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We study the model of a threshold circuit. By using the parity-check matrix:

• Firstly, we build a threshold circuit that recognizes the words belonging to a cyclic code C.

• Secondly, we build a threshold circuit that recognizes the words belonging to the set C1 ∩ C2, where C1 and C2 are cyclic codes.

• Thirdly, we build a threshold circuit that recognizes the words belonging to a symmetric difference of two cyclic codes.

We use these functions to characterize the followings sets: T C 0 4 , T C 0 5 and T C 0 6 .

Introduction

Let B = {0,1}. A function f from B n to B is a boolean function on n variables and a single value, in other terms:

f : B n -→ B x = (x 1 , x 2 , • • • , x n ) -→ y
A circuit is a directed acyclic graph. The sources are called input nodes and are labeled with 0, 1, x 1 , x 2 , • • • , x n . Non-input nodes are called gates and are labeled by boolean functions, whose arity is the in-degree of the nodes. The in-degree (out-degree) of a gate is called the fan-in (fan-out). Sink nodes have fan-out 0 and are called output nodes [START_REF] Clote | Boolean Functions and Computation Models[END_REF].

A threshold circuit C is a boolean circuit where each gate computes a threshold function. Threshold circuits are studied in Complexity Theory and Neural Networks [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF].

1

A threshold function is a function that takes the value 1 if a specified function of the arguments exceeds or egals a given threshold and 0 otherwise.

The size of a circuit is the number of gates, while the depth is the length of the longest path from an input to an output node. Let us note α = (α 1 , • • • , α n ). The following basic functions (threshold functions) arise in the study of circuits:

T α k (x 1 , x 2 , • • • , x m ) =                1, if m i=1 α i x i ≥ k; 0, if m i=1 α i x i < k (1) 
When α = (1, 1, • • • , 1), we also have the following threshold function:

T H n k (x 1 , x 2 , • • • , x n ) =                1, if n i=1 x i ≥ k; 0, if n i=1 x i < k (2) 
Figure 1: A threshold circuit computing the function

T H n k (x 1 , x 2 , • • • , x n ) .
The equal function is defined as follows:

EQU AL(x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) =      1, if x i = y i ∀ 1 ≤ i ≤ n; 0, ∃ i 1 ≤ i ≤ n such that x i ̸ = y i (3) A boolean function f is symmetric if and only if f(x 1 , x 2 , • • • , x n ) = f(x α(1) , x α(2) , • • • , x α(n) )
for any permutation α on the set {1, 2, • • • , n}.

Hajnal et al. [START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] shown the following result: Proposition 1 [START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] Symmetric functions can be computed by depth-2 threshold circuits of linear size and weight 1.

Parberry [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] shown the following theorems:

Theorem 1 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Any symmetric function f : B n -→ B can be computed by a unit-weight threshold circuit with size 2n + 3 and depth 2.

Theorem 2 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Any threshold circuit of the weight w and depth 2 for IP:

B 2n -→ B must have size Ω(2 n/2 /w 2 ). Corollary 1 [2] IP / ∈ T C 0 2 Proof 1 [2]
By Theorem 2, any depth 2 circuit of weight n c for inner product must have size Ω(2 n/2 /n 2c ), which is larger than any polynomial. □ Let us consider the following symmetric function:

P ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x n = n i=1 x i
The complement of Parity is:

P ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x n
We easily observe that:

P ARIT Y (x 1 , x 2 , • • • , x n ) = P ARIT Y (x 1 , x 2 , • • • , x n-1 , x n )
Inner Product is defined in [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF][START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] as: 

IP (x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) = n i=1 (x i ∧ y i ) (4) 
P ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x n = n i=1
x i with depth 2 and size at most 2n + 3. 

P ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x n with
IP (x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) = x 1 y 1 ⊕ x 2 y 2 ⊕ • • • ⊕ x i y i ⊕ • • • ⊕ x n y n
of depth 3 and of size at most 2n(2n + 3).

Theorem 3 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Any symmetric function f : B n -→ B can be computed by a unit-weight threshold circuit with 2n + 3 and depth 2.

