N

N
N

HAL

open science

Why-Not Explainable Graph Recommender

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, Dimitris

Kotzinos

» To cite this version:

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, Dimitris Kotzinos. Why-Not Ex-
plainable Graph Recommender. IEEE 40th International Conference on Data Engineering, May 2024,

Utrecht (Netherlands), Netherlands. hal-04364920v2

HAL Id: hal-04364920
https://hal.science/hal-04364920v2

Submitted on 2 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04364920v2
https://hal.archives-ouvertes.fr

Why-Not Explainable Graph Recommender

Hervé-Madelein Attolou

ETIS, CY Cergy Paris University, ENSEA, CNRS UMRS8051

Cergy-Pontoise, France
herve-madelein.attolou@cyu.fr

Kostas Stefanidis
Tampere University
Tampere, Finland
konstantinos.stefanidis@tuni.fi

ABSTRACT

Explainable Recommendation Systems (RS) enhance the user expe-
rience on online platforms by recommending personalized content,
as well as explanations for the given recommendations to add trans-
parency and build up trust in the platforms. Extending the notion of
explainable RS, in this paper we define Why-Not explanations for
recommendations that were expected but not returned, and propose
and implement a technique for computing Why-Not explanations
in a post-hoc manner for a graph-based RS. Our approach builds
on the notion of counterfactual explanations in the means of a set of
user-rooted edges to add or remove in the graph, in order to place
the missing recommendation to the top of the recommendation list,
and provides in this way actionable insights on the source data and
their interrelations. Our experimental evaluation on a real-world
data set demonstrates the feasibility of our proposal and reveals
interesting directions for future work.

CCS CONCEPTS

« Information systems — Recommender systems;

KEYWORDS

Explanations; Why-Not questions; Explainable Al; Recommenders

1 INTRODUCTION

Recommendation Systems (RS) allow users to discover personalized
content. Traditionally used on media platforms and e-commerce
websites, they improve the quality of the browsing experience
and increase the impression metrics and conversion rate of the
recommended products. The vast quantity of user and product
information that companies dispose of is the ‘fuel’ of RS that allow
for predicting the items a consumer is most likely interested in,
by creating and matching user-item profiles (content-based), by
exploiting other users’ feedback as well, e.g., ranking on items
(collaborative filtering), or by combining the two aforementioned

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Katerina Tzompanaki

ETIS, CY Cergy Paris University, ENSEA, CNRS UMRS8051

Cergy-Pontoise, France
Aikaterini. Tzompanaki@cyu.fr

Dimitris Kotzinos

ETIS, CY Cergy Paris University, ENSEA, CNRS UMR8051

Cergy-Pontoise, France
Dimitris.Kotzinos@cyu.fr

categories in hybrid solutions. Moreover, based on the modeling
of the available information (for example, in matrices or tables)
different kinds of RS can be proposed. In this paper, we focus on
graph-based RS that represent the information on items, users, their
characteristics, and their relations in the form of a graph.

Unexpected (either existing or missing) and/or unjustified recom-
mendations may frustrate the users and can be detrimental to their
trust and loyalty to the system. Particularly explaining existing
recommendations (and in general machine learning results) has
been an active scientific problem for at least the last decade. To add
transparency, Explainable RS share a piece of information from the
system with users, so that they understand how/why the recom-
mendation was computed. This information is commonly called
an explanation and can either be system-agnostic and data-specific
information (e.g., user/item characteristics, previous actions), or
system-specific information (e.g., a set of rules in a rule-based deci-
sion system).

Whereas a lot of attention has been given in the literature for
explaining existing recommendations, in this paper we focus on
the missing recommendation explanation problem. Thus, we aim to
provide an explanation to the user for why some expected, user-
defined item is not recommended at the top of the list. In various
scenarios such items are known to the users, e.g., during system
testing/debugging/verification or for diversity enhancement, as
assumed also in the line of works on Why-Not questions in different
domains (see Section 2).

