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Abstract

We study the model of a threshold circuit. By using the parity-check
matrix:

• Firstly, we build a threshold circuit that recognizes the words be-
longing to a cyclic code C.

• Secondly, we build a threshold circuit that recognizes the words be-
longing to the set C1 ∩ C2, where C1 and C2 are cyclic codes.

• Thirdly, we build a threshold circuit that recognizes the words be-
longing to a symmetric difference of two cyclic codes.

We use these functions to characterize the followings sets: TC0
4 , TC

0
5 and

TC0
6 .

Keywords: Threshold Circuit, Words, Symmetric Difference, Functions, Cyclic
code, Parity-check Matrix.

1 Introduction

Let B = {0,1}. A function f from Bn to B is a boolean function on n variables
and a single value, in other terms:

f : Bn −→ B

x = (x1, x2, · · · , xn) 7−→ y

A circuit is a directed acyclic graph. The sources are called input nodes and
are labeled with 0, 1, x1, x2, · · · , xn. Non-input nodes are called gates and are
labeled by boolean functions, whose arity is the in-degree of the nodes. The
in-degree (out-degree) of a gate is called the fan-in (fan-out). Sink nodes have
fan-out 0 and are called output nodes [1].

A threshold circuit C is a boolean circuit where each gate computes a thresh-
old function. Threshold circuits are studied in Complexity Theory and Neural
Networks [2].
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A threshold function is a function that takes the value 1 if a specified function
of the arguments exceeds or egals a given threshold and 0 otherwise.

The size of a circuit is the number of gates, while the depth is the length of
the longest path from an input to an output node. Let us note α = (α1, · · · , αn).
The following basic functions (threshold functions) arise in the study of cir-
cuits:

Tα
k (x1, x2, · · · , xm) =



1, if

m∑
i=1

αixi ≥ k;

0, if

m∑
i=1

αixi < k

(1)

When α = (1, 1, · · · , 1), we also have the following threshold function:

THn
k (x1, x2, · · · , xn) =



1, if

n∑
i=1

xi ≥ k;

0, if

n∑
i=1

xi < k

(2)

Figure 1: A threshold circuit computing the function THn
k (x1, x2, · · · , xn) .

The equal function is defined as follows:

EQUAL(x1, x2, · · · , xn, y1, y2, · · · , yn) =


1, if xi = yi ∀ 1 ≤ i ≤ n;

0, ∃ i 1 ≤ i ≤ n such that xi ̸= yi
(3)

A boolean function f is symmetric if and only if

f(x1, x2, · · · , xn) = f(xα(1), xα(2), · · · , xα(n))

for any permutation α on the set {1, 2, · · · , n}.
Hajnal et al. [3] shown the following result:
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Figure 2: A threshold circuit computing the
function EQUAL(x1, x2, · · · , xn, y1, y2, · · · , yn) of depth 2 and of size at
least 2n + 1.

Proposition 1 [3] Symmetric functions can be computed by depth-2 threshold
circuits of linear size and weight 1.

Parberry [2] shown the following theorems:

Theorem 1 [2] Any symmetric function f : Bn −→ B can be computed by a
unit-weight threshold circuit with size 2n + 3 and depth 2.

Theorem 2 [2] Any threshold circuit of the weight w and depth 2 for IP:
B2n −→ B must have size Ω(2n/2/w2).

Corollary 1 [2] IP /∈ TC0
2

Proof 1 [2] By Theorem 2, any depth 2 circuit of weight nc for inner product
must have size Ω(2n/2/n2c), which is larger than any polynomial. □

Let us consider the following symmetric function:

PARITY (x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xi ⊕ · · · ⊕ xn =

n⊕
i=1

xi

The complement of Parity is:

PARITY (x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xi ⊕ · · · ⊕ xn

We easily observe that:

PARITY (x1, x2, · · · , xn) = PARITY (x1, x2, · · · , xn−1, xn)

Inner Product is defined in [2, 3] as:

IP (x1, x2, · · · , xn, y1, y2, · · · , yn) =
n⊕

i=1

(xi ∧ yi) (4)
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Figure 3: A threshold circuit computing the function

PARITY (x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xi ⊕ · · · ⊕ xn =

n⊕
i=1

xi with

depth 2 and size at most 2n + 3.

Figure 4: A threshold circuit computing the function
PARITY (x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xi ⊕ · · · ⊕ xn with depth 2
and size at most 2n + 3.

