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Existence results for elliptic equation involving polyharmonic

operator and a critical growth

Asma Benhamida∗, Rejeb Hadiji† and Habib Yazidi ‡

Abstract

In this work, we study the two following minimization problems for r ∈ N
∗,

S0,r(ϕ) = inf
u∈Hr

0
(Ω), ‖u+ϕ‖

L2∗r =1
‖u‖2r and Sθ,r(ϕ) = inf

u∈Hr
θ
(Ω), ‖u+ϕ‖

L2∗r =1
‖u‖2r,

where Ω ⊂ R
N , N > 2r, is a smooth bounded domain, 2∗r = 2N

N−2r
, ϕ ∈ L2∗r (Ω) ∩ C(Ω) and

the norm ‖.‖r =

∫
Ω

|(−∆)α.|2dx where α = r
2
if r is even and ‖.‖r =

∫
Ω

|∇(−∆)α.|2dx where

α = r−1
2

if r is odd. Firstly, we prove that, when ϕ 6≡ 0, the infimum in S0,r(ϕ) and Sθ,r(ϕ)

are achieved. Secondly, we show that Sθ,r(ϕ) < S0,r(ϕ) for a large class of ϕ.

Keywords : Polyharmonic operator, minimizing problem, critical Sobolev exponent.

2010 AMS subject classifications: 35J20, 35J25, 35H30, 35J60.

1 Introduction and main results

Let r ∈ N
∗ and Ω be a bounded domain of RN with N ≥ 2r + 1. We define the space Hr

0 (Ω) and

Hr
θ (Ω) by

Hr
0 (Ω) :=

{

f ∈ Hr(Ω) | Dkf = 0 on ∂Ω for k = 0, 1 . . . , r − 1
}

and

Hr
θ (Ω) :=

{

f ∈ Hr(Ω) | (−∆)kf = 0 on ∂Ω for 0 ≤ k ≤ [(r + 1)/2]
}

.

where Dkf denote any derivative of order k of the function f and [(r+1)/2] is the integer part of

(r + 1)/2.

Define the following norm

‖f‖2r =











∫

Ω

|(−∆)r/2f |2dx if r is even,
∫

Ω

|∇(−∆)
r−1

2 f |2dx if r is odd.
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Then, we consider the following minimizing problem

S0,r(ϕ) = inf
u∈Hr

0
(Ω), ‖u+ϕ‖

L2∗r =1
‖u‖2r (1)

and

Sθ,r(ϕ) = inf
u∈Hr

θ
(Ω), ‖u+ϕ‖

L2∗r =1
‖u‖2r, (2)

where the function ϕ ∈ L2∗r(Ω) ∩ C(Ω) and 2∗r = 2N
N−2r is the limiting Sobolev exponent in the

imbedding Hr
0 (Ω) →֒ Lq(Ω), 1 ≤ q ≤ 2∗r.

The problem under consideration in this paper is related to many geometrical equations in-

volving where lack of compactness occurs. The statement of this problem on the bounded domain

is associated with problems of the resolution of some minimization problem from geometry and

physics, where the goal of our minimization problem is to determine the existence of a non-trivial

minimum.

In 1986, Brezis considered in [1] the first formulation of a problem which r = 1 and ϕ = 0, see also

[5], [11] and [15]. In [6], Brezis and Nirenberg provided the first positive answer to this problem

for r = 1 stated in terms of an existence result from the infimum under the condition ϕ 6≡ 0. Since

then, this problem has received many intention and this result has been improved in several ways.

This include some results in the case where r = 2 and ϕ = 0 (see for instance [18] and [19] ) that

Sθ,2(0) = S0,2(0) = S is the best Sobolev constant and S is not achieved. In the papers [2] and

[12] the authors studied the problems (1) and (2) for the biharmonic operator (−∆)2, see also [10]

for other study of biharmonic operator. Polyharmonic equations have been considered in several

works, see for exemple [9]. This type of problems have many applications, we can cite for example

the study of quantitate properties of solutions of semi-linear problems or the Paneitz type operator

which appears in Willmore surfaces and in geometry, see [16]. In this paper we are interested in

the two minimization problems (1) and (2) where the function ϕ is given in L2∗r(Ω)∩C(Ω). More

precisely, we consider the case r ≥ 2 and ϕ is not identically 0 which is a natural generalization of

the previous works.

Since we have Hr
0 (Ω) ⊂ Hr

θ (Ω) we always have Sθ,r ≤ S0,r. A natural question arises is do we

still have Sθ,r(ϕ) < S0,r(ϕ) or Sθ,r(ϕ) = S0,r(ϕ) ? In the case where the two infima Sθ,r and S0,r

are achieved respectively by uθ and u0 we will be interested by some regularity of uθ, namely is uθ

in Hr
0 (Ω)? and also by the sign of the Lagrange multipliers associated to the two problems.

Note that, if ϕ is smooth, using the change of variable u + ϕ = v in the energy, we are led to

problems with nonvanishing boundary datum, see [13].

Our main results can be stated as follows.

Theorem 1.

Let Ω be a smooth bounded domain in R
N with N ≥ 2r+1 and ϕ ∈ L2∗r ∩C(Ω)\{0}. Then S0,r(ϕ)

and Sθ,r(ϕ) are achieved.

Theorem 2.

Let Ω be a smooth bounded domain in R
N with N ≥ 2r + 1 and ϕ ∈ L2∗r ∩ C(Ω)\{0}. We have
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(i) If ‖ϕ‖L2∗r < 1 and ϕ has a constant sign on Ω, then every minimizer of Sθ,r(ϕ) is not in

Hr
0 (Ω) and we have Sθ,r(ϕ) < S0,r(ϕ).

(ii) If ϕ ∈ (Hr
0 (Ω))

⊥, where (Hr
0 (Ω))

⊥ is the orthogonal space of Hr
0 (Ω) in Hr

θ (Ω), then every

minimizer of Sθ,r(ϕ) is not in Hr
0 (Ω) and we have Sθ,r(ϕ) < S0,r(ϕ).

(iii) If ‖ϕ‖L2∗r > 1 and ϕ ∈ Hr
0 (Ω) then Sθ,r(ϕ) = S0,r(ϕ).

Remark 1.1.

The proof of cases (i)-(ii) and (iii) are completely different, the last case is treated using the

convexity of the problems, for more details see [8].

The rest of paper is organized as follows: In section 2, we prove that the infimum in (1) and

(2) are achieved where ϕ 6= 0 using some technical steps. In section 3, we present the proof of

Theorem 2, more precisely we establish that Sθ,r(ϕ) < S0,r(ϕ), for ϕ satisfying suitable conditions.

