see, e.g., [START_REF] Farhloul | Analysis of non-singular solutions of a mixed Navier-Stokes formulation[END_REF][START_REF] Farhloul | Review and complements on mixed-hybrid finite eleemnt methods for fluid flows[END_REF][START_REF] Farhloul | A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem[END_REF][START_REF] Cai | Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations[END_REF][START_REF] Cai | Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation[END_REF] and references therein). In [START_REF] Farhloul | Analysis of non-singular solutions of a mixed Navier-Stokes formulation[END_REF][START_REF] Farhloul | A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem[END_REF], the authors introduced the gradient of the velocity as a new unknown and studied the mixed finite element method for the Navier-Stokes equations that uses the lowest degree Raviart-Thomas element [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF][START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] for the approximation of the pseudostress tensor and the piecewise constants for the velocity and the pressure on elements. They also provide some numerical results, by using the hybridization technique, and a posteriori error estimations. In [START_REF] Cai | Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations[END_REF], the authors studied a mixed finite element method based on the pseudostress-velocity formulation for solving the Navier-Stokes equations. The pseudostress and the velocity are approximated by a stable pair of finite elements: Raviart-Thomas elements of index k ≥ 0 [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF][START_REF] Nedelec | Mixed finite elements in R 3[END_REF][START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] and discontinuous piecewise polynomials of degree k ≥ 0. Moreover, they proved a priori error estimate of order O(h k+1-d 6 ), where h is the discretization parameter. The same error estimate was established in [START_REF] Cai | Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation[END_REF] for pseudostress-pressure-velocity formulation of the Navier-Stokes problem.

The purpose of this paper is to analyze a new mixed formulation of the stationary Navier-Stokes problem [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF], by introducing the pseudostress tensor

σ = ν∇u -pI (2) 
as a new unknown, where I is the identity tensor in R d×d . To approximate the pseudostress, we use Raviart-Thomas elements of index k ≥ 0, and for the approximations of the pressure and velocity, the discontinuous piecewise polynomials of degree k ≥ 0 are used. We then prove that the discrete dual-mixed formulation has at least one solution near any nonsingular solution of the Navier-Stokes equations. Furthermore, using some interpolation error estimates, we show quasi-optimal a priori error estimates. Let us mention that numerical experiments for the stress-velocity-pressure formulation and its variants, of the Navier-Stokes equations, have been performed in [START_REF] Farhloul | Analysis of non-singular solutions of a mixed Navier-Stokes formulation[END_REF][START_REF] Cai | Pseudostress-velocity formulation of incompressible Navier-Stokes equations[END_REF][START_REF] Chen | Superconvergent pseudostress-velocity finite element methods for the Oseen equations[END_REF]. The mixed finite element method presented in this work was studied in [START_REF] Mahjoub | Méthodes d'élements finis mixtes duales et non conformes pour les équations de Stokes[END_REF] for the two-dimensional Stokes problem. While for the Navier-Stokes equations in two dimensions with the lowest degree Raviart-Thomas element, this method was analyzed in [START_REF] Fall | Analyse des solutions non singulières de deux formulations mixtes duales des équations de Navier-Stokes[END_REF]. Our goal here is to analyze the dual-mixed finite element method of the Navier-Stokes equations by introducing the pseudostress as a new variable, to use Raviart-Thomas elements of index k ≥ 0 for the discrete problem in two and three dimensions, and prove quasi-optimal a priori error estimates which improve those existing in the literature. The paper is organised as follows. In the remainder of this section, notations and definitions of spaces are introduced. In Section 2, we describe the pseudostress-pressure-velocity formulation of the Navier-Stokes equations and its analysis. Section 3 is devoted to the mixed finite element approximation of the variational formulation. Finally, the convergence analysis of the proposed method is presented in Section 4.

Notation

Throughout the paper, we denote the standard scalar Lebesgue space functions by L p (Ω), with p ∈ [1, ∞], endowed with the norm ∥ • ∥ 0,p,Ω (that is simply denoted by ∥ • ∥ 0,Ω if p = 2). We also introduce the sub-space L 2 0 (Ω) of zero mean functions (∂Ω), with its dual denoted by H -1/2 (∂Ω). Thus, the duality product between H -1/2 (∂Ω) and H 1/2 (∂Ω) is denoted by ⟨•, •⟩. Let us introduce the following set of definitions and notations. For any vector fields v = (v i ) 1≤i≤d and w = (w i ) 1≤i≤d , we define the gradient ∇, the divergence div, the inner product and the tensor product ⊗ as

L 2 0 (Ω) = q ∈ L 2 (Ω), Ω q dx = 0 ,
∇v = ∂v i ∂x j 1≤i,j≤d , div v = d i=1 ∂v i ∂x i , v • w = d i=1 v i w i , v ⊗ w = (v i w j ) 1≤i,j≤d .
Moreover, for any tensor fields τ = (τ ij ) 1≤i,j≤d and ζ = (ζ ij ) 1≤i,j≤d , we define the divergence, the transpose, the trace, the tensor inner product and the deviation tensor, respectively, as follows

div τ =   d j=1 ∂τ ij ∂x j   1≤i≤d , τ t = (τ ji ) 1≤i,j≤d , tr(τ ) = d i=1 τ ii , (3) 
τ : ζ = d i,j=1 τ ij ζ ij , τ D = τ - 1 d tr(τ )I, (4) 
From these notations, we thus introduce the following vector Hilbert space

H (div, Ω) = v ∈ L 2 (Ω) d | div v ∈ L 2 (Ω) ,
equipped with the following usual norm in the mixed formulation problems

∥v∥ div,Ω = ∥v∥ 2 0,Ω + ∥ div v∥ 2 0,Ω 1 2 
.

The tensor version of the vector space H (div, Ω), that we denote by Σ, is defined by

Σ = τ ∈ L 2 (Ω) d×d | div τ ∈ L 2 (Ω) d .
We also introduce, for any vector fields v and w and tensor fields τ and ζ, the following notations

(v, w) = Ω v • w dx and (τ , ζ) = Ω τ : ζ dx.
We finally recall the Green formula, that is useful in the weak formulation of the proposed problems

(∇v, τ ) = -(div τ , v) + ⟨τ • n, v⟩ , ∀ v ∈ H 1 (Ω) d and τ ∈ Σ. (5) 
In this work, we use C with or without subscripts to denote generic constants independent of the eventual discretization parameter.