We easily see that the complement of Inner Product is:

IP (x1, x2, · · · , xn, y1, y2, · · · , yn) = PARITY (x1 ∧ y1, · · · , xi ∧ yi, · · · , xn ∧ yn)
(5)

We easily deduce that:

IP (x1, x2, · · · , xn, y1, y2, · · · , yn) = PARITY (x1∧y1, · · · , xi∧yi, · · · , xn−1∧yn−1, xn ∧ yn)
(6)
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Figure 5: A threshold circuit computing the function
IP (x1, x2, · · · , xn, y1, y2, · · · , yn) = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xiyi ⊕ · · · ⊕ xnyn
of depth 3 and of size at most 2n(2n + 3).

Theorem 3 [2]
Any symmetric function f : Bn −→ B can be computed by a unit-weight

threshold circuit with 2n + 3 and depth 2.

Proof 2

Let f : {0, 1}n −→ {0, 1} be a symmetric function. f is fully(uniquely) defined
by the set

Sf = {m ∈ N | f (x ) = 1 for all x ∈ Bn with exactly m ones}.

Suppose Sf = {m1, · · · ,mk}.

The circuit uses k pairs of gates on the first level. The ith pair has one gate
active when the number of ones in the input is at least mi (this is a unit-weigth
threshold-gate with threshold mi connected to the inputs x1, · · · , xn), and the
other gate active when the number of ones in the input is at most mi. When
given an input x such that f (x ) = 0, exactly one of each pair is active, therefore,
exactly k gates are active. When given an input x such that f (x ) = 1, one
pair has both of its gates active, and all other pairs have exactly one of its gates
active, therefore exactly k + 1 gates are active. The output gate therefore has
threshold value k + 1 and inputs from all of the first level gates. This circuit
has depth 2, and since k ≤ n+ 1, size at most 2(n + 1) + 1. □

For example, Figure 9 shows a threshold circuit for computing PARITY in
depth 2 and size 7.

Figure 10 shows a threshold circuit for computing PARITY in depth 2 and
size 9.
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Figure 6: Example of a threshold circuit computing the function
IP (x1, x2, x3, x4, x5, y1, y2, y3, y4, y5) = x1y1 ⊕ x2y2 ⊕ x3y3 ⊕ x4y4 ⊕ x5y5 of
depth 3 and of size 17 .

Corollary 2 [2]
Any symmetric function f : Bn −→ Bm can be computed by a unit-weight

threshold circuit with size 2n + m + 2 and depth 2.

Proof 3 [2] Suppose f :Bn −→ Bm is a symmetric function. Computing each
individual bit of the output of f is a symmetric function, and hence by Theorem
1 can be computed in-depth 2 and size 2n + 1. Thus, the obvious circuit for
computing f uses m such circuits and has depth 2 and size 2nm + m. However,
the first layer of this combined circuit can have at most 2(n + 1) different gates,
giving the required size bound. □

Gates in the second layer of the threshold circuits constructed in Theorem 1
and Corollary 2 have an interesting property. They have unit weights, threshold
k , and the number of ones in their input is guaranteed (by the rest of the circuit)
to be either k or k − 1 . Let us call this kind of Boolean linear threshold function
a balanced one. The following result enables savings in depth whenever balanced
threshold gates are used in any layer of a circuit but the last. This does not,
of course, give savings in depth for the circuits constructed in Theorem 1 or
Corollary 2, but it will enable a reduction in depth whenever these circuits are
used as building blocks in the interior of another circuit [2].
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Figure 7: A threshold circuit computing
the function IP (x1, x2, · · · , xn, y1, y2, · · · , yn) =
PARITY (x1 ∧ y1, · · · , xi ∧ yi, · · · , xn ∧ yn) of depth 3 and of size at most
2n(2n + 3).

A threshold gate g is said to be balanced iff the number or sum of the ones at
the input of the threshold-gate g is either k or k-1, with k ∈ N, mathematically:

WH(x) ∈ {k, k − 1}.

If the number or the sum of the ones at the input of the threshold-gate of g
is different from k or k-1, then g is said to be unbalanced, mathematically:

WH(x) /∈ {k, k − 1}.

Lemma 1 [2]
Let g0 be a unit-weight threshold-gate that has inputs only from balanced

threshold-gates g1, · · · , gm where for all 1 ≤ i < j ≤ m, gates gi and gj have
distinct inputs. The gates g0, g1, · · · , gm can be replaced by a single threshold-
gate.