2 Existence of minimizers

In this section, we will prove Theorem 1. This result is a natural generalization of the works [6]

and [12].

Proof of Theorem 1.

We prove that Sθ,r is achieved. The proof for S0,r is similar. We follow an idea introduced in [6]

see also [12].

Let {uj} be a minimizing sequence for Sθ,r(ϕ), that is,

‖uj + ϕ‖L2∗r = 1 (3)

and

‖uj‖
2
r = Sθ,r(ϕ) + o(1). (4)

An easy computations give that {uj} is bounded in Hr
θ (Ω). Then, there exists s subsequence, still

noted, {uj} such that

uj ⇀ u weakly in Hr
θ (Ω),

uj → u strongly in Lt(Ω) for any t < 2∗r,

uj → u a.e on Ω,

uj ⇀ u weakly in L2∗r(Ω).

Using the lower semi-continuity in (3) and (4), we obtain that

‖u+ ϕ‖L2∗r ≤ 1,

and

‖u‖2r ≤ Sθ,r(ϕ). (5)

In order to prove that Sθ,r(ϕ) is achieved by u, we need to establish ‖u+ϕ‖L2∗r = 1. We proceed

by contradiction, then we suppose that

‖u+ ϕ‖L2∗r < 1. (6)
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We will prove the contradiction in four steps.

• Step 1

We have

Sθ,r(ϕ)− ‖u‖2r ≥ Sr

[

1−

∫

Ω

|u+ ϕ|2
∗r

]
2

2∗r

. (7)

Indeed, let vj = uj − u. We have

vj ⇀ 0 weakly in Hr
θ (Ω).

vj → 0 a.e on Ω.

Looking in the definition of Sr we write

‖vj‖
2
r ≥ Sr‖vj‖

2
L2∗r . (8)

From (3), we see that

1 = ‖u+ ϕ‖2
∗r

L2∗r + ‖vj‖
2∗r

L2∗r + o(1),

By Brezis-Lieb Lemma [4], we have

‖vj‖
2
L2∗r =

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r

+ o(1), (9)

Inserting (9) into (8), we get

‖vj‖
2
r ≥ Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r

. (10)

On the other hand, from (4), we write

‖vj‖
2
r = Sθ,r(ϕ) − ‖u‖2r + o(1). (11)

Inserting (10) into (11) we obtain (7).

• Step 2

Let v ∈ Hr
θ such that ‖v + ϕ‖L2∗r ≤ 1, we have

Sθ,r(ϕ) − ‖v‖2r ≤ Sr

[

1− ‖v + ϕ‖2
∗r

L2∗r

]
2

2∗r

, (12)

and thus

Sθ,r(ϕ)− ‖u‖2r = Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r

. (13)

Indeed, let v ∈ Hr
θ (Ω) such that ‖v+ϕ‖L2∗r ≤ 1. Suppose that ‖v+ϕ‖L2∗r < 1, otherwise (12)

comes directly from the definition of Sθ,r. There exists cǫ > 0 such that ‖v+ϕ+cεux0,ε‖L2∗r =

1 where ux0,ε is an extremal function associate to the best Sobolev constant Sr defined by

ux0,ε(x) =
ε

N−2r
2 ξ

(ε2 + |x− x0|2)
N−2r

2

. (14)
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where x0 ∈ Ω and ξ ∈ C∞
0 (B(x0, R)) be a fixed cut-off function satisfying 0 ≤ ξ ≤ 1 and

ξ ≡ 1 on B(x0,
R
2 ) with R a positive constant.

We have from [17],

(−∆)jux0,ε(t) =
ε

N−2r+4j
2

∑j
i=0 G(i, j)t2i

(ε2 + t2)
N−2r+4j

2

, for j = 1, 2, . . . , r,

where

G(i, j) = 2i(ji )KjD(i, j)E(i, j),

with

Kj = Πj−1
h=0(N − 2r + 2h),

D(i, j) =







1 if i = 0

Πj−1
h=0(r − h) if i = 1, 2, . . . , j

and

E(i, j) =



















Πj−1
h=0(N + 2h) if i = 0, 1, . . . , j − 1

1 if i = j

0 if i ≥ j + 1.

From [7], we have

‖ux0,ε‖
2
L2∗r =

K

Sr
+O(εN−2r), (15)

‖ux0,ε‖
2
r = K +O(εN−2r), (16)

ux0,ε ⇀ 0 in Hr(Ω), (17)

where K is a positive constant.

Now, we have ‖v + ϕ+ cεux0,ε‖L2∗r = 1. Using Bresiz-Lieb Lemma, we write

c2
∗r

ε ‖ux0,ε‖
2∗r

L2∗r = 1− ‖v + ϕ‖2
∗r

L2∗r + o(1),

Therefore

c2ε =
Sr

K

[

1− ‖v + ϕ‖2
∗r

L2∗r

]
2

2∗r

+ o(1). (18)

On the other hand, we have

If r is even

Sθ,r(ϕ) ≤ ‖v + cεux0,ε‖
2
r

≤ ‖v‖2r + c2ε‖ux0,ε‖
2
r + 2cε

∫

Ω

(∆)
r
2 v(∆)

r
2 ux0,εdx

≤ ‖v‖2r + c2εK + 2ε
N
2 cε

∫

Ω

(∆)
r
2 v

∑
r
2

i=0 G(i, r
2 )t

2i

(ε2 + t2)
N
2

dx+ o(ε
N−2r

2 ).

(19)
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If r is odd

Sθ,r(ϕ) ≤ ‖v + cεux0,ε‖
2
r

≤ ‖v‖2r + c2ε‖ux0,ε‖
2
r + 2cε

∫

Ω

|∇(−∆)
r−1

2 v||∇(−∆)
r−1

2 ux0,ε|dx

≤ ‖v‖2r + c2εK + 2ε
N−2r+4j

2 cε

∫

Ω

|∇(−∆)
r−1

2 v|

[

∑j
i=0 G(i, j)t2i

(ε2 + t2)
N−2

2

−
t2

2

(N − 2)

(ε2 + t2)N−2

]

dx

+ o(ε
N−2r

2 ).

(20)

In the two cases of r, using (16) and (18), the inequality (19) or (20) becomes

Sθ,r(ϕ) ≤ ‖v‖2r + Sr

[

1− ‖v + ϕ‖2
∗r

L2∗r

]
2

2∗r

+ o(ε
N−2r

2 ).