Proof 2

Let f : {0, 1} n -→ {0, 1} be a symmetric function. f is fully(uniquely) defined by the set

S f = {m ∈ N | f (x ) = 1 f or all x ∈ B n with exactly m ones}. Suppose S f = {m 1 , • • • , m k }.
The circuit uses k pairs of gates on the first level. The ith pair has one gate active when the number of ones in the input is at least m i (this is a unit-weigth threshold-gate with threshold m i connected to the inputs x 1 , • • • , x n ), and the other gate active when the number of ones in the input is at most m i . When given an input x such that f (x ) = 0, exactly one of each pair is active, therefore, exactly k gates are active. When given an input x such that f (x ) = 1, one pair has both of its gates active, and all other pairs have exactly one of its gates active, therefore exactly k + 1 gates are active. The output gate therefore has threshold value k + 1 and inputs from all of the first level gates. This circuit has depth 2, and since k ≤ n + 1, size at most 2(n + 1) + 1. □ For example, Figure 9 shows a threshold circuit for computing PARITY in depth 2 and size 7.

Figure 10 shows a threshold circuit for computing P ARIT Y in depth 2 and size 9. Corollary 2 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Any symmetric function f : B n -→ B m can be computed by a unit-weight threshold circuit with size 2n + m + 2 and depth 2.

Proof 3 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Suppose f :B n -→ B m is a symmetric function. Computing each individual bit of the output of f is a symmetric function, and hence by Theorem 1 can be computed in-depth 2 and size 2n + 1. Thus, the obvious circuit for computing f uses m such circuits and has depth 2 and size 2nm + m. However, the first layer of this combined circuit can have at most 2(n + 1) different gates, giving the required size bound. □ Gates in the second layer of the threshold circuits constructed in Theorem 1 and Corollary 2 have an interesting property. They have unit weights, threshold k , and the number of ones in their input is guaranteed (by the rest of the circuit) to be either k or k -1 . Let us call this kind of Boolean linear threshold function a balanced one. The following result enables savings in depth whenever balanced threshold gates are used in any layer of a circuit but the last. This does not, of course, give savings in depth for the circuits constructed in Theorem 1 or Corollary 2, but it will enable a reduction in depth whenever these circuits are used as building blocks in the interior of another circuit [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF]. Figure 7: A threshold circuit computing the function

IP (x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) = P ARIT Y (x 1 ∧ y 1 , • • • , x i ∧ y i , • • • , x n ∧ y n ) of depth 3

and of size at most 2n(2n + 3).

A threshold gate g is said to be balanced iff the number or sum of the ones at the input of the threshold-gate g is either k or k-1, with k ∈ N, mathematically:

W H (x) ∈ {k, k -1}.
If the number or the sum of the ones at the input of the threshold-gate of g is different from k or k-1, then g is said to be unbalanced, mathematically:

W H (x) / ∈ {k, k -1}.
Lemma 1 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Let g 0 be a unit-weight threshold-gate that has inputs only from balanced threshold-gates g 1 , • • • , g m where for all 1 ≤ i < j ≤ m, gates g i and g j have distinct inputs. The gates g 0 , g 1 , • • • , g m can be replaced by a single thresholdgate.

Proof 4 [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] Let g 0 be a unit-weight threshold-gate that has inputs only from balanced threshold-gates

g 1 , • • • , g m . Suppose gates g 1 , • • • , g m collectively have inputs x 1 , • • • , x n ,
and that for all 1 ≤ i < j ≤ m, gates g i and g j have nonoverlapping input. Suppose g i has weight k i , for 0 ≤ i ≤ m. We claim that the entire circuit can be replaced by a threshold-gate g with threshold m i=0 k i -m (see Figure 11).

Suppose g 0 outputs 0. Then, at most k 0 -1 of the gates g 1 , • • • , g m output 1. Therefore, at most k 0 -1 of the gates g i for 1 ≤ i < j ≤ m see k i ones, and the rest see

k i -1 ones. Hence, x 1 , • • • , x n can have at most m i=1 (k i -1) + (k 0 -1) = m i=0 k i -(m + 1)
ones. Therefore, g outputs 0. Conversely, suppose g 0 outputs 1. Then, at least k 0 of the gates g 1 , • • • , g m output 1. Therefore, at least k 0 of the gates g i for 1 ≤ i ≤ m see k i ones, and the rest see

-1 + k i ones. Hence, x 1 , • • • , x n must have at least m i=1 (k i -1) + k 0 = m i=0 k i -m Figure 9: A threshold circuit computing the symmetric function x 1 ⊕ x 2 ⊕ x 3 ⊕ x 4 ⊕ x 5 .
ones. Therefore, g outputs 1.