The type of information to render as an explanation depends on
the expertise and the purpose of the system user, who can be the end-
user of the platform (‘naive’ user) or the system designer (expert
user). For end-users, explanations serve as a means to increase
their trust in the platform by providing hints on the actions or
characteristics that fired the recommendations. For the system
designers trying to understand their data and their system, and
eventually remodel/debug the system, explanations can also expose
deeper system parameters or data relations.

In this paper, we target the end-user or the system developer
who explores the system data and their relationships, possibly for
debugging purposes, and who wants to understand which of their
actions were the causes of missing specific recommendations, or
what actions they should have performed in order to receive the
missing recommendations. We choose to return only the current
user’s actions in the explanations for data privacy reasons, however,
this is an implementation choice that can be altered in the conve-
nience of the system. In this way, we opt for a form of Counterfactual

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

Explanations (CFE), i.e., proposing a possible world that could have
led to the desired outcome. Figure 1 demonstrates our motivating
example. Paul, the target user at node 2, receives ‘Python’ as a
recommendation, however they are interested to know why ‘Harry
Potter’ is not recommended, so they ask “Why not Harry Potter?"
Figure 1a provides the Why-Not explanation composed by two past
actions of the user, and can be read as “Had you not interacted with
Candide and C, your top recommendation would be Harry Potter".
Figure 1b provides the Why-Not explanation composed by one
possible action that the user can perform, and can be read as “Had
you interacted with Lord of the Rings, your top recommendation
would be Harry Potter".

As previously said, related work in the literature has addressed
different versions of the Why Problem. However we argue that
explaining why an item WNT has not been top-recommended to a
user is a different problem from explaining a Why interpretation of
the same question like: “Why is WNI in the kth position ?’, ‘Why is
the current top-1 in the first position?’, or even ‘Why is the ranking
list up to k as it is?”. The problems are related, however they are not
equivalent neither are they practically inclusive the one of the other.
Take for instance the second case, when someone could argue that
the Why explanation for the top-1 item is the explanation for the
WNI not being recommended. A Why-explanation algorithm (for
instance [11]) would yield the CFE as seen in Figure 2: “Had you
not read C you would have obtained The Alchemist as a recommen-
dation." This is a different explanation than the one proposed in
Figure 1a and does not yield the WNTI in the top-1 position. Thus,
our solution addresses a different problem than traditional Why
explanations, them being counterfactual or not, and needs to be
addressed with a different solution.

In this work, we propose EMiGRe, a framework for providing
Why-Not explanations for graph RS. The solution relies on building
Counterfactual Explanations grounded in past or suggested user
actions.

More concretely, our contributions are listed as follows:

e We introduce the problem of Why-Not questions in graph-
RS.

o We define causal Why-Not explanations as a set of existing
or missing (user-rooted) edges from the graph, inspired by
Counterfactual Explanations.

e We propose two modes (adding/removing edge mode) to
compute Why-Not Counterfactual Explanations and a num-
ber of heuristics for small or fast explanations.

e We run a thorough, comparative experimental evaluation
analysis of our proposal in a large, real-world dataset. The
results show the feasibility of our solution and the quality
of the proposed explanations in adapted scenarios.

EMiGRe is built on the popular Personalised Page Rank algo-
rithm [38], but can be adapted to other user-defined functions that
compute the importance of a node for another node monotonically
in the number of edges that connect the two nodes.

2 RELATED WORK

The subject of Why-Not Questions is a recent notion in the field
of explainable artificial intelligence (XAI) and more precisely in
explainable recommenders, however, it has been studied in other

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

contexts, such as relational database queries. Thus, in this section,
we discuss related work on two relevant subjects: (i) Recommenders
and Explainable Recommenders, and (ii) Why-Not Questions and
Explanations. Due to the lack of space, we do not mention here
general XAT literature.

