N

N
N

HAL

open science

Seeking critical nodes in digraphs

Massimo Bernaschi, Alessandro Celestini, Marco Cianfriglia, Stefano Guarino,

Giuseppe F Italiano, Enrico Mastrostefano, Lena Rebecca Zastrow

» To cite this version:

Massimo Bernaschi, Alessandro Celestini, Marco Cianfriglia, Stefano Guarino, Giuseppe F Ital-
iano, et al.. Seeking critical nodes in digraphs.

10.1016/j.jocs.2023.102012 . hal-04365646

HAL Id: hal-04365646
https://hal.science/hal-04365646
Submitted on 28 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Journal of computational science, 2023, 69,

https://hal.science/hal-04365646
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Computational Science 69 (2023) 102012

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Seeking critical nodes in digraphs el
Massimo Bernaschi?, Alessandro Celestini ", Marco Cianfriglia ®¢, Stefano Guarino?,
Giuseppe F. Italiano , Enrico Mastrostefano ?, Lena Rebecca Zastrow ?

2 Institute for Applied Computing “Mauro Picone”, National Research Council, Via dei Taurini 19, 00185, Rome, Italy
b Luiss University, Viale Pola 12, 00198, Rome, Italy
¢ Department of Mathematics and Physics, Roma Tre University, Largo San Leonardo Murialdo 1, 00146, Rome, Italy

ARTICLE INFO ABSTRACT

Keywords: The Critical Node Detection Problem (CNDP) consists in finding the set of nodes, defined critical, whose
Critical nodes removal maximally degrades the graph. In this work we focus on finding the set of critical nodes whose
Networks connectivity removal minimizes the pairwise connectivity of a direct graph (digraph). Such problem has been proved to

Centrality measures

4 be NP-hard, thus we need efficient heuristics to detect critical nodes in real-world applications. We aim at
Network analysis

understanding which is the best heuristic we can apply to identify critical nodes in practice, i.e., taking into
account time constrains and real-world networks. We present an in-depth analysis of several heuristics we ran
on both real-world and on synthetic graphs. We define and evaluate two different strategies for each heuristic:
standard and iterative. Our main findings show that an algorithm recently proposed to solve the CNDP and that
can be used as heuristic for the general case provides the best results in real-world graphs, and it is also the
fastest. However, there are few exceptions that are thoroughly analyzed and discussed. We show that among
the heuristics we analyzed, few of them cannot be applied to very large graphs, when the iterative strategy
is used, due to their time complexity. Finally, we suggest possible directions to further improve the heuristic
providing the best results.

1. Introduction removal minimizes the connectivity f(G) of G, with f(G) = ZZ | ('CZ"').

This formulation of the CNDP is known to be a NP-hard problem [13,
The problem of identifying the most important nodes in a graph 14]. Recently, Paudel et al. [15] proposed a linear-time algorithm,

is a widely studied subject and an active research area [1,2], with based on the framework of Georgiadis et al. [16], that optimally solves
implications in several application fields, including, among others, the CNDP for k = 1 in a directed graph. The design of the algorithm
economy [3], biology [4], viral marketing [5,6], misinformation [7,8] has been motivated by the study of Ventresca and Aleman [17] that
and epidemiology [9-11]. The importance of a node is not uniquely addresses the same problem for undirected graphs. The algorithm
defined: it depends on the application of interest and on the specific proposed in [15] finds all articulation points in the graph — i.e., all nodes

task that we need to solve. In particular, we say that a node is critical
when it plays a paramount role in keeping the network connected.
The research of the set of nodes whose removal maximally degrades
the graph connectivity is known in the literature as the Critical Node
Detection Problem (CNDP) [12]. Different measures of connectivity
may be considered, giving rise to different variants of the CNDP. In this
paper, we focus on directed graphs and we consider the formulation of
the CNDP that aims at identifying those nodes whose removal results in
the minimization of the pairwise connectivity [13], i.e., of the number
of vertex pairs that are strongly connected in the considered graph.
Formally, let G be a directed graph, and let C;,C,,...,Cy be its
strongly connected components. The CNDP with parameter k is the
problem of finding a set of nodes S = {n;,n,,...,n;} of size k whose

whose removal increases the number of strongly connected components
— and it selects the best such nodes with respect to the objective
function f. The algorithm by Paudel et al. cannot be directly used for
the case k > 1 for two main reasons: the number of articulation points
in a graph may be less than k and, in any case, the algorithm does not
consider the combined effect of concurrently removing more than 1
vertex. These limitations, together with the lack of a publicly available
and efficient implementation, limited the diffusion of the algorithm
and fostered the use of greedy algorithms for the CNDP that rely on
general-purpose measures of centrality [12].

The underlying idea of any greedy heuristic for the CNDP is to
rank the nodes of the graph based on a suitable centrality measure,

* Corresponding author.
E-mail addresses: massimo.bernaschi@cnr.it (M. Bernaschi), alessandro.celestini@cnr.it (A. Celestini), stefano.guarino@cnr.it (S. Guarino), gitaliano@luiss.it
(G.F. Italiano), e.mastrostefano@iac.cnr.it (E. Mastrostefano).

https://doi.org/10.1016/j.jocs.2023.102012
Received 12 August 2022; Received in revised form 15 February 2023; Accepted 21 March 2023

Available online 31 March 2023
1877-7503/© 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:massimo.bernaschi@cnr.it
mailto:alessandro.celestini@cnr.it
mailto:stefano.guarino@cnr.it
mailto:gitaliano@luiss.it
mailto:e.mastrostefano@iac.cnr.it
https://doi.org/10.1016/j.jocs.2023.102012
https://doi.org/10.1016/j.jocs.2023.102012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2023.102012&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Bernaschi et al.

O & =W
(a) A toy graph with 11 vertices, whose initial connec-
tivity is 55.

L.

(b) A sub-optimal solution to the CNDP for k =
The heuristic removed vertices 6 and 8. The res1dual

connectivity is 10.

(c) A sub-optimal solution to the CNDP for k =
The heuristic removed vertices 6 and 3. The res1dua1
connectivity is 10.

:

(d) The optimal solution to the CNDP for k = 2.
Vertices 3 and 8 have been removed. The residual
connectivity is 3

Fig. 1. Suppose that we want to solve the CNDP for k =2 for the toy graph with 11
vertices depicted in panel (a). Optimally solving the CNDP for k = 1 twice leads to
removing node 6 at the first step and nodes 3 or 8 at the second step, thus obtaining
the sub-optimal solutions depicted in panel (b) and (c). The optimal solution, shown
in panel (d), instead consists in removing nodes 3 and 8, which, in this example, are
the two vertices having the greatest degree centrality.

assuming that the removal of the most central nodes has the potential
of disrupting the network. Given a metric X, we have two main options.
On the one hand, we may run X just once, select and remove the k top-
ranking nodes based on X — we refer to this heuristic as the standard
heuristic based on X, also denoted X-S in the following. On the other
hand, we may define the sequence of graphs G = G, Gy, ..., Gy, where
G, is obtained from G; removing the node of G, that has the greatest
X score — this approach requires computing X on each of the k graphs
Gy, ..., G,_; and we refer to it as the iterative heuristic based on X, also
denoted X-I in the following. Of course, we may define an iterative
heuristic for the general CNDP on top of the algorithm by Paudel et al.:
the graph G, in the sequence is obtained removing from G; the node
that optimally solves the CNDP with k = 1 for G;. Since the algorithm
by Paudel et al. is designed to identify critical nodes, this heuristic
may be expected to provide near-optimal solutions. Unfortunately, the
obtained solution is, in general, sub-optimal, and selecting the k nodes
to remove based on some other centrality measure might indeed be a
better choice, as shown with a toy example in Fig. 1. The main goal of
our study is to evaluate how well this and other heuristics perform in

Journal of Computational Science 69 (2023) 102012

solving the CNDP in practice, taking into account time constrains and
real-world networks.

The main contributions provided by the present work are the fol-
lowing. First, we reviewed and implemented the algorithm proposed
in [15], which we release as open source software in a repository' that
includes all code and data used in this paper. Secondly, we present an
in depth analysis of several CNDP heuristics on both synthetic and real-
world graphs, that shows how the heuristic based on the algorithm by
Paudel et al. [15] is, in most cases, the best and the fastest choice for
identifying critical nodes in digraphs. The analysis allowed to identify
a few open issues of the algorithm proposed in [15] and of its use as
the base for an iterative heuristic. We suggest possible directions to
overcome these drawbacks, especially in relation to the possibility that
no articulation points are found at some stage of the process. Finally,
we identify and thoroughly discuss in the paper a few scenarios in
which the heuristics based on other centrality metrics, mostly between-
ness, PageRank and degree, work better than or comparably to the
one based on the algorithm by Paudel et al. In particular, the last two
metrics provide a reasonable trade-off between computational time and
effectiveness.

The rest of the paper is organized as follows: in Section 2 we
describe which graphs and heuristics we selected for our study, and
how the iterative and standard strategies work; in Section 3 we evaluate
the goodness of each heuristic based on the ability of disconnecting the
graph for an equal number of removed nodes; in Section 4 we evaluate
the heuristics taking into account their running time, this factor can be
critical in case of time constraints; finally in Section 5 we draw some
conclusions and provide some directions for future works.

2. Methodology

To evaluate which is the best practical approach to solve the CNDP,
we compared several heuristics against different graphs, both synthetic
and originated from real-world networks. In particular, we analyzed a
heuristic based on the algorithm proposed by Paudel et al. [15], that
hereinafter we refer to as the Critical Node Heuristic (CNH), and a set of
heuristics built on top of the following centrality measures: total degree
(DG), undirected closeness (CL), PageRank [18] (PR) and betweenness
(BC). The choice to consider the total degree - i.e. the sum of the out-
and in-degree of a given vertex — and the undirected closeness - i.e. the
closeness computed on the undirected version of the input graph,
obtained ignoring edge direction — follows from preliminary evidence
that these metrics provide similar or better results than, respectively,
the out-/in-degree and the closeness from/to a given vertex.

The chosen metrics are inspired by different notions of centrality
and are commonly used in the analysis of empirical networks. To some
extent, they all tend to reward nodes having a clear impact on the con-
nectivity of the graph. As a matter of fact, they select: (i) the nodes with
the greatest number of neighbors; (ii) the nodes whose average distance
to all other nodes is minimal; (iii) the nodes that are most likely visited
by a random walk on the graph and; (iv) the nodes that appear the most
in any shortest path of the graphs, respectively. Moreover, these metrics
have different computational costs, a factor that must be taken into
consideration when the CNDP must be addressed under time and/or
computational constraints, or when the input graph must be quickly
disconnected, with the number k of vertices to remove not being strictly
bounded.

Formally, the CNH is defined as follows. We start with the input
graph G, = G and we iteratively run the algorithm by Paudel et al. [15]
on graph G, to identify a single node u;, which we remove from G;
(together with all its incident edges) to obtain a new graph G, ;. We
stop when k nodes have been removed, with G, thus being the output
graph. At each iteration, three different outcomes are possible: (i) if the

1 https://github.com/iac-cranic/seeking_critical_nodes_digraphs

https://github.com/iac-cranic/seeking_critical_nodes_digraphs

M. Bernaschi et al.

Table 1
Time complexity of different heuristics. N is the number of vertices, M the number of
edges. k is the number of iterations.

Heuristic Complexity
Degree O(N + M)
Closeness O(NM)
PageRank O(kM)
Betweenness [19] O(NM)
CNH [15] O(N + M)

algorithm returns a single critical node, we take u; to be that node; (ii) if
the algorithm returns multiple nodes that are equally critical, we select
u; looking first at the size of the Strongly Connected Component (SCC)
to which it belongs and then at its degree (in both cases, the larger
the better, with ties broken randomly); (iii) if the algorithm returns
an empty list of nodes, meaning that the graph G; has no articulation
points, we select a node uniformly at random in G;.

For each centrality measure, we considered two different strate-
gies/modes to define a heuristic for the CNDP, that we call standard
and iterative, respectively. In the standard strategy, centrality values are
computed only once in the input graph G. Those values are then used
to select the top k nodes that are considered critical, and thus removed
from the graph. The standard heuristic for metric X is also denoted X-S
in the following. In the iterative strategy, centrality values are computed
each time we need to remove a new node from the graph. Similarly
to the CNH, we start with the input graph G, = G and we iteratively
compute the selected metric on G; to identify the single most central
node u;, which we remove from G; to obtain the new graph G, (again,
ties are broken randomly). If we want to remove k nodes, we thus have
to compute centrality values k times. The iterative heuristic for metric
X is also denoted X-I in the following. As a matter of fact, the CNH only
runs in iterative mode. Differently from the other centrality measures,
in fact, the algorithm by Paudel et al. [15] only ranks the articulation
points of the graph, and these nodes may be fewer than the desired k
— possibly 0, as already discussed above.

It is apparent that the standard and iterative strategies have dif-
ferent computational costs. In the iterative mode, we apply k-times
the algorithm to compute centrality values, whereas in the standard
mode that is done only once in the original graph. Table 1 shows the
time complexity of each algorithm we use in the paper. We study the
iterative strategy to understand if the application of the metric to the
updated graph can be beneficial for the solution of the problem and
to which extent it can be worth to pay the extra running time cost.
For very small graphs, in the following called tiny graphs, we also
compute the k optimal critical nodes, i.e., the exact solution of CNDP.
This algorithm, denoted brute force (BF) approach in the rest of the
paper, is applied only to tiny graphs due to its time complexity. Finally,
we use a random heuristic (RND) as baseline to compare against all
heuristics. As the name suggests, the random heuristic randomly selects
the set of k critical nodes to remove.

We ran each heuristics on a selection of real-world and synthetic
graphs of different sizes and types. The aim was to analyze graphs
with different topological structures, emerging from theoretical models
or from real-world data. We decided to include also synthetic graphs
to better understand the impact of specific topological structures, and
to compare the optimal solution against all heuristics. To evaluate
the performance of each heuristic, we analyze the trend of graph
connectivity with respect to the number of removed nodes. Specifically,
we study how the residual connectivity of the graph decreases as the
percentage of removed nodes increases, where the residual connectivity
is expressed as the percentage of the initial connectivity of the graph.
For an equal percentage of removed nodes, the heuristic with the
lowest residual connectivity is considered the best. To take into account
time constraints, we analyze also the trend of graph connectivity with
respect to running time, that is the time required by the heuristic to

Journal of Computational Science 69 (2023) 102012

select and remove critical nodes. Also in this case, for an equal running
time, the heuristic with the lowest residual connectivity is considered
the best. In the last case, we aim at understanding if it is possible
that, in a given time frame, faster heuristics could select and remove
larger sets of nodes and achieve better connectivity results than slower
heuristics, that select a smaller set of nodes with better characteristics.

2.1. Networks

We evaluate the CNDP heuristics against both real-world and syn-
thetic graphs. Real-world graphs are obtained from real-world networks
of different sizes and types. Following the approach of [15], we se-
lected graphs of five different types: Road Network (RN), Peer to
Peer (P2P), Web Graph (WG), Social Network (SN), and Product-Co-
Purchase (PCP). The networks have been collected from the following
sources: the 9th DIMACS implementation challenge [20], the Stanford
Large Network Dataset Collection [21] and the Ref. [22] containing
the graph academia-SN. Table 2 summarizes the characteristics of the
graphs in our dataset, including a few topological properties.

Synthetic graphs are generated using two well-known network mod-
els, Erd6s—-Rényi (ER) and Square Grid (SG) graphs, chosen in order to
test the heuristics against specific network topologies. More precisely,
we use rectangular grids, not squared grids, in case of SG graphs. ER
graphs are the most general null model to which all real graphs can
be compared and are supposedly hard to disconnect. SG graphs, on the
other hand, represent a stylized version of road networks, the only type
of networks for which the CNH is sometimes outperformed by other
heuristics (see Section 3.1). We consider synthetic graphs of 5 K, 50 K
and 100 K vertices, and tiny synthetic graphs of 30 nodes. Given their
small size, tiny ER graphs are not guaranteed to present the topological
properties that typically emerge in large ER graphs. However, these
small ER and SG graphs enable us to qualitatively evaluate how close
each heuristic can get to the optimal solution, at least at this tiny
scale.

To generate directed ER graphs, other than the number of vertices,
we set the average out-degree to 7, in line with the average of all
real-world networks in our dataset. To generate directed SG graphs,
we proceed as follows: (i) we generate the undirected version of the
graph; (ii) we create the directed version of the graph by duplicating
edges; (iii) we randomly remove a fraction (2%) of the edges. We decide
to remove only 2% of the edges because the real-word RN graphs in
our dataset have reciprocity 1, 1 and 0.91, respectively (see Table 2).
Note that it is not possible to increase the average degree of SG graphs
without modifying the structure of the graph and thus the model. For
each model and each graph size, we generated 10 independent graph
instances — 100 for tiny graphs — and we applied each heuristic to the
giant SCC of all instances.

Table 3 reports the main features of the giant SCC of our synthetic
and tiny graphs, with properties averaged over the different instances.

2.2. Experimental setup

We ran all the experiments on a 24-core AMD Ryzen Threadrip-
per 3960X@3.80 GHz system equipped with 256 GB of RAM. Few
heuristics, due to their time complexity, require very long execution
times. To deal with those cases we set an upper bound timeout of
172800 s (2 days) for each run. When the timeout expires, it executes a
graceful shutdown procedure. Concerning the software, we developed
a C implementation of CNH and bruteforce, whereas we leveraged
existing solutions for the other centrality measures. We are aware
that for some metrics there exist in the literature highly parallel and
efficient implementations [23,24]. However, only few of them are
freely available, and an efficient implementation is not available for
all metrics. Thus, for seeking fairness in the comparison, we decided

M. Bernaschi et al.

Table 2

Journal of Computational Science 69 (2023) 102012

Real-World Graphs — For each graph in the dataset we show: the name, the type, the number of nodes and edges, the density, the average total degree (avg.
DG), the total degree centralization (DG cen.), the total degree relative standard deviation computed as ratio between the standard deviation and the mean
(DG rsd), the average local clustering coefficient (LC), the reciprocity (R), the assortativity (A) and the diameter (D). The average local clustering coefficient is
computed on the undirected version of each graph. We remind the reader that with DG we denote the total degree, i.e. the sum of the out- and in-degree of a

given vertex.

Name Type Nodes Edges Density avg. DG DG LC R A D
DG cen. rsd

amazon0601 PCP 395234 3301092 0.00002 16.70 0.01 0.97 0.426 0.557 —0.0415 52
amazon0302 PCP 241761 1131217 0.00002 9.36 0.00 0.64 0.419 0.544 0.0024 88
p2p-Gnutella31 P2P 14149 50916 0.00025 7.20 0.00 0.60 0.012 0.000 0.1498 30
p2p-Gnutella25 P2P 5153 17695 0.00067 6.87 0.01 0.49 0.010 0.000 0.0247 21
academia-SN SN 147526 1231158 0.00006 16.69 0.07 2.86 0.274 0.605 —-0.0115 20
soc-Epinions1 SN 32223 443506 0.00043 27.53 0.09 2.67 0.279 0.458 —0.0401 16
web-NotreDame WG 53968 304685 0.00010 10.98 0.14 4.85 0.588 0.389 —0.0615 93
web-BerkStan WG 334857 4523232 0.00004 27.02 0.23 13.32 0.657 0.226 —-0.1747 679
web-Google WG 434818 3419124 0.00002 15.73 0.01 2.57 0.657 0.377 —0.0634 51
USA-road-d.NY RN 264346 733846 0.00001 5.55 0.00 0.35 0.025 1.0 0.1814 720
USA-road-d.BAY RN 321270 800172 0.00001 4.98 0.00 0.40 0.021 1.0 0.0539 837
rome99b RN 3353 8870 0.00079 5.29 0.00 0.34 0.035 0.909 0.1918 57
Table 3

Synthetic and Tiny Graphs — The numbers in subscript in each graph’s name indicate the parameters used to create it — either the number of vertices or the
average out-degree for ER graphs, the dimensions of the grid for SG graphs. We generated 100 independent instances of each tiny graph, and 10 independent
instances of each other graph. We only considered the giant SCC of each instance. For each graph, the table reports: the name, the type, and the mean over
the different instances of the number of nodes, the number of edges, the average total degree (avg. DG), the total degree centralization (DG cen.), the total
degree relative standard deviation computed as ratio between the standard deviation and the mean (DG rsd), the average local clustering coefficient (LC), the
reciprocity (R), the assortativity (A) and the diameter (D). The average local clustering coefficient is computed on the undirected version of each graph. We

remind that DG denotes the total degree, i.e. the sum of the out- and in-degree of a given vertex.

Name Type Nodes Edges Density avg. DG DG LC R A D
DG cen. rsd
ER_7 tiny 30.0 211.2 0.24279 14.08 0.23 0.22 0.427 0.245 —0.0444 3.55
ER
ER 5K ER 4992.2 35057.6 0.00141 14.04 0.00 0.27 0.003 0.001 —0.0016 8.2
ER_50K ER 49909.6 349283.7 0.00014 14.00 0.00 0.27 0.000 0.000 —0.0003 10.9
ER_100K ER 99821.9 698513.5 0.00007 14.00 0.00 0.27 0.000 0.000 0.0002 11.0
GRID_6x5 tiny 30.0 96.3 0.11064 6.42 0.06 0.21 0.000 0.982 0.4006 9.01
SG
GRID_50x100 SG 5000.0 19305.1 0.00077 7.72 0.00 0.08 0.000 0.979 0.2802 148.0
GRID_250x200 SG 50000.0 195118.3 0.00008 7.80 0.00 0.06 0.000 0.980 0.1199 448.0
GRID_500x200 SG 100000.0 390579.7 0.00004 7.81 0.00 0.06 0.000 0.979 0.0961 698.0

to rely on igraph,” a well-known and widely used, by researchers or
analysts dealing with graphs, C-library.

All source codes are available from the paper repository® [25],
along with the graphs datasets and results. For the generation of
synthetic graphs we relied on the NetworkX python library.* For each
type of synthetic graph we generated a set of networks and we ran the
heuristics on all of them, the results are averaged over all runs. The
caption of each figure specifies the size of the set of graph instances
considered for the experiment.

3. Connectivity VS removed nodes

In this section, we analyze how fast each heuristic disconnects the
graph with respect to the percentage of removed nodes. We evaluate
the standard (S) and the iterative (I) strategies separately. For each cen-
trality metrics X, the two heuristics based on X are denoted respectively
with X-S (standard) and X-I (iterative) in the charts.

3.1. Real-world graphs
We start discussing the application of the standard strategy to real-

world graphs. Figs. 2-6 show the results for each combination of

2 https://igraph.org
3 https://github.com/iac-cranic/seeking_critical_nodes_digraphs
4 https://networkx.org

heuristic and graph. In each chart we show only the section that is
more relevant for the discussion, by using a different limit for the x-
axis. The horizontal gray dotted lines in the charts denote the 50% of
residual connectivity.

Generally speaking, we observe that, by picking the right heuristic,
we can reach the 50% of residual network connectivity by removing
just a small subset of nodes — less than 3% of the initial number
of nodes in almost all networks, about 5%-6% in amazon0601, p2p-
Gnutella25 and rome99b. CNH is, overall, the best heuristic for iden-
tifying critical nodes, i.e. for an equal percentage of removed nodes,
CNH almost always reaches the lowest residual connectivity. The only
two exceptions are both road networks: in USA-road-d.NY CNH is out-
performed by BC-S after roughly 2% of the nodes have been removed;
in rome99b CNH is outperformed by BC-I (right after 1.5% of removed
nodes), by CL-I (at 2.5%), by CL-S (only between 6% and 7%) and by
BC-S (at 8%). The case of the rome99b network is especially notewor-
thy because both BC-I and CL-I perform remarkably better than CNH.

Comparing different types of networks, we observe that

+ In PCP and P2P networks (Figs. 2 and 3) centrality-based heuris-
tics generally provide a slow linear drop in the connectivity as k&
increases, thus performing very poorly when compared with CNH.
This happens despite these two types of networks have significant
topological differences (see Table 2) and may be related to their
limited centralization — even if PCP networks are scale-free,
while P2P networks are not. The fact that P2P networks have

https://igraph.org
https://github.com/iac-cranic/seeking_critical_nodes_digraphs
https://networkx.org

M. Bernaschi et al.

=
o
o

% connectivity

~
wv

w
o

N
wv

Journal of Computational Science 69 (2023) 102012

amazon0302

0 1 2 3 4 5
% removed nodes

(a) Standard heuristics.

amazon0601
100
2
>
o 80
(9]
C
f
o
2 60
R
0 1 2 3 4 5
% removed nodes
amazon0601
100
ey
>
T 80
[}
f
C
8
< 60

0 1 2 3 4 5
% removed nodes

=
o
o

% connectivity

~
wv

(%4
o

N
(%)

amazon0302

0 1 2 3 4 5
% removed nodes

(b) Iterative heuristics.

Fig. 2. Real-world product-co-purchase (PCP). Trend of graph connectivity with respect to the number of removed nodes for real-world PCP graphs using the standard and
iterative strategies. The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the
graph. The horizontal gray dotted line denotes the 50% of residual connectivity.

p2p-Gnutella3l

p2p-Gnutella25

100 _— CNH - DG-S 1007 s, — CNH -~ DG-S
Fry CL-s -—— BCS Fry cLs
> 80 - PRS RND |3] N PR-S
B 2 s 80
2 60 2
S S 60
o o
= 40 2
20 40
0 2 4 6 0 2 4 6
% removed nodes % removed nodes
(a) Standard heuristics.
p2p-Gnutella3l p2p-Gnutella25
100 —— CNH e DGl 100 —— CNH
Fl 80 = Cll -—- BCH 2 2 CL
> - >
2 PRI RND 2 80
2 60 g
5 — 5 o
o S ©
= 40 el e
20 40
0 2 4 6 0 2 4 6

% removed nodes

% removed nodes

(b) Iterative heuristics.

Fig. 3. Real-world peer-to-peer (P2P). Trend of graph connectivity with respect to the number of removed nodes for real-world P2P graphs using the standard and iterative
strategies. The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph.
The horizontal gray dotted line denotes the 50% of residual connectivity.

almost 0 reciprocity may explain why BC-I works slightly better
in these networks, especially in p2p-Gnutella31.

On the other hand, in SN and WG networks (Figs. 4 and 5)
some centrality-based heuristics work quite well, possibly due
to the pronounced scale-free nature of these networks. In web-
NotreDame and web-BerkStan networks, whose DG distribution
follows a power-law distribution with exponent <2.5, it is gen-
erally easy to find nodes that quickly disrupt the network, even
relying on simple metrics such as DG and PR. A similar result has
already been discussed in [26], in which the authors study the
robustness of social and web graphs to node removal.

« RN networks make a case of their own. In this case, BC- and
CL-based heuristics generally outperform the other centrality-
based heuristics, and sometimes even CNH. Intuitively, the highly
regular structure of road networks (e.g. see the DG centralization
and relative standard deviation in Table 2) makes the hubs not
so different from all other vertices, and allows to find articulation
points only at the periphery of the network. To better understand
how the heuristics behave in RN graphs, we analyze a set of
synthetic networks that mimic their topological structure, see
Section 3.2.

M. Bernaschi et al.

Fig. 4. Real-world social networks (SN). Trend of graph connectivity with respect to the number of removed nodes for real-world SN graphs using the standard and iterative
strategies. The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph.

soc-Epinionsl

Journal of Computational Science 69 (2023) 102012

academia-SN

100 TR — DG-S 100
Frl CLS --= BCS | 2
2 80 PR-S RND 2 80
o o
(] (9]
S - g 60
ES R
40 40
0 1 2 3 4 0 1 2 3 4
% removed nodes % removed nodes
(a) Standard heuristics.
soc-Epinionsl academia-SN
100 .—— CNH --- DGl 1007 promme L —— CNH DGl
z Ll =BG | 2 - PR RND
Z 80 PR-I - RND | = gg
O |9
(9} (]
S S 60 IR
R R
40 0
0 1 2 3 4 0 1 2 3 4

% removed nodes

(b) Iterative heuristics.

The horizontal gray dotted line denotes the 50% of residual connectivity.

% removed nodes

web-NotreDame web-BerkStan web-Google
100 100 100
z z z
275 z s 3 80
(9} () o
2 50 2 50 <
5 5 5
o o o 60
< 25 < 25 =
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.0 0.1 0.2 0.3 0.4
% removed nodes % removed nodes % removed nodes
(a) Standard heuristics.
web-NotreDame web-BerkStan web-Google
100 100 100
Py z z
B 27 2 g0
3 3 3
S 50 £ 50 £
S S 8 60
x 25 x 25 N
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.0 0.1 0.2 0.3 0.4

% removed nodes

% removed nodes

% removed nodes

(b) Iterative heuristics.

Fig. 5. Real-world web graphs (WG). Trend of graph connectivity with respect to the number of removed nodes for real-world WG graphs using the standard and iterative
strategies. The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph.

The horizontal gray dotted line denotes the 50% of residual connectivity.

Comparing the results of executing each heuristic in standard and
iterative mode, we observe that in most cases there is not a notable
difference between the two approaches. Most of the time, the iter-
ative and standard strategies achieve very close results with just a
slight improvement when the iterative strategy is applied. There are
few exceptions of graph and heuristic combinations, that show big
improvements when we switch from the standard to the iterative mode
and also a couple of cases, for the closeness, in which the standard
mode provides even better results than the iterative mode. The iterative
strategy requires a longer running time than the standard mode, and
this extra cost does not seem to be compensated by the quality of the
results. For the iterative strategy, it is important to notice that BC and
CL are usually not viable solutions for disconnecting the graphs of our
dataset, due to their time complexity. We recall that we set a running

time constraint of 2 days for each heuristic, and our results show that
only the smallest graphs of the dataset can be processed with these two
heuristics. Indeed, we see that BC and CL can just remove a small subset
of the nodes needed to disconnect the largest graphs, with a minimal
or negligible impact on their connectivity.

3.2. Synthetic graphs

In this section we analyze ER and SG synthetic graphs. We chose
to include SG graphs in an attempt to mimic the topological structure
of RN graphs, whereas ER graphs have been included because they
are the classical model used to generate random graphs and they are
supposed to be hard to disconnect, as confirmed by our results. Figs. 7
and 8 show the connectivity as a function of the percentage of removed

M. Bernaschi et al.

USA-road-d.NY

USA-road-d.BAY

Journal of Computational Science 69 (2023) 102012

rome99b

=
o
S
=
o
o

=
o
o

e, — CNH
. cL-s

ol 2 2
s 80 55 3801 N e PRS
a;j 60 é 50 § 60 l..‘v
C C C \.‘
& 20 - & 0 > 20)
0 1 2 3 4 0 1 2 3 4 0 2 4 6 8 10
% removed nodes % removed nodes % removed nodes
(a) Standard heuristics.
USA-road-d.NY USA-road-d.BAY rome99b
100 100 100

—— CNH

o]
o
~
wv

N

o
N
w

% connectivity
()]
o

% connectivity
w
o

N
o

o

- —— CNH

--= PRI

~
w

N
v

% connectivity
w
o

(=)

0 1 2 3 4 0 1
% removed nodes

% removed nodes

2 3 4

% removed nodes

(b) Iterative heuristics.

Fig. 6. Real-world road networks (RN). Trend of graph connectivity with respect to the number of removed nodes for real-world RN graphs using the standard and iterative
strategies. The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph.

The horizontal gray dotted line denotes the 50% of residual connectivity.

ER_100K
100 100 100 100 [oS
z z Fol z N cLs —— BCS
B 2 80 2 80 2 80 \\\ PRS - RND
o o o o
9 50 @ o] @ .,
c c c < S
s S 60 S 60 § 60 S,
S o5 S S S -
ES ES ES ES
o 40 40 40
0 20 40 60 0 10 20 30 0 10 20 30 0 10 20 30
% removed nodes % removed nodes % removed nodes % removed nodes
(a) Standard heuristics.
ER_7 ER_5K ER_50K ER_100K
1007 ~ — CNH —— BCl 100 100 — ONH - DG 100 —— CNH o DGH
ol CLd -+ RND 2 2 -== PRI - RND 2 N --= PRI == RND
375 PRI BF 3 80 > g0 \ 3 80 X
© - DG © © ©
1 50 o v o v
c < 60 c c
5 g 5 60 § 60
S o5 S S S
* o ® 40 * 40 ® 40 .
0 20 0 10 20 30 0 10 20 30 0 10 20 30

40
% removed nodes % removed nodes

% removed nodes % removed nodes

(b) Iterative heuristics.

Fig. 7. Synthetic Erdos-Rényi (ER). Trend of graph connectivity with respect to the number of removed nodes for synthetic ER graphs using the standard and iterative strategies.
The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph. The horizontal
gray dotted line denotes the 50% of residual connectivity. For each model we generated 10 instances — 100 for tiny graphs — to which we applied all heuristics. In the charts we

report the average over all runs.

nodes for ER and SG graphs, respectively. The lines in the charts are the
average computed over 100 different graph instances, for tiny graphs
of 30 nodes, and over 10 different graph instances, for graphs of size
5K, 50 K and 100 K.

Fig. 7 confirms the intuition that the homogeneity of ER graphs
make them, in general, hard to disconnect. In the tiny ER_7 graph
the results obtained with BC-I are remarkably close to those given
by a brute-force optimal solution, whereas all other heuristics are
far from optimal. This result, however, is not replicated in larger
graphs, where we need to remove more than 25% of the nodes to
halve the connectivity of the graph regardless of the chosen algorithm
— compared to the 6% needed, at worst, in real-world graphs. We
observe no significant differences between the results obtained by
different centrality-based heuristics in large ER graphs, despite these
graphs having very variable density. Suggesting that other topolog-
ical features have a major impact in solving the CNDP and density
alone does not give us directions on how much a network is hard

to disconnect. CNH always outperforms the other heuristics for small
k, but the advantage vanishes as k increases. It is worth noting that,
at a high level, the graph p2p-Gnutella25 may seem quite similar to
ER_5K (see Tables 2 and 3). All centrality-based metrics indeed perform
similarly for these two graphs. However, CNH works remarkably better
in p2p-Gnutella25 than ER_5K, suggesting that CNH benefits from some
non-evident topological feature of p2p-Gnutella25.

SG graphs provide a different and more varied scenario. In Fig. 8(a),
we see that PR-S is the best standard heuristic for large SG graphs,
whereas BC-S works especially well in SG_50x100, where it signifi-
cantly outperforms CNH. More generally, CNH performs quite poorly
in these graphs. If we look at Fig. 8(b), we realize that all iterative
heuristics disconnect the network much faster than CNH. BC-I and CL-I,
in particular, provide near-optimal solutions for the tiny SG_6x5 graph,
and they completely disconnect the larger SG graphs by removing a
very small percentage of the nodes. A possible explanation is that
a perfectly regular SG only has articulation points at the extreme

M. Bernaschi et al.

Journal of Computational Science 69 (2023) 102012

SG_6x5 SG_50x100 SG_250x200 SG_500x200
100 — ONH - BCS 100 — CNH - DG-S 100 . —— CNH - DG-S 100 — CNH - DG-S
2 cLs - RND F CLs —— BCS Fl N cLs —— BCS 2 cLs - BCS
375 PRS BF s 75 PRS - RND > 75 PR-S - RND 375 PRS - RND
= b= B =]
5 ? 3 9
c 50 c 50 c 50 c 50
c c < c
8 8 8 8
< 25 < 25 < 25 < 25
0 0 0 0
0 20 40 60 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
% removed nodes % removed nodes % removed nodes % removed nodes
(a) Standard heuristics.
SG_6x5 SG_50x100 SG_250x200 SG_500x200
100 ~~ BC 100 — CNH - DG 100 ™ — CNH - DG 100 — CONH DG-I
2z RND 2 ' cLl - BCH 2 CLl —— BC 2 | SN\ - PRI e RND
75 BF 3 751 4 PR-1 - RND 75 PRI - RND 75
5 5 i 5 =1
g g . g g
g 50 2 501 2 50 g 50
c c R c c
8 8 \ 8 8
< 25 < 25 \ < 25 < 25
0 — 0 N = 0 ; 0 o
0 20 40 60 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

% removed nodes % removed nodes

% removed nodes % removed nodes

(b) Iterative heuristics.

Fig. 8. Synthetic square grid (SG). Trend of graph connectivity with respect to the number of removed nodes for synthetic SG graphs using the standard and iterative strategies.
The connectivity is the percentage of the initial connectivity of the graph, whereas the number of removed nodes is the percentage of the initial nodes in the graph. The horizontal
gray dotted line denotes the 50% of residual connectivity. For each model we generated 10 instances — 100 for tiny graphs — to which we applied all heuristics. In the charts we

report the average over all runs.

ER 5K ER_50K ER_100K ER
1.00 1.00 1.00 1.00
o o
5 0.75 5 0.75 5075 5 0.75
S S

£ 0.50 £ 0.50 £ 0.50 £ 0.50
38 8 S 8
5025 5025 §0.25 5025

0.00 0.00 0.00 0.00

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
% removed nodes % removed nodes % removed nodes % removed nodes
(a) ER graphs.
SG_50x100 SG_250x200 SG_500x200 SG

1.00 1.00 1.00 1.00
) o f%mw ° /’\W\'Vﬂf\"“/\"/\/\/\,/\,,J\/\A\/J\,‘A o m
5 0.75 5 0.75 5 0.75 5 0.75
S S
£0.50 £ 0.50 £0.50 £ 0.50
8 8 8 8
E 0.25 E 0.25 E 0.25 E 0.25

0.00 0.00 0.00 0.00

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
% removed nodes % removed nodes % removed nodes % removed nodes
(b) SG graphs.

Fig. 9. Probability to find no articulation points in synthetic graphs. The y-value associated to a certain percentage of removed nodes is the fraction of runs in which, at that
step of the algorithm, CNH made a “random choice” because it did not find any articulation point. The y-values range from 0, meaning that an articulation point was found at

that step in all runs, to 1, meaning that a random node was selected at that step in all runs.

ER and SG graphs respectively, values are averaged over all runs.

periphery of the network — so that CNH behaves as a very greedy
algorithm — or has no articulation points at all — so that CNH works
like a random algorithm. Unfortunately, BC-I and CL-I are the heuristics
with the highest time complexity, and might not be viable solutions
for large graphs (e.g. both heuristics reach the timeout for very small
k in SG_500x200). Considering time constraints, PR-S, PR-I and DG-I
guarantee a good trade-off between efficacy and efficiency. The limited
agreement between the results obtained for synthetic SG graphs and
for real-world RN graphs (see Fig. 6) suggests that real-world road
networks are sufficiently irregular to bring out the advantages of a
specific algorithm like CNH.

In general, CNH performed significantly worse in our synthetic
graphs than it did in the real-world graphs analyzed in Section 3.1. To
better understand why, we looked more closely at what happened at
each iteration of the algorithm. CNH selects a random vertex at every
iteration in which it does not find any articulation point. In Fig. 9, the
y-value associated to a certain step of the algorithm (expressed as a
percentage of removed nodes) is the fraction of runs in which, at that
step, the algorithm made a “random choice”. The y-values range from
0, meaning that an articulation point was selected at that step in all
runs, to 1, meaning that a random node was chosen at that step in all
runs. In ER graphs, CNH manages to identify actual critical nodes in

Charts ’ER’ and ’SG’ show how many times a “random choice” has been made in

the very first steps, but, after 1% of the nodes has been removed, it
starts to mostly work as a random heuristic, meaning that there are
no more articulation points in the graph. The fact that CNH behaves
no worse than the other heuristics in ER graphs (see Fig. 7), however,
suggests that, after a few critical nodes have been removed, one cannot
do much better than this. In SG graphs, CNH basically chooses random
nodes since the beginning, because a regular grid has essentially no
articulation points. In this case, the comparison with other heuristics
clearly shows that selecting the nodes based on their network centrality
works a lot better than choosing them at random. We thus argue that
CNH could be modified to operate a better choice when there are no
articulation points in the graph.

The absence of articulation points at different steps of the heuristic
— and the consequent removal of random nodes — does not explain,
however, the results obtained for real graphs. Fig. 10 is the analogous of
Fig. 9 for real-world networks: for each percentage of removed nodes,
the plots show if CNH selected the node to remove randomly or if it
selected an articulation point. In USA-road-d.NY, the algorithm starts
to randomly select nodes only after 6% of nodes have been removed,
i.e. only once the residual connectivity is below 20%. In rome99b, the
algorithm always selects an articulation point — at least up to 10% of
the network is removed. Nonetheless, as already discussed, in these two
networks CNH is not the best heuristic for identifying critical nodes.

M. Bernaschi et al.

soc-Epinions1 academia-SN
o 1.0 o 1.0
9 o
o o
S S
g05 £05
o o
o =]
& &
0.0 0.0
0 2 4 6 8 10 0 2 4 6 8 10

% removed nodes % removed nodes

amazon0601 amazon0302

o 1.0 o 1.0

S S

] S

2 2

S S

£0.5 £0.5

S S

° °

s s

= 0.0 = 0.0

0 2 4 6 8 10 0 2 4 6 8 10
% removed nodes % removed nodes
rome99b web-NotreDame

0 1.0 0 1.0 —
S S

5 S

2 2

S S

£0.5 £0.5

S S

T =]

e 2

So.0 o0

0 2 4 6 8 10 0 2 4 6 8 10

% removed nodes % removed nodes

Fig. 10. CNH random choice — real-world. For each step of CNH, the charts show how the heuristic chooses the node to remove.

Journal of Computational Science 69 (2023) 102012

p2p-Gnutella31 p2p-Gnutella25

|
o
|4
o

random choice
o
w

o
o

random choice
o
w

g
o

0 2 4 6 8
% removed nodes

10 0 2 4 6 8
% removed nodes

10

USA-road-d.NY

Lo
o
{ g
o

random choice
o
w
random choice
o
n

0.0 0.0
0 2 4 6 8 10 0 2 4 6 8 10
% removed nodes % removed nodes
web-Google web-BerkStan
0 1.0 ——— = 0 1.0 — =
S S
© ©
< £
S S
£05 £05
S S
o o
c c
So.0 o0
0 2 4 6 8 10 0 2 4 6 8 10

% removed nodes % removed nodes

0 means that an articulation point was found

and removed at that step. 1 means that a random node was selected and removed at that step.

soc-Epinions1 academia-SN

p2p-Gnutella31 p2p-Gnutella25

100 100 o 100 ——— 100 TTTTTT__CNH - DG
2 > - 2 Fl < BC
> 75 SN e BRA e 375 s 75 PRI -+ RND
s s 80 B B .
] 5 5} i
2 s0 2 2 50 g so0
5 € o0 5 5
S 8 S S
< 25 < < 25 < 25

0 40 0 0
0 200 400 600 0 500 1000 1500 2000 0 20 40 60 80 100 0 1 2 3 4 5
time time time time
amazon0601 USA-road-d.NY USA-road-d.BAY

100 100 100 100 =
z z z z
3 3 575 575
£ 80 2 80 2 2
g g 2 50 2 s0
§ s S s
o o 60 o 9]

R 60 =® 2 25 M 25
0 0
0 5000 10000 15000 20000 0 500 1000 1500 0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000
time time time time
rome99b web-NotreDame web-Google web-BerkStan
>10° —— — oM - DG >10° — CNH - DGH 100 T CNH - DG 1007 p= =N S DG
2] CLl - BC 2 Clt -~ BC z cLl —— BC z CLl —— BCH
2 75 ! PR-l -+ RND 2 75 PR =+ RND g PRI = RND § 75 PRl - RND
g H g S 80 i+
2 50 i 2 50 e 2 50
c [c . 5 c
8 25 ; S 25 g g
2 =2 = 0 s 2
ol A 0 0
0 20 40 60 80 100 0 100 200 300 0 500 1000 1500 0 500 1000 1500 2000
time time time time

Fig. 11. Iterative — real-world. Trend of graph connectivity with respect to running time for real-world graphs using the iterative strategy. The connectivity is the percentage
of the initial connectivity of the graph, the running time is expressed in seconds. Each heuristic is limited to remove maximum 10% of the nodes. The horizontal gray dotted line

denotes the 50% of residual connectivity.

4. Connectivity VS running time

While identifying the best critical nodes is important, the time
required by each heuristic to identify such critical nodes is another
determining factor that we must take into account. This factor is more
important as the number of nodes in the graph increases, indeed for
some heuristics it could become impossible to identify critical nodes in
the given time frame in large graphs, as shown in the previous sections.
In many application settings, the best heuristic is thus the one that
guarantees an optimal trade-off between the residual connectivity and
the execution time. Only for comparable connectivity in comparable
time, the heuristic that removes the minimum number of nodes is
actually to be preferred.

In this section, we consider a variant of the CNDP, denoted
CNDP(a), that is not explicitly parametrized by the number k of nodes
to remove. We select a target « € [0, 1) and we aim at finding the fastest
possible heuristic that degrades the connectivity of the network to some
y < ayy, where y, is the initial connectivity of the graph. In theory, this
variant of the CNDP does not pose any constraint to the number k of
removed nodes. In practice, however, we do limit the number of nodes

that each heuristic can remove to k = 10% of the network, knowing
from Section 3.1 that 6% is enough to halve the connectivity of any
graph in our dataset when the best heuristic for the graph is used. This
is necessary for, at least, two reasons: (i) the maximum number of nodes
that we can remove is often a constraint of the application, (ii) with no
limits to k, removing all nodes of the network would always be the
optimal solution to the problem. To address the CNDP(«a), we study
how fast each heuristic disconnects the graph analyzing the trend of
graph connectivity with respect to running time. We remind the reader
that we included the random heuristic as baseline.

Fig. 11 shows the connectivity obtained by each iterative heuristic
as a function of the running time. To compute the running time for
a given algorithm, at each step we sum up the time needed to: (i)
select the node to remove; (ii) remove the node; (iii) compute the new
connectivity, which includes decomposing the graph into SCCs. Step
(iii) is necessary to define a stopping criterion for the CNDP(a), for
which the number of nodes to remove is not known. CNH is, by far, the
fastest algorithm. Even heuristics based on very fast metrics such as DG
and PR, in fact, need to repeat steps (ii) and (iii) at each iteration. These
two steps are very efficient in our implementation of CNH because

M. Bernaschi et al.

Table 4

Journal of Computational Science 69 (2023) 102012

For each heuristic X we show the time 7, required to compute the nodes ranking, and the minimum a, that can be reached by removing 10% of the nodes.

teny is the time required by CNH to reach a = 0 or k = 10%. Nodes are removed based on the ranking computed by each heuristic. For each network the values

of ay > 0.5 are in bold and the minimum «y is underlined.

Type Name pg apR acp apc AcNH el IpR e g fenn
SN soc-Epinions1 0.23 0.19 0.28 0.16 0.08 0.003 0.09 1e+02 2e+02 2e+02
academia-SN 0.38 0.3 0.62 0.29 0.16 0.02 0.5 5e+03 9e+03 4e+03
pop p2p-Gnutella25 0.56 0.55 0.62 0.53 0.2 0.0002 0.007 1e+00 2e+00 3e+00
p2p-Gnutella31 0.54 0.53 0.63 0.51 0.03 0.0008 0.03 1le+01 2e+01 2e+01
PCP amazon0601 0.68 0.66 0.73 0.63 .28 0.06 1le+00 4e+04 7e+04 3e+04
amazon0302 0.34 0.31 0.61 0.25 0.0 0.01 0.4 le+04 2e+04 4e+03
RN USA-road-d.BAY 0.007 0.021 0.72 0.23 9.3e-05 0.01 0.4 le+04 2e+04 1e+03
rome99b 0.59 0.63 0.38 0.15 0.23 0.0001 0.004 0.5 0.6 0.9
USA-road-d.NY 0.24 0.036 0.8 0.008 0.0022 0.009 0.3 9e+03 2e+04 3e+03
WG web-NotreDame 0.0014 0.0018 0.11 0.0022 5.2e-05 0.002 0.1 2e+02 2e+02 8e+00
web-Google 0.51 0.47 0.69 0.54 0.0 0.04 1e+00 3e+04 6e+04 5e+03
web-BerkStan 0.21 0.12 0.38 0.11 0.0 0.04 1e+00 le+04 2e+04 1e+03
they exploit the data structures used to find the articulation points of web-NotreDame]
the graph. In particular, in step (ii) we manage nodes relabeling at web-BerkStan 1 °
SCC level, so when we remove a node, we re-assign labels only to the we?é%c;c;gglg: .
nodes belonging to the same SCC. In step (iii) we compute the new ¥ USA-road-d.NY 1
connectivity as the difference between the connectivity before node g USA-road-d.BAY -
x removal and the CNH score of node x. The case of the rome99b @ amazon0302 °
Ki iall hy: i d di =z amazon0601 .
network is especially noteworthy: even if BC-I and CL-I can disconnect p2p-Gnutella3l{ o—e
the graph by removing fewer nodes than CNH (see Fig. 6), CNH can p2p-Gnutella251 e—e o kasc
disconnect the graph a lot faster than both BC-I and CL-I. Summing academ!a-SN 1 ® o Kceww °
. N . . soc-Epinionsl{ ee
up, if the goal is degrading the connectivity of the network to some 5 20 20 o %0 100
fraction « of the initial connectivity, CNH is the fastest of all iterative K
heuristics considered in this paper. Additionally, in all considered real-
world graphs, except rome99b, it does so by removing fewer nodes than
’ ’ a) k vs. k g for our real-world graphs.
the other heuristics. (@) CNH BC grap
When we consider standard heuristics, most of the competitive web-NotreDame | © o as
advantage of CNH is lost. The time required by any standard heuristic W%vbes-e(?é?)tgalg] o o
X-S to address the CNDP(«) is, in fact, the sum of the time needed to: (a) rome99b - PR
compute the metric X once; (b) find the minimum k such that removing X USA-road-d.NY{ e
. .. o]l e—-o
the k top-ranking nodes decreases the connectivity by a factor a. Step 2 USA-road-d.BAY
(b) can be implemented with a binary search method, identical for all g amazon0302 1
P y > Z amazon0601{ e o
metrics, which requires to remove a bunch of nodes and compute the p2p-Gnutella31 .
obtained connectivity just a logarithmic number of times — log of one Pzp-GgUte‘_”ag'a 1 o
N, . academia-SN -
tflnth of the I}etwork size, if l}cl is ll)-lourlldedf. In the ﬁ;)ll.owmgl,. \{\{; make soc-Epinions1 - .~ o
the conserYatlve assumptl.on t ‘ at the tlme. qr step (b) is ne.g igible, .and 0.0 02 0.4 0.6 0.8 10
we approximate the running time of heuristic X-S by the time required a

to compute the metric X in the original graph.

The asymptotic running time of CL and BC is roughly O(N) times
greater than that of DG and PR (see Table 1). The values reported in
Table 4 confirm that this is true, in practice, for all of our real-world
graphs. In Table 4, ty is the running time, in seconds, of metric X,
whereas ay is the relative connectivity obtained by the X-S heuristic
by removing the top 10% of the network — in bold, all cases where
ax > 0.5. When CNH completely disrupts the network by removing
less than 10% of the network, ¢y is the time required by CNH to
reach a = 0. Table 4 shows that CL-S is hardly useful in practice: it
is the least effective of all standard heuristics, while being very time
consuming. CNH and BC-S generally outperform, in terms of «, both
DG-S and PR-S. CNH, however, runs in time comparable to BC-S, and
both these heuristics are orders of magnitude slower than DG-S and
PR-S. Whether the extra running time of CNH and BC-S is affordable
depends on the specific application setting. Generally speaking, PR-S
offers a reasonable trade-off between running time and efficacy.

While the time to remove 10% of the network with CNH and BC-S
is comparable, CNH is always preferable to BS-S, as clarified by Fig. 12.
If we bound CNH to the running time 75, we may measure the pros of
using CNH by respectively fixing the target connectivity or the number
of removed nodes. We define kcypy and acypy as, respectively, the

10

(b) acy g VS. ag for our real-world graphs.

Fig. 12. Comparison of CNH and BC-S when bound to the running time of BC-S.
keny and acyy are, respectively, the percentage of the network that can be removed
in the running time of BC-S using CNH, and the connectivity obtained removing those
kenp nodes; kge is the percentage of the network that has to be removed with BC-S
to obtain the connectivity acyp; @pe is the connectivity obtained with BC-S removing
the k¢ypy top-ranking nodes.

number of nodes that CNH removes in time 7z~ and the a reached
by CNH by removing such kqypy nodes. In Fig. 12(a), we compare
ken g With the number of nodes that BC-S must remove to reach acy ,
denoted kpc. In Fig. 12(b), we compare acypy with the a reached by
BC-S removing k¢ g nodes, denoted ape. In many cases ko < ke
and aoyy < age, meaning that CNH is clearly better than BC-S from all
points of view. In some relatively small networks, such as rome99b and
soc-Epinionsl, k¢ gy ® kg, but acyy < ape. In web-NotreDame and
USA-road-d.NY, CNH can completely disrupt the network (i.e. acyy =
0) in time ¢ ., removing a lot fewer nodes than what would be needed
with BC-S (i.e. ke < k).

M. Bernaschi et al.
5. Conclusions and future work

Understanding which nodes are critical in keeping a network con-
nected is a widely-studied problem, usually known as the Critical Node
Detection Problem (CNDP). The CNDP is generally parametrized by
an integer k and it is formulated as the problem of finding the set of
k nodes whose deletion results in the minimum pairwise connectivity
among the remaining nodes. In directed graphs, the pairwise connec-
tivity is the number of vertex pairs that are strongly connected in the
graph. The CNDP is NP-hard [13], so that heuristic algorithms are
needed to solve it in practice.

A linear-time optimal algorithm for the case k = 1 in digraphs has
been proposed by Paudel et al. in [15]. In this paper, we investigated
whether iterating Paudel’s algorithm is a viable solution to address the
CNDP for a generic k. The main idea of our iterative Critical Node
Heuristic (CNH) - identifying and removing the most critical node in
the network, to obtain the input graph of the following iteration — can
be generalized to work with any centrality metrics. We defined four
other iterative heuristics, DG-I, PR-I, CL-I and BC-I, respectively based
on the total degree, pagerank, closeness, and betweenness centralities,
and their “standard” counterparts, DG-S, PR-S, CL-S and BC-S, where
the metrics are used to rank all nodes in the graph and the k top-ranking
nodes are removed altogether. We studied the performance of our
CNH and all other iterative and standard heuristics, on both real-world
and synthetic graphs, measuring their effectiveness and efficiency, also
taking into account time constraints.

Our analysis shows that, in general, CNH is a very good option
to identify critical nodes in real-world digraphs: it is quite fast and
allows to quickly disrupt the network by removing a relatively small
number of nodes. The running time of CNH is comparable to the time
needed to compute the closeness or the betweenness centrality just
once on the input graph, but it provides much better results than both
CL-S and BC-S heuristics. Generally speaking, the longer running time
required by the iterative heuristics are not always compensated by the
quality of the results. The centrality-based heuristic that benefits more
from an iterative strategy is BC-I, but iterating the computation of the
betweenness centrality is not a viable solution for large graphs. In cases
where the running time of CNH is not affordable, PR-S and PR-I provide
a good trade-off between time and effectiveness.

The topological structure of the input graph has a remarkable im-
pact on both the average performance of the considered heuristics and
the gain provided by CNH with respect to other heuristics. In the very
homogeneous Erdés—-Rényi random graphs, all metrics perform equally
poorly, as partially known. In peer-to-peer and product-co-purchase
networks, CNH is the only heuristic that guarantees a super-linear
decrease of the connectivity as a function of k. In networks with
a pronounced scale-free structure, such as social networks and web
graphs, it is generally easier to disconnect the network with any of
the considered heuristics, and especially easy with CNH. Finally, a few
centrality-based metrics perform comparably to, or even better than,
CNH in road networks. This trend is even more visible in regular square
grid networks — which can be seen as a stylized and rigid version of road
networks — where CNH rarely finds any articulation points and is thus
outperformed by all iterative centrality-based heuristics.

Our results suggest possible directions that we plan to explore in the
future, in order to improve the performance of our CNH algorithm. In
particular, we identified graphs without articulation points as a possible
main issue for CNH. At any iteration in which no articulation points are
found, in fact, CNH removes a node chosen uniformly at random in the
network. This sometimes results in a considerable degradation of its
effectiveness. A hybridization of CNH with other heuristics, in which
the random choice is replaced by an informed choice that considers
other forms of network centrality, might be a suitable correction. Such
a change in the algorithm must be done taking into account the time
complexity needed to make the choice: we either compute the centrality
just once, at the very beginning of the process, or we need a metric that

Journal of Computational Science 69 (2023) 102012

has a linear-time complexity, such as the degree or pagerank, to prevent
from losing one of the main advantages of CNH.

Finally, we believe that revising the algorithm by Paudel et al. and
optimizing the implementation of CNH is an important contribution
towards making these algorithms usable in practice. To this end, all
the source code used in this paper is freely available on the paper
repository [25], together with the datasets and the experimental results.

CRediT authorship contribution statement

Massimo Bernaschi: Conceptualization, Writing — review & edit-
ing. Alessandro Celestini: Conceptualization, Methodology, Software,
Writing - original draft, Writing — review & editing, Visualization,
Data analysis, Data curation. Marco Cianfriglia: Conceptualization,
Methodology, Software, Writing — original draft, Writing — review &
editing, Data analysis, Data curation. Stefano Guarino: Conceptualiza-
tion, Writing — review & editing, Data analysis, Visualization. Giuseppe
F. Italiano: Conceptualization, Writing — review & editing. Enrico
Mastrostefano: Conceptualization, Software, Writing — review & edit-
ing. Lena Rebecca Zastrow: Conceptualization, Software, Writing —
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgment

The authors would like to thank Loukas Georgiadis for useful dis-
cussions and comments. This work was partially supported by TAILOR
Project EU HORIZON 2020 Research and Innovation Programme GA
No 952215 https://tailor-network.eu; and MIUR, the Italian Ministry
for Education, University and Research, under PRIN Project AHeAD
(Efficient Algorithms for HArnessing Networked Data).

References

[1] S. Borgatti, Identifying sets of key players in a social network, Comput. Math.
Organ. Theory 12 (1) (2006) 21-34.

[2] K. Das, S. Samanta, M. Pal, Study on centrality measures in social networks: a
survey, Soc. Netw. Anal. Min. 8 (1) (2018) 1-11.

[3]1 Y. Zenou, Key players, in: The Oxford Handbook of the Economics of Networks,
Vol. 11, 2016.

[4] A. Celestini, M. Cianfriglia, E. Mastrostefano, A. Palma, F. Castiglione, P. Tieri,
Critical nodes reveal peculiar features of human essential genes and protein
interactome, in: 2019 IEEE International Conference on Bioinformatics and
Biomedicine, BIBM, IEEE, 2019, pp. 2121-2128.

[5] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through
a social network, in: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003, pp. 137-146.

[6] E. Bakshy, J. Hofman, W. Mason, D. Watts, Everyone’s an influencer: Quantifying
influence on Twitter, in: Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining, WSDM ’11, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 65-74, http://dx.doi.org/10.1145/
1935826.1935845.

[7] S. Guarino, N. Trino, A. Celestini, A. Chessa, G. Riotta, Characterizing networks
of propaganda on Twitter: a case study, Appl. Netw. Sci. 5 (1) (2020) 1-22.

[8] K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, Fake news detection on social media:
A data mining perspective, ACM SIGKDD Explor. Newsl. 19 (1) (2017) 22-36.

[9] Y. Chen, G. Paul, S. Havlin, F. Liljeros, H. Stanley, Finding a better immunization
strategy, Phys. Rev. Lett. 101 (5) (2008) 058701.

[10] F. Bauer, J. Lizier, Identifying influential spreaders and efficiently estimating
infection numbers in epidemic models: A walk counting approach, Europhys.
Lett. 99 (6) (2012) 68007.

https://tailor-network.eu
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb1
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb2
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb3
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb4
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb5
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb5
http://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1145/1935826.1935845
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb8
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb8
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb8
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb10
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb10

M. Bernaschi et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Cohen, S. Havlin, D. Ben-Avraham, Efficient immunization strategies for
computer networks and populations, Phys. Rev. Lett. 91 (24) (2003) 247901.
M. Lalou, M. Tahraoui, H. Kheddouci, The critical node detection problem in
networks: a survey, Comp. Sci. Rev. 28 (2018) 92-117.

A. Arulselvan, C. Commander, L. Elefteriadou, P. Pardalos, Detecting critical
nodes in sparse graphs, Comput. Oper. Res. 36 (7) (2009) 2193-2200.

T. Dinh, Y. Xuan, M. Thai, P. Pardalos, T. Znati, On new approaches of assessing
network vulnerability: Hardness and approximation, IEEE/ACM Trans. Netw. 20
(2) (2012) 609-619.

N. Paudel, L. Georgiadis, G. Italiano, Computing critical nodes in directed graphs,
J. Exp. Algorithmics 23 (2) (2018) 2.

L. Georgiadis, G. Italiano, N. Parotsidis, Strong connectivity in directed graphs
under failures, with applications, SIAM J. Comput. 49 (5) (2020) 865-926.

M. Ventresca, D. Aleman, Efficiently identifying critical nodes in large complex
networks, Comput. Soc. Netw. 2 (1) (2015) 6.

L. Page, S. Brin, R. Motwani, T. Winograd, The Pagerank Citation Ranking:
Bringing Order to the Web, Tech. Rep., Stanford InfoLab, 1999.

U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2) (2001) 163-177.

C. Demetrescu, A. Goldberg, D. Johnson, 9th Dimacs Implementation
Challenge-Shortest Paths, American Mathematical Society, 2006.

J. Leskovec, A. Krevl, Snap Datasets: Stanford Large Network Dataset Collection,
2014.

M. Fire, L. Tenenboim-Chekina, R. Puzis, O. Lesser, L. Rokach, Y. Elovici,
Computationally efficient link prediction in a variety of social networks, ACM
Trans. Intell. Syst. Technol. 5 (1) (2014) http://dx.doi.org/10.1145/2542182.
2542192.

M. Bernaschi, G. Carbone, F. Vella, Scalable betweenness centrality on multi-gpu
systems, in: Proceedings of the ACM International Conference on Computing
Frontiers, 2016, pp. 29-36.

A. Rungsawang, B. Manaskasemsak, Fast pagerank computation on a gpu cluster,
in: 2012 20th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, IEEE, 2012, pp. 450-456.

M. Bernaschi, A. Celestini, M. Cianfriglia, S. Guarino, G. Italiano, E. Mastroste-
fano, L. Zastrow, Seeking critical nodes in digraphs, 2022, http://dx.doi.org/10.
5281/zenodo.1234, URL https://github.com/github/iac-cranic/seeking critical_
nodes_digraphs.

P. Boldi, M. Rosa, S. Vigna, Robustness of social and web graphs to node removal,
Soc. Netw. Anal. Min. 3 (4) (2013) 829-842.

Massimo Bernaschi has been 10 years with IBM working in
High Performance Computing. Currently he is with the Na-
tional Research Council of Italy (CNR) as Chief Technology
Officer of the Institute for Applied Computing “M. Picone”.
He is an adjunct professor at “LUISS” University in Rome
and has been named CUDA-Fellow in 2012.

Alessandro Celestini is a researcher at the Institute for
Applied Computing “M. Picone” of the National Research
Council of Italy. He holds both a Bachelor and Master’s
degree in Computer Science, from the University of Rome
“La Sapienza”, and a Ph.D. In Computer Science and Engi-
neering, from the School for Advanced Studies IMT Lucca.
His research interests include complex network analysis,
graph algorithms and high performance computing.

12

Journal of Computational Science 69 (2023) 102012

Marco Cianfriglia is a researcher at Department of Mathe-
matics and Physics of Roma Tre University. He holds both
a Bachelor and Master’s degree in Computer Science, from
the University of Rome “La Sapienza”, and a Ph.D in Math-
ematics from Roma Tre University. His main interests are
high performance computing, digital forensics, and security.

Stefano Guarino earned his Ph.D. in Mathematics from the
University of Roma Tre, and he is now a researcher at the
Institute for Applied Computing “M. Picone” of the National
Research Council of Italy. His research activity focuses on
data analysis and security, social network modeling and
analysis, and the study of diffusion processes on networks.

Giuseppe F. Italiano is Professor of Computer Science at
Luiss University. He has been Visiting Professor at Columbia
University, Université Paris-Sud, Max-Planck-Institut fur
Informatik and Hong Kong University of Science & Tech-
nology. Most of his research is centered around algorithms,
and in 2016 he was nominated Fellow of the European Asso-
ciation for Theoretical Computer Science for “fundamental
contributions to the design and analysis of algorithms for
solving theoretical and applied problems in graphs and
massive datasets, and for his role in establishing the field
of algorithm engineering”.

Enrico Mastrostefano has received his degree in Physics
and a Ph.D. in Computer Science from “Sapienza University
of Rome”. Currently he is a research fellow at the Institute
for applied mathematics “Mauro Picone” (IAC) - CNR. His
research interests include complex networks, mathemati-
cal modeling of biological systems and high performance
computing.

Lena Rebecca Zastrow received her Ph.D. in Physics at the
University of Rome “Roma Tre” and her degree in Physics at
the University of Rome “Sapienza”. Her research interests lie
in the area of computational modeling of complex networks
and biological systems.

http://refhub.elsevier.com/S1877-7503(23)00072-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb11
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb12
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb14
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb15
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb16
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb17
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb18
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb19
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb20
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb21
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb21
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb21
http://dx.doi.org/10.1145/2542182.2542192
http://dx.doi.org/10.1145/2542182.2542192
http://dx.doi.org/10.1145/2542182.2542192
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb23
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb24
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb24
http://dx.doi.org/10.5281/zenodo.1234
http://dx.doi.org/10.5281/zenodo.1234
http://dx.doi.org/10.5281/zenodo.1234
https://github.com/github/iac-cranic/seeking_critical_nodes_digraphs
https://github.com/github/iac-cranic/seeking_critical_nodes_digraphs
https://github.com/github/iac-cranic/seeking_critical_nodes_digraphs
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb26
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb26
http://refhub.elsevier.com/S1877-7503(23)00072-8/sb26

	Seeking critical nodes in digraphs
	Introduction
	Methodology
	Networks
	Experimental setup

	Connectivity VS Removed Nodes
	Real-World Graphs
	Synthetic Graphs

	Connectivity VS Running Time
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