Proof 4 [2]
Let g0 be a unit-weight threshold-gate that has inputs only from balanced

threshold-gates g1, · · · , gm. Suppose gates g1, · · · , gm collectively have inputs
x1, · · · , xn, and that for all 1 ≤ i < j ≤ m, gates gi and gj have nonoverlapping
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Figure 8: Example of a threshold circuit computing the function
IP (x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6) = PARITY (x1 ∧ y1, x2 ∧ y2, x3 ∧ y3, x4 ∧ y4, x5 ∧ y5, x6 ∧ y6)
of depth 3 and of size 21.

input. Suppose gi has weight ki, for 0 ≤ i ≤ m. We claim that the entire circuit
can be replaced by a threshold-gate g with threshold

∑m
i=0 ki −m (see Figure

11).
Suppose g0 outputs 0. Then, at most k0 − 1 of the gates g1, · · · , gm output

1. Therefore, at most k0 − 1 of the gates gi for 1 ≤ i < j ≤ m see ki ones, and
the rest see ki − 1 ones. Hence, x1, · · · , xn can have at most

m∑
i=1

(ki − 1) + (k0 − 1) =

m∑
i=0

ki − (m+ 1)

ones. Therefore, g outputs 0.
Conversely, suppose g0 outputs 1. Then, at least k0 of the gates g1, · · · , gm

output 1. Therefore, at least k0 of the gates gi for 1 ≤ i ≤ m see ki ones, and
the rest see −1 + ki ones. Hence, x1, · · · , xn must have at least

m∑
i=1

(ki − 1) + k0 =

m∑
i=0

ki −m
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Figure 9: A threshold circuit computing the symmetric function x1 ⊕ x2 ⊕ x3 ⊕
x4 ⊕ x5.

ones. Therefore, g outputs 1.
We have shown that g outputs 1 iff g0 outputs 1. Therefore, the circuit

containing g0, g1, · · · , gm can be replaced by the threshold-gate g, as claimed. □

Definition 1
TC0 is the class of languages accepted by threshold circuits of polynomial size
and depth O(1).

TC0
k is the class of languages accepted by threshold circuits of depth k and size

O((log(n))k).

Hajnal et al.[3] have shown the following result:

Lemma 2 [3]
Fix any ϵ > 0 and polynomial p. Assume that C is a depth-2 threshold circuit

with weight ≤ p(n) computing INNER PRODUCT MOD 2 to two n-bit strings.
Then if n is sufficiently large, the size of C is at least 2(1/2−ϵ)n.

From the Lemma 2, Hajanal et al.[3] deduce that:

Lemma 3 [3]
INNER PROD MOD 2 is not in TC0

2 , INNER PROD MOD 2 is in TC0
3

Hajnal et al.[3] deduce the following strict inclusion:

Theorem 4 [3]
TC0

1 ⊆ TC0
2 ⊆ TC0

3
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Figure 10: A threshold circuit computing the symmetric function
PARITY (x1, x2, x3, x4, x5, x6).

Before:

...

...

After:

...

x1
xn

g1 gm

g0

k1 km

k0

x1 xn

g

...

Figure 11: Before and after pictures for Lemma [2]

It was conjectured in [4, 5] that:

TC0 ̸= TC0
k , for any k

Parberry stated in [2] that:
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It is an open problem as to whether the TC0 hierarchy collapses, that
is, whether more than three layers of threshold gates are needed to
compute all functions in TC0 in polynomial size.

Krause and Wegener [6] have said that:

Indeed, no proof is known that a function is contained in NP \TC0
3 .

Our aim is to show that the sets NP \ TC0
3 , NP \ TC0

4 and NP \ TC0
5 are

not empty.

The paper is organized as follows. Section 2 is concerned with the presenta-
tion of linear codes and cyclic codes, matrix generators, and parity-check matrix
of linear codes. Section 3, we present our contribution. Concluding remarks are
stated in Section 4.

2 Linear Codes and Cyclic Codes

2.1 Linear Codes

Definition 2

C is a linear code if C is a linear subspace of Fn
q . C is then called a [k ,n]-code

if dim(C)= k. If the minimal distance of C is d, we say that C is a [k ,n, d ]-code

A linear code can be described by each of the following matrices :

• A generator matrix G for an [k ,n, d ]-code C is a k× n matrix whose rows
form a basis for C. The lines of a generator matrix form a base for the
code C.

G =


e1
e2
...
ek


The generator matrix in systematic form have the following structure:

G = [Ik|P ] ,

where Ik is the k × k identity matrix and P ∈ Fk×(n−k)
q .

• A parity-check matrix H for an [k ,n, d ] code C is an (n − k)× n matrix of
rank n− k sastisfying:

∀ x ∈ C, H tx = 0.

From a generator matrix in systematic form, one can compute the parity-
check matrix as follos :

H =
[

tP |In−k

]
.