We have shown that g outputs 1 iff g 0 outputs 1. Therefore, the circuit containing g 0 , g 1 , • • • , g m can be replaced by the threshold-gate g, as claimed. □ Definition 1 T C 0 is the class of languages accepted by threshold circuits of polynomial size and depth O(1).

T C 0

k is the class of languages accepted by threshold circuits of depth k and size O((log(n)) k ).

Hajnal et al. [START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] have shown the following result:

Lemma 2 [3]
Fix any ϵ > 0 and polynomial p. Assume that C is a depth-2 threshold circuit with weight ≤ p(n) computing INNER PRODUCT MOD 2 to two n-bit strings. Then if n is sufficiently large, the size of C is at least

2 (1/2-ϵ)n .
From the Lemma 2, Hajanal et al. [START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] deduce that:

Lemma 3 [3] INNER PROD MOD 2 is not in T C 0 2 , INNER PROD MOD 2 is in T C 0 3
Hajnal et al. [START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF] deduce the following strict inclusion: It was conjectured in [START_REF] Mix Barrington | On uniformity with in N C 1[END_REF][START_REF] Yao | Circuits and local computation[END_REF] that:

Theorem 4 [3] T C 0 1 ⊆ T C 0 2 ⊆ T C 0 3
T C 0 ̸ = T C 0 k , f or any k
Parberry stated in [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] that:

It is an open problem as to whether the T C 0 hierarchy collapses, that is, whether more than three layers of threshold gates are needed to compute all functions in T C 0 in polynomial size.

Krause and Wegener [START_REF] Krause | Circuit Complexity in Boolean Models and Methods in Mathematics[END_REF] have said that:

Indeed, no proof is known that a function is contained in N P \ T C 0 3 . Our aim is to show that the sets N P \ T C 0 3 , N P \ T C 0 4 and N P \ T C 0 5 are not empty.

The paper is organized as follows. Section 2 is concerned with the presentation of linear codes and cyclic codes, matrix generators, and parity-check matrix of linear codes. Section 3, we present our contribution. Concluding remarks are stated in Section 4.

Linear Codes and Cyclic Codes 2.1 Linear Codes

Definition 2 C is a linear code if C is a linear subspace of F n q . C is then called a [k , n]-code if dim(C)= k . If the minimal distance of C is d , we say that C is a [k , n, d ]-code
A linear code can be described by each of the following matrices : The generator matrix in systematic form have the following structure:

• A generator matrix G for an [k , n, d ]-code C is a k × n matrix
G = [I k |P ] ,
where I k is the k × k identity matrix and P ∈ F

k×(n-k) q . • A parity-check matrix H for an [k , n, d ] code C is an (n -k ) × n matrix of rank n -k sastisfying: ∀ x ∈ C, H t x = 0.
From a generator matrix in systematic form, one can compute the paritycheck matrix as follos :

H = t P |I n-k .
If G is a generator matrix and H a parity-check matrix of the same code, then G t H = 0.

Example 1

We construct a binary [START_REF] Krause | Circuit Complexity in Boolean Models and Methods in Mathematics[END_REF][START_REF] Hajnal | Threshold Circuits of Bounded Depth[END_REF]-code by choosing three vectors linearly independent of F 6 2 .

G =   1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0  
We obtain all the codewords of C by calculating all the products mG with m ∈ F 3 2 .

The words of the code C is given by:

    1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0     0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0
We transform the matrix G in the systematic form(Gaussian elimination)

G =   1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0   -→ • • • -→   1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0   = (I 3 |P ) Example 2
Starting from the generator matrix defined as follow:

G =   1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0   = (I 3 |A)
We find the parity-check matrix H = ( t A|I 3 ) of C which yields: 

H =   1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1   From H, we obtain the codewords of C ⊥     1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1     0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 2.2 Cyclic Codes Definition 3 [11] A code C is cyclic if a) C is a linear code; b) any cyclic shift of a codeword is also a codeword, i.e. whenever v o v 1 • • • v n-1 ∈ C, then also v n-1 v 0 v 1 • • • v n-2 ∈ C and v 1 v 2 • • • v n-1 v 0 ∈ C Example 3 
G =     1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1    
is equivalent to a cyclic code.