2 The Pseudostress-Pressure-Velocity Formulation of the Navier-Stokes Equations

A Pseudostress-Pressure-Velocity Formulation

We introduce throughout this section, a Pseudostress-Pressure-Velocity formulation of the stationary Navier-Stokes equations given in [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF]. From the first equation of this system, we obtain

-ν∆u + (u • ∇) u + ∇p = -ν div(∇u) + div(pI) + (u • ∇) u = -div(ν∇u -pI) + (u • ∇) u.
Thus, from the definition of the tensor σ introduced in (2), we have the equation

-div σ + (u • ∇) u = f . (6) 
Again from (2) and taking into account the incompressibility condition from the second equation in system (1), the trace of the tensor σ is given by

tr(σ) = ν div u -d p = -d p. (7) 
Finally, from equation (2) and using formula [START_REF] Cai | Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations[END_REF], we obtain the following equality

(u • ∇) u = (∇u) • u = 1 ν (σ + pI) • u = 1 ν σ - 1 d tr(σ)I • u = 1 ν σ D • u. (8) 
From ( 2), ( 6), ( 7) and ( 8), we finally obtain the Pseudostress-Pressure-Velocity formulation of the stationary Navier-Stokes problem (1) as follows

             σ -(ν∇u -pI) = 0 in Ω, -div σ + 1 ν σ D • u = f in Ω, tr(σ) + d p = 0 in Ω, u = 0 in ∂Ω. (9) 
Multiplying the first equation in ( 9) by a tensor τ ∈ Σ, by taking into account the Green formula (5) and the Dirichlet boundary conditions in [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF], we obtain

1 ν (σ, τ ) + (div τ , u) + 1 ν (tr(τ ), p) = 0, ( 10 
)
where we have used the equality (tr(τ ), p) = (pI, τ ), for all τ ∈ Σ.

On the other hand, multiplying both the second and the third equations in (9) by test functions (v, q) ∈ M = L 4 (Ω) d × L 2 0 (Ω), we obtain the forthcoming formulations

(div σ, v) - 1 ν σ D • u, v + (f , v) = 0, ( 11 
) 1 ν (tr(σ), q) + d ν (p, q) = 0. ( 12 
)
Adding equalities [START_REF] Nedelec | Mixed finite elements in R 3[END_REF] and [START_REF] Cai | Pseudostress-velocity formulation of incompressible Navier-Stokes equations[END_REF], we obtain the second equation composing our mixed formulation

(div σ, v) + 1 ν (tr(σ), q) + d ν (p, q) - 1 ν σ D • u, v + (f , v) = 0. (13) 
From ( 10) and ( 13), we thus obtain the following weak formulation of the stationary Navier-Stokes equations (9): Find (σ, (u, p)) ∈ Σ × M , such that

             1 ν (σ, τ ) + (div τ , u) + 1 ν (tr(τ ), p) = 0, ∀ τ ∈ Σ, (div σ, v) + 1 ν (tr(σ), q) + d ν (p, q) - 1 ν σ D • u, v + (f , v) = 0, ∀ (v, q) ∈ M . (14) 
It is clear that the mixed formulation ( 14) is equivalent to the classical variational formulation of (1).

Remark 1 For the treatment of the natural Neumann boundary condition, we have to use the rate of strain tensor ϵ(u) = 1 2 (∇u + ∇u t ) instead of ∇u. However, it is well known that the symmetry of this tensor presents a major difficulty in the construction of stable mixed finite element methods (see [START_REF] Arnold | A new mixed formulation for elasticity[END_REF][START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF], for a discussion on this point). The common way to overcome this difficulty is to relax the symmetry of ϵ(u) by a Lagrange multiplier (see, e.g., [START_REF] Farhloul | Dual hybrid methods for the elasticity and the Stokes problems: a unified approach[END_REF][START_REF] Farhloul | A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions[END_REF][START_REF] Boffi | Mixed Finite Element Methods and Applications[END_REF]).

Analysis of the Pseudostress-Pressure-Velocity Formulation

In order to analyze approximations of nonsingular solutions of this dual mixed formulation of the Navier-Stokes equation, we introduce the following linear operator, for all p ≥ 4 3 ,

S : (L p (Ω)) d → Σ × M g → Sg = [σ * , (u * , p * )] , (15) 
where [σ * , (u * , p * )] is the solution of the associated Stokes linear problem of ( 14) formulated as follows

     1 ν (σ * , τ ) + (div τ , u * ) + 1 ν (tr(τ ), p * ) = 0, ∀ τ ∈ Σ, (div σ * , v) + 1 ν (tr(σ * ), q) + d ν (p * , q) + (g, v) = 0, ∀ (v, q) ∈ M . (16) 
The well-posedness of problem ( 16) is established in [START_REF] Mahjoub | Méthodes d'élements finis mixtes duales et non conformes pour les équations de Stokes[END_REF] where the solution [σ * , (u * , p * )] satisfies, with respect to the external forces g, the forthcoming stability condition

∥ [σ * , (u * , p * )] ∥ Σ× M ≤ C∥g∥ 0,p,Ω . (17) 
In the estimate [START_REF] Farhloul | Dual hybrid methods for the elasticity and the Stokes problems: a unified approach[END_REF], C is a positive constant, the spaces Σ and M , and the norm ∥ • ∥ Σ× M are defined by

Σ = L 2 (Ω) d×d , M = (L r (Ω)) d × L 2 0 (Ω), where 2 < r < 4, ∥ [σ * , (u * , p * )] ∥ Σ× M = ∥σ * ∥ 0,Ω + ∥u * ∥ 0,r,Ω + ∥p * ∥ 0,Ω .
Although the results obtained in [START_REF] Mahjoub | Méthodes d'élements finis mixtes duales et non conformes pour les équations de Stokes[END_REF] are proved in two dimensions, similar arguments can be used in three dimensions (see, also, [START_REF] Cai | Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation[END_REF]). In fact, the well-posedness of problem ( 16) is based on the abstract theory of saddle-point problems (see, [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF][START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF]) and the following lemma which is proved in [START_REF] Boffi | Mixed Finite Element Methods and Applications[END_REF].

Lemma 1 Let τ ∈ Σ be such that Ω tr(τ ) dx = 0. There exists a constant C > 0 such that ∥τ ∥ 0,Ω ≤ C ∥τ D ∥ 0,Ω + ∥divτ ∥ 0,Ω . (18) 
Let us also introduce the

C ∞ nonlinear operator D : Σ × M → L 4 3 (Ω) d , defined as follows D [τ , (v, q)] = 1 ν τ D • v , ∀ τ ∈ Σ, ∀ (v, q) ∈ M,
such that for any (w, t) ∈ M , we obtain the following equality

D [τ , (v, q)] , (w, t) = 1 ν τ D • v, w .
We finally introduce the affine operator

F : Σ × M → Σ × M defined in the following F [τ , (v, q)] = (I + S • D) [τ , (v, q)] -Sf = [τ , (v, q)] + S (D [τ , (v, q)] -f ) = [τ , (v, q)] + S 1 ν τ D • v -f , ∀ τ ∈ Σ, ∀ (v, q) ∈ M . ( 19 
)
From the operator in ( 19) and the linear one defined in [START_REF] Fall | Analyse des solutions non singulières de deux formulations mixtes duales des équations de Navier-Stokes[END_REF], the weak formulation of the stationary Navier-Stokes problem ( 14) is equivalent to the problem:

Find σ, (u, p) ∈ Σ × M , F [σ, (u, p)] = 0. ( 20 
)
A nonsingular solution [σ, (u, p)] of problem ( 20) is a solution for which the Fréchet derivative of the operator F at [σ, (u, p)] (that we denote by F ′ [σ, (u, p)]) is an isomorphism on Σ × M . This derivative is obtained from ( 19) as follows

F ′ [σ, (u, p)] , [τ , (v, q)] = (I + S • D ′ [σ, (u, p)]) [τ , (v, q)] = [τ , (v, q)] + S 1 ν σ D • v + τ D • u , ∀ τ ∈ Σ, ∀ (v, q) ∈ M .
Hence [σ, (u, p)] is a nonsingular solution of ( 20), if and only if for all f ∈ (L p (Ω))

d the following linearized Navier-Stokes problem (a Stokes problem) is well posed: Find [σ * , (u * , p * )] ∈ Σ × M , such that (I + S • D ′ [σ, (u, p)]) [σ * , (u * , p * )] = Sf . (21) 
That is to say, [σ * , (u * , p * )] is the solution of the following Stokes problem (a linearized Navier-Stokes problem):

             1 ν (σ * , τ ) + (div τ , u * ) + 1 ν (tr(τ ), p * ) = 0, ∀ τ ∈ Σ, (div σ * , v) + 1 ν (tr(σ * ), q) + d ν (p * , q) - 1 ν σ D • u * , v - 1 ν σ * D • u, v + (f , v) = 0, ∀ (v, q) ∈ M . (22) 
Now in order to study the nonsingular solution [σ, (u, p)] of ( 20) we introduce the bounded linear operator

K ∈ L (Σ × M , Σ × M ) defined by K = S • D ′ [σ, (u, p)] , (23) 
and we shall prove the following result.

Lemma 2 Let [σ, (u, p)] ∈ Σ × M be a nonsingular solution of the problem (20) such that u ∈ H 2 (Ω) d .
Then, the operator I + K is invertible and has a continuous inverse in 23) and [START_REF] Fall | Analyse des solutions non singulières de deux formulations mixtes duales des équations de Navier-Stokes[END_REF], one can write

L Σ × M , Σ × M . Proof Let [τ , (v, q)] ∈ Σ × M and set [σ * , (u * , p * )] = K [τ , (v, q)]. From (
[σ * , (u * , p * )] = S 1 ν σ D • v + τ D • u . Now, since σ D • v + τ D • u ∈ L 2 (Ω) d , we have u * ∈ H 2 (Ω) d , p * ∈ H 1 (Ω), σ * ∈ H 1 (Ω) d×d and ∥σ * ∥ 1,Ω + ∥u * ∥ 2,Ω + ∥p * ∥ 1,Ω ≤ C(σ, u, p) (∥τ ∥ 0,Ω + ∥v∥ 0,r,Ω ) ≤ C(σ, u, p)∥ [τ , (v, q)] ∥ Σ× M , i.e. ∥K [τ , (v, q)] ∥ ≤ C(σ, u, p)∥ [τ , (v, q)] ∥ Σ× M ,
where C(σ, u, p) means that the positive constant depends on [σ, (u, p)]. This proves that K is a continuous operator from Σ × M equipped with the topology of

Σ × M into H 1 (Ω) d×d × H 2 (Ω) d × H 1 (Ω) and,
by the denseness of Σ × M in Σ × M , K can be extended to Σ × M . Therefore, the compactness of the imbedding of H 1 (Ω) into L r (Ω) implies that K is a compact operator from Σ × M into itself. Hence, we can apply to I + K Fredholm's alternative, namely I + K is an isomorphism of Σ × M if and only if the equation (I + K) [τ , (v, q)] = 0 with [τ , (v, q)] ∈ Σ × M only has the zero solution. But if [τ , (v, q)] satisfies this last equation, then [τ , (v, q)] is a solution of (I + S • D ′ [σ, (u, p)]) [τ , (v, q)] = 0 which has the unique solution zero since [σ, (u, p)] ∈ Σ × M is a nonsingular solution of problem [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF]. Thus, the Lemma is proved. ⊓ ⊔

Mixed Finite Element Approximations

Suppose that Ω is a polygonal (d = 2) or polyhedral (d = 3) domain. Let T h , h > 0, be a family of regular meshes of Ω made up of triangles (d = 2) or tetrahedrons (d = 3). We assume that T h is regular in the sense of Ciarlet [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. We denote h T the diameter of an element T ∈ T h and define h = max

T ∈T h h T .
Given an integer k ≥ 0, we denote by P k (T ) the space of polynomials in x = (x 1 , • • • , x d ) ∈ T of degree less or equal to k. Hence, for each integer k ≥ 0 and each T ∈ T h , the local Raviart-Thomas space [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF][START_REF] Nedelec | Mixed finite elements in R 3[END_REF] of order k is defined by

RT k (T ) = (P k (T )) d ⊕ Pk (T ) x,
where Pk (T ) is the space of polynomials of total degree equal to k defined on T . Then, we let

Σ h = τ h ∈ Σ : τ h|T ∈ (RT k (T )) d , ∀ T ∈ T h , M h = (v h , q h ) ∈ M : v h|T ∈ (P k (T )) d , q h|K ∈ P k (T ), ∀ T ∈ T h .
Remark 2 Instead of Raviart-Thomas elements, one can use Brezzi-Douglas-Marini elements [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] in two dimensions and Brezzi-Douglas-Duran-Fortin elements [START_REF] Brezzi | Mixed finite elements for second order elliptic problems in three variables[END_REF] in three dimensions.

In order to analyze the discrete mixed finite element approximation of problem [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF], we have to prove some intermediate results.