2.1 Recommenders

One way to build a recommendation list is to use content-based
recommenders (see [19] for a survey). These algorithms use the
similarities between the features of the items and the users’ profiles
to make recommendations. They require complex semantic analysis
of the content and the extraction of the users’ preferences to match
them with their expected next interest.

Score-based (or collaborative filtering) recommenders [29] ex-
ploit ratings and other quantifiable user-system interactions given
to the items by the users. Modeling the preferences of users as
precise ratings allows a representation as a matrix and the use of
matrix-based computations. Direct feedback from the user ensures
a better connection between the recommendations and past ac-
tivity. Some implementations include Non-Negative Factorization
[15], Singular value decomposition SVD [14], SLIM [25] methods
inspired by item-KNN with different optimization. Recent imple-
mentations include Graph Neural Network Models like NGCF [34]
by modelizing the User-Item relations into an embedding graph.
Context-based recommenders exploit information related to the
situation that the items and/or the users are in, like for example
their spatiotemporal configuration [31, 36].

Explainable Recommenders. Explainable Recommenders accom-
pany the recommendations with either inherent to the model expla-
nations or post-processing explanations.. The approach to explain
a system depends on whether the system is white, i.e., exposing
the information about its internal workings, or black, i.e., only
the input and the output are known (see [40] for a recent survey).
In the case of black-box recommenders, the explanations consist
in interpreting the results by revealing relationships in the input
data [16], or by pinpointing the importance of the different features
that contribute to the predicted value [20]. In the case of a white
box system, the explanations consist of dwelling on the intrinsic
characteristics of the RS to truly explain the system [11]. Deep
Learning methods, such as CNN (Convolutional Neural Network)
by, for example, relying on review text [30], RNN (Recurrent Neural
Network) [10] or more recently memory networks [33], allowing
visually explainable recommendation highlighting the image region
of interest for a user. Collaborative filtering is among the methods
that provide a solution to this problem by leveraging data from
ratings [27], user opinion [21], summarized topics [35]. Other meth-
ods include: Rule mining for textual explanations [1] and Post-hoc
processing [8]. User surveys demonstrate the quality of the pro-
vided explanations in terms of transparency and also, express the
need for explanations in automated recommendation systems [12].
In [2], the authors propose an explainability-constrained Matrix
Factorisation technique that computes the top-n recommendation
list from items that are explainable. Here, the explainability is an
additional constraint in the Collaborative Filtering model on top
of the others. This method is effective in generating accurate and
explainable recommendations with explanations taking the form of

Why-Not Explainable Graph Recommender

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

(a) Why-Not explanation with A~ = {(2,11), (2,14) } (links in
dotted yellow).

(b) Why-Not explanation with A* = {(2,9)} (blue dotted link).

Figure 1: A graph book recommendation system with user-user edges (in green), user-book edges (in red), and book-category
edges (in blue). Paul (2) is recommended Python (node in red) (16) and asks "Why-Not Harry Potter (node in blue)?"

Target User

Figure 2: CFE from PRINCE with A*
dotted yellow).

{(2,14)} (links in

neighbor-style explanations (either user-based or item-based) but
is less actionable, for example, than Counterfactual Explanations
(CFE). Furthermore, data modeling limits the performance in more
diverse and complex scenarios. Our methods address this issue
by using HIN (see Section 3.1) to describe diverse data types and
relationships.

2.2 Why-Not Questions and Explanations

Explaining and debugging queries in the absence of expected results
has been studied in various domains like traditional databases [3, 4],
top-k spatial queries [16], workflow analysis [6], regular expres-
sions [28], streaming-data applications [26] and in SPARQL [37].
It is provided by means of instance-based (existing/missing input
data points/tuples), query-based (faulty operators/data manipula-
tions), or modification-based (modified queries/settings) explana-
tions. In [32], the authors defined the problem of Why-Not ques-
tions for collaborative filtering RS and proposed an algorithm for
producing Why-Not explanations tailored to the system developer.
Recently, in [7] the authors consider Why-Not Questions in the
context of top-k queries and score-based ranking functions. This
could be adapted to an RS scenario but would not fit the same use
case as our work, as it considers the item as a vector of features that
could be adjusted to answer the Why-Not Question. Here we target
modification of the actions of the user in a graph data scenario.