Theorem 5 [START_REF] Adamek | Theory and Applications of Error-Correcting Codes with an Introduction to Cryptography and Information Theory[END_REF] Every nontrivial cyclic (n,k)-code contains a codeword g(x) of degree n-k. Then code words are precisely all the multiples q(x)g(x), where q(x) is any polynomial of degree smaller than k. The code has the following generator matrix:

G =      g(x) xg(x)
. . .

x k-1 g(x)      =       g 0 g 1 g 2 • • • g n-k 0 0 • • • 0 0 0 0 g 0 g 1 g 2 • • • g n-k 0 • • • 0 0 0 0 0 g 0 g 1 g 2 • • • g n-k • • • 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 0 0 0 0 • • • g 0 g 1 g 2 • • • g n-k       Example 4
The even-parity code of length n is cyclic. The codeword of degree n-k = 1 is just one: 1 + x. The generator matrix is

G =     1 1 0 0 0 • • • 0 0 1 1 0 0 • • • 0 0 0 1 1 0 • • • 0 0 0 0 • • • 0 1 1     Proposition 2 [11]
A cyclic code with the parity check polynomial h(x

) = h 0 + h 1 x + • • • + h k-1 x k-1 + x k
has the following parity check matrix:

H =       0 0 • • • 0 0 0 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 1 h k-1 h 2 h 1 h 0 0 0 0 • • • 0 1 h k-1 h 2 h 1 h 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 0       Example 5
The Hamming cyclic code of length 7 with the generator polynomial g(x) = 1 + x + x 3 has the parity check polynomial h(x) = (x 7 -1) ÷ (x 3 + x + 1) = x 4 + x 2 + x + 1. Thus, it has the following parity check matrix:

H =   0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0   Remark 1
If we denote H the control matrix of a cyclic code C

H =      h 1 * h 2 * . . . h (n-k) *      =       0 0 • • • 0 0 0 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 1 h k-1 h 2 h 1 h 0 0 0 0 • • • 0 1 h k-1 h 2 h 1 h 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 0      
Based on Proposition 2 and on the structure of H, we easily observe that:

h i * = S(h (i+1) * ); 1 ≤ i ≤ n -k -1
where S is the right circular shift defined as: sometimes, right circular shift is noted as : ≫ It follows that

h (n-k-i) * = S i (h (n-k) * ); 1 ≤ i ≤ n -k -1
where

S i = SoSoSoSoSo • • • oS i times
we easily deduce that:

H =          h 1 * h 2 * . . . h (n-k-2) * h (n-k-1) * h (n-k) *          =           S (n-k-1) (h (n-k) * ) S (n-k-2) (h (n-k) * ) . . . S 2 (h (n-k) * ) S(h (n-k) * ) h (n-k) *          

Our Contribution

In the following subsection, we characterize a function that testing if a word belonging to a code by using a generator matrix.

Testing belonging of a word to a code by using Generator Matrix

We consider two cases of Generator Matrix: Generator Matrix in a systematic form and Generator Matrix in a general form.

Generator Matrix in a systematic form

Subsequently, without loss of generality we suppose that the generator matrix has the form:

G = (I k |B) =        1 0 0 • • • 0 | b 11 b 12 • • • b 1,n-k 0 1 0 • • • 0 | b 21 b 22 • • • b 2,n-k 0 0 1 • • • 0 | b 31 b 32 • • • b 3,n-k . . . . . . . . . . . . . . . | . . . . . . . . . . . . 0 0 0 • • • 1 | b k1 b k2 • • • b k,n-k        (7) 
∀ V = (v 1 , v 2 , • • • , v n ) ∈ C, we have Coor(V ) =      v 1 v 2 . . . v k     
From the fact that G is a generator matrix of C, we can write:

V ∈ C ⇐⇒ Coor(V ).G = V
This is equivalent to:

V ∈ C ⇐⇒ (v 1 , v 2 , v 3 • • • , v k )        1 0 0 • • • 0 | b 11 b 12 • • • b 1,n-k 0 1 0 • • • 0 | b 21 b 22 • • • b 2,n-k 0 0 1 • • • 0 | b 31 b 32 • • • b 3,n-k . . . . . . . . . . . . . . . | . . . . . . . . . . . . 0 0 0 • • • 1 | b k1 b k2 • • • b k,n-k        = (v 1 , v 2 , v 3 • • • , v n )
This implies that:

V ∈ C ⇐⇒ (v 1 , v 2 , v 3 • • • , v k , k l=1 v l ×b l,1 , k l=1 v l ×b l,2 , • • • , k l=1 v l ×b l,n-k ) = (v 1 , v 2 , v 3 • • • , v n )
We conclude that:

V ∈ C ⇐⇒ k l=1 v l × b l,j = v k+j , 1 ≤ j ≤ n -k
It follows that:

V ∈ C ⇐⇒ IP (b * j , V ) = v k+j , 1 ≤ j ≤ n -k (8) 
By using Equation ( 8), we define the following function

f 1 (V, G) = EQU AL((IP (b * 1 , V ), IP (b * 2 , V ), • • • , IP (b * n-k , V )), (v k+1 , v k+2 , • • • , v n ))
which testing if the word V belonging to a code C by using the generator matrix in the systematic form.