Lemma 3 There exists a constant C > 0 independent of h, such that

sup τ h ∈Σ h (div τ h , v h ) ∥τ h ∥ 0,Ω ≥ C∥v h ∥ 0,r,Ω , ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d , 2 < r < 4. ( 24 
) Proof Let v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d , 2 < r < 4
and ω h be a solution of the problem

-∆ω h = |v h | r-2 v h in Ω, ω h = 0 on Γ, (25) 
where

|v h | = ( d i=1 v h 2 i ) 1 2 . Firstly, |v h | r-2 v h ∈ [L r ′ (Ω)] d , where 1 r + 1 r ′ = 1 . Indeed, Ω |v h | r-2 v h r ′ dx = Ω |v h | (r-1)r ′ dx = Ω |v h | r dx =∥ v h ∥ r 0,r,Ω .
Moreover,

∥ |v h | r-2 v h ∥ 0,r ′ ,Ω = Ω |v h | r-2 v h r ′ dx 1 r ′ =∥ v h ∥ r-1 0,r,Ω .
On the other hand, the solution of [START_REF] Farhloul | A refined mixed finite element method for the Boussinesq equations in polygonal domains[END_REF] verifies

ω h ∈ [W 2,r ′ (Ω)] d and ∥ ω h ∥ 2,r ′ ,Ω ≤ c 0 ∥ |v h | r-2 v h ∥ 0,r ′ ,Ω = c 0 ∥ v h ∥ r-1 0,r,Ω , where c 0 is a positive constant. Now, let τ h = -∇ω h . Then, div τ h = -∆ω h = |v h | r-2 v h in Ω and ∥ τ h ∥ 0,Ω =∥ ∇ω h ∥ 0,Ω ≤∥ ω h ∥ 1,Ω ≤ c 0 ∥ ω h ∥ 2,r ′ ,Ω , since W 2,r ′ (Ω) → H 1 (Ω) (r < 6). Therefore, ∥ τ h ∥ 0,Ω =∥ ∇ω h ∥ 0,Ω ≤ c 0 ∥ v h ∥ r-1 0,r,Ω . Finally, we have (div τ h , v h ) ∥ τ h ∥ 0,Ω = (|v h | r-2 v h , v h ) ∥ τ h ∥ 0,Ω = ∥ v h ∥ r 0,r,Ω ∥ τ h ∥ 0,Ω ≥ 1 c 0 ∥ v h ∥ r 0,r,Ω ∥ v h ∥ r-1 0,r,Ω . Then, (div τ h , v h ) ∥ τ h ∥ 0,Ω ≥ C ∥ v h ∥ 0,r,Ω .
This leads to sup

τ h ∈Σ h (div τ h , v h ) ∥τ h ∥ 0,Ω ≥ C∥v h ∥ 0,r,Ω , ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d .

⊓ ⊔

We introduce the interpolation operator [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF][START_REF] Nedelec | Mixed finite elements in R 3[END_REF][START_REF] Farhloul | A mixed finite element method for a nonlinear Dirichlet problem[END_REF][START_REF] Farhloul | A refined mixed finite element method for the Boussinesq equations in polygonal domains[END_REF]) satisfying

Π h ∈ L Σ ∩ H k+1 (Ω) d×d , Σ h (see
∥τ -Π h τ ∥ 0,s,Ω ≤ Ch k+1+d( 1 s -1 2 ) |τ | k+1,Ω , ∀ τ ∈ Σ ∩ H k+1 (Ω) d×d , (26) 
with s > 1 if d = 2, and 1 < s ≤ 6 if d = 3, and

(div (τ -Π h τ ) , v h ) = 0, ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d and ∀ τ ∈ H 1 (Ω) d×d , (27) 
where 2 < r < 4.

From this interpolation operator, we also introduce another operator R h as follows

R h τ = Π h τ - 1 d |Ω| Ω tr (Π h τ ) dx I, which satisfies, for all τ ∈ H 1 (Ω)
d×d , the following properties

R h τ ∈ Σ h , div (R h τ ) = div (Π h τ ) and Ω tr (R h τ ) dx = 0.
The operator R h also satisfies the following interpolation properties

∥τ -R h τ ∥ 0,Ω ≤ Ch k+1 |τ | k+1,Ω , ∀ τ ∈ H k+1 (Ω) d×d and Ω tr(τ ) dx = 0, ( 28 
) (div (τ -R h τ ) , v h ) = 0, ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d , ∀ τ ∈ H 1 (Ω) d×d . ( 29 
)
Moreover, we define the projection operator

P h ∈ L W k+1,s (Ω) d × H k+1 (Ω), M h [21] satisfying ∥P h (v, q) -(v, q)∥ 0,s,Ω ≤ Ch k+1 |(v, q)| k+1,s,Ω , ∀ s ≥ 2, ( 30 
) for all (v, q) ∈ W k+1,s (Ω) d × H k+1 (Ω) where |(v, q)| k+1,s,Ω = |v| k+1,s,Ω + |q| k+1,Ω .
Let us now introduce the discrete mixed finite element approximation of the problem (20) as follows:

Find σ h , (u h , p h ) ∈ Σ h × M h , such that [σ h , (u h , p h )] + S h • D [σ h , (u h , p h )] = S h f . (31) 
For all p ≥ 4 3 , the operator

S h ∈ L (L p (Ω)) d , Σ h × M h is defined by S h g = [σ * h , (u * h , p * h )] ,
where

[σ * h , (u * h , p * h )] is the unique solution of the Stokes discrete problem      1 ν (σ * h , τ h ) + (div τ h , u * h ) + 1 ν (tr(τ h ), p * h ) = 0, ∀ τ h ∈ Σ h , (div σ * h , v h ) + 1 ν (tr(σ * h ), q h ) + d ν (p * h , q h ) + (g, v h ) = 0, ∀ (v h , q h ) ∈ M h . (32) 
The well-posedness of this problem is proven in the next Lemma. We may thus introduce the discrete version of the bounded linear operator in [START_REF] Brezzi | Mixed finite elements for second order elliptic problems in three variables[END_REF] as follows

K h = S h • D ′ [Π h σ, P h (u, p)] . (33) 
We now state results concerning the Stokes discrete problem (32) that will be used in the next section. 

Lemma 4 Let g ∈ (L p (Ω)) d ,
     1 ν (σ * h , τ h ) + (div τ h , u * h ) + 1 ν (tr(τ h ), p * h ) = 0, ∀ τ h ∈ Σ h , (div σ * h , v h ) + 1 ν (tr(σ * h ), q h ) + d ν (p * h , q h ) = 0, ∀ (v h , q h ) ∈ M h . (34) 
Taking q h = 0 in the second equation of (34), we obtain the following

(div σ * h , v h ) = 0, ∀ v h ∈ T ∈T h P k (T ) d , which implies div σ * h = 0, since div σ * h ∈ T ∈T h P k (T ) d .
Thus the second equation of (34) becomes

1 ν (tr(σ * h ) + d p * h , q h ) =0, ∀ q h ∈ T ∈T h P k (T )
, which implies tr(σ * h ) + d p * h = 0, and then

p * h = - 1 d tr(σ * h ) (35) since div σ * h = 0 implies σ * h ∈ T ∈T h P k (T ) d×d .
Finally, rewriting problem (34) by making the replacements τ h = σ * h , v h = u * h and q h = p * h , by taking into account div σ * h = 0 and (35), and by subtracting the resulting equations, we obtain

∥σ * h ∥ 2 0,Ω - 1 d ∥ tr(σ * h )∥ 2 0,Ω = 0, which implies ∥σ * h D ∥ 2 0
,Ω = 0, and then

σ * h D = 0. ( 36 
)
Taking account the fact that Ω p * h dx = 0 (since p * h ∈ L 2 0 (Ω)) and equality (35), we obtain Ω tr(σ * h ) dx = 0. From Lemma 1, div σ * h = 0 and (36), we thus obtain σ * h = 0. Hence tr(σ * h ) = 0, and from (35), we deduce that p * h = 0. Otherwise, rewriting then the first equation in (34), we obtain (div τ h , u * h ) = 0, ∀ τ h ∈ Σ h , and using the inf-sup condition in Lemma 3 we obtain u * h = 0 which ends the proof of this lemma. 