We can find in the literature the term Contrastive explanation
[18, 22, 23]. Miller [22] surveyed philosophy, psychology, and cog-
nitive science literature on the methods people employ to explain
outcomes to each other. The conclusion describes that people would
rather ask “Why P rather than Q?" than “Why P?”. [18] refers to
this type of question as contrastive, P as the fact and Q as the con-
trast case or as the foil. Contrastive questions (and explanations)
are different from our Why-Not questions (and explanations); the
formulation of the question differs, as the Why-Not question is
more general. We ask “Why not Q?" and not “Why P rather than
Q?". This implies many more possibilities for the explanations, as
the answers should not only reason about the original fact P versus
the foil Q, but also verify the conditions under which the expla-
nation is true w.r.t. any other foil. As a result, we need to propose
a new formal setting for Why-Not explanations and devise new
techniques for computing them.

3 PRELIMINARIES

Recommenders allow end-users to receive information selected from
automatically tuned criteria. We differentiate multiple categories
of recommenders based on their abilities and methods.

Formally, we have a set of items I and a set of users U, where
each user provides ratings for a subset of I. Specifically, a user
u € U shares their preferences (rating, buying, watching, etc.) for
item i € I (optionally with a score s). The subset of items that are
possible to recommend to a user is described as the set of target
items T C I. For every target item t € T not rated by a user u, the
recommender estimates a relevance score, p(u, t). The item with
the highest score designates the recommended item rec. The items
with a high relevance score for u will compose the recommendation
list for the user in case of a top-n Recommender.

Definition 3.1 (Heterogeneous Information Networks (HIN) [11]).
A heterogeneous graph G = (V, E, 0) consists of a set of nodes V,
a set of edges E C V X V, and a mapping 6 from each node and
each edge to their types, such that 0y : V — Ty and g : E — Tg
with |Ty |+ |Tg| > 2. A directed and weighted heterogeneous graph,
where each node v € V and each edge e € E belong to exactly one
type is called a Heterogeneous Information Network (HIN).

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

In our setting, we consider a graph with at least two node types,
(i) users U, and (ii) items I. More node types and weights can be
created, expressing more complex information from the dataset.
The graph is directed with the direction being a choice motivated
by the definition of the action/information modeled by the edge.
For instance, social interaction like the follows relationship is not
always reciprocal, thus the edge denoting this action should be
directed from the follower to the followed.

3.1 Counterfactual Explanations

de Graaf and Malle [9] claim that because people assign human-like
traits to artificial agents, people will expect explanations using the
same principle used to explain human behaviors. In the case of
Explainable Recommenders, a form of human-like explanation [23]
can be a Counterfactual Explanation (CFE). We can define it as a
set of actions responsible for the provided recommendation. Alter-
natively, we can say that, if the user have not performed this set of
actions, the recommendation would have been different. In a HIN,
altering the graph by removing the elements in the CFE would lead
to a different item being selected as a recommendation.

Definition 3.2 (Counterfactual Explanation [11]). With u the tar-
get user, A, the set of all actions of u and r, the item recommended
to u, the CFE for u is Ax C {(u, n;)|(u, n;) € A} where n; is a neigh-
bor of u, such as using A — A= as an input of the recommenders lead
to ry* # ry being the recommendation. A minimal counterfactual
explanation is the smallest set of actions satisfying the property.

This form of explanation provides user-comprehensible and ac-
tionable evidence of the trustworthiness of the system. Restricting
the solution space to the neighborhood of the user node also set
a privacy preserving constraint as only information already avail-
able to the user is disclosed. An example of HIN describing a book
recommendation system can be seen in Figure 1la.