If G is a generator matrix and H a parity-check matrix of the same code,
then

G tH = 0.
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Example 1

We construct a binary [6, 3]-code by choosing three vectors linearly indepen-
dent of F6

2.

G =

1 0 0 1 0 1
0 1 1 1 0 1
1 1 0 1 1 0


We obtain all the codewords of C by calculating all the products mG with m

∈ F3
2.
The words of the code C is given by:


1 0 0 1 0 1

0 1 1 1 0 1
1 1 0 1 1 0


0 0 0

(
0 0 0 0 0 0

)
0 0 1

(
1 1 0 1 1 0

)
0 1 0

(
0 1 1 1 0 1

)
0 1 1

(
1 0 1 0 1 1

)
1 0 0

(
1 0 0 1 0 1

)
1 0 1

(
0 1 0 0 1 1

)
1 1 0

(
1 1 1 0 0 0

)
1 1 1

(
0 0 1 1 1 0

)
We transform the matrix G in the systematic form(Gaussian elimination)

G =

1 0 0 1 0 1
0 1 1 1 0 1
1 1 0 1 1 0

 7−→ · · · 7−→

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 = (I3|P )

Example 2

Starting from the generator matrix defined as follow:

G =

1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0

 = (I3|A)

We find the parity-check matrix H = ( tA|I3) of C which yields:

H =

1 0 1 1 0 0
0 1 1 0 1 0
1 1 0 0 0 1


From H, we obtain the codewords of C⊥
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1 0 1 1 0 0

0 1 1 0 1 0
1 1 0 0 0 1


0 0 0

(
0 0 0 0 0 0

)
0 0 1

(
1 1 0 0 0 0

)
0 1 0

(
0 1 1 0 1 0

)
0 1 1

(
1 0 1 0 1 1

)
1 0 0

(
1 0 1 1 0 0

)
1 0 1

(
0 1 1 1 0 1

)
1 1 0

(
1 1 0 1 1 0

)
1 1 1

(
0 0 0 1 1 0

)
2.2 Cyclic Codes

Definition 3 [11]

A code C is cyclic if

a) C is a linear code;

b) any cyclic shift of a codeword is also a codeword, i.e. whenever vov1 · · · vn−1 ∈
C, then also vn−1v0v1 · · · vn−2 ∈ C and v1v2 · · · vn−1v0 ∈ C

Example 3

a) {0} is a trivial cyclic code;

b) Code C = {000, 101, 011, 110} is cyclic

c) Hamming code Ham(3, 2): with the generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


is equivalent to a cyclic code.

Theorem 5 [11]

Every nontrivial cyclic (n,k)-code contains a codeword g(x) of degree n-k.
Then code words are precisely all the multiples q(x)g(x), where q(x) is any poly-
nomial of degree smaller than k. The code has the following generator matrix:

G =


g(x)
xg(x)

...
xk−1g(x)

 =


g
0

g
1

g
2

· · · g
n−k

0 0 · · · 0 0 0
0 g

0
g
1

g
2

· · · g
n−k

0 · · · 0 0 0
0 0 g0 g1 g2 · · · g

n−k
· · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · g

0
g
1

g
2

· · · g
n−k
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Example 4

The even-parity code of length n is cyclic. The codeword of degree n— k =
1 is just one: 1 + x. The generator matrix is

G =


1 1 0 0 0 · · · 0
0 1 1 0 0 · · · 0
0 0 1 1 0 · · · 0
0 0 0 · · · 0 1 1


Proposition 2 [11]

A cyclic code with the parity check polynomial h(x) = h0 + h1x + · · · +
hk−1x

k−1 + xk has the following parity check matrix:

H =


0 0 · · · 0 0 0 1 hk−1 · · · h2 h1 h0

0 0 · · · 0 0 1 hk−1 h2 h1 h0 0
0 0 · · · 0 1 hk−1 h2 h1 h0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 hk−1 · · · h2 h1 h0 0 0 · · · 0 0 0


Example 5

The Hamming cyclic code of length 7 with the generator polynomial g(x) =
1 + x + x3 has the parity check polynomial h(x) = (x7 − 1) ÷ (x3 + x + 1) =
x4 + x2 + x+ 1. Thus, it has the following parity check matrix:

H =

0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 1 1 1 0 0


Remark 1

If we denote H the control matrix of a cyclic code C

H =


h1∗
h2∗
...

h(n−k)∗

 =


0 0 · · · 0 0 0 1 hk−1 · · · h2 h1 h0

0 0 · · · 0 0 1 hk−1 h2 h1 h0 0
0 0 · · · 0 1 hk−1 h2 h1 h0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 hk−1 · · · h2 h1 h0 0 0 · · · 0 0 0


Based on Proposition 2 and on the structure of H, we easily observe that:

hi∗ = S(h(i+1)∗); 1 ≤ i ≤ n− k − 1

where S is the right circular shift defined as:

S(ep, ep−1, · · · , e2, e1) = (e1, ep, ep−1, · · · , e3, e2)

sometimes, right circular shift is noted as : ≫
It follows that
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h(n−k−i)∗ = Si(h(n−k)∗); 1 ≤ i ≤ n− k − 1

where
Si = SoSoSoSoSo · · · oS︸ ︷︷ ︸

i times

we easily deduce that:

H =



h1∗
h2∗
...

h(n−k−2)∗
h(n−k−1)∗
h(n−k)∗


=



S
(n−k−1)

(h(n−k)∗)

S
(n−k−2)

(h(n−k)∗)
...

S
2

(h(n−k)∗)
S(h(n−k)∗)
h(n−k)∗


3 Our Contribution

In the following subsection, we characterize a function that testing if a word
belonging to a code by using a generator matrix.

3.1 Testing belonging of a word to a code by using Gen-
erator Matrix

We consider two cases of Generator Matrix: Generator Matrix in a systematic
form and Generator Matrix in a general form.

3.1.1 Generator Matrix in a systematic form

Subsequently, without loss of generality we suppose that the generator matrix
has the form:

G = (Ik|B) =


1 0 0 · · · 0 | b11 b12 · · · b1,n−k

0 1 0 · · · 0 | b21 b22 · · · b2,n−k

0 0 1 · · · 0 | b31 b32 · · · b3,n−k

...
...

...
. . .

... |
...

...
. . .

...
0 0 0 · · · 1 | bk1 bk2 · · · bk,n−k

 (7)

∀ V = (v1, v2, · · · , vn) ∈ C, we have

Coor(V ) =


v1
v2
...
vk


From the fact that G is a generator matrix of C, we can write:

V ∈ C ⇐⇒ Coor(V ).G = V

15



This is equivalent to:

V ∈ C ⇐⇒ (v1, v2, v3 · · · , vk)


1 0 0 · · · 0 | b11 b12 · · · b1,n−k

0 1 0 · · · 0 | b21 b22 · · · b2,n−k

0 0 1 · · · 0 | b31 b32 · · · b3,n−k

...
...

...
. . .

... |
...

...
. . .

...
0 0 0 · · · 1 | bk1 bk2 · · · bk,n−k

 = (v1, v2, v3 · · · , vn)

This implies that:

V ∈ C ⇐⇒ (v1, v2, v3 · · · , vk,
k⊕

l=1

vl×bl,1,

k⊕
l=1

vl×bl,2, · · · ,
k⊕

l=1

vl×bl,n−k) = (v1, v2, v3 · · · , vn)

We conclude that:

V ∈ C ⇐⇒
k⊕

l=1

vl × bl,j = vk+j , 1 ≤ j ≤ n− k

It follows that:

V ∈ C ⇐⇒ IP (b∗j , V ) = vk+j , 1 ≤ j ≤ n− k (8)

By using Equation (8), we define the following function

f1(V,G) = EQUAL((IP (b∗1, V ), IP (b∗2, V ), · · · , IP (b∗n−k, V )), (vk+1, vk+2, · · · , vn))

which testing if the word V belonging to a code C by using the generator matrix
in the systematic form.

3.1.2 Generator Matrix in a general form

We consider the general case:

G =


g
11

g
12

g
13

· · · g
1n

g
21

g
22

g
23

· · · g
2n

...
...

...
...

...
g
k1

g
k2

g
k3

· · · g
kn


where G is a k × n matrix such that gij ∈ {0, 1}, for 1 ≤ i ≤ k and

1 ≤ j ≤ n.
We have to determine

(z1, z2, z3 · · · , zk) ∈ {0, 1},

such that

k⊕
i=1

zi × gi,∗ = V

This is equivalent to:
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V ∈ C ⇐⇒ (z1, z2, z3 · · · , zk)


g11 g12 g13 · · · g1n

g21 g22 g23 · · · g2n

...
...

...
...

...
g
k1

g
k2

g
k3

· · · g
kn

 = (v1, v2, v3 · · · , vn)

This implies that:

V ∈ C ⇐⇒ ((z1×g11+ z2×g21+ z3×g31+· · ·+ zk×g
k1
), (z1×g12+ z2×g22+ z3×g32+· · ·+ zk×g

k2
), · · · ,

(z1 × g1n + z2 × g2n + z3 × g3n + · · ·+ zk × g
kn
)) = (v1, v2, · · · , vn)

V ∈ C ⇐⇒ (

k∑
t=1

zt × g
k1
,

k∑
t=1

zt × g
k2
, · · · ,

k∑
t=1

zt × g
kn
) = (v1, v2, · · · , vn)

V ∈ C ⇐⇒ (

k⊕
t=1

zt ∧ gt,1,

k⊕
t=1

zt ∧ gt,2, · · · ,
k⊕

t=1

zt ∧ gk,n) = (v1, v2, · · · , vn)

We conclude that:

V ∈ C ⇐⇒
k⊕

j=1

zj ∧ gj,i = vi, 1 ≤ i ≤ n

It follows that:
V ∈ C ⇐⇒ IP (g∗i, V ) = vi, 1 ≤ i ≤ n (9)

By using Equation (9), we define the following function

f2(V,G) = EQUAL((IP (g∗1, V ), IP (g∗2, V ), · · · , IP (g∗n, V )), (v1, v2, · · · , vn))

which testing if the word V belonging to a code C by using the generator matrix
in the general form.

3.2 Testing belonging of a word to a code by using Parity-
check Matrix

Let us denote C⊥ the dual code of a code C. We note H the generator matrix
of C⊥. Let us note a word V = (v1, v2, · · · , vn) ∈ C and let us express HtV in
terms of IP :

HtV =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

...
...

h(n−k)1 h(n−k)2 · · · h(n−k)n



v1
v2
...
vn

 =



n∑
j=1

h1j × vj

...
n∑

j=1

hij × vj

...
n∑

j=1

h(n−k)j × vj
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=



n⊕
j=1

h1j ∧ vj

...
n⊕

j=1

hij ∧ vj

...
n⊕

j=1

h(n−k)j ∧ vj


=



IP (h1∗, V )
...

IP (hi∗, V )
...

IP (h(n−k)∗, V )



By definition, we have:

V ∈ C ⇐⇒ HtV = 0⃗ (10)

This implies that:

V ∈ C ⇐⇒
n−k∑
i=1

IP (hi∗, V ) = 0 (11)

V /∈ C ⇐⇒
n−k∑
i=1

IP (hi∗, V ) ≥ 1 (12)

It follows that:

V ∈ C ⇐⇒
n−k∑
i=1

IP (hi∗, V ) = (n− k) (13)

We deduce that:

V ∈ C ⇐⇒ TH
(n−k)
(n−k) (IP (h1∗, V ), IP (h2∗, V ), · · · , IP (h(n−k)∗, V )) = 1 (14)

By using Equation (14), we define the following function:

f3(V,H) = TH
(n−k)
(n−k) (IP (h1∗, V ), IP (h2∗, V ), · · · , IP (h(n−k)∗, V ))

where the vector

hi∗ =
(
hi1, hi2, · · · , hin

)
1 ≤ i ≤ n− k (15)

are the generator of the dual space of C⊥ (or the parity-check matrix of C).
The function f3 tests if the word V belonging to a code C by using the

parity-check matrix.

V ∈ C ⇐⇒ f3(V,H) = 1 (16)

Let us consider the following function:

f̃3(V,H) = TH
(n−k)
1 (IP (h1∗, V ), IP (h2∗, V ), · · · , IP (h(n−k)∗, V )) (17)

It is easy to see that:

V /∈ C ⇐⇒ f̃3(V,H) = 1

18



Example 6

Let n = 3, k = 1 from where n − k = 2 construct the threshold circuit
corresponding to the function

f4(V,H) = TH
(2)
(2) (IP (h1∗, V ), IP (h2∗, V ))

where the vector
hi∗ =

(
hi1, hi2, hi3

)
1 ≤ i ≤ 2 (18)

with
IP (h1∗, V ) = h11 ∧ v1 ⊕ h12 ∧ v2 ⊕ h13 ∧ v3

and
IP (h2∗, V ) = h21 ∧ v1 ⊕ h22 ∧ v2 ⊕ h23 ∧ v3

Figure 12: A threshold circuit of the function f4(V ) =

TH
(2)
(2) (IP (h1∗, V ), IP (h2∗, V )) testing belonging of a word of length 3 to

a code by using the parity-check-matrix of dimension 2. Here the function
f2(v) is balanced, this circuit is size 23 and depth 4 .

A corresponding threshold circuit the function f2 is the following figure 12

It follows by application of the Lemma 1 of Parberry that the function f4
belongs to TC0

3 and it becomes unbalanced.
A corresponding threshold circuit is the following figure 13
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Figure 13: A threshold circuit of the function f4(v) =

TH
(2)
(2) (IP (h1∗, V ), IP (h2∗, V )) testing belonging of a word of length 3 to

a code by using the parity-check-matrix of dimension 2 reduced by one level by
using the Lemma 1 of Parberry[2]. This circuit is size 21 and depth 3.

3.3 Element of TC0
4

In this paragraph, we want to show that there exists a function which belongs
to TC0

4 .

We consider a cyclic code C.

Problem 1
Data : a cyclic code C, H its parity-check matrix , a word w.

Question : w ∈ C ?

Let us build a boolean function f5 such that:

f5(w, h(n−k)∗) = 1 ⇐⇒ w ∈ C

H =


h1∗
h2∗
...

h(n−k)∗

 =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

...
...

h(n−k)1 h(n−k)2 · · · h(n−k)n


is the parity-check matrix of the cyclic code C.

f5(w, h(n−k)∗) = TH
(n−k)
(n−k) (IP (S(n−k−1)(h(n−k)∗), w), IP (S(n−k−2)(h(n−k)∗), w), · · · ,
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IP (S(h(n−k)∗), w), IP (h(n−k)∗, w))

Theorem 6

for k = n− ⌈log2(n)⌉

f5 ∈ TC0
4 .

Proof 5

Based on the depth of evaluation of IP , we consider two cases:

First case: IP is evaluated by a circuit of depth 2.

From the fact that IP is evaluated by a circuit of depth 2 and from Lemma
2, we conclude that the size of IP is exponential in n, it follows that the size of
the function f5 is also exponential in n.

then f5 /∈ TC0
3 .

Second case: IP is evaluated by a circuit of depth 3.

From the fact that the depth of IP is 3, we deduce that the depth of the
function f5 is 4.

From the Theorem 1, the size of the circuit which evaluates

IP (hi∗, w) = IP (S(n−k−i)(h(n−k)∗), w) is O((log n)3).

It follows that the size of

f5 is O((log n)4), because n− k = ⌈log2(n)⌉.

We easily conclude that
f5 ∈ TC0

4 .

□

Let us consider a cyclic code C, H is parity-check matrix where

H =


h1∗
h2∗
...

h(n−k)∗

 =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

...
...

h(n−k)1 h(n−k)2 · · · h(n−k)n


Problem 2
Data : a cyclic code C, H its parity-check matrix , a word w.

Question : w /∈ C ?
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Let us build a boolean function f̃5 such that:

f̃5(w, h(n−k)∗) = 1 ⇐⇒ w /∈ C

f̃5(w, h(n−k)∗) = TH
(n−k)
1 (IP (S(n−k−1)(h(n−k)∗), w), IP (S(n−k−2)(h(n−k)∗), w), · · · ,

IP (S(h(n−k)∗), w), IP (h(n−k)∗, w))

The following result characterizes the function f̃5.

Theorem 7

For n sufficiently large, we define

k = n− ⌈log2(n)⌉

f̃5 ∈ TC0
4 .

Proof 6

Based on the depth of evaluation of IP , we consider two cases:

First case: IP is evaluated by a circuit of depth 2.

From the fact that IP is evaluated by a circuit of depth 2 and from Lemma
2, we conclude that the size of IP is exponential in n, it follows that the size of
the function f̃5 is also exponential in n.

then f̃5 /∈ TC0
3 .

Second case: IP is evaluated by a circuit of depth 3.

From the fact that the depth of IP is 3, we deduce that the depth of the
function f̃5 is 4.

From the Theorem 1, the size of the circuit which evaluates

IP (hi∗, w) = IP (S(n−k−i)(h(n−k)∗), w) is O((log n)3).

It follows that the size of

f̃5 is O((log n)4), because n− k = ⌈log2(n)⌉.

We easily conclude that
f̃5 ∈ TC0

4 .

□
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3.4 Element of TC0
5

We tackle the existence of a function in the set TC0
5 . Let us consider two cyclic

codes C1 and C2

Problem 3

• Two cyclic codes C1 and C2,

• H1 parity-check matrix of C1,

H1 =


L1

L2

...
L(n−k)

 =


0 0 · · · 0 0 0 1 hk−1 · · · h2 h1 h0

0 0 · · · 0 0 1 hk−1 h2 h1 h0 0
0 0 · · · 0 1 hk−1 h2 h1 h0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 hk−1 · · · h2 h1 h0 0 0 · · · 0 0 0


• H2 parity-check matrix of C2,

H2 =


L̃1

L̃2

...

L̃(n−k)

 =


0 0 · · · 0 0 0 1 h̃k−1 · · · h̃2 h̃1 h̃0

0 0 · · · 0 0 1 h̃k−1 h̃2 h̃1 h̃0 0

0 0 · · · 0 1 h̃k−1 h̃2 h̃1 h̃0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 h̃k−1 · · · h̃2 h̃1 h̃0 0 0 · · · 0 0 0


• a word w.

Question : w ∈ C1 ∩ C2 ?
Let us consider the function

f6(w,L(n−k), L̃(n−k)) = TH2
2 (f5(w,L(n−k)), f̃5(w, L̃(n−k)))

Theorem 8

For n sufficiently large, we define

k = n− (⌈log2(n)⌉)2

f6 ∈ TC0
5 .

Proof 7
Based on the depth of IP and IP we consider two cases:

First case: IP and IP are evaluated by a circuit of depth 2.

From the fact that IP and IP are evaluated by a circuit of depth 2 and from
Lemma 2, we conclude that the size of IP or IP is exponential in n. It follows
that the size of the function f6 is also exponential in n.

Then
f6 /∈ TC0

4 .

Second case: IPand IP are evaluated by a circuit of depth 3.

From the fact the depth of IP and IP is 3, we deduce that the depth of the
function f6 is 5.

From the Theorem 1 the size of the circuit which evaluates:
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• IP (h(i∗), w) = IP (S(n−k−i)(h(n−k)), w) is O((log n)3),

• IP (h(i∗), w) = IP (S(n−k−i)(h(n−k)), w) is O((log n)3).

It follows that the size of f6 is O((log n)5) , because n− k = (⌈log2(n)⌉)2.
We easily deduce that

f6 ∈ TC0
5 .

□

The next subsection is denoted to the study of the set TC0
6

3.5 Element of TC0
6

In this subsection, we are interested by the function who characterize the sym-
metric difference of two cyclic codes.

Problem 4

• Two cyclic codes C1 and C2,

• H1 parity-check matrix of C1,

H1 =


L(1)

L(2)

...
L(n−k)

 =


0 0 · · · 0 0 0 1 hk−1 · · · h2 h1 h0

0 0 · · · 0 0 1 hk−1 h2 h1 h0 0
0 0 · · · 0 1 hk−1 h2 h1 h0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 hk−1 · · · h2 h1 h0 0 0 · · · 0 0 0


• H2 parity-check matrix of C2,

H2 =


L̃(1)

L̃(2)

...

L̃(n−k)

 =


0 0 · · · 0 0 0 1 h̃k−1 · · · h̃2 h̃1 h̃0

0 0 · · · 0 0 1 h̃k−1 h̃2 h̃1 h̃0 0

0 0 · · · 0 1 h̃k−1 h̃2 h̃1 h̃0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 h̃k−1 · · · h̃2 h̃1 h̃0 0 0 · · · 0 0 0


• a word w.

Question : w ∈ C1 ∆ C2 ?

Let us consider the function

f7(w,L(n−k), L̃(n−k)) = PARITY (f5(w,L(n−k)), f5(w, L̃(n−k)))

We characterize the function f7 in the next result.

Theorem 9
For n sufficiently large, define

k = n− (⌈log2(n)⌉)3

f7 ∈ TC0
6 .
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Proof 8
Based on the depth of evaluation of IP and IP, we consider two cases:

First case: IP and IP are evaluated by a circuit of depth 2.

From the fact that the size IP and IP is exponential in n, it follows that the
size of the function f7 is also exponential in n. We deduced that:

f7 /∈ TC0
5 .

Second case: IP and IP are evaluated by a circuit of depth 3.

From the fact that the depth of IP or IP in 3, we deduce that the depth of
the function f7 is 6.

a) From the Theorem 1, the size of the circuit which

• evaluates IP (L(i), w) = IP (S(n−k−i)(L(n−k)), w) is O((log n)3).

• evaluates IP (L̃(i), w) = IP (S(n−k−i)(L̃(n−k)), w) is O((log n)3).

b) It follows that the size of

f7 is O((log n)6), because n− k = (⌈log2(n)⌉)3.

We easily deduce that
f7 ∈ TC0

6 .

□

4 Conclusion

In this paper, by using cyclic codes and their parity check matrix, we have
shown that the sets NP \ TC0

3 , NP \ TC0
4 and NP \ TC0

5 are not empty.
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