∥[σ * , (u * , p * )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ Ch k+1+d( 1 r -1 2 ) (|σ * | k+1,Ω + |u * | k+1,Ω + |p * | k+1,Ω ) . ( 37 
)
Proof In order to establish a priori error estimate between the solutions [σ * , (u * , p * )] = Sg and [σ * h , (u * h , p * h )] = S h g, we first consider the following system obtained by taking account that Σ h ⊂ Σ and M h ⊂ M , and by subtracting equations (32) from ( 16)

     1 ν (σ * -σ * h , τ h ) + (div τ h , u * -u * h ) + 1 ν (tr(τ h ), p * -p * h ) = 0, ∀ τ h ∈ Σ h , (div(σ * -σ * h ), v h ) + 1 ν (tr(σ * -σ * h ), q h ) + d ν (p * -p * h , q h ) = 0, ∀ (v h , q h ) ∈ M h . (38) 
The second equation in ( 38) is equivalent to the following

             (div(σ * -σ * h ), v h ) = 0, ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d , 2 < r < 4, 1 ν (tr(σ * -σ * h ), q h ) + d ν (p * -p * h , q h ) = 0, ∀ q h ∈ T ∈T h P k (T ) ∩ L 2 0 (Ω). ( 39 
)
Using the property in (29) and the first equation in (39), we obtain the following

(div (R h σ * -σ * h ) , v h ) = 0, ∀ v h ∈ T ∈T h P k (T ) d ∩ (L r (Ω)) d , 2 < r < 4. ( 40 
)
Denoting by (ṽ h , qh ) the projection of (v, q) onto M h , that is to say (ṽ h , qh ) = P h (v, q), then we have

(div τ h , v -ṽh ) = 0, ∀ τ h ∈ Σ h , ∀ v ∈ L 2 (Ω) d . (41) 
Taking τ h = R h σ * -σ * h in the first equation of system (38), by considering (40), ( 41) and ( ũh , ph ) = P h (u * , p * ), we have

1 ν (σ * -σ * h , R h σ * -σ * h ) + div(R h σ * -σ * h ), u * -ũh ) + div(R h σ * -σ * h ), ũh -u * h + 1 ν tr(R h σ * -σ * h ), p * -p * h = 0, which implies (σ * -σ * h , R h σ * -σ * h ) + tr(R h σ * -σ * h ), p * -p * h = 0. ( 42 
)
Therefore,

∥R h σ * -σ * h ∥ 2 0,Ω = (R h σ * -σ * , R h σ * -σ * h ) + (tr(R h σ * -σ * h ), ph -p * ) + (tr(R h σ * -σ * h ), p * h -ph ) . ( 43 
)
On the other hand, by using the second equation of system (39) and the following projection property

(q -qh , q h ) = 0, ∀ q h ∈ T ∈T h P k (T ) ∩ L 2 0 (Ω),
we thus obtain

(tr(σ * -σ * h ), q h ) + d (p h -p * h , q h ) = 0, ∀ q h ∈ T ∈T h P k (T ) ∩ L 2 0 (Ω). ( 44 
)
Replacing q h by the difference ph -p * h in equation ( 44), we arrive to the following

∥p h -p * h ∥ 2 0,Ω = 1 d (tr(σ * h -σ * , ph -p * h )
, and then

∥p h -p * h ∥ 0,Ω ≤ 1 d ∥tr(σ * h -σ * )∥ 0,Ω . (45) 
Using the Cauchy-Schwarz inequality in relation ( 43) and by taking account inequality (45), we obtain

∥R h σ * -σ * h ∥ 2 0,Ω ≤ ∥R h σ * -σ * ∥ 0,Ω ∥R h σ * -σ * h ∥ 0,Ω + ∥tr(R h σ * -σ * h )∥ 0,Ω ∥p h -p * ∥ 0,Ω + 1 d ∥tr(R h σ * -σ * h )∥ 0,Ω ∥tr(σ * -σ * h )∥ 0,Ω ≤ ∥R h σ * -σ * ∥ 0,Ω ∥R h σ * -σ * h ∥ 0,Ω + ∥tr(R h σ * -σ * h )∥ 0,Ω ∥p h -p * ∥ 0,Ω + 1 d ∥tr(R h σ * -σ * h )∥ 0,Ω ∥tr(σ * -R h σ * )∥ 0,Ω + 1 d ∥tr(R h σ * -σ * h )∥ 2 0,Ω . (46) 
From ( 46), we thus arrive to the following estimate

∥R h σ * -σ * h ∥ 2 0,Ω - 1 d ∥tr(R h σ * -σ * h )∥ 2 0,Ω ≤ ∥R h σ * -σ * ∥ 0,Ω ∥R h σ * -σ * h ∥ 0,Ω + ∥tr(R h σ * -σ * h )∥ 0,Ω ∥p h -p * ∥ 0,Ω + 1 d ∥tr(R h σ * -σ * h )∥ 0,Ω ∥tr(σ * -R h σ * )∥ 0,Ω . (47) 
Now, since Ω tr(σ * h ) dx = 0 and Ω tr(R h σ * ) dx = 0, we then obtain Ω tr(R h σ * -σ * h ) dx = 0. Moreover, from (40) we obtain div (R h σ * -σ * h ) = 0 and using Lemma 1 we obtain the inequality

∥R h σ * -σ * h ∥ 0,Ω ≤ C (R h σ * -σ * h ) D 0,Ω . (48) 
Remarking that the left hand side term of the inequality (47) is nothing else than (R h σ * -σ * h ) D 2 0,Ω and using inequality (48) by taking account the fact that ∥tr(R

h σ * -σ * h )∥ 0,Ω ≤ c 0 ∥R h σ * -σ * h ∥ 0,Ω
, where c 0 is a positive constant independent of h, we obtain

∥R h σ * -σ * h ∥ 2 0,Ω ≤ C ∥σ * -R h σ * ∥ 0,Ω + ∥p * -ph ∥ 0,Ω ∥R h σ * -σ * h ∥ 0,Ω which implies ∥R h σ * -σ * h ∥ 0,Ω ≤ C ∥σ * -R h σ * ∥ 0,Ω + ∥p * -ph ∥ 0,Ω , and then ∥R h σ * -σ * h ∥ 0,Ω ≤ Ch k+1 (|σ * | k+1,Ω + |p * | k+1,Ω ) , (49) 
where C is a positive constant independent of the mesh size h. Thus using the triangle inequality, the estimates (28), (30) and (49), we obtain the following estimate