Generator Matrix in a general form

We consider the general case:

G =      g 11 g 12 g 13 • • • g 1n g 21 g 22 g 23 • • • g 2n . . . . . . . . . . . . . . . g k1 g k2 g k3 • • • g kn      where G is a k × n matrix such that g ij ∈ {0, 1}, f or 1 ≤ i ≤ k and 1 ≤ j ≤ n. We have to determine (z 1 , z 2 , z 3 • • • , z k ) ∈ {0, 1}, such that k i=1 z i × g i, * = V This is equivalent to: V ∈ C ⇐⇒ (z 1 , z 2 , z 3 • • • , z k )      g 11 g 12 g 13 • • • g 1n g 21 g 22 g 23 • • • g 2n . . . . . . . . . . . . . . . g k1 g k2 g k3 • • • g kn      = (v 1 , v 2 , v 3 • • • , v n )
This implies that:

V ∈ C ⇐⇒ ((z 1 ×g 11 + z 2 ×g 21 + z 3 ×g 31 +• • •+ z k ×g k1 ), (z 1 ×g 12 + z 2 ×g 22 + z 3 ×g 32 +• • •+ z k ×g k2 ), • • • , (z 1 × g 1n + z 2 × g 2n + z 3 × g 3n + • • • + z k × g kn )) = (v 1 , v 2 , • • • , v n ) V ∈ C ⇐⇒ ( k t=1 z t × g k1 , k t=1 z t × g k2 , • • • , k t=1 z t × g kn ) = (v 1 , v 2 , • • • , v n ) V ∈ C ⇐⇒ ( k t=1 z t ∧ g t,1 , k t=1 z t ∧ g t,2 , • • • , k t=1 z t ∧ g k,n ) = (v 1 , v 2 , • • • , v n )
We conclude that:

V ∈ C ⇐⇒ k j=1 z j ∧ g j,i = v i , 1 ≤ i ≤ n
It follows that:

V ∈ C ⇐⇒ IP (g * i , V ) = v i , 1 ≤ i ≤ n (9) 
By using Equation ( 9), we define the following function

f 2 (V, G) = EQU AL((IP (g * 1 , V ), IP (g * 2 , V ), • • • , IP (g * n , V )), (v 1 , v 2 , • • • , v n ))
which testing if the word V belonging to a code C by using the generator matrix in the general form.

Testing belonging of a word to a code by using Paritycheck Matrix

Let us denote C ⊥ the dual code of a code C. We note H the generator matrix of

C ⊥ . Let us note a word V = (v 1 , v 2 , • • • , v n ) ∈ C and let us express H t V in terms of IP : H t V =      h 11 h 12 • • • h 1n h 21 h 22 • • • h 2n . . . . . . . . . . . . h (n-k)1 h (n-k)2 • • • h (n-k)n           v 1 v 2 . . . v n      =                  n j=1 h 1j × v j . . . n j=1 h ij × v j . . . n j=1 h (n-k)j × v j                  =                  n j=1 h 1j ∧ v j . . . n j=1 h ij ∧ v j . . . n j=1 h (n-k)j ∧ v j                  =         IP (h 1 * , V ) . . . IP (h i * , V ) . . . IP (h (n-k) * , V )        
By definition, we have:

V ∈ C ⇐⇒ H t V = ⃗ 0 (10) 
This implies that:

V ∈ C ⇐⇒ n-k i=1 IP (h i * , V ) = 0 (11) V / ∈ C ⇐⇒ n-k i=1 IP (h i * , V ) ≥ 1 (12) 
It follows that:

V ∈ C ⇐⇒ n-k i=1 IP (h i * , V ) = (n -k) (13) 
We deduce that:

V ∈ C ⇐⇒ T H (n-k) (n-k) (IP (h 1 * , V ), IP (h 2 * , V ), • • • , IP (h (n-k) * , V )) = 1 (14)
By using Equation ( 14), we define the following function:

f 3 (V, H) = T H (n-k) (n-k) (IP (h 1 * , V ), IP (h 2 * , V ), • • • , IP (h (n-k) * , V ))
where the vector

h i * = h i1 , h i2 , • • • , h in 1 ≤ i ≤ n -k (15) 
are the generator of the dual space of C ⊥ (or the parity-check matrix of C).

