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In this work, we study the two following minimization problems for r ∈ N * ,

where

Firstly, we prove that, when ϕ ≡ 0, the infimum in S0,r(ϕ) and S θ,r (ϕ) are achieved. Secondly, we show that S θ,r (ϕ) < S0,r(ϕ) for a large class of ϕ.

Introduction and main results

Let r ∈ N * and Ω be a bounded domain of R N with N ≥ 2r + 1. We define the space H r 0 (Ω) and H r θ (Ω) by H r 0 (Ω) := f ∈ H r (Ω) | D k f = 0 on ∂Ω for k = 0, 1 . . . , r -1 and

H r θ (Ω) := f ∈ H r (Ω) | (-∆) k f = 0 on ∂Ω for 0 ≤ k ≤ [(r + 1)/2]
. where D k f denote any derivative of order k of the function f and [(r + 1)/2] is the integer part of (r + 1)/2. Define the following norm

f 2 r =      Ω |(-∆) r/2 f | 2 dx if r is even, Ω |∇(-∆) r-1 2 f | 2 dx if r is odd.
1

Then, we consider the following minimizing problem S 0,r (ϕ) = inf

u∈H r 0 (Ω), u+ϕ L 2 * r =1 u 2 r (1) 
and S θ,r (ϕ) = inf

u∈H r θ (Ω), u+ϕ L 2 * r =1 u 2 r , (2) 
where the function ϕ ∈ L 2 * r (Ω) ∩ C(Ω) and 2 * r = 2N N -2r is the limiting Sobolev exponent in the imbedding H r 0 (Ω) ֒→ L q (Ω), 1 ≤ q ≤ 2 * r .

The problem under consideration in this paper is related to many geometrical equations involving where lack of compactness occurs. The statement of this problem on the bounded domain is associated with problems of the resolution of some minimization problem from geometry and physics, where the goal of our minimization problem is to determine the existence of a non-trivial minimum. In 1986, Brezis considered in [START_REF] Brezis | Some variational problems with lack of compactness[END_REF] the first formulation of a problem which r = 1 and ϕ = 0, see also [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], [START_REF] Furtado | Positive and nodal solutions for an elliptic equation with critical growth[END_REF] and [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF]. In [START_REF] Brezis | A minimization problem with critical exponent and non-zero data[END_REF], Brezis and Nirenberg provided the first positive answer to this problem for r = 1 stated in terms of an existence result from the infimum under the condition ϕ ≡ 0. Since then, this problem has received many intention and this result has been improved in several ways. This include some results in the case where r = 2 and ϕ = 0 (see for instance [START_REF] Van Der | Fourth order elliptic equations with critical growth[END_REF] and [START_REF] Vorst | Best constant for the embedding of the space H 2 ∩ H 1 0 (Ω) into L 2N N -4 (Ω)[END_REF] ) that S θ,2 (0) = S 0,2 (0) = S is the best Sobolev constant and S is not achieved. In the papers [START_REF] Beaulieu | Remarks on solutions of a fourth-order problem[END_REF] and [START_REF] Guedda | A biharmonic problems with constraint involving critical Sobolev exponent[END_REF] the authors studied the problems (1) and [START_REF] Beaulieu | Remarks on solutions of a fourth-order problem[END_REF] for the biharmonic operator (-∆) 2 , see also [START_REF] Gazzola | Existence and non existence results for critical growth biharmonic elliptic equation[END_REF] for other study of biharmonic operator. Polyharmonic equations have been considered in several works, see for exemple [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF]. This type of problems have many applications, we can cite for example the study of quantitate properties of solutions of semi-linear problems or the Paneitz type operator which appears in Willmore surfaces and in geometry, see [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds, Integrability and geometry[END_REF]. In this paper we are interested in the two minimization problems (1) and [START_REF] Beaulieu | Remarks on solutions of a fourth-order problem[END_REF] where the function ϕ is given in L 2 * r (Ω) ∩ C(Ω). More precisely, we consider the case r ≥ 2 and ϕ is not identically 0 which is a natural generalization of the previous works.

Since we have H r 0 (Ω) ⊂ H r θ (Ω) we always have S θ,r ≤ S 0,r . A natural question arises is do we still have S θ,r (ϕ) < S 0,r (ϕ) or S θ,r (ϕ) = S 0,r (ϕ) ? In the case where the two infima S θ,r and S 0,r are achieved respectively by u θ and u 0 we will be interested by some regularity of u θ , namely is u θ in H r 0 (Ω)? and also by the sign of the Lagrange multipliers associated to the two problems. Note that, if ϕ is smooth, using the change of variable u + ϕ = v in the energy, we are led to problems with nonvanishing boundary datum, see [START_REF] Hadiji | A nonlinear problem with a weight and a nonvanishing boundary datum[END_REF].

Our main results can be stated as follows.

Theorem 1.

Let Ω be a smooth bounded domain in R N with N ≥ 2r + 1 and ϕ ∈ L 2 * r ∩ C(Ω)\{0}. Then S 0,r (ϕ) and S θ,r (ϕ) are achieved.

Theorem 2.