3.2 Personalized PageRank for Explainable
Recommenders

To compute the relation between the users and the candidate item,
we use Personalized PageRank (PPR) [13] for recommendation [24]
in HINs. PPR is the stationary distribution of a random walk in G in
which, at a given step, with probability a, a surfer teleports to a set
of seed nodes {s}, and with probability 1 — «, continues the walk
to a randomly chosen outgoing edge from the current node. In the
graph G, teleportation probability a, a single seed s, the one-hot
vector e , and the transition matrix W, the Personalized PageRank
vector PPR(s) is defined recursively as:

PPR(s,-) = aes + (1 — a)PPR(s, -)W (1)
with PPR(s, v) be the PPR score of node v personalized for the user
s. We get rec the PPR recommendation for user u € U with:

rec = argmax PPR(u,i) (2)
i€I\Nout (1)

While at the center of our work, the computation of the PPR
is not an easy or lightweight task, it involves a lot of time and
power. Two algorithms allow us to maintain an approximation
of this metric: Forward Local Push (FLP) and Reverse Local Push

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

(RLP)[39]. Both are based on the recursive exploration of the graph
but use different starting points and present some key advantages
depending on the use case.

The first, FLP, is starting the exploration from the source node
(in our case the target user node) and updating the probability along
the neighbor nodes through the outgoing edges.

Alternatively, RLP initiates the exploration from a candidate
node (item to be ranked in the recommendation list) and pushes
the values back to the neighbor nodes through the in-going edges.
Both versions use an estimate ﬁ(s, t) of PPR(s, t) for each target
t € V and a residual I_é(s, t) fors.

Let ﬁ(t) = ﬁ(., t) denote the vector of estimates and ﬁ(t) = 13(., t)
for the vector of residuals, with the arrow denoting the direction of
the update (from the source along the neighbors). In the FLP case:

PPR(s,t) = P(s,1)+) R(s,x) xPPR(x,1).Vs€V (3)
xeV
On the other hand, estimates and residuals satisfy an invariant
property in the RLP case in the opposite direction:

PPR(s,t) = B(s,0) + » PPR(sx) x R(x,)Vs€V ()

xeV

With —P)(t) = 73)(t) denote the vector of estimates and ?(t) =

—R)(., t) for the vector of residuals. Again the arrow denotes the
direction of the update (from the item nodes to the source node).

PRINCE, Provider-side Interpretability with Counterfactual Evi-
dence [11] is a model that relies on a graph modelization of the data
to provide a counterfactual explanation of the recommendation to
the user. PRINCE provides a minimal CFE that describes the smallest
set of actions that needs to be undone to change the recommen-
dation to any other replacement item. This algorithm places itself
as a post-processing phase of the RecWalk framework [24], which
is a state-of-the-art system based on the Personalized PageRank
(PPR) computation. By altering the actions performed by the user,
PRINCE can lower the PPR of the recommended item (r,) to advan-
tage the PPR of other items, one of which becomes the replacement
item (ry,*). PRINCE is effective at providing consumer-centered
Counterfactual Explanations regarding some privacy constraints,
but generally cannot answer Why-Not questions. Take for instance
our running example and the Why-Not explanation illustrated in
Figure 1la. If we try to answer the same Why-Not question by means
of a CFE on the top-recommended item provided by PRINCE, we
obtain the result illustrated in Figure 2; here the explanation is
different and leads to a different replacement item (The Alchemist)
and not to our Why-Not item (Harry Potter). In summary, our work
differs from PRINCE in that:

(1) We provide explanations for missing recommendations, whereas

PRINCE provides explanations for existing recommenda-
tions.

(2) We provide more actionable explanations, by proposing in
the explanations not only existing actions (as in PRINCE),
but also not yet existing actions (Section 5.1).