The function f 3 tests if the word V belonging to a code C by using the parity-check matrix.

V ∈ C ⇐⇒ f 3 (V, H) = 1 (16) 
Let us consider the following function:

f3 (V, H) = T H (n-k) 1 (IP (h 1 * , V ), IP (h 2 * , V ), • • • , IP (h (n-k) * , V )) (17) 
It is easy to see that:

V / ∈ C ⇐⇒ f3 (V, H) = 1
Example 6

Let n = 3, k = 1 from where n -k = 2 construct the threshold circuit corresponding to the function

f 4 (V, H) = T H (2) (2) (IP (h 1 * , V ), IP (h 2 * , V ))
where the vector (2) (IP (h 1 * , V ), IP (h 2 * , V )) testing belonging of a word of length 3 to a code by using the parity-check-matrix of dimension 2 reduced by one level by using the Lemma 1 of Parberry [START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF]. This circuit is size 21 and depth 3.

h i * = h i1 , h i2 , h i3 1 ≤ i ≤ 2 (18) with IP (h 1 * , V ) = h 11 ∧ v 1 ⊕ h 12 ∧ v 2 ⊕ h 13 ∧ v 3 and IP (h 2 * , V ) = h 21 ∧ v 1 ⊕ h 22 ∧ v 2 ⊕ h 23 ∧ v 3

Element of T C 0 4

In this paragraph, we want to show that there exists a function which belongs to T C 0 4 .

We consider a cyclic code C.

Problem 1

Data : a cyclic code C, H its parity-check matrix , a word w.

Question : w ∈ C ?

Let us build a boolean function f 5 such that:

f 5 (w, h (n-k) * ) = 1 ⇐⇒ w ∈ C H =      h 1 * h 2 * . . . h (n-k) *      =      h 11 h 12 • • • h 1n h 21 h 22 • • • h 2n . . . . . . . . . . . . h (n-k)1 h (n-k)2 • • • h (n-k)n     
is the parity-check matrix of the cyclic code C.

f 5 (w, h (n-k) * ) = T H (n-k) (n-k) (IP (S (n-k-1) (h (n-k) * ), w), IP (S (n-k-2) (h (n-k) * ), w), • • • , 20 
IP (S(h (n-k) * ), w), IP (h (n-k) * , w))
Theorem 6

f or k = n -⌈log 2 (n)⌉ f 5 ∈ T C 0 4 .

Proof 5

Based on the depth of evaluation of IP , we consider two cases:

First case: IP is evaluated by a circuit of depth 2.

From the fact that IP is evaluated by a circuit of depth 2 and from Lemma 2, we conclude that the size of IP is exponential in n, it follows that the size of the function f 5 is also exponential in n.

then f 5 / ∈ T C 0 3 .
Second case: IP is evaluated by a circuit of depth 3.

From the fact that the depth of IP is 3, we deduce that the depth of the function f 5 is 4.

From the Theorem 1, the size of the circuit which evaluates

IP (h i * , w) = IP (S (n-k-i) (h (n-k) * ), w) is O((log n) 3 ).
It follows that the size of

f 5 is O((log n) 4 ), because n -k = ⌈log 2 (n)⌉.
We easily conclude that f 5 ∈ T C 0 4 . □ Let us consider a cyclic code C, H is parity-check matrix where

H =      h 1 * h 2 * . . . h (n-k) *      =      h 11 h 12 • • • h 1n h 21 h 22 • • • h 2n . . . . . . . . . . . . h (n-k)1 h (n-k)2 • • • h (n-k)n      Problem 2 
Data : a cyclic code C, H its parity-check matrix , a word w.

Question : w / ∈ C ?

Let us build a boolean function f5 such that:

f5 (w, h (n-k) * ) = 1 ⇐⇒ w / ∈ C f5 (w, h (n-k) * ) = T H (n-k) 1 (IP (S (n-k-1) (h (n-k) * ), w), IP (S (n-k-2) (h (n-k) * ), w), • • • , IP (S(h (n-k) * ), w), IP (h (n-k) * , w))
The following result characterizes the function f5 .