Let Ω be a smooth bounded domain in R N with N ≥ 2r + 1 and ϕ ∈ L 2 * r ∩ C(Ω)\{0}. We have (i) If ϕ L 2 * r < 1 and ϕ has a constant sign on Ω, then every minimizer of S θ,r (ϕ) is not in H r 0 (Ω) and we have S θ,r (ϕ) < S 0,r (ϕ).

(ii) If ϕ ∈ (H r 0 (Ω)) ⊥ , where (H r 0 (Ω)) ⊥ is the orthogonal space of H r 0 (Ω) in H r θ (Ω), then every minimizer of S θ,r (ϕ) is not in H r 0 (Ω) and we have S θ,r (ϕ) < S 0,r (ϕ).

(iii) If ϕ L 2 * r > 1 and ϕ ∈ H r 0 (Ω) then S θ,r (ϕ) = S 0,r (ϕ).

Remark 1.1. The proof of cases (i)-(ii) and (iii) are completely different, the last case is treated using the convexity of the problems, for more details see [START_REF] Ekland | Analyse convexe et problèmes variationnels[END_REF].

The rest of paper is organized as follows: In section 2, we prove that the infimum in ( 1) and ( 2) are achieved where ϕ = 0 using some technical steps. In section 3, we present the proof of Theorem 2, more precisely we establish that S θ,r (ϕ) < S 0,r (ϕ), for ϕ satisfying suitable conditions.

Existence of minimizers

In this section, we will prove Theorem 1. This result is a natural generalization of the works [START_REF] Brezis | A minimization problem with critical exponent and non-zero data[END_REF] and [START_REF] Guedda | A biharmonic problems with constraint involving critical Sobolev exponent[END_REF]. Proof of Theorem 1. We prove that S θ,r is achieved. The proof for S 0,r is similar. We follow an idea introduced in [START_REF] Brezis | A minimization problem with critical exponent and non-zero data[END_REF] see also [START_REF] Guedda | A biharmonic problems with constraint involving critical Sobolev exponent[END_REF]. Let {u j } be a minimizing sequence for S θ,r (ϕ), that is,

u j + ϕ L 2 * r = 1 (3) 
and

u j 2 r = S θ,r (ϕ) + o(1). (4) 
An easy computations give that {u j } is bounded in H r θ (Ω). Then, there exists s subsequence, still noted, {u j } such that u j ⇀ u weakly in H r θ (Ω), u j → u strongly in L t (Ω) for any t < 2 * r , u j → u a.e on Ω, u j ⇀ u weakly in L 2 * r (Ω).

Using the lower semi-continuity in (3) and (4), we obtain that

u + ϕ L 2 * r ≤ 1, and u 2 r ≤ S θ,r (ϕ). (5) 
In order to prove that S θ,r (ϕ) is achieved by u, we need to establish u + ϕ L 2 * r = 1. We proceed by contradiction, then we suppose that

u + ϕ L 2 * r < 1. ( 6 
)
We will prove the contradiction in four steps.

• Step 1

We have

S θ,r (ϕ) -u 2 r ≥ S r 1 - Ω |u + ϕ| 2 * r 2 2 * r . (7) 
Indeed, let v j = u j -u. We have

v j ⇀ 0 weakly in H r θ (Ω). v j → 0 a.e on Ω.
Looking in the definition of S r we write

v j 2 r ≥ S r v j 2 L 2 * r . (8) 
From (3), we see that

1 = u + ϕ 2 * r L 2 * r + v j 2 * r L 2 * r + o(1), By Brezis-Lieb Lemma [4], we have v j 2 L 2 * r = 1 -u + ϕ 2 * r L 2 * r 2 2 * r + o(1), (9) 
Inserting ( 9) into (8), we get

v j 2 r ≥ S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r . ( 10 
)
On the other hand, from (4), we write

v j 2 r = S θ,r (ϕ) -u 2 r + o(1). (11) 
Inserting [START_REF] Gazzola | Existence and non existence results for critical growth biharmonic elliptic equation[END_REF] into [START_REF] Furtado | Positive and nodal solutions for an elliptic equation with critical growth[END_REF] we obtain [START_REF] Edmunds | Critical exponents, critical dimensions and the biharmonic operator[END_REF].

• Step 2 Let v ∈ H r θ such that v + ϕ L 2 * r ≤ 1, we have S θ,r (ϕ) -v 2 r ≤ S r 1 -v + ϕ 2 * r L 2 * r 2 2 * r , (12) 
and thus

S θ,r (ϕ) -u 2 r = S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r . ( 13 
)
Indeed, let v ∈ H r θ (Ω) such that v+ϕ L 2 * r ≤ 1. Suppose that v+ϕ L 2 * r < 1, otherwise (12) comes directly from the definition of S θ,r . There exists c ǫ > 0 such that v+ϕ+c ε u x0,ε L 2 * r = 1 where u x0,ε is an extremal function associate to the best Sobolev constant S r defined by

u x0,ε (x) = ε N -2r 2 ξ (ε 2 + |x -x 0 | 2 ) N -2r 2 . ( 14 
)
where x 0 ∈ Ω and ξ ∈ C ∞ 0 (B(x 0 , R)) be a fixed cut-off function satisfying 0 ≤ ξ ≤ 1 and ξ ≡ 1 on B(x 0 , R 2 ) with R a positive constant. We have from [START_REF] Swanson | The best Sobolev constant[END_REF],

(-∆) j u x0,ε (t) = ε N -2r+4j 2 j i=0 G(i, j)t 2i (ε 2 + t 2 ) N -2r+4j 2 
, for j = 1, 2, . . . , r,

where

G(i, j) = 2 i ( j i )K j D(i, j)E(i, j), with K j = Π j-1 h=0 (N -2r + 2h), D(i, j) =    1 if i = 0 Π j-1 h=0 (r -h) if i = 1, 2, . . . , j and 
E(i, j) =          Π j-1 h=0 (N + 2h) if i = 0, 1, . . . , j -1 1 if i = j 0 if i ≥ j + 1.
From [START_REF] Edmunds | Critical exponents, critical dimensions and the biharmonic operator[END_REF], we have

u x0,ε 2 
L 2 * r = K S r + O(ε N -2r ), (15) 
u x0,ε 2 r = K + O(ε N -2r ), (16) 
u x0,ε ⇀ 0 in H r (Ω), ( 17 
)
where K is a positive constant. Now, we have v

+ ϕ + c ε u x0,ε L 2 * r = 1. Using Bresiz-Lieb Lemma, we write c 2 * r ε u x0,ε 2 * r L 2 * r = 1 -v + ϕ 2 * r L 2 * r + o(1), Therefore c 2 ε = S r K 1 -v + ϕ 2 * r L 2 * r 2 2 * r + o(1). ( 18 
)
On the other hand, we have If r is even

S θ,r (ϕ) ≤ v + c ε u x0,ε 2 r ≤ v 2 r + c 2 ε u x0,ε 2 r + 2c ε Ω (∆) r 2 v(∆) r 2 u x0,ε dx ≤ v 2 r + c 2 ε K + 2ε N 2 c ε Ω (∆) r 2 v r 2 i=0 G(i, r 2 )t 2i (ε 2 + t 2 ) N 2 dx + o(ε N -2r 2 
).

(

) 19 
If r is odd

S θ,r (ϕ) ≤ v + c ε u x0,ε 2 r ≤ v 2 r + c 2 ε u x0,ε 2 r + 2c ε Ω |∇(-∆) r-1 2 v||∇(-∆) r-1 2 u x0,ε |dx ≤ v 2 r + c 2 ε K + 2ε N -2r+4j 2 c ε Ω |∇(-∆) r-1 2 v| j i=0 G(i, j)t 2i (ε 2 + t 2 ) N -2 2 - t 2 2 (N -2) (ε 2 + t 2 ) N -2 dx + o(ε N -2r 2 
).

(20) In the two cases of r, using ( 16) and ( 18), the inequality [START_REF] Vorst | Best constant for the embedding of the space H 2 ∩ H 1 0 (Ω) into L 2N N -4 (Ω)[END_REF] or (20) becomes

S θ,r (ϕ) ≤ v 2 r + S r 1 -v + ϕ 2 * r L 2 * r 2 2 * r + o(ε N -2r 2 
).

Therefore we deduce [START_REF] Guedda | A biharmonic problems with constraint involving critical Sobolev exponent[END_REF]. Also, replace v par u in ( 12) and using step 1 we get (13).

• Step 3

According to assumption ( 6): If r is even then

Ω (∆) r/2 u(∆) r/2 vdx = S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx (21) 
for every v ∈ H r θ (Ω). If r is odd then

Ω ∇(-∆) r-1 2 u ∇(-∆) r-1 2 vdx = S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx (22) for every v ∈ H r θ (Ω). Indeed, let v ∈ H r θ (Ω). Since u + ϕ L 2 * r < 1, there exists t 0 > 0 such that for all |t| < t 0 we have u + ϕ + tv L 2 * r < 1.
Therefore, from Step 2, we have

S θ,r (ϕ) -u + tv 2 r ≤ S r 1 -u + tv + ϕ 2 * r L 2 * r 2 2 * r .
At this stage, we distinguish two cases: If r is even then

S θ,r (ϕ) -u 2 r -2t Ω (∆) r 2 u(∆) r 2 vdx + o(t) ≤ S r 1 -u + tv + ϕ 2 * r L 2 * r 2 2 * r , some computations give S θ,r (ϕ) -u 2 r -2t Ω (∆) r 2 u(∆) r 2 vdx + o(t) ≤ S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r × 1 -2t(1 -u + ϕ 2 * r L 2 * r ) -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx + o(t) .
Using [START_REF] Hadiji | A nonlinear problem with a weight and a nonvanishing boundary datum[END_REF], we obtain

-2t Ω (∆) r 2 u(∆) r 2 vdx + o(t) ≤ -2tS r (1 -u + ϕ 2 * r L 2 * r ) 2 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx + o(t).
We deduce (21) by letting t goes to 0 ± . If r is odd then Using again Step 2, we have

S θ,r (ϕ) -u 2 r -2t Ω ∇(-∆) r-1 2 u∇(-∆) r-1 2 vdx + o(t) ≤ S r 1 -u + tv + ϕ 2 * r L 2 * r 2 2 * r , some computations give S θ,r (ϕ) -u 2 r -2t Ω ∇(-∆) r-1 2 u∇(-∆) r-1 2 vdx + o(t) ≤ S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r × 1 -2t(1 -u + ϕ 2 * r L 2 * r ) -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx + o(t) .
Using [START_REF] Hadiji | A nonlinear problem with a weight and a nonvanishing boundary datum[END_REF], we obtain

-2t Ω ∇(-∆) r-1 2 u∇(-∆) r-1 2 vdx + o(t) ≤ -2tS r (1 -u + ϕ 2 * r L 2 * r ) 2 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)vdx + o(t).
We get (22) by letting t goes to 0 ± . Now, we will show that the hypothesis ( 6) is not true and leads to a contradiction with (13).

• Step 4

The assumption [START_REF] Brezis | A minimization problem with critical exponent and non-zero data[END_REF] implies that

S θ,r (ϕ) -u 2 r < S r 1 - Ω |u + ϕ| 2 * r 2 2 * r . (23) 
Indeed, we have that u + ϕ ≡ 0, otherwise, from (21) we obtain u r = 0 therefore u = 0 and ϕ = 0 which is false. Since we may replace u by -u and ϕ by -ϕ, we may assume, without loss of generality, that u + ϕ > 0 in a set Σ of a positive measure in a ball

B(x 0 , R 2 ) ⊂ Ω with R a positive constant. Then, let x 0 ∈ Σ such that (u + ϕ)(x 0 ) > 0.
As in the proof of Step 2 there exists c ε > 0 such that u + ϕ + c ε u x0,ε L 2 * r = 1, where c ε is defined in [START_REF] Van Der | Fourth order elliptic equations with critical growth[END_REF]. We use u + c ε u x0,ε as a testing function of (??) gives that If r is even

S θ,r (ϕ) ≤ u 2 r + c 2 ε Ω ((∆) r 2 u x0,ε ) 2 dx + 2c ε Ω (∆) r 2 u x0,ε (∆) r 2 u dx. (24) 
Let δ ε and c 0 be given by

c ε = c 0 (1 -δ ε ), c 2 0 = S r K [1 -u + ϕ 2 * r L 2 * r ] 2 2 * r . (25) 
Therefore

[1 -u + ϕ L 2 * r L 2 * r ] -1 = c -2 * r 0 ( S r K ) 2 * r 2 . ( 26 
)
Using ( 16) and applying Step 3 with v = u x0,ε , (24)

S θ,r (ϕ) -u 2 r ≤ c 2 0 (1 -δ ε ) 2 (K + O(ε N -2r )) + 2c ε S r 1 -u + ϕ 2 * r L 2 * r 2 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx.
Using [START_REF] Van Der | Fourth order elliptic equations with critical growth[END_REF] we obtain

S θ,r (ϕ) -u 2 r ≤ c 2 0 (1 -δ ε ) 2 (K + O(ε N -2r )) + 2c ε c 2 0 K 1 -u + ϕ 2 * r L 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx. (27) 
Using (25) we write

S θ,r (ϕ) -u 2 r ≤ S r [1 -u + ϕ 2 * r L 2 * r ] 2 2 * r (1 -δ ε ) 2 (1 + O(ε N -2r )) + 2c ε c 2 0 K 1 -u + ϕ 2 * r L 2 * r -1 Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx. (28) 
We distinguish two cases: If 2 * r ≥ 3 we apply the following inequality (x + y) p -x p -y p -px p-1 y -pxy p-1 ≥ 0, x, y ≥ 0, p ≥ 3.

For x = u + ϕ and y = c ε u x0,ε , using [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF] and (25) we write

c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx ≤ 1 2 * r [1 -u + ϕ 2 * r L 2 * r -c 2 * r ε u x0,ε 2 * r 2 * r ] -c 2 * r -1 ε Ω |u x0,ε | 2 * r -1 (u + ϕ)dx ≤ 1 2 * r c 2 * r 0 ( K Sr ) 2 * r 2 -1 2 * r c 2 * r 0 (1 -δ ε ) 2 * r ( K Sr ) 2 * r 2 + O(ε N ) -c 2 * r -1 ε Ω |u x0,ε | 2 * r -1 (u + ϕ)dx
On the other hand, a easy computation gives

Ω |u x0,ε | 2 * r -1 (u + ϕ)dx = Dε N -2r 2 (u + ϕ)(x 0 ) + o(ε N -2r 2 
) ( 29 
)
where

D = R N 1 (1 + |y| 2 ) N +2r 2 
.

Then

c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx ≤ c 2 * r 0 ( K Sr ) 2 * r 2 (δ ε -1 2 (2 * r -1)δ 2 ε + o(δ 2 ε ) + o(ε N )) -1 2 * r c 2 * r -1 ε Dε N -2r 2 
(u + ϕ)(x 0 ) + o(ε N -2r 2 
).

Inserting (30) into (28), we get

S θ,r (ϕ) -u 2 r ≤ c 2 0 K(1 -2δ ε + δ 2 ε ) + O(ε N -2r ) + 2c 2 0 ( K Sr ) 2 * r 2 K(1 -u + ϕ 2 * r L 2 * r ) -1 δ ε -1 2 (2 * r -1)δ 2 ε + o(δ 2 ε ) + o(ε N ) -2 c 2 * r -1 ε c 2 0 K(1 -u + ϕ 2 * r L 2 * r ) -1 Dε N -2r 2 (u + ϕ)(x 0 ) + o(ε N -2r 2 
).

Then

S θ,r (ϕ) -u 2 r ≤ c 2 0 K -2c 2 0 Kδ ε + c 2 0 Kδ 2 ε + o(ε N -2r 2 ) + 2c 2 * r +2 0 ( K Sr ) 2 * r 2 K(1 -u + ϕ 2 * r L 2 * r ) -1 δ ε -(2 * r -1)c 2 * r +2 0 ( K Sr ) 2 * r 2 K(1 -u + ϕ 2 * r L 2 * r ) -1 δ 2 ε + o(δ 2 ε ) -2 c 2 * r -1 ε c 2 0 K(1 -u + ϕ 2 * r L 2 * r ) -1 Dε N -2r 2 (u + ϕ)(x 0 ) + o(ε N -2r 2 
).

Using (26), we get

S θ,r (ϕ) -u 2 r ≤ c 2 0 K -c 2 0 K(2 2 * r -2)δ 2 ε + o(δ 2 ε ) -2 c ε K( Sr K ) 2 * r 2 Dε N -2r 2 (u + ϕ)(x 0 ) + o(ε N -2r 2 
).

Consequently

S θ,r (ϕ) -u 2 r < c 2 0 K = S r 1 -u + ϕ L 2 * r L 2 * r 2 2 * r . If 2 * r ≤ 3:
We use the following inequality see [ [START_REF] Brezis | A minimization problem with critical exponent and non-zero data[END_REF], Lemma 4] and [START_REF] Guedda | A biharmonic problems with constraint involving critical Sobolev exponent[END_REF],

|x + y| p -|x| p -|y| p -pxy(|x| p-2 + |y| p-2 ) ≤ C|x| p-1 |y| if |x| ≤ |y|, C|x||y| p-1 if |x| ≥ |y|, (31) 
for x, y ∈ R, where C = C(p) a positive a constant. Define

A ε := 1 - Ω |u + ϕ| 2 * r dx -c 2 * r ε Ω |u x0,ε | 2 * r dx -2 * r c 2 * r -1 ε Ω |u x0,ε | 2 * r -1 (u + ϕ)dx -2 * r c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx.
(32) Applying the inequality (31) with x = u + ϕ, y = c ε u x0,ε and we suppose that x 0 = 0 for simplicity, we write

|A ε | ≤ C c ε {|u+ϕ|≤cεux 0 ,ε} |u + ϕ| 2 * r -1 u x0,ε dx + c 2 * r -1 ε {|u+ε|≥cεux 0 ,ε} |u + ϕ|u 2 * r -1 x0,ε dx |A ε | ≤ A 1 ε + A 2 ε .
On one hand, we have

A 1 ε ≤ C 1 ε N -2r 2 c1ε 1 2 0 z N -1 (ε 2 + z 2 ) N -2r 2 dz since {|u + ϕ| ≤ c ε u x0,ε } ⊂ {|x| ≤ c 1 ε 1 2 }, and 
A 2 ε ≤ C 2 ε N +2r 2 c3 c2ε 1 2 z N -1 (ε 2 + z 2 ) N +2r 2 dz since {|u + ϕ| ≥ c ε u x0,ε } ⊂ {c 2 ε 1 2 ≤ |x| ≤ c 3 },
where c 1 , c 2 and c 3 are some positive constants.

On the other hand, some computations give

c1ε 1 2 0 z N -1 (ε 2 + z 2 ) N -2r 2 dz ≤ c1ε 1 2 0 z 2r-1 dz = 1 2r c 1 ε r = O(ε r ),
and

c3 c2ε 1 2 z N -1 (ε 2 + z 2 ) N +2r 2 dz ≤ c3 c2ε 1 2 z -2r-1 dz = - 1 2r [c -2r 3 -(c 2 ) -2r ε -r ] = ε -r (K 2 -K 3 ε r ) = O(ε -r ).
Therefore

A 1 ε = O(ε N 2 ) = o(ε N -2r 2 
) and

A 2 ε = O(ε N 2 ) = o(ε N -2r 2 
). Thus

A ε = o(ε N -2r 2 
). ( 33)

Combining ( 15), ( 32) and (33) we get

c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx = 1 2 * r 1 -u + ϕ 2 * r L 2 * r -c 2 * r 0 (1 -2 * r δ ε ) K Sr 2 * r 2 + o(ε N -2r ) -c 2 * r -1 ε Ω |u x0,ε | 2 * r -1 (u + ϕ)dx + o(δ ε ) + o(ε N -2r 2 
).

Using (26), an easy computation gives

c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx = δ ε c 2 * r 0 ( K S r ) 2 * r 2 -c 2 * r -1 0 Ω |u x0,ε | 2 * r -1 (u + ϕ)dx+o(δ ε )+o(ε N -2r 2 
).

(34) On the other way, we have

c ε Ω |u + ϕ| 2 * r -2 (u + ϕ)u x0,ε dx = c ε ε N -2r 2 Ω (u + ϕ) 2 * r -1 (x)dx |x| N -2r + o(ε N -2r 2 ) = O(ε N -2r 2 
) (35) Putting ( 29) and ( 35) into (34) we deduce

δ ε = O(ε N -2r 2 
).

(36)

Now, returning to (27) and using (34), we write

S θ,r (ϕ) -u 2 r ≤ c 2 0 K -2δ ε c 2 0 K + 2c 2 0 K(1 -u + ϕ 2 * r 2 * r ) -1 × δ ε c 2 * r 0 K S r 2 * r 2 -c 2 * r -1 0 Ω |u x0,ε | 2 * r -1 (u + ϕ)dx + o(δ ε ) + o(ε N -2r 2 
).

From (36), we get

S θ,r (ϕ) -u 2 r ≤ c 2 0 K -2c 0 K S r K 2 * r 2 Ω |u x0,ε | 2 * r -1 (u + ϕ) + o(ε N -2r 2 
). ( 37)

Using (29) we write

S θ,r (ϕ) -u 2 r ≤ c 2 0 K -2c 0 K( S r K ) 2 * r 2 D(u + ϕ)(x 0 )ε N -2r 2 + o(ε N -2r 2 
), Therefore

S θ,r (ϕ) -u 2 r < S r 1 -u + ϕ 2 * r 2 * r 2 2 * r .

If r is odd

We use again u + c ε u x0,ε as a testing function of (2), we have

S θ,r (ϕ) ≤ u 2 r + c 2 ε Ω |∇(-∆) r-1 2 u x0,ε | 2 dx + 2c ε Ω |∇(-∆) r-1 2 u x0,ε ||∇(-∆) r-1 2 u|dx.
Using ( 22) and applying the same technics used in the case where r is even, we obtain

S θ,r (ϕ) -u 2 r < S r 1 -u + ϕ 2 * r 2 * r 2 2 * r . Note that if instead of (u + ϕ)(x 0 ) > 0 we had (u + ϕ)(x 0 ) < 0, then we would choose c ε > 0 such that u + ϕ -c ε u x0,ε L 2 * = 1.
Which completes the proof of Step 4 and then the proof of Theorem 1 is done.

Remark 2.1. Let us note that any minimizers u θ ∈ H r θ (Ω) of S θ,r , respectively u 0 ∈ H r 0 (Ω) of S 0,r , satisfy the following Euler-Lagrange equations:

(-∆) r u θ = Λ θ |u θ + ϕ| 2 * r -2 (u θ + ϕ) in Ω, ∆ r-1 u θ = ..... = ∆u θ = u θ = 0 on ∂Ω, (38) 
and

(-∆) r u 0 = Λ 0 |u 0 + ϕ| 2 * r -2 (u 0 + ϕ) in Ω, ∂ r-1 u0 (∂ν) r-1 = .... = ∂u0 ∂ν = u 0 = 0 on ∂Ω, (39) 
where Λ θ is the Lagrange multiplier associated to u θ and Λ 0 is the Lagrange multiplier associated to u 0 .

By analogy of the case r = 2 in [START_REF] Hadiji | The sign of Lagrange multiplier for some minimization problem[END_REF], we can find the sign of the Lagrange multipliers which depends on ϕ L 2 * r and we have Proposition 2.1.

(a) If ϕ L 2 * r < 1 then Λ θ > 0. and Λ 0 > 0. (b) If ϕ L 2 * r > 1 then Λ θ < 0. and Λ 0 < 0.
Proof. We shall prove the results for Λ θ , the proof of results for Λ 0 are similar. We begin by noticing that Λ θ can be written as:

S θ,r = Λ θ 1 - Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)ϕ . (40) 
Indeed, we have (see Remark 2.1)

S θ,r = Λ θ Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)u θ ,
and

Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)(u θ + ϕ) = Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)u θ + Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)ϕ,
and since,

Ω |u θ + ϕ| 2 * r = 1.
Therefore we deduce (40).

Then, if we suppose ϕ L 2 * r < 1, and by the Hölder inequality we have

Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)ϕ ≤ Ω |u θ + ϕ| 2 * r -1 2 * r 2 * r -1 dx 2 * r -1 2 * r Ω |ϕ| 2 * r dx 1 2 * r .
Since u ≡ 0 except for ϕ L 2 * r = 1 which is an obvious case. Thus,

Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)ϕ ≤ Ω |ϕ| 2 * r dx 1 2 * r < 1
and then Λ θ > 0. Now we assume that ϕ L 2 * r > 1 and set, as in [START_REF] Hadiji | The sign of Lagrange multiplier for some minimization problem[END_REF],

h(t) = Ω |tu θ + ϕ| 2 * r .
This function admits a derivative given by the formula

h ′ (t) = 2 * r Ω |tu θ + ϕ| 2 * r -2 (tu θ + ϕ)u θ . Now, the function u θ satisfies (-∆) r u θ = Λ θ |u θ + ϕ| 2 * r -2 (u θ + ϕ).
Then, multiplying by u θ and integrating by parts, we get If r is even

Ω |(-∆) r 2 u θ | 2 dx = Λ θ Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)u θ = Λ θ 2 * r h ′ (1). If r is odd Ω |∇(-∆) r-1 2 u θ | 2 dx = Λ θ Ω |u θ + ϕ| 2 * r -2 (u θ + ϕ)u θ = Λ θ 2 * r h ′ (1).
So item (b) is verified because h(1) = 1, and we see that h(t) ≥ 1 for all t ∈ [0, 1] . So, we conclude that h ′ (1) ≤ 0. Otherwise, since h is continuous and h(0) > 1, there exists 0 < s < 1 such that

h(s) = 1. Therefore, Ω |su θ + ϕ| 2 * r = 1.
When su θ as a testing function in(2), we have If r is even

S θ,r = Ω |(-∆) r/2 su θ | 2 dx ≤ s r Ω |(-∆) r/2 u θ | 2 dx. If r is odd S θ,r = Ω |∇(-∆) r-1 2 su θ | 2 dx ≤ s r-1 Ω |∇(-∆) r-1 2 u θ | 2 dx.
We get a contradiction and the proof is completed.

Remark 2.2. In [START_REF] Ge | Positive solutions in semilinear critical problems for polyharmonic operators[END_REF], the author considered the following semi-linear polyharmonic problem:

     (-∆) r u = |u| 2 * r -2 u + f (x, u) in Ω, u > 0 in Ω, (-∆) r-1 u = ..... = (-∆)u = u = 0 on ∂Ω. ( 41 
)
This problem is equivalent to (38) when Λ θ > 0 is fixed. The author prove the existence of positive solutions under the sufficient conditions on f and the domain Ω.

Proof of Theorem 2

By definitions of (1) and (2) we have S θ,r ≤ S 0,r . In this section we present a gap phenomenon between S θ,r and S 0,r under suitable hypothesis on ϕ. Proof of (i). Let ϕ be a positive function not identically zero. We adapt the argument of Van der Vorst [START_REF] Vorst | Best constant for the embedding of the space H 2 ∩ H 1 0 (Ω) into L 2N N -4 (Ω)[END_REF] to the present situation. Let u θ a the minimizer of (2). We give reason by contradiction. We assume that u θ is in H r 0 (Ω). If r is even Let v be the solution of the following problem

(-∆) r 2 v = |(-∆) r 2 u θ | in Ω, (-∆) r 2 -1 v = ..... = -∆v = v = 0 on ∂Ω, (42) We get (-∆)(-∆) r 2 -1 (v -u θ ) ≥ 0 in Ω, (-∆) r 2 -1 (v -u θ ) = 0 on ∂Ω, (43) and ( 
-∆)(-∆) r 2 -1 (v + u θ ) ≥ 0 in Ω, (-∆) r 2 -1 (v + u θ ) = 0 on ∂Ω. (44) 
In equations ( 43) and ( 44 Considering this inequality and the fact that ϕ ≥ 0, we get u θ +ϕ < v +ϕ in Ω and -u θ -ϕ < v +ϕ in Ω; therefore |u θ + ϕ| < |v + ϕ| in Ω and as result we have

Ω |v + ϕ| 2 * r dx > 1.
Currently, take the function

f (t) = Ω |tv + ϕ| 2 * r dx for t ∈ [0, 1] . Since f is continuous, f (0) < 1 and f (1) > 1, there exists s ∈ ]0, 1[ such that f (s) = 1. But we have Ω |(-∆) r 2 sv| 2 dx ≤ s 2 Ω |(-∆) r 2 v| 2 dx,
this gives a contradiction with the definition of S θ,r (ϕ).

If r is odd Let v be the solution of the next problem:

(-∆) r-1 2 v = |(-∆) r-1 2 u θ | in Ω, (-∆) r-1 2 -1 v = ..... = -∆v = v = 0 on ∂Ω, (45) 
We obtain

(-∆)(-∆) r-1 2 -1 (v -u θ ) ≥ 0 in Ω, (-∆) r-1 2 -1 (v -u θ ) = 0 on ∂Ω, (46) and ( 
-∆)(-∆) r-1 2 -1 (v + u θ ) ≥ 0 in Ω, (-∆) r-1 2 -1 (v + u θ ) = 0 on ∂Ω. (47) 
In ( 46) and (47), using successively the maximum principle we obtain

v > |u θ | or v = -u θ or v = u θ .
By taking the equation (45) with v = u θ and v = -u θ , we find the function (-∆) r-1

2 u θ has a constant sign. These two cases v = u θ or -u θ when u θ = ∂u θ ∂ν = ...

= ∂ r-1 2 -1 u θ (∂ν) r-1 2 
-1 = 0 on ∂Ω are false if we use the maximum principle when we consider u θ = 0 in Ω. Thus, we have v > |u θ | in Ω. Using this inequality and the fact that ϕ ≥ 0, we get u θ + ϕ < v + ϕ in Ω and -u θ -ϕ < v + ϕ in Ω; therefore |u θ + ϕ| < |v + ϕ| in Ω and as result we have

Ω |v + ϕ| 2 * r dx > 1.
Currently, let us consider the function f

(t) = Ω |tv + ϕ| 2 * r dx for t ∈ [0, 1] . Since f is continuous, f (0) < 1 and f (1) > 1, there exists s ∈ ]0, 1[ such that f (s) = 1. But we have Ω |∇((-∆) r-1 2 sv)| 2 dx ≤ s 2 Ω |(-∆) r-1 2 v| 2 dx,
that contradiction the definition of S θ,r (ϕ). This finish the proof of (i).

Proof of (ii). We will prove it into two cases. Case 1: Assume that ϕ is in (H r 0 (Ω)) ⊥ and ϕ L 2 * r > 1. Let u θ a solution of (2). Multiplying (38) by u θ + ϕ and integrating by parts, we get If r is even

Ω |(-∆) r 2 u θ | 2 + Ω (-∆) r 2 u θ • (-∆) r 2 ϕdx = Λ θ . If r is odd We have Ω |∇(-∆) r-1 2 u θ | 2 dx + Ω ∇(-∆) r-1 2 u θ • ∇(-∆) r-1 2 ϕdx = Λ θ . As ϕ L 2 * r > 1, we have Λ θ < 0, therefore Ω (-∆) r 2 u θ • (-∆) r 2 ϕdx < 0, if r is even and Ω ∇(-∆) r-1 2 u θ • ∇(-∆) r-1 2 ϕdx < 0 if r is odd. Which improve that u θ is not in H r 0 (Ω)
; in conclusion we have S θ,r (ϕ) < S 0,r (ϕ). Case 2: Assume that ϕ is in (H r 0 (Ω)) ⊥ and ϕ L 2 * r < 1. Let x 0 ∈ Ω and u x0,ε defined in [START_REF] Hadiji | The sign of Lagrange multiplier for some minimization problem[END_REF]. From [START_REF] Edmunds | Critical exponents, critical dimensions and the biharmonic operator[END_REF], we have when o(1) tends to 0. At limit, we have (50)

Regarding to [START_REF] Ekland | Analyse convexe et problèmes variationnels[END_REF] that (72) and 65 conclude that (Y ) = (Y * ). This proof is valid for 1 2 S θ,r (ϕ) instead of 1 2 S 0,r (ϕ), then we have proved (60) and (61). Consequently, we have (57) and then we conclude that S θ,r (ϕ) = S 0,r (ϕ). If r is odd In the case when r is odd we find the same results just we have As a result, we find that S θ,r (ϕ) = S 0,r (ϕ) = 0 and the infimum are achieved by 0.
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 222 of S θ,r (ϕ) = inf u∈H r θ (Ω) u+ϕ L 2 * r ≤1 Ω |(-∆)r And then we use the same steps to conclude at the end that S θ,r (ϕ) = S 0,r (ϕ). This ends the proof of the Theorem 2.Remark 3.1. If ϕ L 2 * r = 1 then S θ,r (ϕ) = S 0,r (ϕ) = 0 and the infimum are achieved by 0. Indeed, let ϕ L 2 * r = 1, By the definitions in (1) and (2) and according to Brezis-Lieb Lemma, for all u ∈ H r 0 (Ω) we obtainu + ϕ L 2 * r = u L 2 * r + ϕ L 2 * r + o(1),that gives, using ϕ L 2 * r = 1, u L 2 * r = 0

Applying the Sobolev inequality we obtain that

Or u θ 2 r = S θ,r (ϕ). ( 52)

Combining ( 52) and (51) we find

Now, multiplying (38) by (u θ + ϕ) and integrating, using (53) we acquire If r is even

Combining ( 53) and (54) we are lead to

Combining ( 53) and (55) we have

This means that u θ is not in H r 0 (Ω) and we have S θ,r (ϕ) < S 0,r (ϕ). Indeed, let us note that any minimizer u θ ∈ H r θ (Ω) of S θ,r (ϕ) is not in H r 0 (Ω). Arguing by contradiction, suppose that S θ,r (ϕ) = S 0,r (ϕ), thus S 0,r (ϕ) = S θ,r (ϕ) = u 2 r and u + ϕ L 2 * r = 1. Therefore u θ be a minimizer of S 0,r (ϕ), as a result u θ ∈ H r 0 (Ω), which gives a contradiction. Proof of (iii). Suppose ϕ be in H r 0 (Ω). We admit first that for ϕ L 2 * r > 1, If r is even we have,

We find a convex problem. In this case, based on [START_REF] Ekland | Analyse convexe et problèmes variationnels[END_REF], we will use a duality's method. For all p ∈ L 2 (Ω), Define
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We get

We will prove that we have

Initially, we observe that β θ and β 0 are finite, due to the Holder inequality

We include that the linear operator

is continuous for the L 2 * r topology. So, there exists p ∈ L 2N N +2r even that for all v ∈ H r θ (Ω) we find L(v) = Ω pv. We consider that

On the other side, for all p ∈ L 2N N +2r , we have

Actually, in the case where ϕ L 2 * r > 1, we have to prove that

Let us write, for p ∈ L 2 (Ω) and for u ∈ H r θ (Ω),

We show that sup

Indeed, Firstly, we have

thus,

Therefore, sup

On the other hand, we have,

Thus sup

Combining ( 63) and (64), we get (62). Now, by ( 56) and (62) we have

L(u, p). (Y )

Let us justify that (Y ) = (Y * ) where (Y * ) is the dual problem of (Y ), defined by sup

Let us define

Actually, let u ∈ A we have

Indeed, by definition we write

Multiplying (66) by -1, we get

we add -

Therefore,

Now, integrating by part and using the fact that (-∆) r 2 u θ = 0 on ∂Ω,, we have

On the other hand, using (59), we see that

Using (-∆) r 2 p θ = 0 on ∂Ω we obtain,

and therefore 

We replace (68) into (71), we find L(u, p θ ) ≥ 1 2 S θ,r (ϕ) for all u ∈ A.

(72)