4 PROBLEM DEFINITION

In this paper, we want to provide the means for a user to under-
stand the recommendation system, by explaining the absence of

Why-Not Explainable Graph Recommender

an interesting -to the user- item from his/her recommendation list.
We term such a missing recommendation as a Why-Not question
(or Why-Not item), and we further define it as an item that is not
ranked at the top of the recommendation list and the user has not
interacted with yet (Definition 4.1). In general, Why-Not questions
can be expressed in different granularities: one item, a set of items,
or a category of items. In this paper, we consider only a single item
as the Why-Not question and leave the other classes (that could
include categories or a selected group of items) as future work. Note
also that in what follows, for brevity reasons, when we refer to the
graph G we may imply the graph recommendation system as well.

Definition 4.1. Given a HIN G = (V,E, 0), the set of items I C V,
auseru € U,U C V,and its initial recommendation rec , a Why-Not
question is an item WNTI € I \ {rec} such that (u, WNI) ¢ E.

Once a Why-Not question is defined by the user, the purpose
of this work is to provide an explanation for the absence of WNI
from the top recommendation position. We define the Why-Not
Explanation as the set of edges rooted at the user u node, which can
either be added or removed from the HIN to replace rec by WNT as
the recommendation Contrary to the CFE defined in PRINCE (see
Definition 3.2), in the missing recommendation setting the cause
for the absence of a recommendation may not be explained only (or
better) by pre-existing actions of the user; indeed the user may miss
actions that can lead to pertinent recommendations. Furthermore,
we impose an important constraint in the definition of our Why-Not
explanation; the replacement item r;; must be exactly the item WNI.
In other words, Definition 3.2 explains a recommendation with the
foil being any other item, while in the Why-Not explanation we
need to explain the recommendation using the Why-Not item WNT
as a foil. This constraint has implications in the complexity of the
computations, as we will see later in Section 5. We precisely expect
the explanation to replace the recommendation rather than simply
increase its ranking in the recommendation list as it is.

Definition 4.2. Given a HIN G = (V, E, 0), a user u, and a Why-
Not Item WNI, and the recommendation rec, a Why-Not explana-
tion for WNTI is the set of edges A* C A, A € {A*, A™}, with A* =
{a*|a* = (u,i) ¢ Eji € [} and A~ = {a”|a~ = (u,i) € E,i € I}
such that G’ = (V,E’,0) withE’ = EUA* or E' = E\ A~ generates
WNI as the top-1 recommendation instead of rec.

Figure 1 describes an example graph book recommendation sys-
tem, where a user, Paul, is recommended Python. Paul wants to
know why he is not recommended Harry Potter. Based on Defini-
tion 4.2, we can have two kinds of Why-Not explanations. Figure 1a
shows a Why-Not explanation composed by the edges (2, 11) and
(2,14) to be removed from the graph, and which reads as: "If Paul
had not read Candide (11) and C (14) (links in yellow), the recom-
mendation would be Harry Potter (8)". Similarly, Figure 1b shows a
Why-Not explanation composed by the edges (2,9) to be added to
the graph, and which reads as: "If Paul had read the book The Lord
of the Rings (9) (blue dotted link), then the recommendation would
be Harry Potter (8)".

5 THE EMIGRE ALGORITHM

In this section, we develop EMiGRe, an algorithm for why an item
is not recommended in the case of a graph-based recommendation

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

Pinpoints PAST activity

Search Space Definition

Suggests NEW actions

[Top-1 Comparison J

{ Exhaustive]
Comparison

Compares the ranking of ~ Compares the ranking of
the WNI and REC WNI and ALL target items
Explanation Heuristic

‘ Incremental ‘ Powerset

Why-Not Explanation
Computation

Targets FASTER ~ Targets SHORTER
solutions solutions

Figure 3: The EMiGRe framework.

system, described in Figure 3. Based on Definition 4.2, the Why-
Not explanations consist of a set of edges, a.k.a, actions from the
user, which should be added or removed from the graph in order
to change the top-1 recommendation in favor of the WNTI item.
Thus, we devise two modes of the algorithm: (i) the Add mode for
computing explanations consisting in missing pertinent edges to
be added in the graph, and (ii) the Remove mode for pinpointing the
existing edges to be removed from the graph (Section 5.1).