Theorem 7

For n sufficiently large, we define

k = n -⌈log 2 (n)⌉ f5 ∈ T C 0 4 .

Proof 6

Based on the depth of evaluation of IP , we consider two cases:

First case: IP is evaluated by a circuit of depth 2.

From the fact that IP is evaluated by a circuit of depth 2 and from Lemma 2, we conclude that the size of IP is exponential in n, it follows that the size of the function f5 is also exponential in n.

then f5 / ∈ T C 0 3 .
Second case: IP is evaluated by a circuit of depth 3.

From the fact that the depth of IP is 3, we deduce that the depth of the function f5 is 4.

From the Theorem 1, the size of the circuit which evaluates

IP (h i * , w) = IP (S (n-k-i) (h (n-k) * ), w) is O((log n) 3 ). It follows that the size of f5 is O((log n) 4 ), because n -k = ⌈log 2 (n)⌉.
We easily conclude that f5 ∈ T C 0 4 . □ 

• Two cyclic codes C 1 and C 2 , • H 1 parity-check matrix of C 1 , H 1 =      L 1 L 2 . . . L (n-k)      =       0 0 • • • 0 0 0 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 1 h k-1 h 2 h 1 h 0 0 0 0 • • • 0 1 h k-1 h 2 h 1 h 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 0       • H 2 parity-check matrix of C 2 , H 2 =      L1 L2 . . . L(n-k)      =       0 0 • • • 0 0 0 1 hk-1 • • • h2 h1 h0 0 0 • • • 0 0 1 hk-1 h2 h1 h0 0 0 0 • • • 0 1 hk-1 h2 h1 h0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 hk-1 • • • h2 h1 h0 0 0 • • • 0 0 0      
• a word w. From the fact that IP and IP are evaluated by a circuit of depth 2 and from Lemma 2, we conclude that the size of IP or IP is exponential in n. It follows that the size of the function f 6 is also exponential in n.

Then f 6 / ∈ T C 0 4 . Second case: IP and IP are evaluated by a circuit of depth 3.

From the fact the depth of IP and IP is 3, we deduce that the depth of the function f 6 is 5.

From the Theorem 1 the size of the circuit which evaluates:

• IP (h (i * ) , w) = IP (S (n-k-i) (h (n-k) ), w) is O((log n) 3 ), • IP (h (i * ) , w) = IP (S (n-k-i) (h (n-k) ), w) is O((log n) 3 ).

It follows that the size of f 6 is O((log n) 5 ) , because n -k = (⌈log 2 (n)⌉) 2 . We easily deduce that f 6 ∈ T C 0 5 . □

The next subsection is denoted to the study of the set T C 0 • Two cyclic codes C 1 and C 2 ,

• H 1 parity-check matrix of C 1 ,

H 1 =      L (1) L (2)
. . .

L (n-k)      =       0 0 • • • 0 0 0 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 1 h k-1 h 2 h 1 h 0 0 0 0 • • • 0 1 h k-1 h 2 h 1 h 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 h k-1 • • • h 2 h 1 h 0 0 0 • • • 0 0 0      
• H 2 parity-check matrix of C 2 ,

H 2 =      L(1) L (2) 
. . .

L(n-k)      =       0 0 • • • 0 0 0 1 hk-1 • • • h2 h1 h0 0 0 • • • 0 0 1 hk-1 h2 h1 h0 0 0 0 • • • 0 1 hk-1 h2 h1 h0 0 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 hk-1 • • • h2 h1 h0 0 0 • • • 0 0 0      
• a word w.

Question : w ∈ C 1 ∆ C 2 ?
Let us consider the function We characterize the function f 7 in the next result.

Theorem 9

For n sufficiently large, define

k = n -(⌈log 2 (n)⌉) 3 f 7 ∈ T C 0 6 .

  Figure 2: A threshold circuit computing the function EQU AL(x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) of depth 2 and of size at least 2n + 1.

  Figure
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 4 Figure 4: A threshold circuit computing the functionP ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x nwith depth 2 and size at most 2n + 3.

  Figure 4: A threshold circuit computing the functionP ARIT Y (x 1 , x 2 , • • • , x n ) = x 1 ⊕ x 2 ⊕ • • • ⊕ x i ⊕ • • • ⊕ x nwith depth 2 and size at most 2n + 3.

