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ABSTRACT

One of the main challenges in speech emotion recognition is the lack
of large labelled datasets. The progress in speech synthesis allows us
to generate reliable and realistic expressive speech. In this work, we
propose using a state-of-the-art end-to-end speech emotion conver-
sion model to generate new synthetic data for training speech emo-
tion recognition models. We first evaluate the quality of the con-
verted speech on new unseen datasets, which proves to be on par
with the training data. Then, we study the effect of using the syn-
thesized speech as data augmentation. We show that this approach
improves the overall performance of emotion recognition models on
two different datasets, IEMOCAP and RAVDESS, both in the cases
of speaker dependent and independent emotion recognition using a
fine-tuned wav2vec 2.0.

Index Terms— speech emotion recognition, synthetic data, data
augmentation, speech generation

1. INTRODUCTION

Speech Emotion Recognition (SER) has been gaining increasing at-
tention due to its importance in multiple fields, such as health care,
customer service, education, and human computer interactions [1].
Deep learning approaches have significantly improved the perfor-
mance and accuracy of predicting emotions from speech. However,
they require large amounts of labelled data which is currently lack-
ing. Current datasets are small due to the complexity and time con-
suming effort in collecting and manually labelling the data by mul-
tiple annotators [2], particularly in less spoken languages, which re-
sults in models that overfit and poorly generalize. Approaches rely-
ing on using synthetic data from speech generative models propose
an alternative to overcome this challenge in various speech classifi-
cation tasks, including SER.

Synthetic data is artificially generated data, which can be used to
replace or augment real data in training deep learning models. Such
approach has multiple advantages in terms of data privacy and secu-
rity [3], balancing skewed datasets [4, 5], as well as overcoming the
lack of large datasets, as the case with SER [6]. The quality and real-
ism of synthetic data is critical for its effectiveness in deep learning
applications. The recent advances in generative models have signifi-
cantly improved the quality of synthetic data.

Speech synthesis has witnessed substantial progress in recent
years, thanks to the progress in deep learning and neural network
architectures [7]. Emotion-conditioned speech generation, a sub-
field of speech synthesis, focuses on generating speech that conveys
specific emotional characteristics. Traditional speech synthesis ap-
proaches rely on text-to-speech to vocalize the lexical content [8].

However, they struggle with non-verbal vocalization, e.g. laugh-
ter and cries, or with emphasis and rhythm, which is referred to as
prosody [9]. This is an essential part in expressing and recognizing
emotions. Recent approaches relying on textless speech synthesis
achieve high-quality speech that can be conditioned on prosody and
emotions [10]. In this work, we explore using such model for syn-
thetic data augmentation in the task of SER. Our experiments show
promising results of applying data augmentation using synthetic raw
audio to improve the performance of SER models.

2. RELATED WORK

Traditional SER systems utilize hand-crafted features to train a clas-
sification model [2], while recent approaches rely on using features
extracted from large pre-trained model, such as wav2vec 2.0 [11],
which is fine-tuned for the downstream task. Data augmentation in
traditional systems relied on synthesizing the hand-crafted features
to be used during training as proposed by Sahu et al. [12], which
uses Generative Adversarial Networks (GANs) [13]. Similarly, Bao
et al. [14] proposed leveraging unlabeled speech datasets for data
augmentation by using Cycle-GAN [15] to transfer the emotion style
of the feature vectors. Both approaches showed promising results.

Although hand-crafted features are easier to model due to their
lower dimensionality, they might be incompatible with state-of-the-
art recognition models, such as wav2vec 2.0. Generating spectro-
grams or raw waveforms provides more flexibility by allowing us
to train models directly on the raw data. Chatziagapi et al. [4]
and Wang et al. [5] proposed generating mel spectrograms using
GANs to tackle data imbalance by augmenting the minority classes.
Similarly Eskimez et al. [16] used an improved version of GANs
with higher generation quality to apply SER data augmentation us-
ing spectrograms.

Few approaches have explored synthetic data augmentation for
SER in the waveform domain. Rizos et al. [17] proposed using
speech emotion conversion to generate synthetic data using a Star-
GAN model [18] and the WORLD vocoder [19]. He et al. [20]
improved the previous model by separating emotional features from
emotion-independent features during the training process. Both ap-
proaches showed promising results. However, they rely on generat-
ing the input parameters to the vocoder, i.e. spectral envelope, funda-
mental frequency, and aperiodicity parameters. Recently, there has
been a shift towards using end-to-end speech synthesis for its several
advantages, e.g. alleviating the need for extensive feature engineer-
ing, as well as allowing rich conditioning on various attributes, such
as speaker and emotion [21].

In this work, we focus on generating synthetic raw audio using
textless end-to-end speech emotion conversion [10] to address SER
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Fig. 1. An illustration of the proposed approach with different ex-
perimental setups of fine-tuning the wav2vec 2.0 model using either
the emotionally converted synthetic data, original data, or both si-
multaneously.

data augmentation, which is suitable to use with the current state-of-
the-art models applied to raw audio. Experimental results show that
the proposed approach outperforms more traditional data augmenta-
tion techniques.

3. METHOD

To investigate the reliability of synthetic data in SER, we rely on two
different models:

a) a generative model to synthesize speech (speech-to-speech
emotion conversion);

b) an emotion classification model from the raw audio waveform
(fine-tuned wav2vec 2.0).

An illustration of the pipeline is presented in Figure 1. In the fol-
lowing, we describe the architecture and training procedure for each
model.

3.1. Speech-to-speech emotion conversion

To synthesize expressive speech, we make use of the current state-
of-the-art in emotion conversion [10]. The approach is based on
using phonetic-content representation of speech. Such representa-
tion allows the problem to be treated as a spoken language trans-
lation problem, where the objective is to learn to map this discrete
speech representation between different emotions. Furthermore, to
emphasize the prosody of different emotions, the approach uses two
additional modules to predict the duration and the fundamental fre-
quency (F0) of each phonetic representation. Finally, a variation of
the HiFi-GAN neural vocoder [22] was used to synthesize the speech
from the converted speech phonetic-content units. In the following,
we briefly describe the details of each module. We refer to [10] for
the full details of the model implementation.

3.1.1. Phonetic-content representation

To produce a low-level representation of the phonetic content of
speech, we use the pre-trained representations of the large self-
supervised model HuBERT [23]. This allows us to, not only rep-
resent the phonetic content, but also the non-verbal content such
as laughter or cry. The input to the HuBERT model is the audio
waveform x ∈ RT and the output is the embedded representation

z′ ∈ RL, where T is the number of samples in the input waveform
and L is the number of produced phonetic-content units. The rep-
resentations are further discretized using K-means clustering with
K = 200 to produce the final representation z ∈ {1, ...,K}L. Sim-
ilar to [24, 10], we remove repeated units (e.g., 0,0,1,1,2 −→ 0,1,2),
as the duration prediction module will predict the repetition for each
phonetic-content unit based on the target emotion.

3.1.2. Unit translation module

To convert from one emotion to another, we use a sequence-to-
sequence (ES2S) model to translate the phonetic-content unit repre-
sentations.

The input to the model is composed of (i) the source phonetic-
content units representation zsrc ∈ {1, ...,K}L corresponding to
the input signal associated with the original emotion; and (ii) the tar-
get emotion label ytgt, which is represented as a one hot vector. This
allows the model to add or remove non-verbal vocalizations which
are appropriate to the target emotion. The model outputs the tar-
get phonetic-content unit representation ẑtgt ∈ {1, ...,K}L, which
encodes the speech signal modified to match the target emotion:

ẑtgt = Es2s(zsrc, ytgt). (1)

The model is trained to minimize the cross-entropy loss between
the predicted phonetic-content units ẑtgt and the ground-truth ones
ztgt using a dataset of parallel emotional utterances.

3.1.3. Prosody prediction

To emphasize the emotional expression, prosodic features are then
predicted corresponding to the target emotion. For each phonetic-
content units in the output of the translation model, the duration and
fundamental frequency are predicted, subject to the target emotion.
Similar to [10, 8], we use a Convolutional Neural Network (CNN)
to learn the mapping between phonetic-content units to durations,
referred to as the duration prediction model (Edur). We remove
the repetitions from the groundtruth unit representations and train
the model to predict these durations per emotion using the Mean
Squared Error (MSE), using their original duration as training labels.

Next, we train another model EF0 for the F0 predictions . Sim-
ilar to the duration prediction model, we use a CNN model followed
by a linear layer to predict the F0 value. The original F0 in the
groundtruth recordings are extracted using YAAPT [25], then used
as the training targets for the CNN model.

3.1.4. Speech synthesis

For synthesizing the speech from the converted phonetic-content
units, we use a variation of the HiFi-GAN neural vocoder [22]. HiFi-
GAN is modified to take as input a sequence of phonetic-content
units after repeating them according to the predicted durations, along
with the predicted F0, the target speaker embeddings, and the target
emotion. These features are concatenated and fed into a sequence of
convolutional layers to predict the waveform of the speech signal.
This signal would constitute the synthetic data to be used in training
the SER model.

3.2. Fine-tuned Wav2vec 2.0

Wav2vec 2.0 [11] is a framework for self-supervised learning of rep-
resentations from raw audio. The model is composed of three dif-
ferent stages. The first stage, the local encoder, contains multiple



convolutional layers that encodes the audio waveform into embed-
dings with a stride of 20 ms and receptive field of 25 ms. The sec-
ond stage is a contextualized encoder, which takes the embeddings
from the previous stage as input. Its architecture is made of several
transformer encoder blocks [26]. Finally, a quantization module is
used to quantize the embeddings into discrete units. The model has
been pre-trained and released to the public as a foundation model to
be used in several downstream tasks, one of which is SER.

Several approaches have been proposed to fine-tune the wav2vec
2.0 model on the SER task [27, 28], which is currently providing the
state-of-the-art performance on multiple datasets. Similar to [27],
we adapt the wav2vec 2.0 model for SER by adding a linear layer
for the downstream tasks. Additionally, we freeze the local encoder
layers, i.e. the convolutional layers, and we fine-tune the contextual
encoder, i.e. the transformer layers, along with the linear layers.

4. DATASETS

We use different datasets for each task. For the task of training the
emotion conversion model, we use EmoV [29], a dataset of speech
utterances recorded with multiple emotions. For the task of SER, we
use two standard datasets, IEMOCAP [30], and RAVDESS [31]. In
the following, we briefly introduce each dataset.

EmoV: We use the Emotional Voices Database (EmoV) for
training and evaluating the emotion conversion model. EmoV is
made up of 7000 utterances, each one is recorded with multiple
different emotions: neutral, amused, angry, sleepy, and disgusted,
by four native speakers (two male and two female speakers). Hence,
these utterances are used to create the parallel pairs, where the same
lexical content is recorded in multiple different emotions, which
is used in training the emotion conversion model. To tackle the
small size of the dataset (around 9 hours), we match parallel pairs
between the different speakers, i.e. using parallel recordings of the
same transcript in different emotions and by different speakers, as
proposed in [10]. The dataset is split into train/validation/test with
a ratio of 90/5/5, such that there is no overlap of utterances between
the sets.

IEMOCAP: The Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) dataset [30] consists of approximately 12 hours
of scripted and improvised dialogues by 10 different speakers. The
dataset is composed of 5 sessions, each including speech from an
actor and an actress. Similar to the standard practice, we used 4
emotional classes: anger, happiness, sadness and neutral, and fol-
lowing the work in [32], we relabeled excitement samples as happi-
ness. Additionally, we used standard durations of 8 seconds, where
shorter samples are padded and longer ones are trimmed. IEMOCAP
is used to fine-tune wav2vec 2.0 for the SER task, using a 5-fold
cross validation.

RAVDESS The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [31] is a dataset of emotional speech
and songs. It is recorded by 24 different actors (12 males and 12
females) reciting 2 statements “Kids are talking by the door” and
“Dogs are sitting by the door” with 8 different emotions. Similar
to IEMOCAP, we use 4 emotional classes: happy, sad, angry, and
neutral. We used only the speech recordings and discarded the sung
ones. Following [27], we merged the neutral and calm emotions
together. Finally, we used standard durations of 5 seconds for this
dataset, where shorter samples are padded and longer samples are
trimmed.

Table 1. MOS evaluation of the original and synthetic audio on the
EmoV, IEMOCAP, and RAVDESS datasets, expressed as mean and
95 % confidence interval across raters. The speech emotion conver-
sion model is trained on EmoV.

Dataset Original Synthetic

EmoV 4.40 ± 0.18 3.31 ± 0.18

IEMOCAP 4.48 ± 0.15 3.12 ± 0.20

RAVDESS 4.83 ± 0.08 3.38 ± 0.19

5. EXPERIMENTS

We perform two different evaluations, one on the perceived qual-
ity of the synthesized data, and one on the performance of the SER
model. For the first case, we perform a subjective evaluation using
Mean-Opinion-Score (MOS) through a blind listening test. Since the
emotion conversion model was trained only on the EmoV dataset,
we are particularly interested in the quality of the conversion on the
IEMOCAP and RAVDESS datasets and how it compares to the qual-
ity on the dataset used for training.

We asked 9 participants to rate the perceived quality of the
speech on a scale from 1 to 5. Table 1 shows the average MOS
results of the test across the 9 raters on the three different datasets
both for the original and synthetic speech. We observe a comparable
quality of the synthesized data on all datasets, confirming the per-
formance of the emotion conversion model can generalize to new
datasets.

In order to test the influence of using synthetic data in training
SER models, we defined the following scenarios for comparison:

1. Original: In the original scenario we train and test the
wav2vec 2.0 model using the original dataset whether it is
IEMOCAP or RAVDESS, without any augmentation, similar
to [27].

2. Synthetic: We train using only the synthetic data, i.e. the
generated speech from the emotion conversion model applied
to each dataset. However, we test on the original dataset.

3. Synthetic + Original: In this case, we train with both the
original dataset and the synthetic data as augmentation. We
test the effect of augmenting the dataset by adding synthetic
data with different ratios: 25%, 50%, 75%, and 100% of the
size of the original dataset. The test is performed on the orig-
inal recordings.

4. Baseline: In this case we augment the dataset using tradi-
tional audio augmentation [33]: adding noise, pitch shifting,
and time stretching, applied on the input data. We train the
model using both the original and augmented data and test on
the original data.

Additionally, to test the effect of augmenting the dataset with
new speakers from the generative model, we experiment with two
setups:

a) Speaker Dependent (SD): In this case the test set and the train-
ing set have overlapping speakers.

b) Speaker Independent (SI): In this case we prevent overlaps
between speakers in the training and test splits.

Since the synthetic data is composed of new speakers, it is a speaker
independent setup by default. Figure 1 shows a summary of the
different setups used in our experiments.



Table 2. Accuracy of the wav2vec 2.0 model fine-tuned on original data, synthetic data, or both, compared to traditional audio augmentation
in the speaker dependent (SD) and speaker independent (SI) cases, expressed as mean and 95 % confidence interval across 5-fold cross
validation on the IEMOCAP and RAVDESS datasets.

Dataset Setup Synthetic Original [27] Original + Synthetic Baseline [33]

IEMOCAP
SD - 74.16 ± 2.00 76.19 ± 1.95 74.17± 1.37

SI 56.88 ± 3.64 63.97 ± 2.93 66.06 ± 2.21 65.32 ± 3.44

RAVDESS
SD - 91.08 ± 2.93 93.05 ± 2.12 92.71 ± 2.20

SI 47.42 ± 2.96 81.01 ± 3.19 81.29 ± 2.77 82.29 ± 2.96

Finally, we fine-tuned the wav2vec 2.0 on the two datasets,
IEMOCAP and RAVDESS, using 5-fold cross validation for each
of the previous scenarios. The training set is further split to training
and validation sets with 0.9 and 0.1 ratios respectively. The model
was trained on each training splits till convergence, using early stop-
ping with a patience of 5 epochs based on the validation loss. We
optimize the cross entropy loss using batches of 32 instances, Adam
optimizer with a learning rate of 0.001 and linear weight decay.
Regarding training the emotion conversion model, we used the same
training parameters described in [10].

Table 2 shows the results of the experiments in the different se-
tups. We observe a clear improvement in the performance of the SER
model in the case of augmentation using the synthetic data compared
to the use of the original dataset and the traditional audio augmenta-
tion. In the IEMOCAP dataset, we get 2.03% and 2.09% improve-
ment when using synthetic data for augmentation, over training with
the original dataset in the cases of speaker dependent and indepen-
dent setups respectively. Similarly, in the case of the RAVDESS
dataset, we get an improvement of 1.97% and 0.28% compared to
the use of the original data alone. However, in the speaker inde-
pendent setting on RAVDESS, the traditional audio augmentation
outperforms the synthetic data augmentation. Furthermore, by train-
ing only using the synthetic data, we achieve an accuracy of 56.88%
and 47.42% on the IEMOCAP and RAVDESS datasets respectively,
which surpassed our expectations.

In Figure 2, we observe the effect of augmenting the dataset with
different ratios of the synthetic data using 0.25, 0.5, 0.75, 1.0 rela-
tive size of synthetic data to the original. We find an incremental
improvement in the performance of the model, specially on IEMO-
CAP dataset for the speaker dependent and independent setups. The
improvement is relative to the dataset used, with 0.75 ratio being ap-
proximately the optimum ratio in majority of scenarios. This further
validates the effect of using synthetic data in improving the perfor-
mance of SER models.

6. CONCLUSION

In this work, we investigated speech-to-speech emotion conversion
for generating synthetic data to be used for data augmentation in
SER models. We validated the perceptive quality of the synthetic
data when applying the emotion conversion on new unseen data
through a subjective evaluation. Our experiments across two differ-
ent datasets showed an improvement when using the proposed ap-
proach compared to more traditional data augmentation techniques.
These results encourage us to further explore synthetic data for SER
to overcome the challenges of collecting a reliable and large dataset.
Furthermore, such approach is promising in the cases of less spoken
languages, where there is no labelled dataset. In future work, we
plan to explore the efficacy of our approach on multiple languages.
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