∥σ * -σ * h ∥ 0,Ω ≤ Ch k+1 (|σ * | k+1,Ω + |p * | k+1,Ω ) . (50) 
From (45), we also obtain by taking account that ∥tr(σ * h -σ * )∥ 0,Ω ≤ c 0 ∥σ * h -σ * ∥ 0,Ω and the estimate (50)

∥p h -p * h ∥ 0,Ω ≤ Ch k+1 (|σ * | k+1,Ω + |p * | k+1,Ω ) . (51) 
Again using the triangle inequality by considering estimates (30) and (51), we obtain

∥p * -p * h ∥ 0,Ω ≤ Ch k+1 (|σ * | k+1,Ω + |p * | k+1,Ω ) . (52) 
Finally, for the estimate of the error ∥u * -u * h ∥ 0,r,Ω , we come back to the first equation of problem (38) which gives us

(div τ h , ũh -u * h ) = 1 ν (σ * h -σ * , τ h ) + 1 ν (tr(τ h ), p * h -p * ) , ∀ τ h ∈ Σ h , since (div τ h , u * -ũh ) = 0, ∀ τ h ∈ Σ h .
Thus, using the inf-sup condition [START_REF] Farhloul | A mixed finite element method for a nonlinear Dirichlet problem[END_REF], the estimates (50) and (52), we get

C∥ ũh -u * h ∥ 0,r,Ω ≤ sup τ h ∈Σ h 1 ν (σ * h -σ * , τ h ) + 1 ν (tr(τ h ), p * h -p * ) ∥τ h ∥ 0,Ω , 2 < r < 4 ≤ C ∥σ * -σ * h ∥ 0,Ω + ∥p * -p * h ∥ 0,Ω ≤ Ch k+1 (|σ * | k+1,Ω + |p * | k+1,Ω ) . (53) 
Using the triangle inequality, the fact that ∥u * -ũh ∥ 0,r,Ω ≤ Ch k+1+d( 1 r -1

2 ) |u * | k+1,Ω and the estimate (53), we end the proof by the following estimate

∥u * -u * h ∥ 0,r,Ω ≤ Ch k+1+d( 1 r -1 2 ) (|σ * | k+1,Ω + |u * | k+1,Ω + |p * | k+1,Ω ) . (54) 
⊓ ⊔

Convergence Analysis

In order to analyse the convergence of the discrete mixed finite element approximation (31), we need to prove some technical lemmas.

Lemma 5 Let g ∈ (L p (Ω)) d , where p ≥ max 4 3 , d r r + d
. Then we have

∥(S -S h )g∥ Σ× M ≤ Ch ϵ ∥g∥ 0,p,Ω , (55) 
where

ϵ = 1 + d 1 2 - 1 p > 0.
Proof First, by using the same techniques as in [START_REF] Farhloul | A mixed finite element method for a nonlinear Dirichlet problem[END_REF][START_REF] Farhloul | A refined mixed finite element method for the Boussinesq equations in polygonal domains[END_REF], one can prove that, for all p > 6 5 ,

∥τ -Π h τ ∥ 0,Ω ≤ Ch 1+d( 1 2 -1 p ) |τ | 1,p,Ω , ∀ τ ∈ Σ ∩ W 1,p (Ω) d×d . (56) Now, let [σ * , (u * , p * )] = Sg and [σ * h , (u * h , p * h )] = S h g such that (u * , p * ) ∈ W 2,p (Ω) d × W 1,p (Ω) ∩ L 2 0 (Ω) .
Then, similar arguments as in the proof of Theorem 1, with (56), lead to

∥σ * -σ * h ∥ 0,Ω + ∥p * -p * h ∥ 0,Ω ≤ Ch 1+d( 1 2 -1 p ) (|σ * | 1,p,Ω + |p * | 1,p,Ω ) (57) 
and

∥u * -u * h ∥ 0,r,Ω ≤ Ch|u * | 1,r,Ω + Ch 1+d( 1 2 -1 p ) (|σ * | 1,p,Ω + |p * | 1,p,Ω ) . (58) 
On the other hand, since

p ≥ d r r + d , we have 2 - d p ≥ 1 - d r , and then W 2,p (Ω) → W 1,r (Ω). Thus ∥σ * -σ * h ∥ 0,Ω + ∥u * -u * h ∥ 0,r,Ω + ∥p * -p * h ∥ 0,Ω ≤ Ch 1+d( 1 2 -1 p ) (|σ * | 1,p,Ω + ∥u * ∥ 2,p,Ω + |p * | 1,p,Ω ) (59) 
since |u * | 1,r,Ω ≤ C∥u * ∥ 2,p,Ω and h ≤ Ch 1+d( 1 2 -1 p ) for p ≤ 2. Finally, by using the fact that ∥u * ∥ 2,p,Ω + ∥p * ∥ 1,p,Ω ≤ C∥g∥ 0,p,Ω and (59), we get

∥σ * -σ * h ∥ 0,Ω + ∥u * -u * h ∥ 0,r,Ω + ∥p * -p * h ∥ 0,Ω ≤ Ch 1+d( 1 2 -1 p ) ∥g∥ 0,p,Ω
which is nothing else than (55).

⊓ ⊔ Lemma 6 Let [σ, (u, p)] ∈ Σ × M be a nonsingular solution of the problem (20) such that u ∈ H 2 (Ω) d .
Then we have 23) and (33), we may write

lim h→0 ∥K -K h ∥ L( Σ× M , Σ× M ) = 0 (60) Proof Let [τ , (v, q)] ∈ Σ × M and set [σ * h , (u * h , p * h )] = [Π h σ, P h (u, p)]. From (
K -K h = S (D ′ [σ, (u, p)]) -S h (D ′ [σ * h , (u * h , p * h )]) = S (D ′ [σ, (u, p)] -D ′ [σ * h , (u * h , p * h )]) + (S -S h ) (D ′ [σ * h , (u * h , p * h )]) . (61) 
Since

⟨D ′ [σ, (u, p)] , [τ , (v, q)]⟩ = 1 ν σ D • v + 1 ν τ D • u = D [σ, (v, q)] + D [τ , (u, p)] ,
we obtain, by the equation ( 61),

(K -K h ) [τ , (v, q)] = S (D [σ -σ * h , (v, q)]) + S (D [τ , (u -u * h , p -p * h )]) + (S -S h ) (D [σ * h , (v, q)]) + (S -S h ) (D [τ , (u * h , p * h )]) , (62) 
In order to establish the result (60), we need to estimate each term of the right hand side of (62).

