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In this paper, we are concerned with n-component Ginzburg-Landau equations on R 2 . By introducing a diffusion constant for each component, we discuss that the n-component equations are different from n-copies of the single Ginzburg-Landau equations. Then, the results of Brezis-Merle-Riviere for the single Ginzburg-Landau equation can be nontrivially extended to the multi-component case. First, we show that if the solutions have their gradients in L 2 space, they are trivial solutions. Second, we prove that if the potential is square summable, then it has quantized integrals, i.e., there exists one-to-one correspondence between the possible values of the potential energy and N n . Third, we show that different diffusion coefficients in the system are important to obtain nontrivial solutions of n-component equations.

Introduction

Let Ω ⊂ R 2 be a smooth bounded simply connected domain. The classical Ginzburg-Landau(abbreviated by GL) energy on Ω is given by

G b ε (u) = 1 2 ˆΩ |∇u| 2 dx + 1 4ε 2 ˆΩ 1 -|u| 2 2 dx. (1.1) 
Here, u : Ω → R 2 is an order parameter and u = g on ∂Ω for a smooth function g : Ω → S 1 . For convenience, we often regard u : Ω → R 2 as u : Ω → C. The corresponding Euler-Lagrange equations are

   -∆u = 1 ε 2 u(1 -|u| 2 )
in Ω, u = g on ∂Ω.

(1.2)

For the last three decades, there have been lots of studies on the solution structures of (1.2), in particular, on the asymptotics as ε → 0.

Such studies started from the seminal work of [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] and [START_REF] Bethuel | Ginzburg-landau Vortices[END_REF] which deals fairly in detail with the asymptotic behaviors of minimizers u ε for G b ε on H 1 g (Ω, R 2 ) = {u ∈ H 1 (Ω, R 2 ) : u = g on ∂Ω}. The main issue in the analysis is the value of the degree of g, say d. If d = 0, then H 1 g (Ω, S 1 ) = ∅ and u ε converges to a harmonic map u 0 in H 1 g (Ω, R 2 ). Here, u 0 minimizes ˆΩ |∇u| 2 dx on H 1 g (Ω, S 1 ) and is the unique solution of -∆u 0 = u 0 |∇u 0 | 2 on Ω, u 0 = g on ∂Ω, |u 0 | = 1 on Ω.

(1.

3)

The main point is that u 0 serves as a test function for G b ε . This gives a uniform boundedness of G b ε (u ε ) and hence H 1 -boundedness of u ε . However, if d = 0, then H 1 g (Ω, S 1 ) = ∅ and the energy is not bounded:

G b ε (u ε ) = 2πd ln 1 ε + O(1)
. (1.4) This phenomena gives rise to the formation of singularities

{a 1 , • • • , a n } ⊂ Ω such that u ε → u * ∈ H 1 loc (Ω \ {a 1 , • • • , a n })
where u * is a harmonic map that has singularities a 1 , • • • , a n .

On the other hand, if Ω is star-shaped, then the Pohozaev identity implies that the potential is uniformly bounded in the limit ε → 0:

E b ε (u ε ) = 1 ε 2 ˆΩ 1 -|u ε | 2 2 dx ≤ C. (1.5) 
This also implies by (1.4) that

ˆΩ |∇u ε | 2 → ∞ as ε → 0. (1.6)
If we set u ε (x) = u ε (εx), then u ε satisfies

-∆ u ε = u ε (1 -| u ε | 2 ) in Ω ε = 1 ε Ω.
(1.7)

If we take the limit ε → 0, u ε converges to a function u in C 2 loc (R 2 ) such that -∆u = u(1 -|u| 2 ) in R 2 .

(1.8)

More generally, let us consider for λ > 0

-λ∆u = u(1 -|u| 2 ) in R 2 .
(1.9)

This can be derived from the limit ε → 0 for a variant of (1.2):

   -div a(x)∇u = 1 ε 2 u(1 -|u| 2 )
in Ω, u = g on ∂Ω.

(1.10)

The weight function a(x) > 0 appears in (1.10) when we study the equation (1.2) on a domain equipped with a background Riemannian metric. See [START_REF] André | Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight I[END_REF][START_REF] Beaulieu | On a class of Ginzburg-Landau equations with weight[END_REF][START_REF] Beaulieu | Asymptotic behavior of minimizers of a Ginzburg-Landau equation with weight near their zeroes[END_REF] for the study of asymptotics of solutions to (1.10). If we set a(x) = a(εx) and u ε (x) = u ε (εx) for a solution u ε of (1.10), then u ε satisfies

-div a(x)∇ u ε = u ε (1 -| u ε | 2 ) in Ω ε .
(1.11)

By taking the limit ε → 0, we are led to (1.9) with λ = a(0). Although (1.9) can be obtained directly from (1.8) by a scaling u(x) → u(x/ √ λ), it is helpful to consider (1.10) when we study n-component generalization on R 2 as we shall see.

Meanwhile, since E b ε (u ε ) is convergent up to a subsequence in view of (1.5), it is interesting to find the value of

E b (u) = ˆR2 1 -|u| 2 2 dx (1.12)
for solutions of (1.9). Remarkably, it was verified in [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF] that if u is a solution of (1.9), then E b (u) allows only quantized values. Meanwhile, in the point of (1.6), it was proved that if u is a solution of (1.9) and ∇u ∈ L 2 (R 2 ), then u is a trivial solution. This can be summarized as

Theorem A. [6] (i) If u is a solution of (1.9), then E b (u) = 2πλd 2 for d = 0, 1, 2, • • • , ∞. (ii) If u is a solution of (1.9) and ∇u ∈ L 2 (R 2 ), then either u ≡ 0 or u ≡ c 0 for a constant c 0 with |c 0 | = 1.
The classical model with the energy (1.1) can be generalized as an n-component model. For a pair of maps (u

1 , • • • , u n ) ∈ H 1 g1 (Ω, C) × • • • × H 1 gn (Ω, C), we con- sider an energy G ε (u 1 , • • • , u n ) = 1 2 ˆΩ n j=1 |∇u j | 2 dx + 1 4ε 2 ˆΩ n - n j=1 |u j | 2 2 dx. (1.13) 
The Euler-Lagrange equations are

       -∆u i = 1 ε 2 u i n - n j=1 |u j | 2
in Ω,

u i = g i on ∂Ω, (1.14) 
for i = 1, • • • , n. This direct generalization to an n-component model originates from a semilocal gauge field model [START_REF] Hindmarsh | Existence and stability of semilocal strings[END_REF][START_REF] Vachaspati | Semilocal cosmic strings[END_REF]. The energy (1.13) was used to explain some issues in cosmology related to a particular state of the early universe that possesses both a local and a global gauge invariance. It also describes interactions of multiple order parameters. See [START_REF] Hadiji | On a system of multi-component Ginzburg-Landau vortices[END_REF][START_REF] Vachaspati | Semilocal cosmic strings[END_REF] for more physical motivations.

It is very natural to ask that the properties of the classical model (1.1) are still valid for the generalized model (1.13). Regarding this question, a detailed analysis was firstly performed in [START_REF] Hadiji | On a system of multi-component Ginzburg-Landau vortices[END_REF]. A remarkable thing is that the convergence of minimizers of (1.13) is not so seriously affected by the degrees

deg(g j , ∂Ω) = d j ∈ N ∪ {0} for j = 1, • • • , n. (1.15) Indeed, a natural generalization of H 1 g (Ω, S 1 ) is the space X (g 1 , • • • , g n ; Ω) = (u 1 , • • • , u n ) ∈ H 1 g1 (Ω; R 2 ) × • • • × H 1 gn (Ω; R 2 ) : n j=1 |u j | 2 = n a.e. on Ω .
Then, it is known by [8, Theorem 1.1] that X (g 

, • • • , u * n ) is a minimizer of n j=1 ˆΩ |∇u j | 2 dx on X (g 1 , • • • , g n ; Ω),
then for a sequence of minimizers (u 1,ε , • • • , u n,ε ) for (1.13), we obtain 1 2

ˆΩ n j=1 |∇u j,ε | 2 dx + 1 4ε 2 ˆΩ n - n j=1 |u j,ε | 2 2 dx ≤ G ε (u * 1 , • • • , u * n ). (1.16)
So, the asymptotics of minimizers can be analyzed as in the degree zero case for the classical model (1.1). We note that (u

* 1 , • • • , u * n ) satisfies              -∆u i = 1 n u i n j=1 |∇u j | 2 in Ω, u i = g i on ∂Ω, n j=1 |u j | 2 = n in Ω.
(1.17)

It is an open problem whether (1.17) allows a unique solution.

As in the equation (1.10), let us introduce a positive weight function a i (x) for u i for each i. So, one may consider the following system:

for i = 1, • • • , n        -div a i (x)∇u i = 1 ε 2 u i n - n j=1 |u j | 2
in Ω,

u i = g i on ∂Ω. (1.18) 
Given a solution (u 1,ε , • • • , u n,ε ) of (1.18), if we set u i,ε (x) = u i,ε (εx) and a i (x) = a i (εx), then u i,ε 's satisfy

-div a i (x)∇ u i = u i,ε n - n j=1 | u j,ε | 2 in Ω ε . (1.19)
By taking the limit ε → 0, we are led to

-λ i ∆u i = u i n - n j=1 |u j | 2 in R 2 , (1.20) 
where λ i = a i (0). We recall that (1.9) can be reduced to (1.8), i.e. the case λ = 1, by the change of variables u(x) → u( √ λx). However, if n > 1, such scale argument does not work anymore for (1.19). A role of the constants λ 1 , • • • , λ n will be addressed briefly in Theorem 1.2.

A natural question regarding (1.20) is whether the conclusion of Theorem A for the single GL system (1.9) is still valid for the solutions of the n-component GL system (1.20) or not. There is a big difference in this analysis between the single case (1.9) and the multi-component case (1.20). If a solution u of (1.9) satisfies (1.5), then one can show two important things

|u| 2 ≤ 1 in R 2 and |u(x)| 2 → 1 as |x| → ∞.
(1.21)

These properties play central roles in the proof of Theorem A. Meanwhile, for a solution pair (u 

1 , • • • , u n ) of (1.20) satisfying E(u 1 , • • • , u n ) = ˆR2 n - n j=1 |u j | 2 2 dx < ∞, ( 1 
E(u 1 , • • • , u n ).
Our idea in this paper can be applicable for other types of n-component Ginzburg-Landau equations. We will address this topic elsewhere.

We start with a problem analogous to Theorem A (ii). In other words, we consider the question whether the equation (1.20) allows only trivial solutions whenever the gradients of u j are square summable. Regarding this problem, we obtain the following result.

Theorem 1.1. Let (u 1 , • • • , u n ) be a solution of (1.20) satisfying n j=1 ˆR2 |∇u j | 2 dx < ∞. (1.24) Then, either (u 1 , • • • , u n ) ≡ (0, • • • , 0) or (u 1 , • • • , u n ) = (c 1 , • • • , c n ) for some constants c 1 , • • • , c n ∈ C with |c 1 | 2 + • • • + |c n | 2 = n. By Theorem 1.1, if (u 1 , • • • , u n ) is a solution of (1.20) satisfying (1.24), then E(u 1 , • • • , u n ) is either 0 or ∞. Hence, if a solution (u 1 , • • • , u n ) takes a finite nonzero value of the potential E(u 1 , • • • , u n ), then ∇u j ∈ L 2 (R 2
) for some j. A simple example of such solutions can be constructed from solutions of (1.9). Indeed, let U (x) be a solution of (1.9) such that |U (x)| → 1. If we assume

λ 1 = • • • = λ n = λ and set u j (x) = U ( √ nx) for each j, then (u 1 , • • • , u n ) is a solution of (1.20) with ∇u j ∈ L 2 (R 2 ).
Another example is a radially symmetric vortex solution. If we put u i (x) = e diθ f i (r) where x = re iθ and d i is a nonnegative integer, then we can rewrite (1.20) as

       f ′′ i + 1 r f ′ i - d 2 i r 2 f i + 1 λ i f i n - n j=1 |f j | 2 = 0 for r > 0, f i (r) = b i r di + o(r di
) for some b i > 0 as r ց 0.

(1.25)

For the case n = 1, by letting u(r) = e dθ f (r), we can transform (1.9) into

   f ′′ + 1 r f - d 2 r 2 f + 1 λ f (1 -f ) = 0 for r > 0, f (r) = br d + o(r d )
for some b > 0 as r ց 0.

(1.26)

The existence and properties of solutions to (1.26) are well-known in [START_REF] Chen | Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation[END_REF][START_REF] Hervé | Étude qualitative des solutions réelles d'une équation differentielle liée á l'équation de Ginzburg-Landau[END_REF]. In particular, there exists a unique solution f such that

f (r) ր 1 as r → ∞, (1.27) 
and u satisfies the quantization property of Theorem A. When n > 1 and

(f 1 , • • • , f n ) is a solution of (1.
25), then the condition (1.27) can be generalized by

f i (r) ր α i for some α i ∈ (0, n) with α 2 1 + • • • + α 2 n = n. (1.28)
Since one may consider infinitely many choices of (α 1 , • • • , α n ) whereas α 1 = 1 is the unique choice for n = 1, it is expected that the solution structures of (1.25) is richer than those of (1.26). We will address this topic elsewhere. Instead, we concentrate on the quantization of potential

E(u 1 , • • • , u n ) in this paper.
Before proceeding to the quantization problem, it is worthwhile to see that the constants λ 1 , • • • , λ n play an important role to get nontrivial solutions of (1.25). We have seen that if f is the unique solution of (1.26), then (f (1.25), there is a possibility that each f j is a scale of a solution of (1.26). Therefore, it is necessary to assume that all λ j 's are not equal in order to get a nontrivial solution of (1.25) in the sense that it doesn't come from n-copies of solutions of (1.26).

1 , • • • , f n ) with f j (r) = f ( √ nr) for each j is a solution of (1.25) when d 1 = • • • = d n = d and λ 1 = • • • = λ n = λ. The next theorem tells us that if λ 1 = • • • = λ n , then all d j 's must be equal. So, given a solution (f 1 , • • • , f n ) of
Theorem 1.2. Let (f 1 , • • • , f n ) be a solution of (1.25) that satisfies (1.28). If λ 1 = • • • = λ n , then d 1 = • • • = d n .
To state the quantization effect, we need a notation. For a nonnegative real number α and a smooth function u : R 2 → C, we set

I α (u) = ˆR2 (α 2 -|u| 2 ) 2 dx. (1.29)
The third result of this paper is the following.

Theorem 1.3. Let (u 1 , • • • , u n ) be a solution of (1.20) such that E(u 1 , • • • , u n ) < ∞.
(1.30)

Suppose that there are nonnegative real numbers α 1 , • • • , α n such that

α 2 1 + • • • + α 2 n = n and I αj (u j ) < ∞. (1.31)
Then, there exist nonnegative integers

d j ∈ {0, 1, 2, • • • } for 1 ≤ j ≤ n such that E(u 1 , • • • , u n ) = 2π n j=1 λ j α 2 j d 2 j .
(1.32)

The basic strategy for the proof of Theorem 1.1 and Theorem 1.3 is based on the proof of Theorem A given in [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF]. However, there arise many nontrivial situations in the proof of Theorem 1.3 that do not appear in the analysis of solutions of (1.9). For instance, any nontrivial solution u of (1.9) with (1.5) satisfies (1.21)

. Whereas if (u 1 , • • • , u n ) is a solution of (1.20), then |u 1 | 2 + • • • + |u n | 2 → n but
there is no information on the behavior of individual u j . Moreover, the maximum principle only gives the inequality

|u 1 | 2 +• • •+|u n | 2 ≤
n but do not provide any pointwise estimate of individual u j . These properties make our problem difficult and require some new ideas. Throughout a detailed analysis, we will deduce why the condition (1.31) is reasonable and necessary in the proof.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 and Theorem 1.2. In Section 3, we prove Theorem 1.3. The main idea for the proofs of Theorem 1.1 and Theorem 1.3 is to derive Pohozaev identities since we will use finiteness conditions of functional-like quantities such as (1.24) and (1.30). Meanwhile, Theorem 1.2 is proved by a technique of integration by parts for the ODE system (1.25).

We close this section by introducing some notations. We denote ā by the complex conjugate of a ∈ C. We write B R = B(0, R) and S R = ∂B R . We set

ξ k (x) = ξ(x/k) where ξ ∈ C ∞ c (R 2
) such that 0 ≤ ξ ≤ 1, ξ ≡ 1 for |x| ≤ 1, and ξ = 0 for |x| ≥ 2. By the symmetry property of (1.20), we may assume that

λ 1 ≤ λ 2 ≤ • • • ≤ λ n .
(1.33)

2 Proof of Theorem 1.1 and Theorem 1.2

This section is devoted to the proof of Theorem 1.1 and Theorem 1.2. Throughout this section, we put

f = n j=1 |u j | 2 and h = n j=1 1 λ j |u j | 2 .
(2.1)

We have λ -1 n f ≤ h ≤ λ -1 1 f by (1.33). We often use the following identities:

       -λ i ∆u i = u i (n -f ), -∆f = 2h(n -f ) -2 n j=1 |∇u j | 2 .
(2.2)

Lemma 2.1. If (u 1 , • • • , u n ) is a solution of (1.20) satisfying (1.24), then f = |u 1 | 2 + • • • + |u n | 2 ≤ n in R 2 . Moreover, ∇u j ∈ L ∞ (R 2 ) for each j. Proof. Let ϕ = √ f - √ n. By using (2.2), we derive ∆ϕ = ϕhf -1 2 ( f + √ n) - 1 4 f -3 2 |∇f | 2 -4f n j=1 |∇u j | 2 ≥ ϕhf -1 2 ( f + √ n),
where the inequality comes from the Cauchy-Schwartz inequality:

|∇f | 2 = 4 n j=1 Re ūj ∇u j 2 ≤ 4f n j=1 |∇u j | 2 .
Hence, by Kato's inequality and (1.33)

∆ϕ + ≥ χ {ϕ>0} ∆ϕ ≥ 1 λ n ϕ + f ( f + √ n) ≥ 2n λ n ϕ + . (2.3) 
Again by the Cauchy-Schwartz inequality and (1.24),

|∇ϕ + | = 1 √ f n j=1 Re ūj ∇u j ≤ n j=1 |∇u j | 2 1 2 ∈ L 2 (R 2 ).
So, multiplying (2.3) by ξ k , we can see that 2n

λ n ˆR2 ξ k ϕ + ≤ - ˆR2 ∇ϕ + • ∇ξ k ≤ C k ˆ{k<|x|<2k} |∇ϕ + | ≤ C ˆ{k<|x|<2k} |∇ϕ + | 2 1 2 → 0 as k → ∞. Hence, ϕ + ≡ 0. Now, we note that |∆u j | ≤ λ -1 j |u j |(n -f ) ≤ λ -1 j n √ n.
Thus, for each x ∈ R 2 , the function v j,x (y) = u j (x + y) for y ∈ B 1 (0) is uniformly bounded in W 2,p (B 1 ) for all p > 1. Hence, ∇v j,x is uniformly bounded in C 1 (B 1/2 ) and thus ∇u j ∈ L ∞ (R 2 ).

Proof of Theorem 1.1. By multiplying the second equation of (2.2) by ξ k , we obtain 2

ˆR2 ξ k h(n -f ) = ˆR2 ∇ξ k • ∇f + 2 n j=1 ˆR2 ξ k |∇u j | 2 . (2.4) Since u j ∈ L ∞ (R 2 ) and ∇u j ∈ L ∞ (R 2 ), it follows from (1.24) that ˆR2 ∇ξ k • ∇f ≤ C n j=1 ˆk≤|x|≤2k |∇u j | 2 1 2 → 0 as k → ∞. Thus, letting k → ∞, we are led to 1 λ n ˆR2 f (n -f ) ≤ ˆR2 h(n -f ) = n j=1 ˆR2 |∇u j | 2 . (2.5) Since ∇u j ∈ L ∞ (R 2
), this implies that the set {x : 1 ≤ f (x) ≤ 3/2 < n} is bounded. Thus, we can conclude from (2.5) that either

f ∈ L 1 (R 2 ) or (n -f ) ∈ L 1 (R 2 ).
Meanwhile, by multiplying (1.20) by ξ k x • ∇u i , we obtain

(LHS) = - n i=1 ˆR2 λ i ξ k ∆u i (x • ∇u i ) = n i=1 ˆR2 ξ k u i (f -n)(x • ∇u i ) = (RHS).
We have

(LHS) = n i=1 λ j ˆR2 (∇ξ k • ∇u i )(x • ∇u i ) - n i=1 λ i 2 ˆR2 |∇u i | 2 (x • ∇ξ k ).
So,

|(LHS)| ≤ C n i=1 ˆ{k<|x|<2k} |∇u i | 2 → 0 as k → ∞. Now, suppose that f ∈ L 1 (R 2 ). Then, since f ≤ n and f ∈ L 1 (R 2 ), (RHS) = 1 2 ˆR2 ξ k (x • ∇f )(f -n) = ˆR2 ξ k f n - f 2 + 1 2 ˆR2 f n - f 2 (x • ∇ξ k ) ≥ n 2 ˆR2 ξ k f + o(1)
as k → ∞. This implies that f ≡ 0 and thus u i ≡ 0 for each i. On the other

hand, if (n -f ) ∈ L 1 (R 2 ), then (RHS) = 1 4 ˆR2 ξ k x • ∇(f -n) 2 = - 1 2 ˆR2 ξ k (f -n) 2 - 1 4 ˆR2 (x • ∇ξ k )(f -n) 2 = - 1 2 ˆR2 ξ k (f -n) 2 + o(1)
as k → ∞. So, we have f ≡ n, which implies by (2.4) that ∇u j ≡ 0 for each j. This gives us the desired conclusion of Theorem 1.1.

Proof of Theorem 1.2. Let us assume that

λ 1 = • • • = λ n = λ. For instance, suppose that d 1 > d 2 .
Then, we have from (1.25)

f ′′ 1 + 1 r f ′ 1 = d 2 1 r 2 f 1 + 1 λ f 1 n j=1 f 2 j -n , f ′′ 2 + 1 r f ′ 2 = d 2 2 r 2 f 2 + 1 λ f 2 n j=1 f 2 j -n . Choose r 0 > 0 such that f 1 ≥ α 1 /2 and f 2 ≥ α 2 /2 for r ≥ r 0 . So, for all r ≥ r 0 1 r r(f ′ 1 f 2 -f 1 f ′ 2 ) ′ = d 2 1 -d 2 2 r 2 f 1 f 2 ≥ α 1 α 2 (d 2 1 -d 2 2 ) 4 • 1 r 2 ≡ c 0 r 2 .
Integrating this inequality on (r 0 , r), we are led to

f ′ 1 f 2 -f 1 f ′ 2 ≥ c 0 r ln r + c 1 r for some c 1 ∈ R. Set h = f 1 /f 2 . Then, h(r) → α 1 /α 2 as r → ∞ and h ′ = f ′ 1 f 2 -f 1 f ′ 2 f 2 2 ≥ 1 α 2 2 (f ′ 1 f 2 -f 1 f ′ 2 ) ≥ c 0 α 2 2 r ln r + c 1 α 2 2 r for r ≥ r 0 .
This leads us to a contradiction: as r → ∞,

h(r) ≥ c 0 2α 2 2 (ln r) 2 -(ln r 0 ) 2 + c 1 α 2 2 ln r r 0 + h(r 0 ) → ∞. Consequently, d 1 = d 2 .
3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The key part is to classify the values of potentials I αi (u i ) into four cases. Throughout this section, let (u 1 , • • • , u n ) be a solution of (1.20) satisfying

E = E(u 1 , • • • , u n ) = ˆR2 n - n j=1 |u j | 2 2 < ∞. (3.1)
We begin with the following lemma. (ii) We have

∇u j ∈ L ∞ (R 2 ) for each j. (3.3) (iii) There exists a constant C independent of R such that n j=1 ˆBR |∇u j | 2 dx ≤ CR. (3.4) Proof. (i) Let f = |u 1 | 2 + • • • + |u n | 2 and ϕ = f -n. By (2.2), ∆ϕ ≥ 2hϕ.
Multiplying this equation by ξ k ϕ + , we are led to

ˆR2 |∇ϕ + | 2 + 2h|ϕ + | 2 ξ k dx ≤ 1 2 ˆR2 ∆ξ k |ϕ + | 2 dx ≤ C k 2 ˆR2 |ϕ + | 2 dx.
Letting k → ∞, we see by (3.1) that ϕ + ≡ 0. This implies the first part of (3.2). Next, to show the second part of (3.2), we argue by a contradiction. Assume that there exists a sequence

|x k | → ∞ such that f (x k ) ≤ n -2δ for some 0 < δ < 2/5. Let r = min 1, δ/(2M n √ n + nM 2 )
, where we denote M = max j ∇u j L ∞ in the rest of this paper. For x ∈ B(x k , r), we have by the Mean Value Theorem

f (x) ≤ n j=1 |u j (x k )| + |u j (x) -u j (x k )| 2 ≤ n j=1 |u j (x k )| 2 + 2M |x k -x| n j=1 |u j (x k )| + nM 2 |x k -x| 2 < n -2δ + (2M n √ n + nM 2 )r ≤ n -δ.
Then, it follows that

ˆB(x k ,r) (f -n) 2 dx ≥ πr 2 δ 2 .
This is a contradiction since fn ∈ L 2 (R 2 ) by (3.1).

(ii) This follows from Lemma 2.1.

(iii) By multiplying (1.20) by u i for each i and integrating them over B R , we obtain

n i=1 ˆBR λ i |∇u i | 2 dx = n i=1 ˆ∂BR λ i u i ∂u i ∂ν dS + ˆBR f (n -f )dx ≤ n √ nλ n M |∂B R | + nE 1 2 |B R | 1 2 ≤ CR.
Here ν denotes the outward normal to B R .

We note that although the statement

|u 1 | 2 + • • • + |u n | 2 ≤ n in Lemma 2.1 and in (3.
2) is the same, it is proved under different conditions. The following lemma helps us classify the values of I αj (u j ).

Lemma 3.2. Let n ≥ 3 and (u 1 , • • • , u n ) be a solution of (1.20) satisfying (3.1). For 1 ≤ j ≤ n, let α j ∈ 0, √ n be given such that α 2 1 + • • • + α 2 n = n. If k ∈ {0, 1, • • • , n} is the number of α j such that I αj (u j ) = ∞, then k = 1. Moreover, if I αj (u j ) < ∞, then |u j | → α j uniformly as |x| → ∞. (3.5) Proof. Suppose that I αj (u j ) < ∞ for 1 ≤ j ≤ n -1. Let X R = ˆBR n-1 j=1 α 2 j - n-1 j=1 |u j | 2 2 dx 1 2 , Y R = ˆBR (α 2 n -|u n | 2 ) 2 dx 1 2 .
Since I αj (u j ) < ∞ for 1 ≤ j ≤ n -1, it follows that X R ≤ C where C is independent of R. By (3.1) and the Cauchy-Schwartz inequality,

∞ > E = ˆR2 n - n j=1 |u j | 2 2 dx ≥ X 2 R + Y 2 R + 2 ˆBR n-1 j=1 α 2 j - n-1 j=1 |u j | 2 (α 2 n -|u n | 2 )dx ≥ (X R -Y R ) 2 .
As a consequence, Y R is also uniformly bounded as R → ∞ and thus I αn (u n ) < ∞. This implies that either k = 0 or 2 ≤ k ≤ n. The behavior (3.5) follows from the same argument for the proof of (i) in Lemma 3.1.

By Lemma 3.2, if (u 1 , • • • , u n
) is a solution of (1.20) satisfying (3.1), then one of the following four cases holds:

(P1) there exist α j ∈ [0, √ n ] for 1 ≤ j ≤ n such that α j > 0 ∀j, n j=1
α 2 j = n, and I αj (u j ) < ∞ ∀j;

(P2) there exist l ∈ {1, • • • , n -1} and α j ∈ [0, √ n ] for 1 ≤ j ≤ n such that        α j > 0 for 1 ≤ j ≤ l, α j = 0 for l + 1 ≤ j ≤ n, n j=1 α 2 j = n, and I αj (u j ) < ∞ ∀j; (P3) there exist l ∈ {1, • • • , n -2} and α j ∈ [0, √ n ] for 1 ≤ j ≤ n such that        I αj (u j ) < ∞ for 1 ≤ j ≤ l, I αj (u j ) = ∞ for l + 1 ≤ j ≤ n, n j=1 α 2 j = n; (P4) I αj (u j ) = ∞ for any choice of α j ∈ [0, √ n ] satisfying α 2 1 + • • • + α 2 n = n. Remark 3.3. 
(a) In view of Lemma 3.2, l = n -1 in the case (P3). In particular, (P3) does not happen for n = 2.

(b) Let us explain the above classification for the case n = 3. Suppose that

α 1 , α 2 , α 3 ∈ [0, √ 3 ] and α 2 1 + α 2 2 + α 2 3 = 3. Assume that I α1 (u 1 ) < ∞.
By the same argument of Lemma 3.2, it is obvious that

I α1 (u 1 ) < ∞ if and only if J = ˆR2 α 2 2 + α 2 3 -|u 2 | 2 -|u 3 | 2 2 < ∞.
When J < ∞, we have that

I α2 (u 2 ) < ∞ if and only if I α3 (u 3 ) < ∞. So, if I α1 (u 1 ) < ∞, then either (i) I α1 (u 1 ) < ∞, I α2 (u 2 ) < ∞, I α3 (u 3 ) < ∞, or (ii) I α1 (u 1 ) < ∞, I α2 (u 2 ) = ∞, I α3 (u 3 ) = ∞.
If (i) is true and α j > 0 for all j = 1, 2, 3, then it results in the case (P1). If (i) is true and either α 1 , α 2 > 0 with α 3 = 0 or α 1 = √ 3 with α 2 = α 3 = 0, then we are led to the case (P2). If (ii) is true, then we have (P3). Finally, if I α1 (u 1 ) = I α2 (u 2 ) = I α3 (u 3 ) = ∞ for any choice of α j with α 2 1 + α 2 2 + α 2 3 = 3, then we get the case (P4).

(c) We believe that no solutions of (1.20) satisfy both

E(u 1 , • • • , u n ) < ∞ and (P3) (or (P4)). Of course, one can find an example of (u 1 , • • • , u n ) that violates one of three conditions: (i) (u 1 , • • • , u n ) is a solution, (ii) E(u 1 , • • • , u n ) < ∞, and (iii) (P3) or (P4) is true.
For instance, if n ≥ 2 and we set

u 1 (x, y) = √ n sin(x 2 + y 2 ), u j (x, y) = √ n cos j-1 (x 2 + y 2 ) sin(x 2 + y 2 ) for 2 ≤ j ≤ n -1, u n (x, y) = √ n cos n-1 (x 2 + y 2 ), then (u 1 , • • • , u n ) satisfies E(u 1 , • • • , u n ) < ∞ and (P4). However, (u 1 , • • • , u n )
is not a solution of (1.20).

Another example is u j (x, y) = A j e iωx where A j and ω are positive real numbers for 1

≤ j ≤ n such that A 2 1 + • • • + A 2 n + ω 2 = n. Then, one may check that (u 1 , • • • , u n ) is a solution of (1.20). Moreover, if α j = A j for 1 ≤ j ≤ n -1 and α n = A 2 n + ω 2 , then I αj (u j ) = 0 for 1 ≤ j ≤ n -1 and I αn (u n ) = ∞. Thus, (u 1 , • • • , u n ) satisfies (P3) with l = n -1 but we obtain E(u 1 , • • • , u n ) = ∞.
Based on the above classification and Remark 3.3, we will focus on the quantization problem only for the cases (P1) and (P2). Thus, the condition (1.31) in Theorem 1.3 is quite a reasonable assumption. Now, Theorem 1.3 is a consequence of the following proposition. 

i ∈ [0, √ n ] for 1 ≤ i ≤ n such that          α i > 0 for 1 ≤ i ≤ l, α i = 0 for l + 1 ≤ i ≤ n if l < n, α 2 1 + • • • + α 2 n = n, I αi (u i ) < ∞ ∀i.
Then, there exist l nonnegative integers

d 1 , • • • , d l such that ˆR2 n j=1 |u j | 2 -n 2 dx = 2π l i=1 λ i α 2 i d 2 i . (3.6) 
Proof. We follow the argument of [START_REF] Brezis | Quantization effects for -∆u = u(1 -|u| 2 ) in R 2[END_REF] that are based on the Pohozaev identities.

Let us choose small δ ∈ (0, 1) and a number µ > 1 such that

0 < δ < min α 2 i 2 , 1 4 1 ≤ i ≤ l , max α 2 i α 2 i -δ 1 ≤ i ≤ l < 2(1 -δ), max α 2 i α 2 i -δ 1 ≤ i ≤ l < µ < 2(1 -δ).
By (3.5), there exists R 0 > 0 such that for all |x| ≥ R 0 and 1 ≤ i ≤ l,

α 2 i -δ < |u i (x)| 2 < µ(α 2 i -δ). (3.7) 
For R > R 0 , the degrees

d i = deg(u i , S R ) for 1 ≤ i ≤ l
are well-defined. We notice that given a solution (u 1 , • • • , u n ) of (1.20), if we replace some u j by ūj , then it gives also a solution of (1.20). For instance, if n = 2 and (u 1 , u 2 ) is a solution, then (ū 1 , u 2 ), (u 1 , ū2 ), and (ū 1 , ū2 ) are also solutions. So, without loss of generality, we may assume that d j ≥ 0 for 1 ≤ j ≤ l. In addition, there exist smooth real valued functions ψ j (x) on R 2 \ B R0 such that

u j (x) = |u j (x)|e i(dj θ+ψj ) ≡ ρ j (x)e iϕj on R 2 \ B R0 for 1 ≤ j ≤ l. (3.8)
We note that ψ j is a globally defined smooth function whereas ϕ j is locally defined. We claim that

l i=1 ˆR2 \BR 0 |∇ψ i | 2 dx < ∞, (3.9) 
l i=1 ˆR2 \BR 0 |∇ρ i | 2 dx < ∞, (3.10) 
n i=l+1 ˆR2 |∇u i | 2 < ∞. (3.11)
We postpone the proof of these estimates to the end of this proof. By the Pohozaev identity for (1.20), i.e., multiplying x • ∇u i on (1.20), we deduce that for r > 0, n i=1 ˆSr

λ i ∂u i ∂ν 2 + 1 r ˆBr n - n j=1 |u j | 2 2 = n i=1 ˆSr λ i ∂u i ∂τ 2 + 1 2 ˆSr n - n j=1 |u j | 2 2 . (3.12) Set E(r) = ˆBr n j=1 |u j | 2 -n 2 .
Then, E(r) → E as r → ∞. By integrating (3.12) for r ∈ (0, R), we see that

n i=1 ˆBR λ i ∂u i ∂ν 2 + ˆR 0 E(r) r dr = n i=1 ˆBR λ i ∂u i ∂τ 2 + 1 2 E(R). (3.13) 
By (3.9) and (3.10), it holds that

l i=1 ˆBR λ i ∂u i ∂ν 2 ≤ l i=1 ˆBR λ i |∇ρ i | 2 + λ i ρ 2 i |∇ϕ i | 2 ≤ C. Moreover, it follows from (3.11) that n i=l+1 ˆBR λ i ∂u i ∂ν 2 + ˆBR λ i ∂u i ∂τ 2 ≤ C.
Hence, by dividing (3.13) by log R and letting R → ∞, we are led to

E = l i=1 lim R→∞ 1 log R ˆBR λ i ∂u i ∂τ 2 . ( 3 

.14)

For R > R 0 , by letting A R = B R \B R0 , we have

ˆAR ∂u i ∂τ 2 = ˆAR ∂ρ i ∂τ 2 + ˆAR ρ 2 i d i r + ∂ψ i ∂τ 2 = ˆAR ∂ρ i ∂τ 2 + d 2 i r 2 (ρ 2 i -α 2 i ) + ρ 2 i ∂ψ i ∂τ 2 + ˆAR 2d i ρ 2 i r ∂ψ i ∂τ + ˆAR α 2 i d 2 i r 2 .
The first integral is uniformly bounded with respect to R by (3.9), (3.10) and the conditions

I αi (u i ) < ∞. Moreover, ˆAR ρ 2 i r ∂ψ i ∂τ = ˆAR ρ 2 i -α 2 i r ∂ψ i ∂τ ≤ 1 R 0 I αi (u i ) 1 2 ˆBc R 0 |∇ψ i | 2 1 2 ≤ C.
Consequently, we have Proof of (3.9): Inserting (3.8) in (1.20) and taking real and imaginary parts, we obtain that for each i and |x| ≥ R 0 ,

ˆAR ∂u i ∂τ 2 = 2πα 2 i d 2 i log R + O(1) as R → ∞. ( 3 
∇ • ρ 2 i ∇ϕ i = ρ i (ρ i ∆ϕ i + 2∇ρ i • ∇ϕ i ) = 0, (3.16) -λ i ∆ρ i + λ i ρ i |∇ϕ i | 2 = ρ i n - n j=1 ρ 2 j .
(3.17)

Letting x ⊥ = (-x 2 , x 1 ) for x = (x 1 , x 2 ), we can rewrite (3.16) as

∇ • ρ 2 i d i r 2 x ⊥ + ∇ψ i = 0 for |x| ≥ R 0 . (3.18) Integrating (3.18) on R 2 \ B R for R > R 0 , we are led to 0 = ˆSR ρ 2 i d i r 2 x ⊥ + ∇ψ i • ν = ˆSR ρ 2 i ∂ψ i ∂ν . (3.19)
Here, ν is the outward unit normal vector to ∂B R . Let

ψ R i = 1 2πR ˆSR ψ i dx for i = 1, • • • , l η 0 (R) = l i=1 ˆAR (α 2 i -δ)|∇ψ i | 2 dx.
Multiplying (3.18) by (ψ iψ R i ) and integrating it over A R for each i, we have by (3.7) and (3.19) 

η 0 (R) ≤ l i=1 ˆAR ρ 2 i |∇ψ i | 2 + l i=1
+ ∂ψ i ∂τ 2 = R 2 ˆSR |∇ψ i | 2 .
Hence, by the choice of µ

(II) ≤ µ l i=1 ˆSR (α 2 i -δ) ∂ψ i ∂ν |ψ i -ψ R i | ≤ 1 2 µR l i=1 ˆSR (α 2 i -δ)|∇ψ i | 2 = 1 2 µRη ′ 0 (R).
Furthermore, since I αi (u i ) < ∞, it comes from Young's inequality that

(III) ≤ l i=1 d i R 0 I αi (u i ) 1 2 ˆAR |∇ψ i | 2 1 2 ≤ C 0 + δη 0 (R).
As a consequence, we deduce from (3.20) that

η 0 (R) ≤ µR 2(1 -δ) η ′ 0 (R) + C 0 1 -δ ≡ R ν η ′ 0 (R) + C 1 , (3.21) 
where C 0 and C 1 are independent of R. We claim that η 0 (R) ≤ C 1 for all R > R 0 . Otherwise, there exists R 1 > R 0 such that η 0 (R 1 ) > C 1 . Set η 1 (R) = η 0 (R) -C 1 . Then, we get [R -ν η 1 (R)] ′ > 0, which implies that

η 1 (R) ≥ R R 1 ν η 1 (R 1 ) for R > R 1 .
However, we see from (3.4) that η 1 (R) ≤ CR for some C > 0 and for all large R > R 1 . Since ν = 2(1δ)/µ > 1 by the choice of δ and µ, this yields a contradiction.

Proof of (3.10): Multiplying (3.17) by (α iρ i )ξ R and integrating it on R 2 \ B R0 , we have

λ i ˆR2 \BR 0 |∇ρ i | 2 ξ R ≤ λ i ˆSR 0 ∂ρ i ∂ν • |α i -ρ i | + λ i 2 ˆR2 \BR 0 ∇ξ R • ∇(α i -ρ i ) 2 + λ i ˆR2 \BR 0 |ρ i (α i -ρ i )| • |∇ϕ i | 2 + ˆR2 \BR 0 ρ i (α i -ρ i ) n - n j=1 ρ 2 j ξ R ≤ C 1 + 1 R 2 I αi (u i ) + ∇ϕ i L 2 (R 2 \BR 0 ) + I αi (u i ) 1 2 E 1 2 < ∞,
where the last inequality comes from E < ∞, I αi (u i ) < ∞, and (3.9).

Proof of (3.11): Let i ∈ {l + 1, • • • , n} be fixed. We remind that Letting r n → ∞, we obtain the desired result (3.11).

I αi = ˆR2 |u i | 2 = ˆ∞ 0 ˆ∂Br |u i | 2 dSdr < ∞. ( 3 

Lemma 3 . 1 .

 31 Let (u 1 , • • • , u n ) be any solution of (1.20) satisfying (3.1). Then, the followings hold.(i) We have n j=1 |u j | 2 ≤ n and n j=1 |u j | 2 → n as |x| → ∞. (3.2)

Proposition 3 . 4 .

 34 Let (u 1 , • • • , u n ) be a solution pair of (1.20) satisfying (3.1). Suppose (P1) or (P2) is true. That is, there exist l ∈ {1, • • • , n} and α

  .15) Then, we obtain the desired result (3.6) from (3.14) and (3.15). It remains to prove (3.9), (3.10), and (3.11).

  This makes the analysis for solutions of (1.20) sophisticated and motivates a new research problem. The purpose of this paper is to verify how such obstruction can be overcome for a conclusion similar to Theorem A. Especially, we focus on the quantization of the potential

	we can show by Lemma 3.1 below that		
	n		n		
	j=1	|u j | 2 ≤ n in R 2 and	j=1	|u j | 2 → n as |x| → ∞.	(1.23)
	Unlike the single case (1.21), the properties (1.23) do not provide any individual
	behaviors of u j .			
					.22)

  .22) So, there exists r n → ∞ such that ˆ∂Br n |u i | 2 dS < 1 r n .We multiply (1.20) by ξ 2 rn u i and integrate on B rn , and then we haveλ i ˆBrn ξ 2 rn |∇u i | 2 + λ i ˆBrn 2ξ rn u i ∇u i • ∇ξ rn

	we are led to				
	ˆR2		ˆ{rn<|x|<2rn}	
	λ i	ξ 2 rn |∇u i | 2 ≤ C		|ξ rn ∇u i ||∇ξ rn |
			ˆ{rn<|x|<2rn}		1	ˆ{rn<|x|<2rn}	1
		≤ C		ξ 2 rn |∇u i | 2	2	|∇ξ rn | 2	2
			ˆR2		
		≤ C	ξ 2 rn |∇u i | 2	
		= λ i	ˆ∂Br n	∂u i ∂ν	ξ 2 rn u i +	ˆBrn	ξ 2 rn u 2 i (n -f ).
	The right side of the above is uniformly bounded by (3.3) and (3.22). Hence,
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