Then, we propose two methods for selecting the best candidate
edges, either comparing the ranking of WNI only with the ranking
of the top-1 recommendation or exhaustively comparing with the
ranking of all the items (Section 5.2). Finally, in the top-1 comparison
case, we propose two heuristics (Section 5.2.1); the Incremental one
focuses on run time (Section 5.2.1), providing faster solutions, while
the Powerset one focuses on the size of the explanations, benefiting
smaller explanations(Section 25).

5.1 Search Space Definition

The main idea in the quest of candidate neighbors for the explana-
tions is to use the PPR (see Section 3.2) to find which edges are the
most ‘influential’ for WNI. Our choice of PPR is grounded by the
popularity of this algorithm for graph recommendation systems.
However, our Why-Not explanation definition is not tight to the
type of graph recommender. Moreover, our solution in EMiGRe
can be adapted to other user-defined functions that compute the
importance of a node i for another node j monotonically in the
number of edges rooted on j and that connect the two nodes.

In what follows, we specify the process in the Remove Mode,
where we search among already existing edges, and the Add Mode,
where we search among non-existing edges.

5.1.1 Remove Mode. Algorithm 1, Line 4 is going through A, the
list of the user’s u output edges of an acceptable type defined in
Te. The corresponding neighbors (n;) are ordered by their relative
contribution to the recommendation as described in Equation 5,
and stored in the automatically sorted list H.

Equation 5 measures the relative contribution (influence) of the
item n; on WNTI taking into consideration the existence of the item
rec and weighted by the link’s (u, n;) weight, given in the matrix
W. If the contribution is positive, the neighbor n; contributes more
to the PPR of the currently recommended item rec than to the PPR
of WNI, which means that its removal from the graph will benefit

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

WNI. A negative contribution implies that n; contributes more to
the PPR of WNI than to the PPR of rec, thus its removal will not
influence positively WNTI.

We also compute 7 that corresponds to the sum of the contribu-
tions of all neighbors added in H. This serves as a threshold for the
next steps (more precisely in Algorithm 4, Line 24 and Algorithm 3,
Line 16). At the end of Algorithm 1, 7 will be positive because in
the current setting rec dominates WNI. Subsequent changes in the
graph, in the quest of a Why-Not explanation will make it negative,
which indicates a change in the ranking of rec and WNI, and thus
a possible Why-Not explanation.

contributionymy(ni) = W(u, n;j)-(PPR(nj, rec | A)—PPR(n;, WNI | A))

(©)

Algorithm 1: Search Space Definition - Remove Mode.
Data:G= (V,E,0),I e V,ueV,rece LWNI€ LT, C Tg
Result: H (the list of nodes for the explanation),

1 A {(wn;) | ni € Nour(u), ni # u, Op((w,n;)) € Te}s

2 H « DescendingOrderList(0);

3 7« 0;

4 foreach (u,n;) € Ado

5 contribution <« contributionymy(n;);

6 H.insert(n;, contribution);
7 T < T — contribution;

s end

9 return H, t;

5.1.2 Add Mode. In Algorithm 2, after some initialisation steps,
Line 6 computes the threshold 7, which is necessary for the later
phases of the process (see Section 5.2). Using the Reverse Local Push
algorithm (Line 8) from [39] and the Why-Not Item WNTI as the
source node, we get the list PPRyy N7 of potential neighbors together
with their computed PPR values, filtered by their edge type so that it
exists only in T,. Line 10 computes for each potential neighbor n; in
PPRyy N7 its relative contribution to WNI as described in Equation 6.
Note that Equation 6 is similar to Equation 5, but we omit the matrix
W because non-existing edges do not have any weights. Moreover,
now a positive contribution means that n; influences more WNIT
than rec, so its addition to the graph would benefit WNTI. Finally,
the potential neighbors are stored in the ordered-by-contribution
list H.

