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A B S T R A C T
In vibroacoustics, inverse methods use the vibratory response of a structure to identify either
a load or a structural parameter. The Force Analysis Technique (FAT) and the Virtual Fields
Method (VFM), are two inverse methods that have been used in the past to identify loads
or structural parameters of flexural beams or plates. The Corrected Force Analysis Technique
(CFAT) is another inverse method that corrects the singularity of FAT, making this approach
more accurate at higher frequencies. In this study, this principle is applied to the VFM, using
polynomial interpolation of the displacement field, in order to adapt the method so that at each
frequency, the accuracy of the method is improved. The accuracy of the Frequency-Adapted
VFM is demonstrated using numerical simulations. A formal comparison between FAT, CFAT
and the VFM is also proposed.

1. Introduction
In vibroacoustics, inverse methods are techniques used to fulfill different objectives. One of them is to identify

a load, dynamic or not. Assuming that the material, geometry, and response of the structure to the unknown load
are known, inverse methods can be applied to locate and quantify this force. A second important application is
the determination of structural parameters such as bending stiffness or damping. Many inverse methods have been
developed over the years. The main difference between them is the frequency range in which they are applicable. For
example, if one wishes to identify the bending stiffness and damping in the low frequency domain, classical modal
analysis can be used. Considering that the response of the structure is given by the sum of complex exponentials plus
a Gaussian noise, the ESPRIT method can be used to perform modal analysis as long as the modal overlap remains
below 70% [1]. In the high frequency range, ultrasonic methods can be applied [2]. In this paper, two medium frequency
methods are used, the Force Analysis Technique or FAT and the Virtual Fields Method or VFM.
The Force Analysis Technique, developed in the 1990s [3, 4], is an inverse method whose initial objective is to identify
a dynamic load. This method is based on the local equation of motion and allows to identify the load locally for
flexural beams or plates. The local aspect of this method is one of its great advantages. Indeed, the technique can be
applied without the need to know the conditions outside the region of interest such as the response and the boundary
conditions of the structure or the material properties. FAT has been extended to identify the structural parameter for
isotropic and homogeneous plates [5] and for more complex structures [6]. However, FAT is limited to the medium
frequency domain. As the number of points per bending wavelength decreases (i.e. as frequency increases), the error
of the method becomes significant [7, 8]. This limitation is overcome by the Corrected Force Analysis Technique or
CFAT [8]. This method introduces factors (one for the case of a beam and two for a plate) to correct the estimate of
the equation of motion made by FAT. More recently, CFAT has been extended to laminated composite panels [9].
This technique has also been applied to identify the structural parameter(s) of an isotropic [7], sandwich [10], and
anisotropic [2] plate.
The Virtual Fields Method is a second inverse method based on the Principle of Virtual Works (PVW). This method
uses test functions, also known as virtual fields, to solve the PVW [11]. The choice of the virtual fields is a key point
of the VFM. The VFM has been applied in the past to identify a dynamic load in the frequency domain [12, 13] and
in the time domain [14, 15]. Unlike FAT, the VFM was originally developed to identify structural parameter(s).
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Nomenclature
𝑎𝑝 Coefficients of the polynomial interpolating the displacement field
𝐸 Young Modulus
𝐸FAT, 𝐸CFAT and 𝐸VFM Response of FAT, CFAT and the VFM in the wavenumber domain
𝐶0, 𝐶1 and 𝐶2 Coefficients of the inertial term of �̃�VFM(𝑥𝑖)
𝐼 Flexural moment of inertia
𝑘𝑓 = 2𝜋∕𝜆𝑓 = 4

√

𝜌𝑆
𝐸𝐼𝜔

2 Flexural wavenumber of the beam
𝐿 Length of the beam
𝑙𝑣 Virtual segment
𝑛 = 𝜆𝑓∕Δ Number of measurement points by wavelength
𝑁𝑟 Random variable sampled from a standard normal distribution
𝑝(𝑥, 𝑡) = �̃�(𝑥)𝑒𝑗𝜔𝑡 Harmonic transverse loading in N/m
�̃�FAT(𝑥𝑖), �̃�CFAT(𝑥𝑖) and �̃�VFM(𝑥𝑖) Load estimated by FAT, CFAT and the VFM at point 𝑥𝑖
�̂�(𝑘), �̂�FAT(𝑘) and �̂�VFM(𝑘) Fourier transform of �̃�(𝑥), �̃�FAT(𝑥) and �̃�VFM(𝑥)
𝑆 Cross section of the beam
𝑆𝑓 Noise sensitivity
𝑈0, 𝑈1 and 𝑈2

Multiplier coefficient for different displacement values
in the load expression identified with FAT, CFAT and VFM

�̃�(𝑥) Transverse displacement of the beam
�̂�(𝑘) Fourier transform of �̃�(𝑥)
𝑤𝑣(𝑥) Virtual displacement
𝑊 𝑥𝑖

𝑀 (𝜉) Polynomial interpolating the displacement field measured on a subset of 𝑀
points centered on the point with coordinates 𝑥𝑖 .

�̃�noisy(𝑥) Noisy displacement
𝑥𝑒 Position of the load
𝑋1 and 𝑋2 Roots of the equation 28
𝜂 Loss factor
𝛿4𝑥Δ (𝑥𝑖)

Estimation of the fourth-order spatial derivative of �̃�(𝑥)
by the finite differences scheme

𝛿0Δ, 𝛿𝑥Δ, 𝛿2𝑥Δ and 𝛿3𝑥Δ
Linear combination of the 5 measured displacement values of the subset used
in the polynomial interpolation.

Δ Distance between two measurement points
�̃�𝑥(𝑥) = −𝑑2�̃�(𝑥)

𝑑𝑥2 Bending curvature of the beam
𝜅𝑣
𝑥(𝑥) Virtual curvature

𝜅𝑥𝑖
𝑥 𝑀 (𝜉) = − 1

Δ2
𝑑2𝑊𝑀 (𝜉)

𝑑𝜉2 Curvatures are obtained by second-order derivation of 𝑊 𝑥𝑖
𝑀 (𝜉)

𝜆𝑓 Wavelength of the bending wave
𝜇4 =

Δ4𝑘4𝑓
(2−2 cos(𝑘𝑓Δ))2

Corrective factor of CFAT
𝜌 Density
𝜉 = 𝑥−𝑥𝑖

Δ Local coordinate system on the virtual segment
𝜏 Virtual segment half-length
𝜏FA Frequency Adapted value of virtual segment half-length
𝜎𝑤 Standard deviation of the simulated displacement at 𝜔
𝜎 Standard deviation 𝜎 of the identified structural parameter 𝐸𝐼∕𝜌𝑆
𝜔 Angular frequency