Taking account the fact that σ * h = Π h (σ), the stability condition [START_REF] Farhloul | Dual hybrid methods for the elasticity and the Stokes problems: a unified approach[END_REF] and the standard error estimates on the operator Π h , we estimate the first term in the right hand side of (62) as follows

∥S (D [σ -σ * h , (v, q)]) ∥ Σ× M ≤ C ∥D [σ -σ * h , (v, q)]∥ 0,p,Ω ≤ C ∥σ -σ * h ∥ 0,s,Ω ∥v∥ 0,r,Ω 1 p = 1 s + 1 r ≤ Ch|σ| 1,s,Ω ∥v∥ 0,r,Ω . (63) 
For the second term, using similar arguments as above and (30), we obtain

∥S (D [τ , (u -u * h , p -p * h )]) ∥ Σ× M ≤ C ∥D [τ , (u -u * h , p -p * h )]∥ 0,p,Ω ≤ C ∥u -u * h ∥ 0,s,Ω ∥τ ∥ 0,Ω 1 p = 1 s + 1 2 ≤ Ch|u| 1,s,Ω ∥τ ∥ 0,Ω . (64) 
For the third term in the right hand side of (62), by using (55), we obtain

∥ (S -S h ) (D [σ * h , (v, q)]) ∥ Σ× M ≤ Ch ϵ ∥D [σ * h , (v, q)] ∥ 0,p,Ω ≤ Ch ϵ ∥σ * h ∥ 0,s,Ω ∥v∥ 0,r,Ω 1 p = 1 s + 1 r ≤ Ch ϵ ∥σ * ∥ 1,s,Ω ∥v∥ 0,r,Ω , (65) 
for some ϵ > 0. Similar arguments to the above, with (30), lead to

∥ (S -S h ) (D [τ , (u * h , p * h )]) ∥ Σ× M ≤ Ch ϵ ∥u * ∥ 1,s,Ω ∥τ ∥ 0,Ω . (66) 
Therefore, using these estimates and (62), we deduce that

∥(K -K h ) [τ , (v, q)]∥ Σ× M ≤ Ch ϵ ∥ [τ , (v, q)] ∥ Σ× M ,
and this ends the proof. ⊓ ⊔ Lemmas 2, 6 and a classical argument (cf. Girault and Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF]) lead to the following result:

Lemma 7 Under the assumptions of Lemma 6, for small enough h, the operator I + K h is an isomorphism from Σ × M into itself. Moreover the operator (I + K h ) -1 maps Σ h ×M h into itself, and its norm is bounded independently of h. Lemma 8 Let [σ, (u, p)] be a nonsingular solution of problem [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF] 

such that σ ∈ H k+1 (Ω) d×d and (u, p) ∈ H k+1 (Ω) d × H k+1 (Ω) ∩ L 2 0 (Ω) .
Then, the discrete operator

F h [τ h , (v h , q h )] = [τ h , (v h , q h )] +S h (D [τ h , (v h , q h )] -f ) , ∀ [τ h , (v h , q h )] ∈ Σ h × M h ,
satisfies the following estimate

∥F h [Π h σ, P h (u, p)] ∥ Σ× M ≤ Ch k+1+d( 1 r -1 2 ) , (67) 
where C > 0 is a constant independent of the mesh size h.

Proof We denote σ * h = Π h σ and (u * h , p * h ) = P h (u, p), where [σ, (u, p)] is a nonsingular solution of problem [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF]. Using the fact that F [σ, (u, p)] = 0, we may write

F h [σ * h , (u * h , p * h )] = [σ * h , (u * h , p * h )] -[σ, (u, p)] + S h (D [σ * h , (u * h , p * h )] -f ) -S (D [σ, (u, p)] -f ) . (68) 
From ( 26) and (30), we have

∥[σ * h , (u * h , p * h )] -[σ, (u, p)]∥ Σ× M ≤ Ch k+1+d( 1 r -1 2 ) (|σ| k+1,Ω + |u| k+1,Ω + |p| k+1,Ω ) . (69) 
The second term in the right hand side of (68) may be written as

S h (D [σ * h , (u * h , p * h )] -f ) -S (D [σ, (u, p)] -f ) = (S -S h ) (f -D [σ, (u, p)]) + S h (D [σ * h , (u * h , p * h )] -D [σ, (u, p)]) . (70) 
From (37), we have

∥ (S -S h ) (f -D [σ, (u, p)]) ∥ Σ× M ≤ Ch k+1+d( 1 r -1 2 ) . (71) 
The second term in the right hand side of (70) may be written as

S h (D [σ * h , (u * h , p * h )] -D [σ, (u, p)]) = 1 ν S h σ * D h • u * h -σ D • u = 1 ν S h σ * D h • (u * h -u) + 1 ν S h (σ * D h -σ D ) • u . (72) 
Using the fact that (owing to (55

)) ∥S h g∥ Σ× M ≤ C∥g∥ 0,p,Ω for all g ∈ (L p (Ω)) d , p ≥ max 4 3 , d r r + d , (26) 
and (30), we get

∥S h σ * D h • (u * h -u) ∥ Σ× M ≤ C∥σ * D h • (u * h -u)∥ 0,p,Ω ≤ C∥σ * h ∥ 0,s,Ω ∥u * h -u∥ 0,r,Ω ≤ Ch k+1+d( 1 r -1 2 ) ∥σ∥ 1,s,Ω |u| k+1,Ω , (73) 
∥S h σ * D h -σ D • u ∥ Σ× M ≤ C∥σ * D h -σ D • u∥ 0,p,Ω ≤ C∥σ * h -σ∥ 0,Ω ∥u∥ 0,s,Ω ≤ Ch k+1 |σ| k+1,Ω |u| 0,s,Ω . (74) 
Finally, all theses estimates lead to the desired result.

⊓ ⊔

We are now able to prove the error estimate for nonsingular solutions of [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF]. We will distinguish between two cases: the lowest degree (k = 0) and the other degrees (k ≥ 1).

Theorem 2 Let [σ, (u, p)] be a nonsingular solution of problem [START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF] such that

σ ∈ H k+1 (Ω) d×d and (u, p) ∈ H k+1 (Ω) d × H k+1 (Ω) ∩ L 2 0 (Ω) with k ≥ 1.
Then, for small enough h, problem (31) has at least a solution [σ h , (u h , p h )] such that

[σ, (u, p)] -[σ h , (u h , p h )] Σ× M ≤ Ch k+1-d(r-2) 2r
where 2 < r < 4 and C is a positive constant independent of the mesh size h.