Therefore we deduce (12). Also, replace v par u in (12) and using step 1 we get (13).

• Step 3

According to assumption (6):

If r is even then
∫

Ω

(∆)r/2u(∆)r/2vdx = Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r
−1

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)vdx (21)

for every v ∈ Hr
θ (Ω).

If r is odd then
∫

Ω

∇(−∆)
r−1

2 u∇(−∆)
r−1

2 vdx = Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r
−1

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)vdx

(22)

for every v ∈ Hr
θ (Ω).

Indeed, let v ∈ Hr
θ (Ω). Since ‖u + ϕ‖L2∗r < 1, there exists t0 > 0 such that for all |t| < t0

we have

‖u+ ϕ+ tv‖L2∗r < 1.

Therefore, from Step 2, we have

Sθ,r(ϕ) − ‖u+ tv‖2r ≤ Sr

[

1− ‖u+ tv + ϕ‖2
∗r

L2∗r

]
2

2∗r

.

At this stage, we distinguish two cases:

If r is even then

Sθ,r(ϕ) − ‖u‖2r − 2t

∫

Ω

(∆)
r
2u(∆)

r
2 vdx+ o(t) ≤ Sr

[

1− ‖u+ tv + ϕ‖2
∗r

L2∗r

]
2

2∗r

,

some computations give

Sθ,r(ϕ) − ‖u‖2r − 2t

∫

Ω

(∆)
r
2u(∆)

r
2 vdx+ o(t) ≤ Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r

×

[

1− 2t(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1

∫

Ω

|u+ ϕ|2
∗r−2(u + ϕ)vdx + o(t)

]

.
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Using (13), we obtain

−2t

∫

Ω

(∆)
r
2u(∆)

r
2 vdx+ o(t) ≤ −2tSr(1− ‖u+ ϕ‖2

∗r

L2∗r )
2

2∗r
−1

∫

Ω

|u+ ϕ|2
∗r−2(u + ϕ)vdx

+ o(t).

We deduce (21) by letting t goes to 0±.

If r is odd then

Using again Step 2, we have

Sθ,r(ϕ)− ‖u‖2r − 2t

∫

Ω

∇(−∆)
r−1

2 u∇(−∆)
r−1

2 vdx+ o(t) ≤ Sr

[

1− ‖u+ tv + ϕ‖2
∗r

L2∗r

]
2

2∗r

,

some computations give

Sθ,r(ϕ) − ‖u‖2r − 2t

∫

Ω

∇(−∆)
r−1

2 u∇(−∆)
r−1

2 vdx+ o(t) ≤ Sr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]
2

2∗r

×

[

1− 2t(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)vdx + o(t)

]

.

Using (13), we obtain

−2t

∫

Ω

∇(−∆)
r−1

2 u∇(−∆)
r−1

2 vdx+ o(t)

≤ −2tSr(1 − ‖u+ ϕ‖2
∗r

L2∗r )
2

2∗r
−1

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)vdx + o(t).

We get (22) by letting t goes to 0±.

Now, we will show that the hypothesis (6) is not true and leads to a contradiction with (13).

• Step 4

The assumption (6) implies that

Sθ,r(ϕ) − ‖u‖2r < Sr

[

1−

∫

Ω

|u+ ϕ|2
∗r

]
2

2∗r

. (23)

Indeed, we have that u+ϕ 6≡ 0, otherwise, from (21) we obtain ‖u‖r = 0 therefore u = 0 and

ϕ = 0 which is false. Since we may replace u by −u and ϕ by −ϕ, we may assume, without

loss of generality, that u + ϕ > 0 in a set Σ of a positive measure in a ball B(x0,
R
2 ) ⊂ Ω

with R a positive constant. Then, let x0 ∈ Σ such that (u+ ϕ)(x0) > 0.

As in the proof of Step 2 there exists cε > 0 such that ‖u+ϕ+ cεux0,ε‖L2∗r = 1, where cε is

defined in (18).

We use u+ cεux0,ε as a testing function of (??) gives that

If r is even

Sθ,r(ϕ) ≤ ‖u‖2r + c2ε

∫

Ω

((∆)
r
2 ux0,ε)

2dx+ 2cε

∫

Ω

(∆)
r
2ux0,ε(∆)

r
2u dx. (24)

Let δε and c0 be given by

cε = c0(1 − δε), c20 =
Sr

K
[1− ‖u+ ϕ‖2

∗r

L2∗r ]
2

2∗r . (25)
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Therefore

[1− ‖u+ ϕ‖L
2∗r

L2∗r ]
−1 = c−2∗r

0 (
Sr

K
)

2∗r

2 . (26)

Using (16) and applying Step 3 with v = ux0,ε, (24)

Sθ,r(ϕ)− ‖u‖2r ≤ c20(1 − δε)
2(K +O(εN−2r))

+ 2cεSr

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]

2

2∗r
−1

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx.

Using (18) we obtain

Sθ,r(ϕ)− ‖u‖2r ≤ c20(1− δε)
2(K +O(εN−2r))

+ 2cεc
2
0K

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]−1
∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx.

(27)

Using (25) we write

Sθ,r(ϕ)− ‖u‖2r ≤ Sr[1− ‖u+ ϕ‖2
∗r

L2∗r ]
2

2∗r (1− δε)
2(1 +O(εN−2r))

+ 2cεc
2
0K

[

1− ‖u+ ϕ‖2
∗r

L2∗r

]−1
∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx.

(28)

We distinguish two cases:

If 2∗r ≥ 3 we apply the following inequality

(x+ y)p − xp − yp − pxp−1y − pxyp−1 ≥ 0, x, y ≥ 0, p ≥ 3.

For x = u+ ϕ and y = cεux0,ε, using (15) and (25) we write

cε

∫

Ω

|u+ ϕ|2
∗r−2(u + ϕ)ux0,εdx ≤ 1

2∗r [1− ‖u+ ϕ‖2
∗r

L2∗r − c2
∗r

ε ‖ux0,ε‖
2∗r

2∗r ]

− c2
∗r−1

ε

∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ)dx

≤ 1
2∗r c

2∗r

0 ( K
Sr

)
2∗r

2

− 1
2∗r c

2∗r

0 (1− δε)
2∗r

(

( K
Sr

)
2∗r

2 +O(εN )
)

− c2
∗r−1

ε

∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ)dx

On the other hand, a easy computation gives
∫

Ω

|ux0,ε|
2∗r−1(u + ϕ)dx = Dε

N−2r
2 (u+ ϕ)(x0) + o(ε

N−2r
2 ) (29)

where D =

∫

RN

1

(1 + |y|2)
N+2r

2

.

Then

cε

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx ≤ c2

∗r

0 ( K
Sr

)
2∗r

2 (δε −
1
2 (2

∗r − 1)δ2ε + o(δ2ε) + o(εN ))

− 1
2∗r c

2∗r−1
ε Dε

N−2r
2 (u + ϕ)(x0) + o(ε

N−2r
2 ).

(30)
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Inserting (30) into (28), we get

Sθ,r(ϕ)− ‖u‖2r ≤ c20K(1− 2δε + δ2ε) +O(εN−2r)

+ 2c20(
K
Sr

)
2∗r

2 K(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1

(

δε −
1
2 (2

∗r − 1)δ2ε + o(δ2ε )
)

+ o(εN )

− 2 c2
∗r−1

ε c20K(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1Dε

N−2r
2 (u + ϕ)(x0) + o(ε

N−2r
2 ).

Then

Sθ,r(ϕ)− ‖u‖2r ≤ c20K − 2c20Kδε + c20Kδ2ε + o(ε
N−2r

2 )

+ 2c2
∗r+2

0 ( K
Sr

)
2∗r

2 K(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1δε

− (2∗r − 1)c2
∗r+2

0 ( K
Sr

)
2∗r

2 K(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1δ2ε + o(δ2ε )

− 2 c2
∗r−1

ε c20K(1− ‖u+ ϕ‖2
∗r

L2∗r )
−1Dε

N−2r
2 (u+ ϕ)(x0) + o(ε

N−2r
2 ).

Using (26), we get

Sθ,r(ϕ)− ‖u‖2r ≤ c20K − c20K(22
∗r

− 2)δ2ε + o(δ2ε)

− 2 cεK(Sr

K )
2∗r

2 Dε
N−2r

2 (u+ ϕ)(x0) + o(ε
N−2r

2 ).

Consequently

Sθ,r(ϕ) − ‖u‖2r < c20K = Sr

[

1− ‖‖u+ ϕ‖L
2∗r

L2∗r

]
2

2∗r

.

If 2∗r ≤ 3:

We use the following inequality see [[6], Lemma 4] and [12],

∣

∣|x+ y|p − |x|p − |y|p − pxy(|x|p−2 + |y|p−2)
∣

∣ ≤

{

C|x|p−1|y| if |x| ≤ |y|,

C|x||y|p−1 if |x| ≥ |y|,
(31)

for x, y ∈ R, where C = C(p) a positive a constant.

Define

Aε := 1−

∫

Ω

|u+ ϕ|2
∗r

dx − c2
∗r

ε

∫

Ω

|ux0,ε|
2∗rdx− 2∗rc2

∗r−1
ε

∫

Ω

|ux0,ε|
2∗r−1(u + ϕ)dx

− 2∗rcε

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx.

(32)

Applying the inequality (31) with x = u + ϕ, y = cεux0,ε and we suppose that x0 = 0 for

simplicity, we write

|Aε| ≤ C

{

cε

∫

{|u+ϕ|≤cεux0,ε}
|u+ ϕ|2

∗r−1ux0,εdx+ c2
∗r−1

ε

∫

{|u+ε|≥cεux0,ε}
|u+ ϕ|u2∗r−1

x0,ε dx

}

|Aε| ≤ A1
ε +A2

ε.

On one hand, we have

A1
ε ≤ C1ε

N−2r
2

∫ c1ε
1
2

0

zN−1

(ε2 + z2)
N−2r

2

dz since {|u+ ϕ| ≤ cεux0,ε} ⊂ {|x| ≤ c1ε
1
2 },
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and

A2
ε ≤ C2ε

N+2r
2

∫ c3

c2ε
1
2

zN−1

(ε2 + z2)
N+2r

2

dz since {|u+ ϕ| ≥ cεux0,ε} ⊂ {c2ε
1
2 ≤ |x| ≤ c3},

where c1, c2 and c3 are some positive constants.

On the other hand, some computations give

∫ c1ε
1
2

0

zN−1

(ε2 + z2)
N−2r

2

dz ≤

∫ c1ε
1
2

0

z2r−1dz =
1

2r
c1ε

r = O(εr),

and
∫ c3

c2ε
1
2

zN−1

(ε2 + z2)
N+2r

2

dz ≤

∫ c3

c2ε
1
2

z−2r−1dz = −
1

2r
[c−2r

3 −(c2)
−2rε−r] = ε−r(K2−K3ε

r) = O(ε−r).

Therefore A1
ε = O(ε

N
2 ) = o(ε

N−2r
2 ) and A2

ε = O(ε
N
2 ) = o(ε

N−2r
2 ). Thus

Aε = o(ε
N−2r

2 ). (33)

Combining (15), (32) and (33) we get

cε

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx = 1

2∗r

[

1− ‖u+ ϕ‖2
∗r

L2∗r − c2
∗r

0 (1− 2∗rδε)
(

K
Sr

)
2∗r

2

+ o(εN−2r)

]

− c2
∗r−1

ε

∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ)dx + o(δε) + o(ε

N−2r
2 ).

Using (26), an easy computation gives

cε

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx = δεc

2∗r

0 (
K

Sr
)

2∗r

2 −c2
∗r−1

0

∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ)dx+o(δε)+o(ε

N−2r
2 ).

(34)

On the other way, we have

cε

∫

Ω

|u+ ϕ|2
∗r−2(u+ ϕ)ux0,εdx = cεε

N−2r
2

∫

Ω

(u+ ϕ)2
∗r−1(x)dx

|x|N−2r
+ o(ε

N−2r
2 ) = O(ε

N−2r
2 )

(35)

Putting (29) and (35) into (34) we deduce

δε = O(ε
N−2r

2 ). (36)

Now, returning to (27) and using (34), we write

Sθ,r(ϕ)− ‖u‖2r ≤ c20K − 2δεc
2
0K + 2c20K(1− ‖u+ ϕ‖2

∗r

2∗r)
−1

×

[

δεc
2∗r

0

(

K

Sr

)
2∗r

2

− c2
∗r−1

0

∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ)dx

]

+ o(δε) + o(ε
N−2r

2 ).

From (36), we get

Sθ,r(ϕ) − ‖u‖2r ≤ c20K − 2c0K

(

Sr

K

)
2∗r

2
∫

Ω

|ux0,ε|
2∗r−1(u+ ϕ) + o(ε

N−2r
2 ). (37)
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Using (29) we write

Sθ,r(ϕ)− ‖u‖2r ≤ c20K − 2c0K(
Sr

K
)

2∗r

2 D(u + ϕ)(x0)ε
N−2r

2 + o(ε
N−2r

2 ),

Therefore

Sθ,r(ϕ)− ‖u‖2r < Sr

[

1− ‖u+ ϕ‖2
∗r

2∗r

]
2

2∗r

.

If r is odd

We use again u+ cεux0,ε as a testing function of (2), we have

Sθ,r(ϕ) ≤ ‖u‖2r + c2ε

∫

Ω

|∇(−∆)
r−1

2 ux0,ε|
2dx + 2cε

∫

Ω

|∇(−∆)
r−1

2 ux0,ε||∇(−∆)
r−1

2 u|dx.

Using (22) and applying the same technics used in the case where r is even, we obtain

Sθ,r(ϕ)− ‖u‖2r < Sr

[

1− ‖u+ ϕ‖2
∗r

2∗r

]
2

2∗r

.

Note that if instead of (u+ϕ)(x0) > 0 we had (u+ ϕ)(x0) < 0, then we would choose cε > 0 such

that ‖u+ϕ−cεux0,ε‖L2∗ = 1. Which completes the proof of Step 4 and then the proof of Theorem

1 is done. �

Remark 2.1. Let us note that any minimizers uθ ∈ Hr
θ (Ω) of Sθ,r, respectively u0 ∈ Hr

0 (Ω) of

S0,r, satisfy the following Euler-Lagrange equations:

{

(−∆)ruθ = Λθ|uθ + ϕ|2
∗r−2(uθ + ϕ) in Ω,

∆r−1uθ = ..... = ∆uθ = uθ = 0 on ∂Ω,
(38)

and
{

(−∆)ru0 = Λ0|u0 + ϕ|2
∗r−2(u0 + ϕ) in Ω,

∂r−1u0

(∂ν)r−1 = .... = ∂u0

∂ν = u0 = 0 on ∂Ω,
(39)

where Λθ is the Lagrange multiplier associated to uθ and Λ0 is the Lagrange multiplier associated

to u0.

By analogy of the case r = 2 in [14], we can find the sign of the Lagrange multipliers which

depends on ‖ϕ‖L2∗r and we have

Proposition 2.1.

(a) If ‖ϕ‖L2∗r < 1 then Λθ > 0. and Λ0 > 0.

(b) If ‖ϕ‖L2∗r > 1 then Λθ < 0. and Λ0 < 0.
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Proof. We shall prove the results for Λθ, the proof of results for Λ0 are similar.

We begin by noticing that Λθ can be written as:

Sθ,r = Λθ

[

1−

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)ϕ

]

. (40)

Indeed, we have (see Remark 2.1)

Sθ,r = Λθ

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)uθ,

and
∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)(uθ + ϕ) =

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)uθ +

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)ϕ,

and since,
∫

Ω

|uθ + ϕ|2
∗r

= 1.

Therefore we deduce (40).

Then, if we suppose ‖ϕ‖L2∗r < 1, and by the Hölder inequality we have

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)ϕ ≤

[

∫

Ω

(

|uθ + ϕ|2
∗r−1

)
2∗r

2∗r−1

dx

]

2∗r−1

2∗r [
∫

Ω

|ϕ|
2∗r

dx

]
1

2∗r

.

Since u 6≡ 0 except for ‖ϕ‖L2∗r = 1 which is an obvious case.

Thus,
∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)ϕ ≤

[
∫

Ω

|ϕ|
2∗r

dx

]
1

2∗r

< 1

and then Λθ > 0. Now we assume that ‖ϕ‖L2∗r > 1 and set, as in [14],

h(t) =

∫

Ω

|tuθ + ϕ|2
∗r

.

This function admits a derivative given by the formula

h′(t) = 2∗r
∫

Ω

|tuθ + ϕ|2
∗r−2(tuθ + ϕ)uθ.

Now, the function uθ satisfies

(−∆)ruθ = Λθ|uθ + ϕ|2
∗r−2(uθ + ϕ).

Then, multiplying by uθ and integrating by parts, we get

If r is even
∫

Ω

|(−∆)
r
2 uθ|

2
dx = Λθ

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)uθ =

Λθ

2∗r
h′(1).

If r is odd
∫

Ω

|∇(−∆)
r−1

2 uθ|
2dx = Λθ

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)uθ =

Λθ

2∗r
h′(1).

So item (b) is verified because h(1) = 1, and we see that h(t) ≥ 1 for all t ∈ [0, 1] . So, we conclude

that h′(1) ≤ 0. Otherwise, since h is continuous and h(0) > 1, there exists 0 < s < 1 such that
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h(s) = 1.

Therefore,
∫

Ω

|suθ + ϕ|2
∗r

= 1.

When suθ as a testing function in(2), we have

If r is even

Sθ,r =

∫

Ω

|(−∆)r/2suθ|
2dx ≤ sr

∫

Ω

|(−∆)r/2uθ|
2dx.

If r is odd

Sθ,r =

∫

Ω

|∇(−∆)
r−1

2 suθ|
2dx ≤ sr−1

∫

Ω

|∇(−∆)
r−1

2 uθ|
2dx.

We get a contradiction and the proof is completed.

Remark 2.2. In [9], the author considered the following semi-linear polyharmonic problem:











(−∆)ru = |u|2
∗r−2u+ f(x, u) in Ω,

u > 0 in Ω,

(−∆)r−1u = ..... = (−∆)u = u = 0 on ∂Ω.

(41)

This problem is equivalent to (38) when Λθ > 0 is fixed. The author prove the existence of positive

solutions under the sufficient conditions on f and the domain Ω.

3 Proof of Theorem 2

By definitions of (1) and (2) we have Sθ,r ≤ S0,r. In this section we present a gap phenomenon

between Sθ,r and S0,r under suitable hypothesis on ϕ.

Proof of (i).

Let ϕ be a positive function not identically zero. We adapt the argument of Van der Vorst [19] to

the present situation. Let uθ a the minimizer of (2). We give reason by contradiction. We assume

that uθ is in Hr
0 (Ω).

If r is even

Let v be the solution of the following problem

{

(−∆)
r
2 v = |(−∆)

r
2 uθ| in Ω,

(−∆)
r
2
−1v = ..... = −∆v = v = 0 on ∂Ω,

(42)

We get
{

(−∆)(−∆)
r
2
−1(v − uθ) ≥ 0 in Ω,

(−∆)
r
2
−1(v − uθ) = 0 on ∂Ω,

(43)

and
{

(−∆)(−∆)
r
2
−1(v + uθ) ≥ 0 in Ω,

(−∆)
r
2
−1(v + uθ) = 0 on ∂Ω.

(44)

In equations (43) and (44), using successively the maximum principle we obtain v > |uθ| or v = −uθ

or v = uθ.

By taking the equation (42) with v = uθ and v = −uθ, we find the function (−∆)
r
2 uθ has a

13



constant sign. These two cases v = uθ or −uθ when uθ = ∂uθ

∂ν = ... = ∂
r
2
−1uθ

(∂ν)
r
2
−1

= 0 on ∂Ω are false

if we use the maximum principle when we consider uθ = 0 in Ω. So we have v > |uθ| in Ω.

Considering this inequality and the fact that ϕ ≥ 0, we get uθ+ϕ < v+ϕ in Ω and −uθ−ϕ < v+ϕ

in Ω; therefore |uθ + ϕ| < |v + ϕ| in Ω and as result we have
∫

Ω

|v + ϕ|2
∗r

dx > 1.

Currently, take the function f(t) =

∫

Ω

|tv + ϕ|2
∗r

dx for t ∈ [0, 1] . Since f is continuous, f(0) < 1

and f(1) > 1, there exists s ∈ ]0, 1[ such that f(s) = 1.

But we have
∫

Ω

|(−∆)
r
2 sv|

2
dx ≤ s2

∫

Ω

|(−∆)
r
2 v|

2
dx,

this gives a contradiction with the definition of Sθ,r(ϕ).

If r is odd

Let v be the solution of the next problem:
{

(−∆)
r−1

2 v = |(−∆)
r−1

2 uθ| in Ω,

(−∆)
r−1

2
−1v = ..... = −∆v = v = 0 on ∂Ω,

(45)

We obtain
{

(−∆)(−∆)
r−1

2
−1(v − uθ) ≥ 0 in Ω,

(−∆)
r−1

2
−1(v − uθ) = 0 on ∂Ω,

(46)

and
{

(−∆)(−∆)
r−1

2
−1(v + uθ) ≥ 0 in Ω,

(−∆)
r−1

2
−1(v + uθ) = 0 on ∂Ω.

(47)

In (46) and (47), using successively the maximum principle we obtain v > |uθ| or v = −uθ or

v = uθ.

By taking the equation (45) with v = uθ and v = −uθ, we find the function (−∆)
r−1

2 uθ has a

constant sign. These two cases v = uθ or −uθ when uθ = ∂uθ

∂ν = ... = ∂
r−1
2

−1uθ

(∂ν)
r−1
2

−1
= 0 on ∂Ω are

false if we use the maximum principle when we consider uθ = 0 in Ω. Thus, we have v > |uθ| in Ω.

Using this inequality and the fact that ϕ ≥ 0, we get uθ +ϕ < v+ ϕ in Ω and −uθ − ϕ < v+ϕ in

Ω; therefore |uθ + ϕ| < |v + ϕ| in Ω and as result we have
∫

Ω

|v + ϕ|2
∗r

dx > 1.

Currently, let us consider the function f(t) =

∫

Ω

|tv + ϕ|2
∗r

dx for t ∈ [0, 1] . Since f is continuous,

f(0) < 1 and f(1) > 1, there exists s ∈ ]0, 1[ such that f(s) = 1.

But we have
∫

Ω

|∇((−∆)
r−1

2 sv)|
2
dx ≤ s2

∫

Ω

|(−∆)
r−1

2 v|
2
dx,

that contradiction the definition of Sθ,r(ϕ).

This finish the proof of (i).
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Proof of (ii). We will prove it into two cases.

Case 1: Assume that ϕ is in (Hr
0 (Ω))

⊥ and ‖ϕ‖L2∗r > 1. Let uθ a solution of (2). Multiplying

(38) by uθ + ϕ and integrating by parts, we get

If r is even
∫

Ω

|(−∆)
r
2uθ|

2
+

∫

Ω

(−∆)
r
2 uθ · (−∆)

r
2ϕdx = Λθ.

If r is odd

We have
∫

Ω

|∇(−∆)
r−1

2 uθ|
2dx+

∫

Ω

∇(−∆)
r−1

2 uθ · ∇(−∆)
r−1

2 ϕdx = Λθ.

As ‖ϕ‖L2∗r > 1, we have Λθ < 0, therefore

∫

Ω

(−∆)
r
2 uθ · (−∆)

r
2ϕdx < 0, if r is even and

∫

Ω

∇(−∆)
r−1

2 uθ · ∇(−∆)
r−1

2 ϕdx < 0

if r is odd. Which improve that uθ is not in Hr
0 (Ω); in conclusion we have Sθ,r(ϕ) < S0,r(ϕ).

Case 2: Assume that ϕ is in (Hr
0 (Ω))

⊥ and ‖ϕ‖L2∗r < 1. Let x0 ∈ Ω and ux0,ε defined in (14).

From [7], we have

∫

Ω

|ux0,ε|
2∗r

=
K

Sr
+ o(1), and

∫

Ω

|∆ux0,ε|
2
= K + o(1), where K is a positive

constant.

Since ‖ϕ‖L2∗r < 1, there exists cε > 0 such that ‖ϕ + cεux0,ε‖L2∗r = 1. By Brezis-Lieb identity

(see [4] ) we have

c2
∗r

ε = (
Sr

K
)

2∗r

2

[

1− ‖ϕ‖2
∗r

L2∗r

]

+ o(1),

then

c2εK = Sr

[

1− ‖ϕ‖2
∗r

L2∗r

]

N−2r
N

+ o(1).

when o(1) tends to 0. At limit, we have

c2εK = Sr

[

1− ‖ϕ‖2
∗r

L2∗r

]
N−2r

N

. (48)

Afterwards, since ‖ϕ+ cεux0,ε‖
2
L2∗r = 1 we write

Sθ,r(ϕ) ≤ c2ε‖ua,ε‖
2
r = Sr

[

1− ‖ϕ‖2
∗r

L2∗r

]

N−2r
N

+ o(1).

Using (48), direct computations show that

Sθ,r(ϕ) ≤ Sr

(

1− ‖ϕ‖2
∗r

L2∗r

)
N−2r

N

. (49)

On the other way, multiplying (38) by uθ and integrating, we get

Sθ,r(ϕ) = Λθ

∫

Ω

|uθ + ϕ|2
∗r−2(uθ + ϕ)uθdx.

Thus, the Hölder inequality gives

Sθ,r(ϕ) ≤ Λθ

[

∫

Ω

(

|uθ + ϕ|2
∗r−1

)
2∗r

2∗r−1

dx

]

2∗r−1

2∗r [
∫

Ω

|uθ|
2∗r

dx

]
1

2∗r

Sθ,r(ϕ) ≤ Λθ‖uθ‖L2∗r . (50)
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Applying the Sobolev inequality we obtain that

Sθ,r(ϕ) ≤ Λθ
1

S
1
2
r

‖u‖r. (51)

Or

‖uθ‖
2
r = Sθ,r(ϕ). (52)

Combining (52) and (51) we find

Sθ,r(ϕ) ≤ Λθ

[

1− ‖ϕ‖2
∗r

L2∗r

]
1

2∗r

. (53)

Now, multiplying (38) by (uθ + ϕ) and integrating, using (53) we acquire

If r is even
∫

Ω

(−∆)
r
2uθ · (−∆)

r
2ϕdx = Λθ − Sθ,r(ϕ). (54)

Combining (53) and (54) we are lead to

∫

Ω

(−∆)
r
2uθ · (−∆)

r
2ϕdx ≥ Λθ

[

1−

(

1−

∫

Ω

|ϕ|
2∗r

)

N−2r
2N

]

> 0,

If r is odd

∫

Ω

∇(−∆)
r−1

2 uθ · ∇(−∆)
r−1

2 ϕdx = Λθ − Sθ,r(ϕ). (55)

Combining (53) and (55) we have

∫

Ω

∇(−∆)
r−1

2 uθ · ∇(−∆)
r−1

2 ϕdx ≥ Λθ

[

1−

(

1−

∫

Ω

|ϕ|
2∗r

)

N−2r
2N

]

> 0.

This means that uθ is not in Hr
0 (Ω) and we have Sθ,r(ϕ) < S0,r(ϕ).

Indeed, let us note that any minimizer uθ ∈ Hr
θ (Ω) of Sθ,r(ϕ) is not in Hr

0 (Ω).

Arguing by contradiction, suppose that Sθ,r(ϕ) = S0,r(ϕ), thus S0,r(ϕ) = Sθ,r(ϕ) = ‖u‖2r and

‖u + ϕ‖L2∗r = 1. Therefore uθ be a minimizer of S0,r(ϕ), as a result uθ ∈ Hr
0 (Ω), which gives a

contradiction.

Proof of (iii). Suppose ϕ be in Hr
0 (Ω). We admit first that for ‖ϕ‖L2∗r > 1,

If r is even

we have,

Sθ,r(ϕ) = inf
u∈Hr

θ (Ω)
‖u+ϕ‖

L2∗r ≤1

∫

Ω

|(−∆)
r
2 u|2dx. (56)

We find a convex problem. In this case, based on [8], we will use a duality’s method.

For all p ∈ L2(Ω),

Define

βθ = sup
u∈Hr

θ (Ω)
‖u+ϕ‖

L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2u

)

and β0 = sup
u∈Hr

0 (Ω)
‖u+ϕ‖

L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2 u

)

.
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We get

βθ = sup
v∈Hr

θ (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2 v

)

−

∫

Ω

p
(

(−∆)
r
2ϕ

)

and β0 = sup
v∈Hr

0 (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2 v

)

−

∫

Ω

p
(

(−∆)
r
2ϕ

)

.

We will prove that we have

βθ = β0, for all p ∈ L2(Ω) (57)

Initially, we observe that βθ and β0 are finite, due to the Holder inequality

|

∫

Ω

p
(

(−∆)
r
2 v

)

| ≤ ‖p‖L2‖(−∆)
r
2 v‖L2 .

We include that the linear operator

L : Hr
θ (Ω) → R

v →

∫

Ω

p
(

(−∆)
r
2 v

)

is continuous for the L2∗r topology. So, there exists p̃ ∈ L
2N

N+2r even that for all v ∈ Hr
θ (Ω) we find

L(v) =
∫

Ω p̃v.

We consider that

βθ = sup
v∈Hr

θ (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p̃v −

∫

Ω

p
(

−∆)
r
2ϕ

)

; β0 = sup
v∈Hr

0 (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p̃v −

∫

Ω

p
(

(−∆)
r
2ϕ

)

. (58)

On the other side, for all p̃ ∈ L
2N

N+2r , we have

sup
v∈Hr

θ (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p̃v = sup
v∈L2∗r (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p̃v = sup
v∈Hr

0 (Ω)
‖v‖

L2∗r ≤1

∫

Ω

p̃v = ‖p̃‖
L

2N
N+2r

. (59)

Actually, in the case where ‖ϕ‖L2∗r > 1, we have to prove that

1

2
Sθ,r(ϕ) = sup

p∈L2(Ω)















−
1

2

∫

Ω

|p|
2
− sup

u∈Hr
θ (Ω)

‖u+ϕ‖
L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2 u

)















(60)

and

1

2
S0,r(ϕ) = sup

p∈L2(Ω)















−
1

2

∫

Ω

|p|
2
− sup

u∈Hr
0 (Ω)

‖u+ϕ‖
L2∗r ≤1

∫

Ω

p
(

(−∆)
r
2u

)















. (61)

Let us write, for p ∈ L2(Ω) and for u ∈ Hr
θ (Ω),

L(u, p) = −
1

2

∫

Ω

|p|
2
−

∫

Ω

(

(−∆)
r
2u

)

p.

We show that

sup
p∈L2(Ω)

L(u, p) =
1

2

∫

Ω

|(−∆)
r
2u|

2
. (62)
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Indeed,

Firstly, we have

L(u, (−∆)
r
2 u) = −

1

2

∫

Ω

|(−∆)
r
2u|

2
+

∫

Ω

(

(−∆)
r
2 u

)2
,

thus,

L(u, (−∆)
r
2 u) =

1

2

∫

Ω

|(−∆)
r
2 u|

2
.

Therefore,

sup
p∈L2(Ω)

L(u, p) ≥ L(u, (−∆)
r
2 u). (63)

On the other hand, we have,

1

2
‖(−∆)

r
2 u+ p‖2L2 =

1

2
‖(−∆)

r
2u‖2L2 +

1

2
‖p‖2L2 +

∫

Ω

((−∆)
r
2 u)p,

then,

L(u, p) = −
1

2

∫

Ω

|p|2 −

∫

Ω

((−∆)
r
2 u)p ≤ −

1

2

∫

Ω

|p|2 +
1

2

∫

Ω

|(−∆)
r
2 u+ p|

2
dx−

∫

Ω

((−∆)
r
2u)p.

Thus

sup
p∈L2(Ω)

L(u, p) ≤
1

2

∫

Ω

|(−∆)
r
2 u|

2
. (64)

Combining (63) and (64), we get (62).

Now, by (56) and (62) we have

1

2
Sθ,r(ϕ) = inf

u∈Hr
θ (Ω)

‖u+ϕ‖
L2∗r ≤1

sup
p∈L2(Ω)

L(u, p). (Y )

Let us justify that (Y ) = (Y ∗) where (Y ∗) is the dual problem of (Y ), defined by

sup
p∈L2(Ω)

inf
u∈Hr

θ (Ω)
‖u+ϕ‖

L2∗r ≤1

L(u, p). (Y ∗)

Let us define

A = {u ∈ Hr
θ (Ω); ‖u+ ϕ‖L2∗r ≤ 1} .

Let uθ be a minimizer that realizes Sθ,r(ϕ) and let pθ = −(−∆)
r
2 uθ. From (62), we get

L(uθ, p) ≤ sup
p∈L2(Ω)

L(uθ, p) =
1

2
Sθ,r(ϕ) for all p ∈ L2(Ω). (65)

Actually, let u ∈ A we have

L(u, pθ) ≥ −
1

2

∫

Ω

|pθ|
2
− sup

u∈A

∫

Ω

(−∆u)
r
2 pθ.

Indeed, by definition we write

sup
u∈A

∫

Ω

((−∆)
r
2u)pθ ≥

∫

Ω

((−∆)
r
2u)pθ. (66)
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Multiplying (66) by −1, we get

− sup
u∈A

∫

Ω

((−∆)
r
2u)pθ ≤ −

∫

Ω

((−∆)
r
2u)pθ, (67)

we add −
1

2

∫

Ω

|pθ|
2
dx in (67), we obtain

−
1

2

∫

Ω

|pθ|
2 − sup

u∈A

∫

Ω

((−∆)
r
2 u)pθ ≤ −

1

2

∫

Ω

|pθ|
2 −

∫

Ω

((−∆)
r
2 u)pθ.

Therefore,

−
1

2

∫

Ω

|pθ|
2
dx− sup

u∈A

∫

Ω

((−∆)
r
2u)pθdx ≤ L(u, pθ).

Now, integrating by part and using the fact that (−∆)
r
2 uθ = 0 on ∂Ω,, we have

L(u, pθ) ≥ −
1

2

∫

Ω

|pθ|
2
− sup

u∈A

∫

Ω

u((−∆)
r
2 pθ).

On the other hand, using (59), we see that

− sup
u∈A

∫

Ω

u((−∆)
r
2 pθ)dx = − sup

u∈A

∫

Ω

(u + ϕ)(−∆)
r
2 pθ)dx +

∫

Ω

ϕ((−∆)
r
2 pθ)dx

= −‖(−∆)
r
2 pθ‖

L
2N

N+2r
+

∫

Ω

ϕ((−∆)
r
2 pθ)dx

= −‖(−∆)
r
2 pθ‖

L
2N

N+2r
+

∫

Ω

((−∆)
r
2ϕ)pθ −

∫

∂Ω

ϕ((−∆)
r
2 pθ)dx.

Using (−∆)
r
2 pθ = 0 on ∂Ω we obtain,

− sup
u∈A

∫

Ω

u((−∆)
r
2 pθ)dx = −‖(−∆)

r
2 pθ‖

L
2N

N+2r
+

∫

Ω

((−∆)
r
2ϕ)pθ,

and therefore

L(u, pθ) ≥ −
1

2

∫

Ω

|pθ|
2
−‖(−∆)

r
2 pθ‖

L
2N

N+2r
+

∫

Ω

((−∆)
r
2ϕ)pθ. (68)

However, the Euler equation (38) for uθ gives

‖(−∆)ruθ‖
L

2N
N+2r

= |Λθ|. (69)

Contrastingly, multiplying the Euler equation (38) by (uθ + ϕ), we obtain

Λθ =

∫

Ω

|(−∆)
r
2uθ|

2
+

∫

Ω

(−∆)
r
2uθ · (−∆

r
2 )ϕdx. (70)

From Remark 2.1 we know that Λθ < 0 since ‖ϕ‖L2∗r < 1, therefore (69) and (70) give

− ‖(−∆)
r
2 pθ‖

L
2N

N+2r
+

∫

Ω

pθ · (−∆)
r
2ϕdx = Sθ,r(ϕ). (71)

We replace (68) into (71), we find

L(u, pθ) ≥
1

2
Sθ,r(ϕ) for all u ∈ A. (72)
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Regarding to [8] that (72) and 65 conclude that (Y ) = (Y ∗). This proof is valid for 1
2Sθ,r(ϕ) instead

of 1
2S0,r(ϕ), then we have proved (60) and (61). Consequently, we have (57) and then we conclude

that Sθ,r(ϕ) = S0,r(ϕ).

If r is odd

In the case when r is odd we find the same results just we have

Sθ,r(ϕ) = inf
u∈Hr

θ (Ω)
‖u+ϕ‖

L2∗r ≤1

∫

Ω

|∇((−∆)
r−1

2 u)|
2

instead of Sθ,r(ϕ) = inf u∈Hr
θ (Ω)

‖u+ϕ‖
L2∗r ≤1

∫

Ω

|(−∆)
r
2 u|

2
. And then we use the same steps to conclude at

the end that Sθ,r(ϕ) = S0,r(ϕ). This ends the proof of the Theorem 2. �

Remark 3.1.

If ‖ϕ‖L2∗r = 1 then Sθ,r(ϕ) = S0,r(ϕ) = 0 and the infimum are achieved by 0.

Indeed, let ‖ϕ‖L2∗r = 1,

By the definitions in (1) and (2) and according to Brezis-Lieb Lemma, for all u ∈ Hr
0 (Ω) we obtain

‖u+ ϕ‖L2∗r = ‖u‖L2∗r + ‖ϕ‖L2∗r + o(1),

that gives, using ‖ϕ‖L2∗r = 1,

‖u‖L2∗r = 0

As a result, we find that Sθ,r(ϕ) = S0,r(ϕ) = 0 and the infimum are achieved by 0.

We declare the data availability statement.
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