The method has therefore been applied to isotropic plates [16, 17], and to more complex structures [18, 19, 20, 21].
Work has been carried out to minimize the effects of measurement noise on the VFM by selecting specific virtual fields
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which are referred to as optimized virtual fields [22]. These optimized virtual fields, which depend on the vibratory
response of the structure, were tested to identify the structural parameters of a vibrating plate [23]. In 2017, Marek
et al. extended these sensitivity-based VFM to identify the parameters of a plastic model [24]. In [25], viscoelastic
material parameters were also estimated using optimal virtual fields and taking into account the biases introduced by
spatial sampling in the experimental data. The VFM is based on a weak form of the local equilibrium while FAT is
based on a strong form. Therefore, the VFM is considered less sensitive to measurement noise than FAT or CFAT
[12]. However, the virtual fields have to be carefully chosen since they impact the accuracy of the VFM results. In this
paper, the case of a beam in pure bending is considered. Using piecewise virtual fields and a polynomial interpolation
of the displacement field, it is proposed to apply the principles that led to the FAT correction to the VFM in order
to adapt the size of the virtual segment over which the piecewise virtual fields are defined. Like CFAT, the proposed
VFM frequency adaptation is relevant when the number of measurement points per bending wavelength is low. In
practice, this situation generally arises in the high-frequency range, when the vibration field is measured using laser
vibrometry. The second section, presents the Force Analysis Technique and the Corrected Force Analysis Technique.
The Principle of Virtual Works and the Virtual Fields Method are presented in the third section. The fourth section
develops the frequency adaptation process of the Virtual Fields Method. Finally, a numerical simulation validation of
the Frequency-Adapted Virtual Fields Method is presented in the fifth section.

2. Force Analysis Technique and Corrected Force Analysis Technique for loading and
structural parameter identification

2.1. Force Analysis Technique
In this and the following sections, an Euler-Bernoulli beam of cross section 𝑆 is considered. This beam is submitted

to a harmonic transverse loading 𝑝(𝑥, 𝑡) = �̃�(𝑥)𝑒𝑗𝜔𝑡 (in N/m) where 𝑥 denotes the position on the beam, 𝜔 the angular
frequency and j =

√

−1. The equation of motion of the beam is

𝐸𝐼
𝑑4�̃�(𝑥)
𝑑𝑥4

− 𝜌𝑆𝜔2�̃�(𝑥) = �̃�(𝑥), (1)

where 𝐸, 𝜌 and 𝐼 are respectively the Young’s modulus, the density and the flexural moment of inertia. Also, �̃�(𝑥) is
the transverse displacement of the beam. In FAT, the fourth-order spatial derivative of the displacement is estimated
at 𝑥 = 𝑥𝑖 using a finite difference scheme based on discrete experimental measurements of �̃�. [8]:

𝑑4�̃�(𝑥)
𝑑𝑥4

)

𝑥=𝑥𝑖
≃ 𝛿4𝑥Δ (𝑥𝑖) =

1
Δ4

(�̃�(𝑥𝑖 − 2Δ) − 4�̃�(𝑥𝑖 − Δ) + 6�̃�(𝑥𝑖) − 4�̃�(𝑥𝑖 + Δ) + �̃�(𝑥𝑖 + 2Δ)). (2)

Here, Δ is the distance between two measurement points. The load can then be estimated at the 𝑥𝑖 position of the beam
via :

�̃�FAT(𝑥𝑖) = 𝐸𝐼𝛿4𝑥Δ (𝑥𝑖) − 𝜌𝑆𝜔2�̃�(𝑥𝑖). (3)
Estimating the fourth-order spatial derivative of �̃�(𝑥) leads to an amplification of measurement noise, mainly in the
high wavenumber domain. It is therefore necessary to apply a low-pass wavenumber filter on the experimental data
to regularize the problem. In practice, to avoid Gibbs phenomenon, the identified force distribution is first spatially
windowed and then low-pass filtered in the wavenumber domain [3]. A major issue when implementing FAT is that
a strong bias error due to the finite difference approximation appears when the number of measurement points by
wavelength, 𝑛 = 𝜆𝑓∕Δ, gets to small (practically, when 𝑛 < 4). Note that here, 𝜆𝑓 = 2𝜋 4

√

𝐸𝐼
𝜌𝑆𝜔2 denotes the wavelength

of the free bending wave.
2.2. Corrected Force Analysis Technique

The equation of motion of the Euler-Bernoulli beam in the wavenumber domain is,
�̂�(𝑘) = �̂�(𝑘)(𝐸𝐼𝑘4 − 𝜌𝑆𝜔2), (4)



2 FAT AND CFAT FOR LOADING AND STRUCTURAL PARAMETER IDENTIFICATION 4
where �̂�(𝑘) and �̂�(𝑘) are the wavenumber transforms of �̃�(𝑥) and �̃�(𝑥).
The wavenumber transform of eq. 3 is [8],

�̂�FAT(𝑘) = �̂�(𝑘)
(𝐸𝐼
Δ4

(2 cos(2𝑘Δ) − 8 cos(𝑘Δ) + 6) − 𝜌𝑆𝜔2
)

. (5)

The response of FAT in the wavenumber domain is quantified by the ratio of �̂�FAT over �̂�,

𝐸FAT =
�̂�FAT
�̂�

=

2 cos(2𝑘Δ) − 8 cos(𝑘Δ) + 6
Δ4

− 𝑘4𝑓

𝑘4 − 𝑘4𝑓
, (6)

where 𝑘𝑓 = 4
√

𝜌𝑆
𝐸𝐼𝜔

2 is the flexural wavenumber of the beam. The response of FAT shows a singularity at 𝑘 = 𝑘𝑓 . In
[8] it is proposed to remove this singularity by equalizing the roots of the denominator and the numerator of eq. 6. To
do this, a factor 𝜇4 is introduced to correct the finite difference scheme for the estimation of force distribution,

�̃�CFAT(𝑥𝑖) = 𝐸𝐼𝜇4𝛿4𝑥Δ (𝑥𝑖) − 𝜌𝑆𝜔2�̃�(𝑥𝑖). (7)
The corrected response is then,

𝐸CFAT =
𝜇4 2 cos(2𝑘Δ) − 8 cos(𝑘Δ) + 6

Δ4
− 𝑘4𝑓

𝑘4 − 𝑘4𝑓
, (8)

The value 𝜇4 =
Δ4𝑘4𝑓

(2−2 cos(𝑘𝑓Δ))2
equalizes the roots of the numerator and denominator, eliminating the singularity

as intended. If the purpose is to identify a dynamic load, the CFAT method can be applied when the number of
measurement points per bending wavelength is down to 1.85 [8]. Figure 5a shows the response of FAT and CFAT in
the wavenumber domain for 𝑛 = 4 and 𝑛 = 2.5. The singularity at 𝑘 = 𝑘𝑓 is clearly visible on the FAT plots while
it is suppressed on the CFAT plots. The CFAT plot for 𝑛 = 2.5 shows a second numerator root at 𝑘∕𝑘𝑓 = 1.5. The
FAT response includes a low-pass wavenumber filter which acts as an anti-aliasing filter. Indeed, Shannon’s sampling
criterion requires that 𝑘∕𝑘𝑓 < 𝑛∕2 [8]. As shown in figure 5a, the FAT response at 𝑘∕𝑘𝑓 = 2 (𝑛 = 4) is −19 dB.
Therefore, the identified force spectrum will not be distorted by aliasing effects. The same conclusion can be drawn
for 𝑛 = 2.5. One advantage of CFAT is that this anti-aliasing filter is preserved. Indeed, figure 5a shows that the CFAT
response at 𝑘∕𝑘𝑓 = 2 (𝑛 = 4) is −14 dB. The force spectrum of CFAT is then not disturbed by aliasing effects.
2.3. Structural parameter identification with FAT and CFAT

FAT and CFAT can also be used to estimate the structural parameter of the beam 𝐸𝐼∕𝜌𝑆 [5, 7]. The equation of
motion of the Euler-Bernoulli beam at points where no external force is applied is,

𝐸𝐼
𝑑4�̃�(𝑥)
𝑑𝑥4

− 𝜌𝑆𝜔2�̃�(𝑥) = 0. (9)

The fourth order spatial derivative can again be estimated by means of the finite difference scheme (corrected or not).
The identified structural parameter is then :

(

𝐸𝐼
𝜌𝑆

)FAT

𝑥𝑖
=

𝜔2�̃�(𝑥𝑖)
𝛿4𝑥Δ (𝑥𝑖)

, (10)

if FAT is used. Or
(

𝐸𝐼
𝜌𝑆

)CFAT

𝑥𝑖
=

𝜔2�̃�(𝑥𝑖)
𝜇4𝛿4𝑥Δ (𝑥𝑖)

, (11)

if CFAT is used.
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3. Virtual Fields Method for loading and structural parameter identification
The Virtual Fields Method is based on the Principle of Virtual Works (PVW) [11]. By multiplying both sides of

eq. 1 by a function 𝑤𝑣(𝑥), and integrating along 𝐿, we get,

∫𝐿
𝐸𝐼

𝑑4�̃�(𝑥)
𝑑𝑥4

𝑤𝑣(𝑥)dx − ∫𝐿
𝜌𝑆𝜔2�̃�(𝑥)𝑤𝑣(𝑥)dx = ∫𝐿

�̃�(𝑥)𝑤𝑣(𝑥)dx. (12)

With specific properties of 𝑤𝑣(𝑥), a double integration by parts leads to the Principle of Virtual Works for an Euler-
Benoulli beam,

𝐸𝐼 ∫𝐿
�̃�𝑥(𝑥)𝜅𝑣

𝑥(𝑥)dx − 𝜌𝑆𝜔2
∫𝐿

�̃�(𝑥)𝑤𝑣(𝑥)dx = ∫𝐿
�̃�(𝑥)𝑤𝑣(𝑥)dx, (13)

where �̃�𝑥(𝑥) = − 𝑑2�̃�(𝑥)
𝑑𝑥2 is the bending curvature of the beam, 𝑤𝑣(𝑥) and 𝜅𝑣

𝑥(𝑥) are the virtual displacement and
the virtual curvature respectively. For the problem considered in this study, the virtual displacement can be any
kinematically admissible function C1 (continuity of the virtual displacement and its first derivative) along the length
of the beam. This implies that the virtual displacement and its first spatial derivative have to be null at the boundary of
the PVW integration domain. The Virtual Fields Method consists of choosing a virtual displacement in order to solve
the PVW and identify the load �̃�(𝑥) from the measured displacement field of the beam. Here, the virtual displacement
is considered to be zero over the whole length of the beam except over a small segment called virtual segment which
is centered at point 𝑥 = 𝑥𝑖 [12]. Assuming that the external lineic force is constant over the virtual segment, the PVW
becomes,

𝐸𝐼 ∫𝑙𝑣
�̃�𝑥(𝑥)𝜅𝑣

𝑥(𝑥)dx − 𝜌𝑆𝜔2
∫𝑙𝑣

�̃�(𝑥)𝑤𝑣(𝑥)dx = �̃�(𝑥𝑖)∫𝑙𝑣
𝑤𝑣(𝑥)dx, (14)

where 𝑙𝑣 denotes the virtual segment. The position of this virtual segment changes to scan the entire beam. For each
position, the PVW is solved and the load applied to the segment is identified. In order to respect the C1 conditions
on the virtual displacement, 𝑤𝑣 and its first derivative must be zero at the ends of the virtual segment. As lineic force
is considered constant over the virtual segment, the lineic force identified for a segment position is an average of the
lineic force applied over the entire segment. Therefore, the integration on the right-hand side of eq.14 acts as a low-pass
wavenumber filter, which helps to regularize the problem. Note that the VFM requires the knowledge of second spatial
derivatives of the displacement (the curvatures 𝜅), whereas FAT and CFAT require fourth-order spatial derivatives of
displacements. In principle, this makes the VFM less sensitive to measurement noise on the displacement field.
3.1. Structural parameter identification with the VFM

The VFM can also be used to identify the structural parameter of the beam. If no external force is applied on 𝑙𝑣,
the PVW becomes,

(

𝐸𝐼
𝜌𝑆

)VFM

𝑥𝑖
=

𝜔2
∫𝑙𝑣

�̃�(𝑥)𝑤𝑣(𝑥)dx

∫𝑙𝑣
�̃�𝑥(𝑥)𝜅𝑣

𝑥(𝑥)dx
. (15)

The structural parameter can then be identified for each position of the virtual segment provided no external load is
applied on the part of the beam covered by the successive virtual segments.

4. Frequency adaptation of the Virtual Fields Method
4.1. Polynomial interpolation of the displacement field

In this section, a set of 𝑁 measurement points is considered over the whole length of the beam. Let us consider an
odd number of 𝑀 measurement points, which forms a sub-set of the 𝑁 measurement points, as shown in the figure 1a.
The knowledge of the displacement at each point of this subset is used to interpolate the displacements at any position
by a polynomial function of degree 𝑀 − 1. So, if 𝑥 ∈ [𝑥𝑖 − Δ𝑀

2 , 𝑥𝑖 + Δ𝑀
2 ], then,

�̃�(𝑥) ≃ 𝑊 𝑥𝑖
𝑀 (𝜉) =

𝑀−1
∑

𝑝=0
𝑎𝑝𝜉

𝑝, (16)
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(a)

(b)
Figure 1: (a) Experimental mesh of 𝑁 points spaced by Δ with the subset of 𝑀 points. The virtual segment 𝑙𝑣 is shown in
green. (b) Coordinate systems on the subset of 𝑀 points, 𝑥 corresponding to global coordinates and 𝜉 to local coordinates.

with 𝜉 = 𝑥−𝑥𝑖
Δ , the local coordinate system on the virtual segment as shown in figure 1b. Here, the 𝑎𝑝 are the coefficients

of the polynomial. These coefficients depend on the displacement field and must be estimated. To do so the Newton
formula is used [26],

𝑊 𝑥𝑖
𝑀 (𝜉) =

𝑀
∑

𝑣=1
�̃�[𝜉1, ..., 𝜉𝑣]

𝑣
∏

𝑠=1
(𝜉 − 𝜉𝑠). (17)

Newton’s formula uses the divided difference operator,
�̃�[𝜉1] = �̃�(𝜉1),

�̃�[𝜉1, 𝜉2] =
�̃�(𝜉1) − �̃�(𝜉2)

𝜉1 − 𝜉2
,

�̃�[𝜉1, ..., 𝜉𝑣] =
�̃�[𝜉1, ..., 𝜉𝑣−1] − �̃�[𝜉2, ..., 𝜉𝑣]

𝜉1 − 𝜉𝑣
,

(18)

where �̃�(𝜉𝑣) is the measured displacement at node 𝜉𝑣. The curvatures are obtained by second-order derivation of eq.
17, 𝜅𝑥𝑖

𝑥 𝑀 (𝜉) = − 1
Δ2

𝑑2𝑊𝑀 (𝜉)
𝑑𝜉2 .