Proof We follow the standard method of Brezzi-Rappaz-Raviart [START_REF] Brezzi | Finite-dimensional approximation of nonlinear problems. Part I: branches of nonsingular solutions[END_REF]. We define the following map S from

Σ h × M h into itself S [τ h , (v h , q h )] = [τ h , (v h , q h )] -(I + K h ) -1 F h [τ h , (v h , q h )] , ∀ [τ h , (v h , q h )] ∈ Σ h × M h , (75) 
and prove that it has a fixed point in a neighborhood of

[σ * h , (u * h , p * h )] = [Π h σ, P h (u, p)]. To this end, we start by estimating ∥S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )] ∥ Σ× M in terms of ∥ [τ h , (v h , q h )] -[σ * h , (u * h , p * h )] ∥ Σ× M . By Lemma 7, we may write S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )] = (I + K h ) -1 (I + K h ) (S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )]) so that (still by Lemma 7) ∥S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ C ∥(I + K h ) (S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )])∥ Σ× M . (76) 
On the other hand, using (75) and (33), we have

(I + K h ) S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )] = (I + K h ) [τ h , (v h , q h )] -[σ * h , (u * h , p * h )] -F h [τ h , (v h , q h )] = F h [σ * h , (u * h , p * h )] -F h [τ h , (v h , q h )] -F h [σ * h , (u * h , p * h )] + (I + K h ) τ h -σ * h , (v h , q h ) -(u * h , p * h ) = -S h 1 ν (σ * h -τ h ) D • (u * h -v h ) -F h [σ * h , (u * h , p * h )] . (77) 
Now, using [START_REF] Farhloul | Dual hybrid methods for the elasticity and the Stokes problems: a unified approach[END_REF] and the inverse inequality ∥u h ∥ 0,∞,Ω ≤ Ch -d r ∥u h ∥ 0,r,Ω , we have

S h 1 ν (σ * h -τ h ) D • (u * h -v h ) Σ× M ≤ C∥ (σ * h -τ h ) D • (u * h -v h ) ∥ 0,Ω ≤ C∥σ * h -τ h ∥ 0,Ω ∥u * h -v h ∥ 0,∞,Ω ≤ Ch -d r ∥σ * h -τ h ∥ 0,Ω ∥u * h -v h ∥ 0,r,Ω ≤ Ch -d r (∥σ * h -τ h ∥ 0,Ω + ∥u * h -v h ∥ 0,r,Ω ) 2 .
Therefore, by (76), (77), (67), we have

∥S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ C 1 h -d r ∥[τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ 2 Σ× M + C 2 h k+1+d( 1 r -1 2 ) . ( 78 
)
Now for h small enough we consider the smallest root ρ -of the second order equation

C 1 h -d r ρ 2 -ρ + C 2 h k+1+d( 1 r - 1 
2 ) = 0.

We see that

ρ -= 1 -1 -4C 1 C 2 h k+1-d 2 2C 1 h -d r = 2C 2 h k+1-d 2 + d r 1 + 1 -4C 1 C 2 h k+1-d 2 ≤ C 3 h k+1-d 2 + d r ,
for some C 3 > 0 (independent of h) since the assumption k ≥ 1 guarantees that k + 1 -d 2 > 0.

Thus, if

∥[τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ ρ -,
then the estimate (78) implies that

∥S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ C 1 h -d r ρ 2 -+ C 2 h k+1+d( 1 r - 1 
2 ) = ρ -.

Consequently S maps the ball Proof We proceed as in the proof of the previous theorem. As u ∈ H 2 (Ω) d and H 2 (Ω) → W 1,r (Ω), one can prove that (as in [START_REF] Fall | Analyse des solutions non singulières de deux formulations mixtes duales des équations de Navier-Stokes[END_REF] for the two dimensional case)

B h = [τ h , (v h , q h )] ∈ Σ × M ; ∥[τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ ρ -
∥F h [σ * h , (u * h , p * h )] ∥ Σ× M ≤ Ch.
Therefore,

∥S [τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ Σ× M ≤ C 1 h -d r ∥[τ h , (v h , q h )] -[σ * h , (u * h , p * h )]∥ 2 Σ× M + C 2 h.
In this case, we consider the smallest root ρ -of the second order equation . Moreover, they are quasi-optimal in the following sense:

C 1 h -d r ρ 2 -ρ + C 2 h = 0, which satisfies ρ -= 1 -1 -4C 1 C 2 h 1-d r 2C 1 h -d r = 2C 2 h 1 + 1 -4C 1 C 2 h 1-d r ≤ C 3 h,
h k+1-d(r-2)
2r → h k+1 , when r → 2.

  and the scalar Sobolev space denoted by W m,p (Ω) with m ≥ 0 and endowed with the norm ∥ • ∥ m,p,Ω and the semi-norm | • | m,p,Ω . Let us note that W 0,p (Ω) = L p (Ω), and for p = 2 we write H m (Ω) instead of W m,2 (Ω) with the corresponding norm denoted by ∥ • ∥ m,Ω . The H m (Ω)-seminorm is denoted by | • | m,Ω , and the space of traces of functions in H 1 (Ω) is denoted by H 1 2

1 r - 1 2Theorem 3

 113 into itself. Therefore S has at least a fixed point [σ h , (u h , p h )] in the ball B h and such a fixed point is a solution ofF h [σ h , (u h , p h )] = 0. Since [σ h , (u h , p h )] ∈ B h , ρ -≤ Ch k+1-d 2 + d r and using (69), we have [σ, (u, p)] -[σ h , (u h , p h )] Σ× M ≤ Ch k+1+d( ) = Ch k+1-d(r-2)2r, which is the desired result.⊓ ⊔For the lowest degree k = 0, we have the following optimal error estimate. Let [σ, (u, p)] be a nonsingular solution of problem[START_REF] Gatica | A Simple Introduction to the Mixed Finite Element Method[END_REF] such that u ∈ H 2 (Ω) d and r > d Then, for small enough h, problem (31) has at least a solution [σ h , (u h , p h )] such that [σ, (u, p)] -[σ h , (u h , p h )] Σ× M ≤ Ch, where d < r < 4 and C is a positive constant independent of the mesh size h.

for some C 3 >Remark 3

 33 0 (independent of h) since the assumption r > d guarantees that 1 -d r > 0. The end of the proof follows the same lines of the one of the previous theorem and leads to the optimal error estimate O(h).⊓ ⊔ The error estimates obtained in this paper improve those existing in the literature. In fact, comparing with the error estimate O(h k+1-d 6 ) obtained in[START_REF] Cai | Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation[END_REF], we have k +1-d (r -2) 2r ≥ k +1-d 6 for 2 < r ≤ 3,and for r = 3 we obtain k + 1 -d 6

  where p ≥ 4 3 . Then the Stokes discrete problem (32) has a unique solution.

	Proof Since problem (32) is a square linear system, it is sufficient to prove that the homogeneous version
	of (32) has [σ * h , (u * h , p * h )] = [0, (0, 0)] as the unique solution. For this, let [σ * h , (u * h , p * h )] ∈ Σ h × M h be the
	solution of the following homogenous system: