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Crediting football players for creating dangerous actions in an
unbiased way: the generation of threat (GoT) indices.

Ali Baouan ∗ Sebastien Coustou † Mathieu Lacome ‡ Sergio Pulido §

Mathieu Rosenbaum ¶

Abstract

We introduce an innovative methodology to identify football players at the origin of threatening
actions in a team. In our framework, a threat is defined as entering the opposing team’s danger
area. We investigate the timing of threat events and ball touches of players, and capture their
correlation using Hawkes processes. Our model-based approach allows us to evaluate a player’s
ability to create danger both directly and through interactions with teammates. We define a new
index, called Generation of Threat (GoT), that measures in an unbiased way the contribution
of a player to threat generation. For illustration, we present a detailed analysis of Chelsea’s
2016-2017 season, with a standout performance from Eden Hazard. We are able to credit each
player for his involvement in danger creation and determine the main circuits leading to threat.
In the same spirit, we investigate the danger generation process of Stade Rennais in the 2021-2022
season. Furthermore, we establish a comprehensive ranking of Ligue 1 players based on their
generated threat in the 2021-2022 season. Our analysis reveals surprising results, with players
such as Jason Berthomier, Moses Simon and Frederic Guilbert among the top performers in the
GoT rankings. We also present a ranking of Ligue 1 central defenders in terms of generation of
threat and confirm the great performance of some center-back pairs, such as Nayef Aguerd and
Warmed Omari.

1 Introduction

Which player should be credited for a successful action or sequence in a football match? In the case
of a goal, the striker obviously plays an important role. However, we all have in mind goals where
the striker just needs to push the ball after a great assist. In that case, the passer is certainly the
most important player involved. Some argue that the second-to-last pass is actually the most crucial
component as it is often this pass that creates disequilibrium. Sometimes, we even see a clearance
by a goalkeeper being at the origin of a dangerous situation.

In this work, our goal is to build a quantitative and unbiased methodology enabling us to as-
sess the importance of a player in the generation of dangerous actions. By a threat, we simply mean a
situation where a player of the team of interest gets the ball in the danger area of the opposing team.
The danger area is defined as a rectangular region around the opponent’s goal where the likelihood of
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scoring from a shot is high. To achieve our objective, we need to model interactions between players,
taking into account past events in the game accurately. This is because we want, for example, to be
able to credit a defender for a great pass that leads to a dangerous situation after several ball touches
following the initial pass. Therefore, at the timestamp where the action is considered dangerous (in
our case when the ball reaches the danger area), we must "remember" the original pass of the defender.

Thus, at a given time t, we want to draw links between past events in the game and its fu-
ture. With this objective in mind, simply relying on the current state of the game (players and ball’s
positions) as the information set is not enough for modeling the game accurately. It is important to
consider the dynamics that occurred prior to time t. This is in contrast to the so-called Markovian
approach where one summarizes information obtained from the beginning of the game until time t by
the state of the game at time t. The Markovian setting is in fact underlying some very relevant and
successful metrics introduced recently such as the expected goals (Green, 2012) and expected assists
(Whitmore, 2021). For example, the expected goal estimates the probability that a shot results in a
goal based on factors such as the distance to the goal and the angle of the shot, both attributes of
the game state at time t. The Markov assumption is in that case natural as these features give a
reasonable estimate of the quality of the chance. Similarly, the expected assists aim at measuring
the probability that a pass leads to a goal, by looking at a different subset of game state features,
such as the type of the pass and the coordinates of the target. What these two approaches have in
common is that given time t they define a value for an action (pass or shot), that is determined by
the game state at time t only and does not look at the past patterns of play. In the same spirit, the
expected threat introduced in (Singh, 2018) assigns a value to each game state depending only on
the position of the ball. This value combines the possibilities of a direct shot or a pass to another
position in quantifying the expected number of goals.

To account for the effect of past events in the future dynamics of a game, we introduce Hawkes
processes (Hawkes, 1971a,b) to reproduce interactions between players. Hawkes processes are
stochastic models used to model sequences of random events. They are widely used in various
fields such as earthquake modeling (Adamopoulos, 1976; Ogata, 1988), neuroscience (Lambert
et al., 2018; Bonnet et al., 2022a) and finance (Jaisson and Rosenbaum, 2015). In our case, the
events are the times when players touch the ball. Specifically, we implement a Hawkes process
with 11 components (number of players in the team), with component i corresponding to player
i of the team of interest. The value of this component at time t is simply the number of times
player i has touched the ball from the beginning of the game to time t. At each time the player
touches the ball, his corresponding component increases by one. The innovation here is that we col-
lect information from these timestamps and their correlations from one player to the other teammates.

The specificity of Hawkes processes is that at time t, the probability that player i gets the ball
shortly after t depends on which players had possession of the ball before t and how long ago they
had it. The impact on this probability of a player touching the ball a long time before t is negligible
compared to a player who had possession right before t. The ability to reproduce the decaying
impact of events with time is a particularly useful property of Hawkes processes in our context. For
instance, let us consider a central defender. At time t, the probability that he gets the ball in the
near future should be high if, in the recent past (last few seconds), he already touched the ball
and/or another central defender did. On the contrary, if the forward players have held the ball for
the past minute, this probability should be low.

Then, we add a twelfth component to our Hawkes process that we call threat. The value of
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the threat component at time t is simply the number of times the ball has reached the danger area of
the opposing team between the beginning of the game and time t. Treating this component as part
of our Hawkes process, we are able to model the influence of each player in the generation of threat.

Calibrating our model allows us to assess the contribution of each player of a team to the cre-
ation of dangerous situations. We are therefore able to investigate carefully the subtle dynamics and
connections leading to ominous situations. In particular, we can emphasize the crucial role of certain
players that are not spotted by other statistics. Note that our calibration requires the analysis of a
data set of at least ten games. So we are not evaluating each action occurring in a game but rather
the global performance of players in terms of threat generation over a sequence of games.

More precisely, the structure of Hawkes processes allows us to define the Generation of Threat (GoT)
indices to objectively evaluate a player’s involvement in the creation of threats over a considered
series of games. These metrics quantify the expected number of dangerous situations for which a
player can be credited. The direct generation of threat indices GoTd and GoTd

90 measure the number
of threats the player is directly responsible for generating per touch of the ball and per 90 minutes,
respectively. Directly generating a threat can be viewed as being the last link in the chain of events
leading to it. On the other hand, the indirect generation of threat indices GoTi and GoTi

90 measure
the indirect contribution per touch and per 90 minutes, respectively, adding the danger created via
the interactions with other players too. In this case, we count all the instances where the player
participates in the chain of events leading to the dangerous situation. As an application, we use
the GoT indices to rank the Ligue 1 players in the 2021-2022 season. Not surprisingly, the top
positions are dominated by established offensive players. However, we also identify some surprising
picks, including Jason Berthomier, Moses Simon and Frederic Guilbert, who rank among the top
twenty players. We also compare the performance of the Ligue 1 central defenders in terms of
GoTi

90. Naturally, defenders from Paris Saint-Germain stand out and benefit from the offensive
performance of their forwards. However, we also identify other excellent center-back pairs such as
Nayef Aguerd and Warmed Omari from Stade Rennais, and Facundo Medina and Jonathan Gradit
from Lens. Moreover, our approach allows us to rate these players based on their performance in
specific positions in a formation, providing a tool to identify the optimal position for each player.

Our approach has the property of being easily interpretable using the immigration-birth repre-
sentation of linear Hawkes processes, see (Hawkes and Oakes, 1974). This representation induces a
notion of causality between events and allows us to visualize the interactions between different event
types in a graph. All player touches can be viewed as individuals in a population, and each individual
independently generates offsprings, that are threat events or ball touches of the same player or other
players. In particular, this enables us to effectively interpret the estimated GoT metrics as a measure
of the causal relationship between the player’s touch and subsequent threat events. Furthermore,
we can construct interaction networks of football teams and graphically analyze a team’s in-game
dynamics and danger creation circuits. We apply this approach to investigate games from Chelsea
in the 2016-2017 season and Stade Rennais in the 2021-2022 season. We are able to effectively
capture the main threat creation circuits that the opponent should try to control. Identifying specific
patterns and evaluating the ability of players to create threat with our methodology paves the way
to more informed decisions about tactics.

The article is organized as follows. In Section 2, we provide an overview of Hawkes processes
and recall the results that are useful for our football application. Section 3 describes the event-based
data we have in hand and how it is processed. Furthermore, we present the interpretation of the
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estimated parameters in the context of football and define the Generation of Threat (GoT) metrics.
In Section 4, we briefly describe the maximum likelihood estimation methodology. We also conduct
a study on simulated data to measure estimation accuracy that can be expected on real datasets
depending on the amount of available data. We find that reliable estimation can be obtained from
600 minutes of football data. Section 5 presents the results of our analysis on a collection of Chelsea
games in the 2016-2017 season. In Section 6, we establish a ranking of Ligue 1 players in the
2021-2022 season based on their GoT indices. Finally, in the appendix, we present the analysis of
the Stade Rennais games in the 2021-2022 Ligue 1 season.

2 Hawkes processes

This section provides a short overview of Hawkes processes. It includes necessary definitions and
theoretical results for a better understanding of the subsequent analysis of football dynamics.

As mentioned in the introduction, Hawkes processes are a class of multivariate point processes
introduced in (Hawkes, 1971a). If we consider a vector N(t) = (Ni(t))i∈{1,...,d}, where Ni(t) denotes
the number of events for the i-th component between 0 and t, the associated intensity process can
essentially be defined as:

λi (t) := lim
h→0+

P(Ni(t+ h)−Ni(t) = 1|Ft)

h
.

Here, Ft is the filtration generated by {Ns, s < t}, that is the information set available at time t.
The intensity of a counting process determines the rate at which new jumps occur based on past
events, see (Brémaud, 1981) for a more rigorous definition. In the case of Hawkes processes, the
intensity is a linear combination of past jump times.

Definition 2.1 (Hawkes process). A d-variate Hawkes process is a counting-process N(t) ∈ Rd

whose i-th component is determined by its intensity of the form:

λi(t) = µi +

d∑
j=1

∑
t
(j)
k <t

ϕi,j(t− t
(j)
k ),

where the
(
t
(j)
k

)
k≥1

are the times of events for dimension j for j = 1, . . . , d. µi ∈ R+ is a constant

baseline intensity and ϕi,j : R+ → R+ is a non-negative kernel. We can write the expression for the
intensity in the vectorial form:

λ(t) = µ+

∫ t

0
ϕ(t− s)dN(s),

with µ ∈ R+d and ϕ = {ϕi,j}0≤i,j≤d : R+ → Rd×d a non-negative matrix-valued kernel.

The underlying idea behind Hawkes processes is that a constant intensity µ generates the initial
batch of jumps across all dimensions. These jumps are random but the rate of their occurrence
remains constant over time. Then, each jump increases the intensity in the near future; therefore,
exciting new jumps, that in turn trigger other jumps. This leads to a chain reaction called the
self-excitation property of Hawkes processes.

We need to impose conditions for this system to be stable. These conditions can be stated in
terms of the branching matrix defined below:
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Definition 2.2 (Branching matrix, stability). The branching matrix of a Hawkes process is defined
as,

K =

∫ ∞

0
ϕ(t)dt =

{∫ ∞

0
ϕi,j(t)dt

}
1≤i,j≤d

.

Moreover, a Hawkes process is said to be stable if
∫∞
0 ϕi,j(t)dt < ∞ for all i,j and if the spectral

radius ρ(K) of the branching matrix satisfies:

ρ(K) < 1.

See (Jaisson and Rosenbaum, 2015) for more details.

Immigration-birth representation: Introduced in (Hawkes and Oakes, 1974), the immigration-
birth representation provides an intuitive way to understand linear Hawkes processes. Let us consider
a stable d-dimensional Hawkes process N(t) with a baseline intensity µ and a kernel ϕ. The law
of such point process can be described through a population approach. Essentially, we consider a
population where immigrants of d types arrive at random times. Each of them gives birth to children
of all types. Then the children, grand-children, grand-grand-children etc. also give birth to children
of all types. More precisely, the dynamic is constructed as follows:

• For j = 1, 2, . . . , d , we consider an instance of a Poisson process with rate µj , with its elements
called immigrants of type j. Generation 0 consists of the immigrants;

• Recursively, given generations 0, 1, . . . , n, each individual born at time s of type j in generation
n generates its offspring of type i as an independent instance of a non-homogeneous Poisson
process with rate λs,n

t := ϕi,j(t − s) for t ≥ s. The union of these offspring of all types
constitutes generation n+ 1.

• The point process is then defined as the union of all generations.

The resulting process has the law of a Hawkes process. In this representation, stability means
each individual has less than one child on average in the case d = 1, which ensures some good
mathematical properties for the process. From now on, we assume that all considered Hawkes
processes are stable. Additionally, under this construction, Ki,j =

∫∞
0 ϕi,j(t)dt can be interpreted as

the expected number of direct children of type i of an individual of type j. The following proposition
provides a closed-form formula for the expected number of descendants of a single individual. It
includes both immediate descendants and those from later generations. This result is derived similarly
to the one-dimensional case in (Jaisson and Rosenbaum, 2015), and allows us to quantify the average
number of events originating from each jump from each dimension.

Proposition 2.1. The entry i, j of the matrix K(I −K)−1 gives the expected number of descendants
of type i generated by an individual of type j.

In this work, we estimate a branching matrix from football event-based data. We use the parametric
class of exponential kernels in our estimation methodology.

Definition 2.3 (Exponential kernels). The exponential kernel is defined as

ϕi,j(t) = αi,je
−βi,jt1t≥0,

where αi,j, βi,j are nonnegative real numbers.

Exponential kernels are particularly nice from a computational viewpoint in estimation. Additionally,
their parameters are easy to interpret. In fact, the branching matrix in this case is simply given by
K = (

αi,j

βi,j
)i,j and the decay parameter βi,j indicates the speed at which cross excitation decreases.
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3 Event-based football data

3.1 Description of the data

We use the F24 files provided by Stats-perform1. Each file gives comprehensive information about a
football match. Information includes the formation of each team and the position of each player on
the pitch. Additionally, it lists all events occurring with the ball within the game specifying the
player involved, the event type, the coordinates on the pitch, and the timestamp for each action.

In the Stats-perform classification system, each position on the pitch is assigned a number p
in {1, . . . , 11} for each formation. The distribution of these positions for various formations is shown
in Figure 1. Our study aims at understanding the impact of ball touches in each position p in
{1, . . . , 11} on a team’s offensive performance. To ensure homogeneity, the analysis is conducted
only on games where each position has the same role. For this purpose, we group formations in
clusters of similar shapes as those presented below and only use matches from the most commonly
used cluster for each team:

• Cluster 1: 433, 4141, 4231, 4321.

• Cluster 2: 442, 41212, 451, 4411, 4222.

• Cluster 3: 532, 352, 31312, 3511, 3412.

• Cluster 4: 343, 541, 3421.

3.2 Processing of the data for Hawkes inference

We study our event-based data using Hawkes processes. Doing so, we can gain insights from
timestamps of events and information about the spatial coordinates of the ball. For a given team
and a list of its games in the same formation cluster, we build a 12-dimensional point process for
each game. Each dimension p ∈ {1, . . . , 11} records the timestamps of ball touches by the player
occupying position p, regardless of his identity. The twelfth dimension represents the threat state
and is triggered every time there is a ball touch by a player from the considered team in the danger
area of the opponent. The danger area is defined as a box around the opposing goal covering 50% of
the width of the pitch and 25% of its length, as illustrated in Figure 2. When a player has possession
of the ball in this region, the probability of a shot occurring is high, see (Singh, 2018) for an estimate
of the shot probability at each location on the pitch. Compared to the penalty surface, the danger
area is slightly closer to the midfielders and defenders, enabling us to capture more threat events
generated by these positions.

The following rules are applied when constructing the process:

1. Every time a player in the considered team touches the ball, there is a jump in the dimension
p ∈ {1, . . . , 11} associated with his position.

2. Every time a player in the considered team touches the ball inside the opposing threat area,
there is a jump in the twelfth dimension at the corresponding timestamp. In this case, no
jump is recorded in the component associated with the player.

1https://www.statsperform.com/
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(b) 442 Formation.
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(c) 532 Formation.
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(d) 343 Formation.

Figure 1: The number associated with each position for each group of formations.

danger area

Figure 2: Representation of the danger area.

3. Once a threat state is triggered, no jumps or time are recorded until the ball exits the danger
area. We resume counting the jumps when the ball is outside the danger area by at least two
meters.

4. When the ball is lost (when there is an event where the opposing team has the ball), the time
and events are not recorded until the ball is won again. Upon regaining possession, we resume
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Figure 3: Example of constructed point process.

recording the events in our point process by adding a random duration, with an average of
twelve seconds, generated from the sum of two exponential distributions of parameter six.

5. We exclude crossing events coming from a free kick or a corner.

Rule 3 is considered to avoid consecutive threat states. We are not interested in the auto-exciting
property of the threat events. Therefore, we stop recording once a threat state is achieved and only
resume when the team is outside the opposing surface by at least two meters. In Rule 4, we want to
avoid having large durations where no event occurs. This is the case every time the considered team
loses the ball to the opposition. Thus, the possession times of the opponent are compressed into
an average of twelve seconds. The choice of the twelve seconds threshold is based on the average
duration between events to which we add another exponential random variable as a penalization
for losing the ball. The constructed point process considers possession stretches of the team to be
uninterrupted. Rule 5 is implemented because the crossing events are highly correlated with threat
events. In particular, the designated set piece taker of each team is naturally responsible for more
threats. Therefore, we choose to discard these events to remove bias from our measure of danger
creation and ensure fair player comparisons.

Given a collection of games of a team, the point processes built from each game are assembled into
one process. An example of the resulting point process is shown in Figure 3. We use information on
the timestamps and spatial coordinates on the field to define the threat state. The aim is to extract
the causal relationship between player touches. We are interested in identifying the positions where
a ball touch is directly correlated to a future jump in the twelfth dimension, which represents a
threat. We also want to measure the indirect contribution of a player to the generation of threat
through his interaction with other players.

Remark 3.1. In the following, we aim at evaluating a player’s performance when he plays in a
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specific position. To achieve this, we only consider sequences of games where the player in question
is playing in that position. We record ball touches in the other positions regardless of the identity of
the player occupying them. In Section 5 and Appendix A where we analyze the interactions between
the starting eleven players in given teams, we only record sequences of games where the same eleven
players play in their respective positions. The way we deal with substitutions is detailed for each case
in Sections 5 and 6.

Remark 3.2 (A different twelfth dimension). In this work, we have incorporated a twelfth dimension
that tracks the instances of entering the opposing danger area. This is done because we want to
identify the players who are responsible for creating the threat events. Our approach can be extended
for various analyses by selecting an alternative twelfth state. For example, we can choose to record the
timestamps of ball losses in the twelfth dimension instead of threats. This would enable us to identify
the players who are most accountable for losing possession and measure the correlation between their
touches and subsequent turnovers.

3.3 Generation of Threat (GoT) indices

The immigration-birth representation of Hawkes processes explained in Section 2 allows us to es-
tablish connections between the events in a football match. Essentially, each ball touch or threat
event can be seen as an individual in a population, that generates first-generation children of various
types - ball touches from other players and threat situations. These offspring, in turn, generate
additional ball touches or threat events etc. When we say that an event generates a ball touch or a
dangerous situation, we mean that it is responsible for its occurrence. This is a subtle definition
because being responsible for an action does not necessarily mean providing the pass that leads
to it. In some instances, the second-to-last pass is the most crucial step in creating the dangerous
situation. There may even be several events between the generating ball touch and the dangerous
action. Our approach eliminates these "noisy" in-between events and associates events through
parent-child connections. Hawkes processes impute the responsibility of generating a threat to
the most likely parent event, even if it occurred prior to other ball touches. In particular, they
allow us to quantify the average number of dangerous actions that can be attributed to a given player.

Using this population representation, we define the following GoT indices to assess the ability
of a player to generate threat when he plays in a given position. The first two indices evaluate the
impact of one touch of the player whereas the latter two measure the impact of the player’s touches
over 90 minutes.

Direct GoT per touch (GoTd): A ball touch from the player in position p generates first-
generation children of type threat. We refer to these instances as the direct threat events generated
by the player touch. We define GoTd as the average number of these threat events that occur
because of one touch from player p. This metric describes the intrinsic ability of the player to create
dangerous situations. It can be calculated through the estimated branching matrix:

GoTd(p) = K12,p.

Indirect GoT per touch (GoTi): A ball touch from a given player can be directly responsible
for a threat event, but can also generate other ball touches that then generate danger. To quantify
the total impact of a single player touch on the danger creation process, we use Proposition 2.1 and
consider the matrix

M = K(I −K)−1.
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The coefficient M12,p represents the expected number of threat events where the ball touch from the
player p originates the chain of events leading to it. This includes the threat directly generated but
also the one resulting from a sequence of other player touches. The difference with the GoTd index
is that we credit the player touch for being at the root of the generation process and not for the
crucial creative step.

GoTi(p) = M12,p.

Direct GoT per 90 minutes (GoTd
90): We may want to account for the involvement in the

game of a given player by normalizing GoTd by his expected number of touches. We define the
direct GoT per 90 minutes as the expected number of dangerous actions over 90 minutes2 for which
we credit the player:

GoTd
90 = E (Np(T ))× GoTd(p),

where T = 90 minutes. The expected number of touches vector can be approximated thanks to the
law of large numbers:

E (N(T )) ≈ (I −K)−1µT.

Indirect GoT per 90 minutes (GoTi
90): This index measures the expected number of threats

over 90 minutes where a given player is involved in the building circuit. We define the indirect GoT
per 90 minutes as the average number of threat events subtracted by the average number of threat
events if the considered player is removed from the pitch. The GoTi

90 index is therefore calculated
as follows:

GoTi
90 = E

(
N12(T,K, µ)−N12(T,K

(−p), µ(−p))
)
,

where K(−p) is defined as the matrix K where the pth row and pth column are set to zero. Likewise,
µ(−p) is defined as the vector µ where the pth coordinate is set to 0. The expected number of threats
can be approximated using the branching matrix and the baseline intensity µ:

E (N12(T,K, µ)) ≈
(
(I −K)−1µT

)
12
.

Remark 3.3. Calculating the GoTi
90 by multiplying the GoTi index by the average number of ball

touches of the player would overestimate the player’s involvement in danger creation. In fact, we
would count multiple times the circuits leading to threat where the player touches the ball more than
once.

Additionally, a ball touch from a player can also be responsible for generating ball touches from other
players or himself. In this case as well, this is not necessarily achieved through a direct pass. Hawkes
processes allow us to estimate the expected number of these generated ball touches. Similar to the
GoTd index definition, the branching coefficient Kp1,p2 indicates the expected number of touches
of player p1 that happen because a given ball touch from player p2 occurred before. The graphical
representation of these interaction indices through a graph helps us gain a better understanding of
the danger creation process. In particular, it allows us to identify the patterns of play that end in a
threat.

2Note that here 90 minutes corresponds to 90 minutes of data after processing which does not translate to 90
minutes in a football match. This is notably because of the concatenation of sequences of possession explained in
Section 3.2.
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4 Maximum Likelihood estimation

4.1 Likelihood of Hawkes process

This section describes briefly parameters estimation for multivariate Hawkes processes, see (Ogata
et al., 1978; Bonnet et al., 2022b). Consider a d-dimensional point process (N(t)) on [0, T ] with
intensity of the form

λi(t, θ
∗) = µ∗

i +
d∑

j=1

∑
t
(j)
k <t

α∗
i,j exp

(
−β∗

i,j(t− t
(j)
k )

)
,

where θ∗ = (µ∗, α∗, β∗) are some unknown parameters. Given fixed parameters θ = (µ, α, β) and a
realization of the Hawkes process, the log-likelihood is calculated as follows:

ℓ(θ) =

d∑
i=1

−
∫ T

0
λi(s, θ)ds+

∑
t
(j)
k <T

log
(
λi(t

(i)
k , θ)

) . (1)

The maximum likelihood estimator is the parameter that maximizes the above function. It can
be observed from Equation (1) that the likelihood can be separated into d distinct subfunctions,
each dependent on the parameters µi and (αi,j , βi,j)j=1,...,d for i in {1, . . . , d}. As a result, the
optimization can be performed separately d different times to estimate each subset of parameters. It
is shown in (Ogata et al., 1978) that this estimator is consistent. Additionally, the log-likelihood can
be simplified in the case of exponential kernels and computed in time complexity of O

(
d2N(T )

)
,

see (Ogata, 1981). For example, for d = 1 and T = tn, the likelihood is given by :

ℓ(θ) =

n∑
i=1

log (µ+ αR(i))− µtn +
α

β

n∑
i=1

(
e−β(tn−ti) − 1

)
,

where R(i) =
i−1∑
j=1

e−β(ti−tj) can be computed recursively for i in {2, . . . , n} :

R(i) = e−β(ti−ti−1) (1 +R(i− 1)) .

Remark 4.1. The likelihood function is not concave with respect to (βk,l)k,l=1,...,d in the exponential
case. This means that convergence to the global maximum is not guaranteed, especially in large
dimensions. Fixing βk,l = βk for all l = 1, . . . , d as proposed by (Bonnet et al., 2022b) produces
very good results for d = 12. In this case, each of the objective functions is not concave in only one
parameter instead of d.

Remark 4.2. In the context of football, the effect of a ball touch on the intensity of the process
should last no longer than a few seconds. When n realizations of football matches are concatenated
and treated as one long game, the likelihood function should not be altered by much. In fact, the rapid
decay of the exponential kernel compared to the duration of games makes the induced error negligible.

4.2 Simulation study

The goal of this section is to evaluate the maximum likelihood estimation using a simulated dataset
that reproduces similar dynamics as those in a football game. We want to determine the amount
of data required for an accurate estimation of the branching matrix. We also want to assess the
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model’s ability to detect a null kernel between two dimensions. A null kernel ϕi,j means a jump
in dimension j has no exciting effect on dimension i. In the context of football, it is particularly
informative to detect such an absence of connection between players.

We perform simulations over different horizons. The parameters are sampled as follows:

• µ is chosen from a uniform random variable over [0.006, 0.01].

• β is chosen to be constant for all i, j in {1, . . . , 12} sampled from a uniform random variable
over [0.5, 1] .

• The αi,j are chosen independently from a geometric distribution of parameter p = 0.4 scaled
by 40 for all i, j so that 40% of the values are equal to 0.

Horizon (minutes) False positive Error on false negative Relative error

300 1.1% 0.0054 25.7%

600 0.0% 0.0045 19.3%

1200 0.0% 0.0030 12.4%

2400 0.0% 0.0020 11.4%

Table 1: Accuracy results of the maximum likelihood estimation of Hawkes parameters on the
simulated dataset.

Then we fit a 12-dimensional Hawkes process to this data using the algorithm from (Bonnet et al.,
2022b). We analyze the resulting accuracy as a function of the simulation horizon. Table 1 presents
the results through three different metrics:

• False positive: Percentage of branching matrix coefficients α̂i,j wrongly estimated as null when
αi,j > 0. Our estimation correctly detects existing links even for small horizons.

• Error on false negative: Our estimation detects accurately 60% of null links αi,j = 0. The
estimation on the remaining 40% is generally very low as can be seen in Table 1.

• Relative error: The weighted mean absolute percentage error when αi,j > 0. This metric is
defined as the mean absolute error divided by the average value of αi,j :

wMAPE =

∑
i,j

|α̂i,j − αi,j |1αi,j>0∑
i,j

αi,j1αi,j>0
.

The maximum likelihood estimate is good enough for our purposes given the high dimensionality.
Figure 4 shows the estimated branching matrix from a simulation of horizon 600 minutes. We
observe that the estimated branching matrix appears to correctly approximate the true branching
matrix in Figure 5.

Remark 4.3 (Confidence intervals). Given regularity assumptions on the kernel of the Hawkes
process, we can retrieve the rate of convergence of the maximum likelihood estimator and build
asymptotic confidence intervals. We do not include confidence interval values here to ease reading
but our choice of minimal number of games is dictated by them and the analysis in this section.
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Figure 4: Estimated branching matrix.
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Figure 5: True branching matrix.

5 Analysis of Chelsea FC in the 2016-2017 season

As a first example, we perform our analysis on a selection of Chelsea FC matches from the 2016-2017
season. The team had a stable formation and a constant starting eleven over thirteen games in the
Premier League. This is quite convenient because we retrieve a large amount of data where each
position p in {1, . . . , 11} is associated with one player. Similar analysis for Stade Rennais in the
2021-2022 season is provided in Appendix A.

5.1 Selected games

In Table 2, we give the list of selected games for Chelsea FC. In each of these games, the flat 343
formation is used for at least sixty minutes and the starting eleven remains the same:

• Thibaut Courtois.

• Gary Cahill - David Luiz - Cesar Azpilicueta.

• Marcos Alonso - Nemanja Matic - N’Golo Kante - Victor Moses.

• Eden Hazard - Diego Costa - Pedro Rodriguez.

Therefore, we use the data before the first substitution from Chelsea FC in each game to build the
counting process.

5.2 Results and discussion

In Table 3, we display the different GoT indices for the Chelsea players. Figure 6 graphically
represents the direct interactions between players as well as their GoTi indices and Figure 7 shows
the estimated branching matrix. We can identify two buildup schemes along the wings with two
triangles: Cahill-Alonso-Matic and Kante-Azpilicueta-Moses. The main channel of communication
between both sides is based on the Matic-Kante link.

Below is a list of observations on players:

Eden Hazard: Unsurprisingly, the offensive player, ranked second in the PFA Players’ Player of
the Year 2017 award, leads all GoT metrics. In particular, there is no significant difference between
his GoTd

90 and GoTi
90 indices, indicating that his primary way of creating danger is through direct

threat. Hazard was well known for his aggressive and direct play as well as for his dribbling.

13



Date Opponent Home or Away Competition

Oct 15, 2016 Leicester City Home English Premier League
Oct 23, 2016 Manchester United Home English Premier League
Oct 30, 2016 Southampton Away English Premier League

Nov 5, 2016 Everton Home English Premier League
Nov 20, 2016 Middlesbrough Away English Premier League
Nov 26, 2016 Tottenham Hotspur Home English Premier League

Dec 11, 2016 West Bromwich Albion Home English Premier League
Jan 4, 2017 Tottenham Hotspur Away English Premier League
Jan 22, 2017 Hull City Home English Premier League

Feb 4, 2017 Arsenal Home English Premier League
Feb 12, 2017 Burnley Away English Premier League
Apr 8, 2017 Bournemouth Away English Premier League

Apr 30, 2017 Everton Away English Premier League

Table 2: List of selected games with the same starting eleven for Chelsea FC.
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0.20

Figure 6: Graph summarizing the interactions between Chelsea players. The width of
an arrow from player p1 to player p2 is proportional to the expected number of touches
of player p2 generated by one touch from player p1. The size of the circle of player p is
proportional to the sum of the arrow sizes received, indicating the involvement of the
player in the considered games. The color of the circle represents the GoTi index for each
player.

N’Golo Kante: Ranking fourth in GoTi
90 is evidence to Kante’s important role in Chelsea’s

success in the 2016-2017 season. The winner of the PFA Players’ Player of the Year 2017 award is
definitely not limited to defense as the numbers show that he is largely involved in danger creation.
This is explained by the fact that Kante is a box to box midfielder and that he is at the center of
multiple circuits that end in a threat:

• Kante → Pedro → Threat.
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Player name GoTd GoTi GoTd
90 GoTi

90

Eden Hazard 0.16 0.21 14.2 15.0
Victor Moses 0.07 0.11 5.7 7.5
Pedro Rodriguez 0.08 0.12 5.5 6.7

N’Golo Kante 0.02 0.07 2.7 6.2
Nemanja Matic 0.01 0.06 1.5 5.2
Marcos Alonso 0.02 0.06 1.9 5.1

Diego Costa 0.07 0.10 3.6 4.8
Cesar Azpilicueta 0.00 0.04 0.0 4.1
Gary Cahill 0.00 0.04 0.0 3.0

David Luiz 0.00 0.01 0.0 1.0
Thibaut Courtois 0.00 0.01 0.0 0.6

Table 3: Generated threat metrics for the players of Chelsea FC. The table is sorted by GoTi
90.

• Kante → Moses → Pedro → Threat.

• Kante → Matic → Hazard → Threat.

David Luiz: The contribution of the central defender David Luiz in the generation of threat is
minimal. This is not surprising as the flat 3-4-3 system relies heavily on the wings. David Luiz
naturally passes the ball to either Gary Cahill or Azpilicueta in the build-up to spread the play.

Diego Costa: Costa generates a small number of threats despite being a striker. This is expected
as he is responsible for transforming the goalscoring chances rather than being at the origin of the
danger. Moreover, his GoTi

90 statistic is particularly low since he has a low number of touches per
time unit and many of his touches in the danger zone are not recorded in the constructed counting
process.

We can clearly see that considering indirect contribution to threat generation is important for
defenders and midfielders. These positions are generally at the base of the danger creation process.
They have small GoTd indices. However, indirect generated threat combined with the consideration
of the number of touches allows us to effectively compare players playing in deeper positions.

From the graphical representation in Figure 6, we can identify some patterns that lead to a
dangerous situation. When facing a team like Chelsea in the 2016-2017 season, some strategies can
be derived from this analysis:

• As illustrated in Figure 6, the right side of Chelsea combines a lot for threat generation and
should be disrupted at the root. Azpilicueta should be stopped from feeding the ball to the
midfielders or directly to Pedro.

• The left side relies much more on the direct offensive output of Eden Hazard. In fact, all of
Gary Cahill, Matic and Marcos Alonso mostly aim at delivering the ball to the left winger. To
neutralize the threat of the left side, it is essential to prevent the ball from reaching Hazard.
This can be achieved by marking him closely or by constantly closing the passing lanes to him.
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• Goalkeeper Courtois is successful in targetting Marcos Alonso directly. This passing pattern
should be considered when pressing Chelsea.
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Figure 7: Estimated branching matrix for Chelsea FC.

6 Ligue 1 2021-22 season analysis

In this section, we provide a ranking of players and teams from Ligue 1 in the 2021-2022 season based
on their generation of threat. To maintain homogeneity, we only consider for each team the games
where they use their main formation cluster, see Table 12 in Appendix B for the list of formation
clusters of each team.

6.1 Generated threat to rank players in a position

Each position on the pitch imposes a different role on the player who occupies it. In particular,
we cannot expect the same player to produce the same GoT metrics at two different positions.
Therefore, we choose to evaluate players when they play in a particular position. This approach will
also allow us to determine the optimal position for a player to maximize a GoT metric of interest.
Additionally, we apply a filter to consider only players who play at least 600 minutes at a given posi-
tion, with playing time calculated based on games in which the player features for at least 45 minutes.

Given a player and a position, we record the games in which the player occupies the position.
The remaining positions may feature different players at each game. Whenever a player from his
team is substituted, we do not consider the rest of the game in the construction of the counting
process. We fit a Hawkes process and assign to the player the generated threat indices of his position.
Tables 4 and 5 present the top twenty players in Ligue 1 in terms of GoTd and GoTi

90, respectively
(see Tables 10 and 11 in Appendix B for the Top 100). We display these two indices because they
quantify the two extremes of the danger generation process. GoTd isolates the direct impact of
players while GoTi

90 measures their participation in the chain of events leading to threats.

In reference to the results in Section 4.2, one should keep in mind that the fewer minutes a
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Rank Name Position Team Minutes GoTd

1 Lionel Messi 10 Paris Saint-Germain 630 0.130
2 Ángel Di María 10 Paris Saint-Germain 1171 0.128
3 Moses Simon 11 Nantes 1222 0.120

4 Kylian Mbappé 9 Paris Saint-Germain 1338 0.110
5 Lionel Messi 9 Paris Saint-Germain 675 0.109
6 Martin Terrier 11 Rennes 1386 0.108

7 Kylian Mbappé 11 Paris Saint-Germain 1066 0.107
8 Romain Faivre 7 Brest 630 0.106
8 Houssem Aouar 7 Lyon 810 0.106

10 Sofiane Boufal 9 Angers 771 0.100
11 Jonathan Ikoné 7 Lille 767 0.096
12 Wissam Ben Yedder 9 Monaco 1625 0.094

13 Franck Honorat 11 Brest 838 0.093
13 Karl Toko-Ekambi 11 Lyon 1855 0.093
15 Benjamin Bourigeaud 10 Rennes 1719 0.092

16 Sofiane Boufal 11 Angers 665 0.091
17 Justin Kluivert 11 Nice 1207 0.090
19 Dimitri Payet 9 Marseille 617 0.088

19 Kevin Gameiro 10 Strasbourg 673 0.088
19 Neymar 11 Paris Saint-Germain 1258 0.088

Table 4: Ranking of Ligue 1 players in terms of GoTd.

player plays in a position, the less accurate the estimate of his generated threat is. Moreover, our
estimation relies on selected games only. When a player has a limited number of minutes in a position,
a good GoT metric should be interpreted as a measure of performance across the considered games
only. For example, Moses Simon ranking third in GoTd should not be surprising as he provided
seven assists in the 1200 minutes but only gave one more assist in the remaining games when the
team plays in a different formation or when he plays in a different position.

Below are some observations based on the results:

GoTd vs GoTi
90: GoTd captures the intrinsic ability of a player to advance the ball to the

opponent’s danger area while GoTi
90 incorporates possible combinations with teammates. Therefore,

the style of play and the ability of teammates can have an impact on the value of GoTi
90. These two

indices describe different ways to contribute to threat generation and allow us to select different
profiles of players. For example, the Paris Saint-Germain midfielder Verratti produces high values of
GoTi

90 while Moses Simon from FC Nantes features in the top positions in terms of GoTd.

Jason Berthomier as a surprising pick: In his only season in Ligue 1, Jason Berthomier
delivered excellent values of GoTi

90. The Clermont Foot midfielder ranks 43rd in terms of GoTd and
climbs up to the tenth position in the GoTi

90 ranking. This proves that he is consistently involved in
the generation of dangerous situations for his team and is successful in feeding the forward players.

Téji Savanier excels in midfield: Téji Savanier stands out as an interior midfielder in the 433
formation of Montpellier. With eight goals and seven assists, it is no surprise that he is central
to the process of threat generation of his team. He ranks eighth in GoTi

90 and outperforms many
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offensive players in the league. This confirms the quality of Téji Savanier and his good performance
during the 2021-2022 season.

A defender in the Top 20: Frederic Guilbert of Strasbourg is a defender who excels at creating
threats, ranking 18th in GoTi

90. In fact, his team deploys a 532 formation that provides enough cover
for the fullbacks to play offensively. The same holds for Jonathan Clauss who acts almost as a right
midfielder in the Lens formation and ranks 33rd in GoTi

90. This is also not surprising as Clauss ranks
third in the league in the number of passes that lead to a shot, another proof of his creative play.

A good season from Messi in generated threat: Despite underperforming in terms of scoring
goals, Lionel Messi delivers outstanding values of generated threat both directly given his dribbling
and passing quality, and indirectly given his involvement in ball possession. Additionally, we observe
that his performance increases slightly when playing in his natural position as a 10 in the 433
formation. The right wing is Messi’s best position as he poses more of a threat cutting inside from
the right.

Optimal position for some players: Romain Faivre stands out in both GoTd and GoTi
90,

ranking among the top twenty players. This is in fact expected because, when playing as a right
midfielder in the 442 formation of Brest, the player performed well and was involved in six goals
in just 660 minutes. Similarly, Houssem Aouar was successful as an interior midfielder in the 433
formation. He scored three and assisted three more in the considered period, earning him a top spot
on our list.

A metric that does not value center forwards: Very few strikers make the Top 20 in the two
metrics. This is because the role of some center forwards is to receive the ball in the danger area
and not necessarily to be at the origin of the threat. This is even more pronounced when looking at
GoTi

90. For example, Mbappé, the top scorer in the league, barely makes it to the Top 20. Mbappe is
not known for participating in possession and touching the ball a lot but as an aggressive transition
player. In contrast, midfielders such as Verratti and Guimarães, that are involved in the build-up of
a lot of dangerous situations, feature in the top positions in terms of GoTi

90.

6.2 Ranking the central defenders’ involvement in terms of GoT

To quantify the involvement of central defenders in danger creation, we use the indirect generation of
threat per 90 minutes. This is because the direct generation of threat (GoTd) values are particularly
low for defenders and therefore cannot be used to compare players. While GoTi

90 is influenced by
the quality of the offensive players and team style of play, it also provides valuable information on
the role of defenders in the team’s build-up scheme. For instance, a center-back who is technically
proficient but avoids taking risks and does not contribute much to ball progression will have a low
value of GoTi

90. This metric strikes a balance in measuring a player’s intrinsic ability as well as their
involvement within the team. Table 6 displays the Top 10 best central defenders with the highest
values of GoTi

90.

It is no surprise that Marquinhos and Kimpembe take the first two spots, given that they are
part of Paris Saint-Germain, the most dominant team in Ligue 1. This is of course due to their
technical ability, but there is also a factor due to the high possession values and danger creation ability
of their team. The same holds for Nayef Aguerd and Warmed Omari that contribute significantly to
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Rank Name Position Team Minutes GoTi
90

1 Lionel Messi 10 Paris Saint-Germain 630 14.911
2 Ángel Di María 10 Paris Saint-Germain 1171 13.218
3 Neymar 11 Paris Saint-Germain 1258 12.724

4 Marco Verratti 4 Paris Saint-Germain 602 12.581
5 Lionel Messi 9 Paris Saint-Germain 675 12.353
6 Romain Faivre 7 Brest 630 10.402

7 Houssem Aouar 7 Lyon 810 10.077
8 Téji Savanier 7 Montpellier 2209 9.608
9 Marco Verratti 8 Paris Saint-Germain 1069 9.446

10 Jason Berthomier 7 Clermont 1244 9.340
11 Benjamin Bourigeaud 10 Rennes 1719 9.211
12 Sofiane Boufal 9 Angers 771 9.100

13 Bruno Guimarães 4 Lyon 900 8.817
14 Dimitri Payet 9 Marseille 617 8.815
15 Moses Simon 11 Nantes 1222 8.790

16 Martin Terrier 11 Rennes 1386 8.639
17 Kylian Mbappé 11 Paris Saint-Germain 1066 8.577
18 Frédéric Guilbert 2 Strasbourg 2428 8.421

19 Ruben Aguilar 2 Monaco 1205 8.019
20 Lovro Majer 7 Rennes 1302 7.927

Table 5: Ranking of Ligue 1 players in terms of GoTi
90.

ball progression, primarily through accurate long balls. The third-placed is Facundo Medina. The
Lens defender is well known for his range of passing and for his ability to switch play from one side
to the other. In particular, he ranks tenth in the league in terms of accurate passes per 90 minutes.
William Saliba naturally completes the Top 5. The Marseille player excels with the ball at his feet
and ranks third in accurate passing in Ligue 1. The player has now moved to Arsenal, a team that
likes to play from the back, and continues to deliver in that aspect of the game.

6.3 GoTd to rank teams

To verify the consistency of our metrics, we rank Ligue 1 teams based on their aggregate values
of GoTd. This metric can be considered as an indicator of squad quality. For each club, we fit a
12-dimensional Hawkes process to all matches in which they use their primary formation cluster,
regardless of the players occupying each position. We then sum the estimated direct threat per
touch GoTd for all the positions.

Table 7 shows the resulting Top 10 based on generated threat. Our metric describes an important
part of the offensive performance but obviously does not cover all aspects of the game. Nevertheless,
it remains a very good measure of the quality of the team. Our ranking shows a significant 62%
Kendall correlation with the realized ranking of Ligue 1. This is achieved while only looking at ball
touch and threat event timestamps to infer player abilities. Below are some observations from the
ranking:

• Rennes climbs to the second position in our ranking. This is because the team was very
attack-minded in the 2021-2022 season and managed to score 82 goals, one of the highest totals
in Europe. Their expected threat is proof of their offensive output.
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Rank Name Position Team Minutes GoTi
90

1 Marquinhos 5 Paris Saint-Germain 2340 5.625
2 Presnel Kimpembe 6 Paris Saint-Germain 1840 5.230
3 Facundo Medina 4 Lens 1329 4.953

4 Nayef Aguerd 6 Rennes 1698 4.908
5 William Saliba 5 Marseille 1800 4.652
6 Jason Denayer 6 Lyon 630 4.591

7 Jonathan Gradit 6 Lens 1710 4.535
8 Warmed Omari 5 Rennes 1710 4.407
9 Damien Da Silva 5 Lyon 612 4.182

10 Dante 6 Nice 2880 3.707
11 Duje Caleta-Car 6 Marseille 1397 3.462
12 Lucas Perrin 6 Strasbourg 2329 3.185

13 Kevin Danso 5 Lens 1620 3.105
14 Benoît Badiashile 6 Monaco 975 3.075
15 Castello Lukeba 6 Lyon 1375 3.074

16 Mamadou Sakho 6 Montpellier 1962 2.998
17 Florent Ogier 6 Clermont 2329 2.949
18 Guillermo Maripán 6 Monaco 810 2.916

19 Guillermo Maripán 5 Monaco 605 2.915
20 Jean-Clair Todibo 5 Nice 3123 2.864

Table 6: Ranking of Ligue 1 central defenders in terms of GoTi
90.

Team GoTd Ligue 1 ranking Goals scored

Paris Saint-Germain 0.42 1 90
Rennes 0.41 4 82
Monaco 0.41 3 65

Lyon 0.36 8 66
Marseille 0.36 2 63
Lens 0.30 7 62

Nice 0.28 5 52
Strasbourg 0.26 6 60
Lille 0.26 10 48

Reims 0.26 12 43

Table 7: Top 10 Ligue 1 teams with respect to aggregated GoTd of starting eleven.

• Olympique Lyonnais, ranked eighth in Ligue 1, still had a very prolific season offensively. They
have the third-highest total of goals and the second-highest total of expected goals. It is
therefore natural they are fourth with respect to our offensive metric.

7 Conclusion and future work

In order to measure a player’s ability to create threat in football, we develop model-based metrics
that rely on Hawkes processes. These processes provide an easy to interpret way to capture causation
between event times. Thanks to this modeling, we are able to identify the players whose touches are
most consistently correlated with subsequent threats. We derive four different metrics each describing
different ways to create danger. On the one hand, the direct generation of threat metrics GoTd and
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GoTd
90 allow us to isolate the intrinsic ability of players. On the other hand, GoTi and GoTi

90 indicate
the indirect contribution to the generation of threat through interactions with other positions. Be-
yond crediting players for danger generation, our approach can also be used to quantify and visualize
the synergies between players on the pitch and identify the patterns that lead to dangerous situations.

We demonstrate our methodology can successfully detect and rank the key players in the 2021-
2022 Ligue 1 season, who contribute to their team’s offensive output. The results we find are
consistent with the observed performances of the retrieved players, but also reveal some surprising
choices. Through the example of Chelsea in the 2016-2017 season, we show that our model-based
approach can help teams make data-driven decisions about their tactics. By primarily looking at
timestamps of ball touches, we gain a deeper understanding of the threat generation process of a team.

Future work will include exploring the application of our model-based metrics for optimal team
selection. In fact, if we are capable of inferring the branching matrix parameters linking players
from different teams, we can measure the impact of a potential transfer on the danger creation
process. In addition, we can use this framework to capture interactions of players with other game
states different from threats. In particular, by replacing the threat events with ball losses, we can
effectively analyze the defensive aspect of the game and determine players whose touches are most
correlated with a turnover.
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Appendix

A Stade Rennais

In this appendix, we present a detailed analysis of one of the Ligue 1 teams in the 2021-2022 season.

A.1 Selected games

In the same spirit as Section 5, we choose a collection of games where the formation is the same and
starting lineup is as stable as possible. Table 8 shows the selected matches for Stade Rennais. The
team plays in a 433 formation in all of these games but the starting eleven is not always exactly
the same. In fact, some players are sometimes rotated for a game or two, but we assume that the
substitute behaves approximately the same as the starting player. Stade Rennais line up as follows
in the selected games, where the main player in each position is in bold:

• Gomis/Alemdar

• Traore - Omari/Bade - Aguerd/Bade/Santamaria - Truffert/Meling

• Majer - Santamaria/Martin - Tait

• Bourigeaud - Laborde/Guirassy - Terrier

We construct a 12-dimensional counting process from the selected Stade Rennais games regardless of
the players starting. We use the data from each game as long as the eleven players on the pitch
correspond to the scheme provided above. We then fit a 12-dimensional Hawkes process and associate
the estimated metrics of each position with the main player occupying it.

Date Opponent Home or Away Competition

May 11, 2022 Nantes Away French Ligue 1
Apr 2, 2022 Nice Away French Ligue 1
May 14, 2022 Marseille Home French Ligue 1

Dec 22, 2021 Monaco Away French Ligue 1
Mar 20, 2022 Metz Home French Ligue 1
Apr 15, 2022 Monaco Home French Ligue 1

Apr 30, 2022 St Etienne Home French Ligue 1
Apr 24, 2022 Lorient Home French Ligue 1
Nov 20, 2021 Montpellier Home French Ligue 1

May 21, 2022 Lille Away French Ligue 1
Nov 7, 2021 Lyon Home French Ligue 1

Table 8: List of selected games for Stade Rennais F.C.

A.2 Results and discussion

In Table 9, we rank the Stade Rennais players with respect to generated threat metrics. Figure 8
graphically represents the direct interactions between them and Figure 9 displays the estimated
branching matrix.
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Figure 8: Graph summarizing the interactions between Stade Rennais players. The width
of an arrow from player p1 to player p2 is proportional to the expected number of touches
of player p2 generated by one touch from player p1. The size of the circle of player p is
proportional to the sum of the arrow sizes received, indicating the involvement of the
player in the considered games. The color of the circle represents the GoTi index for each
player.

We can see that the team adopts a 433 shape that progresses mainly through the wings. The danger
creation is asymmetric with more combinations occurring on the right side, where Majer is the most
creative midfielder. Interestingly, despite being a central midfielder, Flavien Tait delivers a large
value of GoTi

90, indicating that he is a significant contributor to the team’s offensive efforts. In
contrast, although Santamaria has more possession, he has limited involvement in creating threats.
This difference in their threat generation can be attributed to their distinct roles on the field. On one
hand, Tait is a more box-to-box midfielder who frequently projects forward and has a considerable
direct threat metric. On the other hand, Santamaria belongs to a class of defensive midfielders who
act as anchor points. They participate in the buildup close to the center backs and have limited
interactions with the forward positions.

The main threat sources are Bourigeaud, Majer, and Terrier. These three players are outstanding
going forward. Terrier is the leader of the team in goalscoring and ranks third in Ligue 1 but seems
to be involved in danger creation as well. Bourigeaud generating the most threat is not surprising
since he is the creative force of the team. In fact, he ranks first in the league in terms of key passes
with 3.2 per game, and first in accurate crosses with 104 in the season.

As expected, the center backs have zero direct threat contribution. However, in terms of indi-
rect threat per 90 minutes GoTi

90, Aguerd and Omari rank fourth and sixth in the team respectively.
The pair generates danger through their involvement in team build-up and possession. In particular,
Aguerd and Omari are comfortable with the ball at their feet and rank eighth and twentieth in the
league, respectively, in the number of passes per game with high success rates.
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Player name GoTd GoTi GoTd
90 GoTi

90

Benjamin Bourigeaud 0.14 0.16 11.8 12.6
Martin Terrier 0.13 0.17 8.6 9.5
Lovro Majer 0.08 0.11 6.9 8.1

Flavien Tait 0.06 0.09 5.5 7.2
Adrien Truffert 0.02 0.06 2.4 5.2
Hamari Traoré 0.01 0.05 1.5 4.6

Nayef Aguerd 0.00 0.04 0.0 4.5
Baptiste Santamaría 0.00 0.05 0.4 4.3
Warmed Omari 0.00 0.04 0.0 4.0

Gaëtan Laborde 0.04 0.08 2.0 3.0
Alfred Gomis 0.00 0.01 0.0 0.7

Table 9: Generated threat metrics for the players of Stade Rennais. The table is sorted by GoTi
90.

Finally, we can observe from Figure 8 some remarkable circuits that lead to dangerous situations.
These patterns of play should be taken into account by an opposing team when facing Stade Rennais:

• Aguerd → Truffert → Terrier → Threat.

• Terrier → Tait → Threat. Terrier is highly effective in generating direct threats, but he also
frequently combines with Flavien Tait to create danger. Similarly, Bourigeaud often gives the
ball to Lovro Majer to generate indirect threat.

• Omari → Traoré → Bourigeaud → Threat.

• Omari → Bourigeaud → Threat. This is a straightforward pattern from defense to attack that
should be controlled. Omari is highly successful in progressing the ball, both through slow
build-up play by passing the ball to the right-back Traoré, as well as through fast transitions
with direct passes to Bourigeaud.
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Figure 9: Estimated branching matrix for Stade Rennais.
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B Top 100 ranking of Ligue 1 player in terms of GoT

Rank Name Position Team Minutes GoTd

1 Lionel Messi 10 Paris Saint-Germain 630 0.130
2 Ángel Di María 10 Paris Saint-Germain 1171 0.128
3 Moses Simon 11 Nantes 1222 0.120

4 Kylian Mbappé 9 Paris Saint-Germain 1338 0.110
5 Lionel Messi 9 Paris Saint-Germain 675 0.109
6 Martin Terrier 11 Rennes 1386 0.108

7 Kylian Mbappé 11 Paris Saint-Germain 1066 0.107
8 Romain Faivre 7 Brest 630 0.106
8 Houssem Aouar 7 Lyon 810 0.106

10 Sofiane Boufal 9 Angers 771 0.100
11 Jonathan Ikoné 7 Lille 767 0.096
12 Wissam Ben Yedder 9 Monaco 1625 0.094

13 Franck Honorat 11 Brest 838 0.093
13 Karl Toko-Ekambi 11 Lyon 1855 0.093
15 Benjamin Bourigeaud 10 Rennes 1719 0.092

16 Sofiane Boufal 11 Angers 665 0.091
17 Justin Kluivert 11 Nice 1207 0.090
19 Dimitri Payet 9 Marseille 617 0.088

19 Kevin Gameiro 10 Strasbourg 673 0.088
19 Neymar 11 Paris Saint-Germain 1258 0.088
21 Jodel Dossou 10 Clermont 1762 0.086

22 Lucas Da Cunha 10 Clermont 606 0.084
22 Jim Allevinah 11 Clermont 858 0.084
24 Frédéric Guilbert 2 Strasbourg 2428 0.082

25 Armand Laurienté 9 Lorient 842 0.080
26 Ludovic Blas 7 Nantes 810 0.078
27 Gaël Kakuta 9 Lens 976 0.077

28 Arnaud Kalimuendo-Muinga 11 Lens 724 0.075
29 Cengiz Ünder 10 Marseille 1047 0.074
29 Florent Mollet 10 Montpellier 1269 0.074

31 Téji Savanier 7 Montpellier 2209 0.071
32 Ghislain Konan 3 Reims 1007 0.070
33 Lovro Majer 7 Rennes 1302 0.068

34 Kevin Volland 7 Monaco 1131 0.067
34 Jonathan Clauss 2 Lens 1940 0.067
36 Angelo Fulgini 8 Angers 630 0.066

36 Andy Delort 10 Nice 1478 0.066
38 Javairô Dilrosun 9 Bordeaux 675 0.064
39 Vanderson 10 Monaco 619 0.061

40 Lucas Paquetá 7 Lyon 1248 0.060
40 Burak Yilmaz 9 Lille 1900 0.060
43 Jonathan Bamba 11 Lille 1763 0.059

43 Thomas Foket 2 Reims 631 0.059
43 Jason Berthomier 7 Clermont 1244 0.059
45 Amine Gouiri 9 Nice 1749 0.058

46 Gaëtan Laborde 9 Rennes 1305 0.057
47 Ibrahima Sissoko 7 Strasbourg 826 0.055
48 Jonathan David 10 Lille 2072 0.054

49 Dimitri Lienard 3 Strasbourg 1728 0.050
51 Flavien Tait 8 Rennes 1129 0.046

Rank Name Position Team Minutes GoTd

51 Florian Sotoca 10 Lens 1119 0.046
51 Jérémy Le Douaron 10 Brest 759 0.046
53 Andy Delort 9 Nice 795 0.045

55 Youcef Atal 2 Nice 1032 0.044
55 Randal Kolo Muani 9 Nantes 876 0.044
55 Stephy Mavididi 11 Montpellier 1585 0.044

55 Aleksandr Golovin 11 Monaco 607 0.044
58 Elbasan Rashani 11 Clermont 1588 0.043
59 Mohamed Bayo 9 Clermont 2331 0.042

60 Abdu Conté 3 Troyes 695 0.041
60 Sanjin Prcic 11 Strasbourg 652 0.041
64 Bruno Guimarães 4 Lyon 900 0.040

64 Anthony Caci 3 Strasbourg 1400 0.040
64 Kevin Gameiro 9 Strasbourg 1458 0.040
64 Hicham Boudaoui 7 Nice 1304 0.040

64 Gerson 8 Marseille 704 0.040
67 Sofiane Diop 11 Monaco 631 0.039
68 Igor Silva 2 Lorient 1197 0.038

69 Renato Sanches 8 Lille 951 0.037
69 Issa Kaboré 2 Troyes 1679 0.037
71 Mohamed-Ali Cho 10 Angers 807 0.035

71 Angelo Fulgini 9 Angers 751 0.035
74 Akim Zedadka 2 Clermont 3330 0.034
74 Pol Lirola 2 Marseille 863 0.034

74 Adrien Thomasson 7 Strasbourg 1853 0.034
76 Habib Diallo 10 Strasbourg 859 0.033
76 Xavier Chavalerin 11 Troyes 949 0.033

78 Jean-Ricner Bellegarde 11 Strasbourg 1454 0.032
78 Maxence Caqueret 8 Lyon 1389 0.032
80 Vital N’Simba 3 Clermont 2731 0.031

80 Ruben Aguilar 2 Monaco 1205 0.031
83 Seko Fofana 8 Lens 1861 0.030
83 Ismail Jakobs 3 Monaco 650 0.030

83 Terem Moffi 10 Lorient 911 0.030
87 Valère Germain 9 Montpellier 1083 0.029
87 Stéphane Bahoken 10 Angers 657 0.029

87 Youssouf Fofana 8 Monaco 1116 0.029
87 Mattéo Guendouzi 7 Marseille 1350 0.029
87 Ludovic Ajorque 10 Strasbourg 1334 0.029

90 Ludovic Ajorque 9 Strasbourg 1243 0.028
90 Marco Verratti 4 Paris Saint-Germain 602 0.028
93 Baptiste Santamaría 8 Rennes 675 0.027

93 Vincent Le Goff 3 Lorient 1440 0.027
93 Ricardo Mangas 3 Bordeaux 613 0.027
96 Caio Henrique 3 Monaco 1454 0.026

96 Mihailo Ristic 3 Montpellier 1150 0.026
96 Junior Sambia 2 Montpellier 732 0.026
98 Souleyman Doumbia 3 Angers 1797 0.025

98 Przemyslaw Frankowski 3 Lens 1191 0.025
100 Florian Tardieu 8 Troyes 1530 0.024

Table 10: Ranking of Ligue 1 players in terms of GoTd.
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Rank Name Position Team Minutes GoTi
90

1 Lionel Messi 10 Paris Saint-Germain 630 14.911
2 Ángel Di María 10 Paris Saint-Germain 1171 13.218
3 Neymar 11 Paris Saint-Germain 1258 12.724

4 Marco Verratti 4 Paris Saint-Germain 602 12.581
5 Lionel Messi 9 Paris Saint-Germain 675 12.353
6 Romain Faivre 7 Brest 630 10.402

7 Houssem Aouar 7 Lyon 810 10.077
8 Téji Savanier 7 Montpellier 2209 9.608
9 Marco Verratti 8 Paris Saint-Germain 1069 9.446

10 Jason Berthomier 7 Clermont 1244 9.340
11 Benjamin Bourigeaud 10 Rennes 1719 9.211
12 Sofiane Boufal 9 Angers 771 9.100

13 Bruno Guimarães 4 Lyon 900 8.817
14 Dimitri Payet 9 Marseille 617 8.815
15 Moses Simon 11 Nantes 1222 8.790

16 Martin Terrier 11 Rennes 1386 8.639
17 Kylian Mbappé 11 Paris Saint-Germain 1066 8.577
18 Frédéric Guilbert 2 Strasbourg 2428 8.421

19 Ruben Aguilar 2 Monaco 1205 8.019
20 Lovro Majer 7 Rennes 1302 7.927
21 Lucas Da Cunha 10 Clermont 606 7.882

22 Kylian Mbappé 9 Paris Saint-Germain 1338 7.733
23 Ghislain Konan 3 Reims 1007 7.721
24 Sanjin Prcic 11 Strasbourg 652 7.624

25 Sofiane Boufal 11 Angers 665 7.547
26 Lucas Paquetá 7 Lyon 1248 7.450
27 Karl Toko-Ekambi 11 Lyon 1855 7.365

28 Jonathan Ikoné 7 Lille 767 7.285
29 Franck Honorat 11 Brest 838 7.207
30 Achraf Hakimi 2 Paris Saint-Germain 1781 7.125

31 Idrissa Gueye 8 Paris Saint-Germain 662 7.090
32 Dimitri Lienard 3 Strasbourg 1728 7.050
33 Gerson 8 Marseille 704 7.016

34 Vanderson 10 Monaco 619 6.939
35 Ibrahima Sissoko 7 Strasbourg 826 6.892
36 Ludovic Blas 7 Nantes 810 6.816

37 Gaël Kakuta 9 Lens 976 6.802
38 Jonathan Clauss 2 Lens 1940 6.757
39 Justin Kluivert 11 Nice 1207 6.700

40 Flavien Tait 8 Rennes 1129 6.671
41 Kevin Gameiro 10 Strasbourg 673 6.569
42 Florent Mollet 10 Montpellier 1269 6.465

43 Angelo Fulgini 8 Angers 630 6.459
44 Renato Sanches 8 Lille 951 6.427
45 Henrique 3 Lyon 619 6.385

46 Danilo Pereira 4 Paris Saint-Germain 879 6.346
47 Pol Lirola 2 Marseille 863 6.327
48 Jim Allevinah 11 Clermont 858 6.303

49 Youcef Atal 2 Nice 1032 6.258
50 Maxence Caqueret 8 Lyon 1389 6.229

Rank Name Position Team Minutes GoTi
90

51 Vital N’Simba 3 Clermont 2731 6.066
52 Anthony Caci 3 Strasbourg 1400 6.023
53 Emerson 3 Lyon 1848 6.019

54 Aleksandr Golovin 11 Monaco 607 5.973
55 Birger Meling 3 Rennes 776 5.936
56 Juan Bernat 3 Paris Saint-Germain 777 5.929

57 Jodel Dossou 10 Clermont 1762 5.864
58 Caio Henrique 3 Monaco 1454 5.855
59 Jonas Martin 4 Rennes 1115 5.810

60 Thomas Foket 2 Reims 631 5.805
61 Jonathan Bamba 11 Lille 1763 5.632
62 Marquinhos 5 Paris Saint-Germain 2340 5.625

63 Florian Sotoca 10 Lens 1119 5.598
64 Jordan Ferri 8 Montpellier 2129 5.516
65 Aurélien Tchouaméni 4 Monaco 1620 5.431

66 Malo Gusto 2 Lyon 1369 5.382
67 Cheick Oumar Doucouré 7 Lens 1350 5.372
68 Armand Laurienté 9 Lorient 842 5.345

69 Akim Zedadka 2 Clermont 3330 5.281
70 Presnel Kimpembe 6 Paris Saint-Germain 1840 5.230
71 Ismail Jakobs 3 Monaco 650 5.199

72 Fábio 3 Nantes 726 5.154
73 Thilo Kehrer 2 Paris Saint-Germain 632 5.144
74 Cengiz Ünder 10 Marseille 1047 5.079

75 Léo Dubois 2 Lyon 1246 5.060
76 Mattéo Guendouzi 7 Marseille 1350 4.995
77 Facundo Medina 4 Lens 1329 4.953

78 Adrien Thomasson 7 Strasbourg 1853 4.921
79 Nayef Aguerd 6 Rennes 1698 4.908
80 Abdu Conté 3 Troyes 695 4.891

81 Javairô Dilrosun 9 Bordeaux 675 4.845
82 Hamari Traoré 2 Rennes 1878 4.836
83 Przemyslaw Frankowski 3 Lens 1191 4.778

84 Wissam Ben Yedder 9 Monaco 1625 4.685
85 Vincent Le Goff 3 Lorient 1440 4.669
86 Valentin Rongier 2 Marseille 899 4.668

87 Angelo Fulgini 9 Angers 751 4.661
88 William Saliba 5 Marseille 1800 4.652
89 Boubacar Kamara 4 Marseille 1497 4.636

90 Nuno Mendes 3 Paris Saint-Germain 1246 4.599
91 Jason Denayer 6 Lyon 630 4.591
92 Baptiste Santamaría 8 Rennes 675 4.536

93 Jonathan Gradit 6 Lens 1710 4.535
94 Youssouf Fofana 8 Monaco 1116 4.517
95 Florian Tardieu 8 Troyes 1530 4.496

96 Jordan Lotomba 2 Nice 1410 4.454
97 Mihailo Ristic 3 Montpellier 1150 4.439
98 Warmed Omari 5 Rennes 1710 4.407

99 Melvin Bard 3 Nice 2470 4.350
100 Seko Fofana 8 Lens 1861 4.345

Table 11: Ranking of Ligue 1 players in terms of GoTi
90.
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Team Formation cluster

Angers 3
Bordeaux 3
Brest 2

Clermont 1
Lens 3
Lille 2

Lorient 3
Lyon 1
Marseille 1

Metz 3
Monaco 1
Montpellier 1

Nantes 1
Nice 2
Paris Saint-Germain 1

Reims 3
Rennes 1
St Etienne 4

Strasbourg 3
Troyes 4

Table 12: The main formation clusters for each team in Ligue 1 in the 2021-2022 season.
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