4.2. Virtual Fields Method for force identification with 𝑀 = 5
The case where 𝑀 = 5 is considered hereafter in order to remain consistent with the number of points used by FAT

and CFAT for the estimation of 𝑑4�̃�∕𝑑𝑥4. In this case, the polynomial interpolation obtained with Newton’s formula
is,

𝑊 𝑥𝑖
5 (𝜉) = 1

24
𝛿4𝑥Δ 𝜉4 + 1

72
𝛿3𝑥Δ 𝜉3 +

( 1
14

𝛿2𝑥Δ − 31
168

𝛿4𝑥Δ
)

𝜉2 +
( 1
10

𝛿𝑥Δ − 17
360

𝛿3𝑥Δ
)

𝜉 + 1
5
𝛿0Δ − 1

7
𝛿2𝑥Δ + 3

35
𝛿4𝑥Δ , (19)

with
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛿0Δ = �̃�(𝑥𝑖 − 2Δ) + �̃�(𝑥𝑖 − Δ) + �̃�(𝑥𝑖) + �̃�(𝑥𝑖 + Δ) + �̃�(𝑥𝑖 + 2Δ),

𝛿𝑥Δ = −2�̃�(𝑥𝑖 − 2Δ) − �̃�(𝑥𝑖 − Δ) + �̃�(𝑥𝑖 + Δ) + 2�̃�(𝑥𝑖 + 2Δ),

𝛿2𝑥Δ = 2�̃�(𝑥𝑖 − 2Δ) − �̃�(𝑥𝑖 − Δ) − 2�̃�(𝑥𝑖) − �̃�(𝑥𝑖 + Δ) + 2�̃�(𝑥𝑖 + 2Δ),

𝛿3𝑥Δ = −6�̃�(𝑥𝑖 − 2Δ) + 12�̃�(𝑥𝑖 − Δ) − 12�̃�(𝑥𝑖 + Δ) + 6�̃�(𝑥𝑖 + 2Δ),

𝛿4𝑥Δ = �̃�(𝑥𝑖 − 2Δ) − 4�̃�(𝑥𝑖 − Δ) + 6�̃�(𝑥𝑖) − 4�̃�(𝑥𝑖 + Δ) + �̃�(𝑥𝑖 + 2Δ).

(20)
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Note that 𝛿4𝑥Δ corresponds exactly to the estimate made in FAT of the fourth order spatial derivative of the displacement
field (eq. 2). The bending curvature is,

𝜅𝑥𝑖
𝑥 5(𝜉) = − 1

Δ2

(1
2
𝛿4𝑥Δ 𝜉2 + 1

12
𝛿3𝑥Δ 𝜉 + 1

7
𝛿2𝑥Δ − 31

84
𝛿4𝑥Δ

)

. (21)

As shown in figure 1, the virtual segment is positioned on the sub-set of points between the points 𝜉 = −𝜏 and 𝜉 = 𝜏
where 𝜏 ∈ [0, 2.5] since 𝑀 = 5. The maximum value of 𝜏 is set to avoid extrapolation of the displacement field.
The VFM is used to identify the applied dynamic force. The virtual displacement must meet the conditions detailed
in the section 3. The virtual displacement is here based on the Hermite 16 interpolation functions which fulfill these
conditions and have been used extensively in the past [12, 11]. These functions are defined piecewise on the virtual
segment,

𝑤𝑣(𝜉) = 1
4

(

1 −
2𝜉
𝜏

)(

2 +
2𝜉
𝜏

)2
for 𝜉 ∈ [−𝜏, 0],

𝑤𝑣(𝜉) = 1
4

(

1 +
2𝜉
𝜏

)(

2𝜉
𝜏

− 2
)2

for 𝜉 ∈ [0, 𝜏].

(22)

The virtual curvature is therefore,

𝜅𝑣
𝑥(𝜉) =

12
𝜏3

𝜉 + 6
𝜏2

for 𝜉 ∈ [−𝜏, 0],

𝜅𝑣
𝑥(𝜉) = −12

𝜏3
𝜉 + 6

𝜏2
for 𝜉 ∈ [0, 𝜏].

(23)

Virtual displacement and virtual curvature are shown in figure 2. In the case 𝑀 = 5 and a virtual segment extending
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0.6

0.8
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w
v
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-0.5

0

0.5

1

xv

(b)
Figure 2: (a) Virtual displacement 𝑤𝑣 for 𝜏 = 2.5 and (b) Virtual curvature 𝜅𝑣

𝑥 for 𝜏 = 2.5.

from −𝜏 to +𝜏, eq. 14 becomes,

�̃�VFM(𝑥𝑖)∫

𝜏

−𝜏
𝑤𝑣(𝜉)d𝜉 = −𝜌𝑆𝜔2

∫

𝜏

−𝜏
𝑊 𝑥𝑖

5 (𝜉)𝑤𝑣(𝜉)d𝜉 + 𝐸𝐼 ∫

𝜏

−𝜏
𝜅𝑥𝑖
𝑥 5(𝜉)𝜅

𝑣
𝑥(𝜉)d𝜉. (24)

Using eqs. 19, 21, 22 and 23,
�̃�VFM(𝑥𝑖) = −𝜌𝑆𝜔2(𝐶2�̃�(𝑥𝑖 − 2Δ) + 𝐶1�̃�(𝑥𝑖 − Δ) + 𝐶0�̃�(𝑥𝑖) + 𝐶1�̃�(𝑥𝑖 + Δ) + 𝐶2�̃�(𝑥𝑖 + 2Δ))+

𝐸𝐼
Δ4

[�̃�(𝑥𝑖 − 2Δ) − 4�̃�(𝑥𝑖 − Δ) + 6�̃�(𝑥𝑖) − 4�̃�(𝑥𝑖 + Δ) + �̃�(𝑥𝑖 + 2Δ)],
(25)

where 𝐶2 =
(

𝜏4

560 −
𝜏2

180

)

, 𝐶1 =
(

− 𝜏4

140 +
4𝜏2
45

)

and 𝐶0 =
(

3𝜏4
280 −

𝜏2

6 + 1
)

.
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4.3. Wavenumber analysis

The wavenumber transform of eq. 25 is,
�̂�VFM(𝑘) = �̂�(𝑘)

(

𝐸𝐼(2 cos(2𝑘Δ) − 8 cos(𝑘Δ) + 6) − 𝜌𝑆𝜔2(2𝐶2 cos(2𝑘Δ) + 2𝐶1 cos(𝑘Δ) + 𝐶0)
)

. (26)
The VFM response can be estimated in the same way than FAT and CFAT using the error criterion,

𝐸VFM =
�̂�VFM(𝑘)
�̂�(𝑘)

=
1
Δ4 (2 cos(2𝑘Δ) − 8 cos(𝑘Δ) + 6) − 𝑘4𝑓 (2𝐶2 cos(2𝑘Δ) + 2𝐶1 cos(𝑘Δ) + 𝐶0))

𝑘4 − 𝑘4𝑓
. (27)

Once again, this response has a singularity at the free bending wavenumber in the beam 𝑘 = 𝑘𝑓 . However, it is possible
to remove this singularity by using the same principle as for CFAT. That is, by equalizing the roots of the numerator
and denominator of eq. 27. In CFAT, this equalization is achieved through the correction factor 𝜇4 in eq. 8. In the
VFM, this is achieved by adapting the size of the virtual 𝜏 segment in the PVW. Using 𝑋 = cos(𝑘Δ), the numerator
of eq. 27 becomes a quadratic function of 𝑋 whose roots are the solutions of,

1
Δ4

[4𝑋2 − 8𝑋 + 4] − 𝑘4𝑓 [4𝐶2𝑋
2 + 2𝐶1𝑋 + 𝐶0 − 2𝐶2]) = 0. (28)

Introducing the number of points per wavelength, 𝑛 = 2𝜋∕𝑘𝑓Δ, the roots are,

𝑋1 =
6𝜋2 (𝜎1 + 14 𝜏2 𝜋2)

−9𝜋4 𝜏4 + 28𝜋4 𝜏2 + 315 𝑛4
+ 1 and 𝑋2 = 1 −

6𝜋2 (𝜎1 − 14 𝜏2 𝜋2)

−9𝜋4 𝜏4 + 28𝜋4 𝜏2 + 315 𝑛4
, (29)

where 𝜎1 =
√

−119𝜋4 𝜏4 + 980𝜋4 𝜏2 + 11025 𝑛4. Figure 3 shows the roots𝑋1,𝑋2 as a function of 𝑛 and for 3 different
values of 𝜏. The value 𝜏 = 0 corresponds to a vanishingly small virtual segment. Apart from the singularity observed
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Figure 3: Roots of the numerator of eq. 27 for 𝜏 = 0, 𝜏 = 1 and 𝜏 = 2 (a) 𝑋1 and (b) 𝑋2, the upper dashed red line
corresponds to 𝑋 = 1, the lower dashed red line corresponds to 𝑋 = −1.

when 𝜏 = 2 and 𝑛 = 1.8, the root 𝑋1 is always larger than 1. When 𝑛 → ∞, 𝑋1 → 1+. Since 𝑋 = cos(𝑘Δ), this
root is not compatible with the problem. The root 𝑋2 is mostly in the interval [−1, 1] and is thus acceptable for our
problem. When 𝑛 → ∞, 𝑋2 → 1−. However, as 𝜏 and 𝑛 decrease, the root becomes at some point smaller than −1. This
limitation will be examined later. Keeping the root 𝑋2, the size of the virtual segment 𝜏, which ensures the equality of
the roots of the numerator and denominator of eq. 27 is given by the equation,

1 −
6𝜋2 (𝜎1 − 14 𝜏2 𝜋2)

−9𝜋4 𝜏4 + 28𝜋4 𝜏2 + 315 𝑛4
= cos

(

𝑘𝑓Δ
)

= cos
(2𝜋

𝑛

)

. (30)
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Equation 30 was solved using the Matlab® symbolic toolbox. Of the 8 roots obtained, only one is real and always stays
in the interval [0, 2.5] if 𝑛 is not too small,

𝜏FA =

√

√

√

√

√

14𝜋2sin
(𝜋
𝑛

)2
− 9

√

√

√

√

35 𝑛4 sin
(𝜋
𝑛

)4
+

196𝜋4 sin
(𝜋
𝑛

)4

81
+

392𝜋4sin
(𝜋
𝑛

)2

27
− 119𝜋4

9
+ 42𝜋2

3𝜋
|

|

|

|

sin
(𝜋
𝑛

)

|

|

|

|

(31)

This value of 𝜏 is considered to be the Frequency Adapted (FA) virtual segment length in the VFM and is shown in
figure 4. As 𝑛 decreases, the Frequency Adapted value of 𝜏 at some point becomes larger than 2.5. Consequently, as
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(b)
Figure 4: Frequency adapted value of the size 𝜏 of the virtual segment in the VFM (eq. 31) for (a) 𝑛 ∈ [1.5, 20] and (b)
𝑛 ∈ [1.5, 3]. In both plots, the dotted horizontal red line represents the 𝜏 < 2.5 limit.

mentioned above, the frequency adaptation process is limited at high frequency by the value of 𝑛. This limit will be
discussed in section 4.4. The Frequency Adapted value does not depend strongly on n. Indeed, when 𝑛 is larger than 3,
𝜏FA is quasi constant and equal to 1.58. This is an advantage of the frequency adaptation process. Indeed, 𝑛 is a function
of 𝑘𝑓 , the flexural wavenumber of the beam, which in turn is a function of the structural parameter 𝐸𝐼∕𝜌𝑆. When the
method is used to identify a dynamic force, the material is known and so is 𝑛 a priori. The Frequency Adapted value of
the size of the virtual segment can then be determined exactly using eq. 31. However, if the method is used to identify
the structural parameter, the value of 𝑛 remains unknown and so does the Frequency Adapted value of 𝜏. The same
problem is present in CFAT when it comes to estimating the corrective factor 𝜇4. For both techniques, a first solution
to this problem is to perform a wavenumber analysis to obtain an initial estimate of 𝑘𝑓 and therefore of 𝑛. CFAT and
the Frequency-Adapted VFM can thus be applied to identify the structural parameter. An iterative process can then be
carried out to obtain a better estimate of the value of 𝑛. For the VFM, a simpler approach is to use the observation made
above that 𝜏FA according to 𝑛 is almost constant. The Frequency-Adapted VFM can be applied with the average value
of 𝜏FA in the interval 𝑛 ∈ [2, 20]: 𝜏mean

FA = 1.58, and no iterative process is required. Figure 5b shows the response of
the VFM in the wavenumber domain for 𝑛 = 2.5 and 𝑛 = 4 without the frequency adaptation of the virtual segment
length (here for 𝜏 = 0.5) and with the frequency adaptation of the virtual segment length. The Frequency-Adapted
VFM result is obtained using eq. 31 for the two values of 𝑛. The singularity at 𝑘 = 𝑘𝑓 it completely removed when
𝜏 = 𝜏FA. Once again, for 𝑛 = 2.5, a second numerator root is visible at 𝑘∕𝑘𝑓 = 1.5 for the Frequency-Adapted VFM
plot. Note the similarity of FAT and the non-frequency-adapted VFM results on the one hand, and also of CFAT and
the Frequency-Adapted VFM. In particular, there is a natural low-pass filtering of the VFM in the wave number domain
which is due to the integration over the virtual segment in the PVW.
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Figure 5: (a) Response of FAT and CFAT in the wavenumber domain for 𝑛 = 4 and 𝑛 = 2.5 as a function of 𝑘∕𝑘𝑓 . The
dashed lines correspond to FAT plots and the solid lines to the CFAT plots. (b) Response of the VFM for 𝜏 = 0.5 and
the Frequency-Adapted VFM in the wavenumber domain for 𝑛 = 4 and 𝑛 = 2.5 as a function of 𝑘∕𝑘𝑓 . The dashed lines
correspond to 𝜏 = 0.5 and the solid lines to 𝜏 = 𝜏FA.

4.4. High frequency limit
In this section, the high-frequency limit of the VFM frequency adaptation process is examined. The first potential

high-frequency limit is shown in figure 4. From this graph, it can be seen that as 𝑛 becomes less than about 1.53, the
frequency-adapted 𝜏 becomes larger than 2.5. However, as indicated in section 4.2, the maximum acceptable value of
𝜏 is 2.5. Consequently, the Frequency-Adapted VFM cannot be applied if 𝑛 > 1.53. A second potential high frequency
limit is given by the root 𝑋2. Indeed, as indicated in section 4.3, the frequency adaptation of the virtual segment length
in the VFM is valid when 𝑋2 ∈ [−1, 1]. Since 𝑋2 is a function of 𝑛 and 𝜏, the Frequency Adapted segment length
given by eq. 31 is injected into eq. 29 so 𝑋2 becomes only a function of 𝑛. The result is plotted in figure 6 for 𝑛 > 1.5.
The plot shows that 𝑋2 for 𝜏 = 𝜏FA is always in the interval [−1, 1] for 𝑛 > 1.5. This potential high-frequency limit
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Figure 6: Root 𝑋2 for 𝑛 ∈ [1.5, 20] and for 𝜏 = 𝜏FA.

on 𝑋2 is therefore less restrictive than the condition 𝜏 < 2.5. Another high-frequency limit is given by the Shannon
criterion, which stipulates that the number of points per wavelength 𝑛 must be larger than 2. However, this criterion
is only valid for identifying the response of the structure and the structural parameter, since the bending wave number
must first be identified as mentioned in section 4.3. In section 2, it was pointed out that for force identification, CFAT
can be applied as long as 𝑛 > 1.85 thanks to the anti-aliasing effect of the method. In [8], the limit 𝑛 > 1.85 is set
by keeping the magnitude of the secondary lobe of the wavenumber response below −10 dB. This lobe can be seen
in figure 7 where the CFAT response for 𝑛 = 1.85 is shown. With the Frequency-Adapted VFM, the magnitude of
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Table 2
Coefficients 𝑈FAT

𝑙 , 𝑈CFAT
𝑙 , 𝑈VFM

𝑙 and 𝑈VFM
𝑙 for 𝜏 = 1.58.

𝑈0 𝑈1 𝑈2

FAT 6𝐸𝐼
Δ4 − 𝜌𝑆𝜔2 − 4𝐸𝐼

Δ4
𝐸𝐼
Δ4

CFAT 6𝐸𝐼
Δ4 𝜇4 − 𝜌𝑆𝜔2 − 4𝐸𝐼

Δ4 𝜇4 𝐸𝐼
Δ4 𝜇4

VFM 6𝐸𝐼
Δ4 − 𝜌𝑆𝜔2

(

3𝜏4

280
− 𝜏2

6
+ 1

)

− 4𝐸𝐼
Δ4 − 𝜌𝑆𝜔2

(

− 𝜏4

140
+ 4𝜏2

45

)

𝐸𝐼
Δ4 − 𝜌𝑆𝜔2

(

𝜏4

560
− 𝜏2

180

)

VFM (𝜏 = 𝜏mean
FA ) 6𝐸𝐼

Δ4 − 0.65𝜌𝑆𝜔2 − 4𝐸𝐼
Δ4 − 0.17𝜌𝑆𝜔2 𝐸𝐼

Δ4 + 0.0027𝜌𝑆𝜔2

the secondary lobe exceeds −10 dB when 𝑛 falls below 1.65. The Frequency-Adapted VFM wavenumber response for
𝑛 = 1.65 is also shown in figure 7. Therefore, for force identification, the Frequency-Adapted VFM can be applied as
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Figure 7: Response of CFAT in the wavenumber domain for 𝑛 = 1.85; Response of the Frequency-Adapted VFM for 𝑛 = 1.65
as a function of 𝑘∕𝑘𝑓 . The horizontal black line represents the limit of −10 dB.

long as 𝑛 > 1.65.
4.5. Comparison of the VFM with FAT and CFAT

At this point, it is useful to explicitly write the identified external load �̃� as a function of the nodal displacements
for the different methods. To do so eq. 25 can be rewritten as,

�̃�VFM(𝑥𝑖) = 𝑈VFM
0 �̃�(𝑥𝑖) +

2
∑

𝑙=1
𝑈VFM
𝑙 (�̃�(𝑥𝑖 − 𝑙Δ) + �̃�(𝑥𝑖 + 𝑙Δ)) (32)

where, 𝑈VFM
𝑙 are the coefficients deduced from eq. 25. The same development can be done for FAT and CFAT using

eqs. 3 and 7 in order to introduce the corresponding coefficients 𝑈FAT
𝑙 and 𝑈CFAT

𝑙 respectively. The various coefficients
are shown in Table 2. The last line is obtained by using the averaged value of 𝜏FA in the interval 𝑛 ∈ [2, 20] introduced in
section 4.3, 𝜏mean

FA = 1.58. First, it should be noted that the VFM formalism induces a smoothing effect in the estimation
of the inertial term. This effect is demonstrated by the presence of the inertial term in 𝑈1 and 𝑈2 of the VFM, whereas
it is absent in the FAT or CFAT coefficients. This highlights the different strategies adopted by CFAT and the VFM
to deal with low values of 𝑛: CFAT corrects the finite difference scheme and thus acts directly on the rigidity term.
The VFM smoothes the considered field in the inertia term, thus balancing the low-pass effect of finite differences.
These two strategies, although fundamentally different, lead to surprisingly similar performances. Now and hereafter,
a simply supported beam composed of steel, 𝜌 = 7800 kg/m3 and 𝐸 = 210 GPa, is considered. The cross section is
𝑆 = 5 × 10−5 m2 and the flexural moment of inertia is 𝐼 = 1 × 10−10 m4. Figure 8 shows a comparison of the 𝑈0,
𝑈1, 𝑈2 coefficients for the different methods and for 𝑛 = 4 and 𝑛 = 2.5 as a function of 𝜏. At 𝜏 ≃ 0.29, 𝑈VFM

0 is close
to zero, this explains the observed dip on figure 8a. When 𝜏 = 0, the 𝑈VFM

𝑙 are equal to 𝑈FAT
𝑙 . In other words, both

methods are equivalent for a vanishingly small virtual segment. The CFAT plots for 𝑛 = 4 (Figure 8b) show that when
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Figure 8: (a) Coefficients 𝑈VFM in dB (ref: 𝑈FAT) for 𝑛 = 4, as a function of 𝜏, (b) Coefficients 𝑈VFM in dB (ref: 𝑈CFAT)
for 𝑛 = 4, (c) Coefficients 𝑈VFM in dB (ref: 𝑈FAT) for 𝑛 = 2.5, (d) Coefficients 𝑈VFM in dB (ref: 𝑈CFAT) for 𝑛 = 2.5. The
black vertical lines in the CFAT plots correspond to 𝜏FA.

𝜏 = 𝜏FA the difference between the coefficients 𝑈VFM and 𝑈CFAT is relatively small. So, even though the difference
is smaller as 𝜏 increases, this means once again that both methods are almost equivalent for 𝜏 = 𝜏FA. However, for
𝑛 = 2.5 (Figure 8d) the difference between 𝑈VFM

2 and 𝑈CFAT
2 is significant while the difference between 𝑈VFM

1 and
𝑈CFAT
1 (or 𝑈VFM

0 and 𝑈CFAT
0 ) remains reasonably small. Figure 9a plots the coefficients 𝑈CFAT

0 , 𝑈CFAT
1 and 𝑈CFAT

2 as
a function of 𝑛. Figure 9b shows the same plots for the Frequency-Adapted VFM. These plots show that in the high
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Figure 9: (a) 𝑈CFAT

0 , 𝑈CFAT
1 and 𝑈CFAT

2 as a function of 𝑛 = 2𝜋
𝑘𝑓Δ

, (b) 𝑈FA VFM
0 , 𝑈FA VFM

1 and 𝑈FA VFM
2 .
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frequency domain (𝑛 small), the coefficient 𝑈2 is negligible compared to 𝑈1 and 𝑈0. Therefore, the large discrepancy
observed in figure 8d is inconsequential and the conclusions drawn for 𝑛 = 4 can also be drawn for 𝑛 = 2.5.

5. Numerical Results
5.1. Direct problem

Consider a simply supported beam, subjected to a harmonic force of angular frequency 𝜔 and amplitude 1 N at
𝑥 = 𝑥𝑒. Structural dissipation is taken into account using a complex Young Modulus �̃� = 𝐸(1 + 𝑗𝜂). The transverse
displacement is simulated using the modal expansion [8],

�̃�(𝑥) = 2
�̃�𝐼𝐿

𝑁
∑

𝑟=1

sin(𝑥𝑒
𝑟𝜋
𝐿 ) sin(𝑥 𝑟𝜋

𝐿 )
(

𝑟𝜋
𝐿

)4
− 𝑘4𝑓

(33)

where L is the length of the beam. The simulated beam is similar to the one considered in section 4.5 (𝜌 = 7800 kg/m3,
𝐸 = 210 GPa, 𝑆 = 5 × 10−5 m2 and 𝐼 = 1 × 10−10 m4). The loss factor is 𝜂 = 5%. The length of the beam is 𝐿 = 1
m. The force position is 𝑥𝑒 = 0.2 m. The spatial sampling is Δ = 0.04 m. Using the simulated displacement at each
point, a white Gaussian noise with an SNR of 30dB is added to the simulated displacement. The noisy displacement
field at 𝜔 is calculated using the following formula:

�̃�noisy(𝑥) = �̃�(𝑥) +𝑁𝑟𝜎𝑤10−SNR∕20 (34)
where 𝑁𝑟 is a random variable sampled from a standard normal distribution and 𝜎𝑤 is the standard deviation of the
simulated displacement at 𝜔. When the methods are used to identify a dynamic force, the simulation is computed for
𝑓 ∈ [10, 10800] Hz which correspond to 𝑛 ∈ [54, 1.65] for the chosen spatial sampling. When the methods are used to
identify a structural parameter, the simulation is computed for 𝑓 ∈ [10, 7300] Hz which correspond to 𝑛 ∈ [54, 2]. The
number of modes 𝑁 is chosen so that the highest eigen frequency is at least 10 times greater than the high-frequency
limit.
5.2. Inverse problem for force identification

FAT, CFAT, the VFM for 𝜏 = 0.5 and the Frequency-Adapted VFM are used to locate and quantify the force
applied on the beam. The VFM for 𝜏 = 0.5 and the Frequency-Adapted VFM are applied for 𝑛 ∈ [54, 1.65] while
FAT and CFAT are applied for 𝑛 ∈ [54, 1.85] to respect the high-frequency limits developed in section 4.4. In the
Frequency-Adapted VFM, the Frequency Adapted value of 𝜏 is calculated for each value of 𝑛 using eq. 31. The lineic
force obtained with each method is shown in figure 10 as a function of position 𝑥 along the beam and number of points
per bending wavelength 𝑛 (increasing values of 𝑛 correspond to decreasing values of the frequency 𝜔). The bias error
due to the finite difference scheme approximation strongly deteriorates the FAT results. However the force is correctly
localized in low frequencies. The VFM results obtained when 𝜏 = 0.5 are similar to the ones obtained with FAT.
The effects of the CFAT correction and of the VFM frequency adaptation are well observable on the bottom plots of
figure 10. The Frequency-Adapted VFM result is less noisy than the CFAT result. This is due to the integration on the
virtual segment which acts as low-pass wavenumber filter. The identified lineic force is then integrated over the interval
[0.2−Δ, 0.2+Δ], which is the smallest possible interval centered on the point of force. It consists of the point load and
the two points surrounding it. This operation yields a force value. Figure 11 shows the force spectra obtained after this
spatial integration with all methods. The expected value is 0 dB (1N point load). In low frequencies (when 𝑛 is large)
all methods are inaccurate because of measurement noise. The errors of CFAT and of the Frequency-Adapted VFM
remain less than 3.3 dB when 𝑛 < 4while the results obtained with FAT and the VFM when 𝜏 = 0.5 or 𝜏 = 2 show large
errors. When 𝑛 < 2, the CFAT results remain accurate. With the Frequency-Adapted VFM, as 𝑛 decreases, the results
become almost equivalent to those obtained with VFM for 𝜏 = 2 and the identified load becomes underestimated. This
is due to the fact that the length of the frequency-adapted virtual segment becomes larger, and the low-pass filtering
effect becomes more important.
5.3. Inverse problem for structural parameter identification

As stated in the sections 2 and 3 the methods can be used to identify the structural parameter of the beam
𝐸𝐼∕𝜌𝑆 = 56.1 m4.s−2. The condition is that the external force at point 𝑥 where the methods are applied is zero.
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Figure 10: (a) Lineic force identified with the FAT in dB (ref: 1N/m) as a function of position along the beam and number
of points per wavelength 𝑛, (b) Lineic force identified with the VFM for 𝜏 = 0.5, (c) Lineic force identified with CFAT, (d)
Lineic force identified with the Frequency-Adapted VFM using eq. 31.
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Figure 11: (a) Force spectra identified with FAT and CFAT in dB (ref : 1 N) (b) Force spectra identified with the VFM
with 𝜏 = 0.5 and with 𝜏 = 2 and the Frequency-Adapted VFM in dB (ref : 1 N).

The methods are applied by placing the force at 𝑥𝑒 = 0.04 m. The structural parameter is identified for each value of
𝑛 using least-squares estimation. This estimation is performed using spatial points far from force application point. In
total 23 measurement points distributed between the point with coordinate 𝑥 = 0.12 m and the end of the beam
are used. Figure 12 shows the structural parameter identified with FAT, CFAT, the VFM when 𝜏 = 0.5 and the
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Frequency-Adapted VFM as a function of 𝑛. Here, the number of points per wavelength 𝑛 is considered as known
a priori. Therefore, the Frequency Adapted length of the virtual segment is directly computed using eq. 31. The 𝜇4

correction factor can also be calculated directly to apply CFAT. At low frequencies, all methods underestimate the
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Figure 12: (a) Structural parameter identified with FAT and CFAT as a function of the number of points per wavelength 𝑛,
(b) Structural parameter identified with the VFM for 𝜏 = 0.5, the VFM for 𝜏 = 1.58 and the Frequency-Adapted VFM using
eq. 31 as a function of the number of points per wavelength 𝑛. In both plots, the horizontal dotted black line represents
the reference value.

structural parameter. This result can be explained by the fact that when 𝑛 is large, the spacing between measurement
points becomes very small compared to the wavelength, and consequently the spatial derivatives of the displacement
field becomes very sensitive to the measurement noise present in the simulations. The structural parameter identified
with FAT and the VFM when 𝜏 = 0.5 is overestimated at most frequencies and the error increases with the frequency.
CFAT and the Frequency-Adapted VFM perform well at most frequencies. The accuracy of the CFAT correction and
of the VFM frequency adaptation is once again demonstrated.
In practice, when the Frequency-Adapted VFM is applied to identify 𝐸𝐼∕𝜌𝑆, the number of points per wavelength
𝑛 remains unknown since the bending wavelength depends on 𝐸𝐼∕𝜌𝑆. As detailed in section 4.3, this problem can
be solved using an average value of the Frequency Adapted value of the size 𝜏 of the virtual segment 𝜏mean

FA equal to
1.58. The structural parameter identified with the Frequency-Adapted VFM using this average value of 𝜏FA is shown
in the figure 12b. The result obtained with the VFM for 𝜏 = 𝜏mean

FA is almost similar to the one obtained with the
Frequency-Adapted VFM in the low and medium frequencies. The most important difference is obtained in the high
frequency domain because, at this point 𝜏mean

FA becomes quite different to the exact value of 𝜏FA.
5.4. Sensitivity to measurement noise

The sensitivity of the VFM to measurement noise has previously been studied to help construct special virtual
fields used to identify structural parameters [18, 22]. However, unlike the virtual fields used in this study, special
virtual fields are functions of the vibratory field and must therefore be calculated at each frequency. In this section,
the noise sensitivity of CFAT and the Frequency-Adapted VFM is studied for the identification of force and structural
parameters. When a force is identified, a distinction is made between two regions where results are presented. The first
region is located around the point of application of the force [𝑥𝑒 − Δ, 𝑥𝑒 + Δ] and the second region is the remaining
part of the beam. The noise sensitivity 𝑆𝑓 of the methods is given by the ratio of the integrated squared residual force
outside the interval [𝑥𝑒 − Δ, 𝑥𝑒 + Δ] with the square of the integrated lineic force around the point load:

𝑆𝑓 =
∫

𝑥𝑒−Δ
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|

�̃�id(𝑥)||
|

2 dx + ∫

𝐿

𝑥𝑒+Δ

|

|

|

�̃�id(𝑥)||
|

2 dx
|

|

|

|

|

∫

𝑥𝑒+Δ

𝑥𝑒−Δ
�̃�id(𝑥)dx

|

|

|

|

|

2
. (35)



5 NUMERICAL RESULTS 16
Therefore, 𝑆𝑓 , compares the magnitude of the reconstructed force (denominator term) with the average magnitude of
the residual forces (numerator term). Figure 13 shows 𝑆𝑓 as a function of 𝑛 for CFAT and the Frequency-Adapted
VFM and for an SNR of 30dB and one of 10dB. In each figure, the sensitivity of the methods when no measurement
noise is added to the simulation is also shown, in order to demonstrate the systematic error of each method, caused by
spatial sampling and polynomial fitting. When SNR is 30dB and in the low frequencies (𝑛 > 10), 𝑆𝑓 is high, so the
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Figure 13: (a) Sensitivity 𝑆𝑓 of CFAT and the Frequency-Adapted VFM to measurement noise for a SNR of 30dB as a
function of 𝑛 (b) Sensitivity 𝑆𝑓 of CFAT and the Frequency-Adapted VFM to measurement noise for a SNR of 10dB as a
function of 𝑛.

results are dominated by noise. At mid and high frequencies (𝑛 < 10), 𝑆𝑓 takes smaller values and results are therefore
less dominated by noise. The 𝑆𝑓 values obtained with the Frequency-Adapted VFM are smaller than those of CFAT,
which means that the residual force identified is less significant. These results are in line with the plots in figures 10
and 11. When the SNR is 10 dB, 𝑆𝑓 remains high at most frequencies, showing that the results are mainly dominated
by noise. The sensitivity of CFAT and of the Frequency-Adapted VFM for identifying structural parameters is defined
here using the standard deviation 𝜎 of the identified structural parameter 𝐸𝐼∕𝜌𝑆. At each frequency point, the standard
deviation is calculated using 23 points distributed between the 𝑥 = 0.12 m coordinate point and the end of the beam.
The 𝑥 = 0.12 m coordinate point is chosen so that the results are not disturbed by the source placed at 𝑥𝑒 = 0.04 m. The
standard deviation obtained is normalized by the mean value of the identified structural parameter. Figure 14 shows
the standard deviation calculated for CFAT and the Frequency-Adapted VFM as a function of 𝑛 and once again for two
SNR values: 30 dB and 10 dB. When the SNR is 30 dB, the standard deviation is high in the low frequencies (𝑛 > 10).
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Figure 14: (a) Normalized standard deviation 𝜎norm. of CFAT and the Frequency-Adapted VFM in dB for a SNR of 30dB
as a function of 𝑛 (b) Normalized standard deviation 𝜎norm. of CFAT and the Frequency-Adapted VFM in dB for a SNR of
10dB as a function of 𝑛.
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This indicates that the results are very noisy. However, the value of 𝜎 decreases with 𝑛, showing the improvement
in results as frequency increases. These observations are consistent with Figure 12. When the SNR is 10 dB, the
standard deviation is high at most frequencies. The results are then dominated by noise. In the high-frequency domain
(𝑛 < 4), Frequency-Adapted VFM is more sensitive to noise than CFAT when identifying a structural parameter.
Overall, whether for the identification of structural parameters or dynamic forces, CFAT and the Frequency-Adapted
VFM appear to have almost equivalent sensitivity to measurement noise. Because it is based on a weak formulation of
the beam equilibrium and it involves lower order spatial derivatives of the measured displacement field as compared to
the strong formulation, the VFM should be less sensitive to measurement noise. A first explanation to our observations
on noise sensitivity of the two methods is that the case of the Euler-Bernouilli beam is less favourable than the case of
the Love-Kirchhoff plate, since a smaller number of measurement points are used on the virtual segment as compared to
a virtual surface for a plate. A second explanation is that, as a result of the developments made, the Frequency-Adapted
VFM formalism is very close to that of CFAT.

6. Conclusion
This paper has presented the frequency adaptation of the Virtual Fields Method for the identification of dynamic

forces and structural parameters in the case of a homogeneous and isotropic bending beam. The VFM requires choosing
a test function called virtual field to solve the principle of virtual work. The frequency adaptation of the method is
performed using polynomial interpolation of the displacement field and the same principle that led to the correction
of the Force Analysis Technique (the Corrected Force Analysis Technique). In the VFM, the virtual fields are defined
here over a virtual segment over which the unknown external load or structural parameters are searched. Like FAT,
the VFM response shows a singularity at the free bending wavenumber of the beam. The frequency adaptation of the
method consists in calculating the length of the virtual segment which will allow to compensate this singularity for
each value of the number of discrete measurement points per wavelength. Numerical simulations have shown that the
Frequency-Adapted VFM provides good results in the high frequency domain for both force and structural parameter
identification. In future work, the Frequency-Adapted VFM will be extended to plates and tested on experimental data.
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