  Figure 5: A threshold circuit computing the functionIP (x 1 , x 2 , • • • , x n , y 1 , y 2 , • • • , y n ) = x 1 y 1 ⊕ x 2 y 2 ⊕ • • • ⊕ x i y i ⊕ • • • ⊕ x n y nof depth 3 and of size at most 2n(2n + 3).

Figure 6 :

 6 Figure 6: Example of a threshold circuit computing the function IP (x 1 , x 2 , x 3 , x 4 , x 5 , y 1 , y 2 , y 3 , y 4 , y 5 ) = x 1 y 1 ⊕ x 2 y 2 ⊕ x 3 y 3 ⊕ x 4 y 4 ⊕ x 5 y 5 of depth 3 and of size 17 .

Figure 8 :

 8 Figure 8: Example of a threshold circuit computing the function IP (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , y 1 , y 2 , y 3 , y 4 , y 5 , y 6 ) = P ARIT Y (x 1 ∧ y 1 , x 2 ∧ y 2 , x 3 ∧ y 3 , x 4 ∧ y 4 , x 5 ∧ y 5 , x 6 ∧ y 6 ) of depth 3 and of size 21.

Figure 10 :

 10 Figure 10: A threshold circuit computing the symmetric function P ARIT Y (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ).Before:

Figure 11 :

 11 Figure11: Before and after pictures for Lemma[START_REF] Parberry | Circuit Complexity and Neural Networks[END_REF] 

  whose rows form a basis for C. The lines of a generator matrix form a base for the code C.

a)

  {0} is a trivial cyclic code; b) Code C = {000, 101, 011, 110} is cyclic c) Hamming code Ham(3, 2): with the generator matrix

S(e p , e p- 1 ,

 1 • • • , e 2 , e 1 ) = (e 1 , e p , e p-1 , • • • , e 3 , e 2 )

  Figure12:A threshold circuit of the functionf 4 (V ) = T H (2) (2) (IP (h 1 * , V ), IP (h 2 * , V)) testing belonging of a word of length 3 to a code by using the parity-check-matrix of dimension 2. Here the function f 2 (v) is balanced, this circuit is size 23 and depth 4 .A corresponding threshold circuit the function f 2 is the following figure12It follows by application of the Lemma 1 of Parberry that the function f 4 belongs to T C 0 3 and it becomes unbalanced. A corresponding threshold circuit is the following figure13

Figure 13 :

 13 Figure 13: A threshold circuit of the function f 4 (v) = T H (2)

3. 4 5

 4 Element of T C 0 We tackle the existence of a function in the set T C 0 5 . Let us consider two cyclic codes C 1 and C 2 Problem 3

Question : w ∈ C 1 ∩ C 2 ? 8

 128 Let us consider the functionf 6 (w, L (n-k) , L(n-k) ) = T H 2 2 (f 5 (w, L (n-k) ), f5 (w, L(n-k) )) TheoremFor n sufficiently large, we definek = n -(⌈log 2 (n)⌉) 2 f 6 ∈ T C 0 5 . Proof 7Based on the depth of IP and IP we consider two cases:First case: IP and IP are evaluated by a circuit of depth 2.

6 3. 5 6

 65 Element of T C 0In this subsection, we are interested by the function who characterize the symmetric difference of two cyclic codes.Problem 4

f 7 (

 7 w, L (n-k) , L(n-k) ) = P ARIT Y (f 5 (w, L (n-k) ), f 5 (w, L(n-k) ))

  

  

We easily see that the complement of Inner Product is:

We easily deduce that:
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Proof 8

Based on the depth of evaluation of IP and IP, we consider two cases: First case: IP and IP are evaluated by a circuit of depth 2.

From the fact that the size IP and IP is exponential in n, it follows that the size of the function f 7 is also exponential in n. We deduced that:

Second case: IP and IP are evaluated by a circuit of depth 3.

From the fact that the depth of IP or IP in 3, we deduce that the depth of the function f 7 is 6. a) From the Theorem 1, the size of the circuit which

b) It follows that the size of

We easily deduce that f 7 ∈ T C 0 6 .

□ 4 Conclusion

In this paper, by using cyclic codes and their parity check matrix, we have shown that the sets N P \ T C 0 3 , N P \ T C 0 4 and N P \ T C 0 5 are not empty.