contributionggg(n;) = PPR(n;, WNI | A))—(PPR(nj,rec | A) (6)

5.2 Why-Not Explanation Computation

Either from the Remove mode or the Add mode, the search space
definition phase of EMiGRe provides a list of nodes along with
their contributions to WNI. The addition or deletion (depending
on the mode) of the edge connecting each node and u to/from the
graph rearranges the items in the recommendation list. The final
purpose of EMiGRe is to propose the deletions or additions that
will allow the placement of WNTI at the top of the recommendation

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

Algorithm 2: Search Space Definition - Add Mode.

Data: G = (V,E,0),I e V,ueV,recc LWNI € LT, C Tg
Result: H (the list of nodes for the explanation),

A — {(u,n;) | nj € Nout(u),n; # u, Op((u,ni)) € Te};

2 H «DescendingOrderList(0);

3 7« 0

4 foreach (u,n;) € Ado

contribution < contributionymy(n;);

-

T < T — contribution;

7 end

8 PPRyyN1 < ReverseLocalPush(WNI, Te)
9 foreach n; € PPRy/ N1 do

contribution « contributiongg,(n;);

H.insert(n;, contribution)
12 end
3 return H, 7;

o

list and which will form the explanation. We further propose two
alternatives for verifying that a candidate explanation is correct;
the top-1 and the Exhaustive Comparison.

5.2.1 Top-1 Comparison. In the top-1 comparison alternative, for
each new possible graph, i.e., after adding (deleting) an edge from u
to (from) n; € H, we compare the importance of WNT - measured
by its PPR - only to the original top-1 recommendation (the rec
item). This allows us to see if, in this new graph, WNI will overtake
rec.

Moreover, the way we consider the nodes of the list H allows
us to optimize the process either on time or in explanation size.
Thus, we present in the following the Incremental heuristic, focus-
ing on time, and the Powerset heuristic, focusing on size. While
Incremental goes through a solution sub-space by increasing the
size of the explanation at each iteration, Powerset processes all pos-
sible pertinent edge combinations in an ascending combination size
manner to favor smaller solutions.

Incremental. Our Incremental heuristic removes/adds one by one
edges from the nodes of H to u, until it finds a Why-Not explanation.

Algorithm 3 describes the process in detail. Following one of the
algorithms described in Section 5.1, it receives input H, the nodes
that can be used to build the explanation, and the threshold 7. The
specificity of Algorithm 3 lies in the fact that at every iteration,
we incrementally add/remove the next most influential node, i.e.,
the next one with the highest contribution in H (Line 5). At each
pass, we also update the threshold by adding/subtracting the node’s
contribution from the threshold. When the threshold reaches 0 (i.e.,
the point up to which n; favors WNT over rec at Line 16), we check
if indeed in the new graph with the edges removed/added, WNTI is
the top-1 recommendation (Lines 18).

The function "TEST" at Line 18 refer to a function that tests if the
provided set of edges is a Why-Not explanation. This same function
will is used in other Algorithms

Powerset. In the Powerset heuristic (Algorithm 4), we create the
power set of H, where each combination’s contribution is the sum
of the contributions of the individual nodes participating in the

Why-Not Explainable Graph Recommender

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

Algorithm 3: Incremental Why-Not explanation computa-

tion.
Data: G = (V,E,0),[€ V,ue V,rec € [WNI € I, H (the

list of nodes for the explanation), 7, MODE

Result: A* (the explanation for u and WNI)

1 A {(u,n;) | nj € Noys (u),ni # u};

2 A" «— 0

3 check < False;

4 while |H| > 0 and check == False do

5 (ni, contribution) < H.pop(0) ;

6 /* we prune the negative contribution from the list*/
7 if contribution > 0 then

8 if MODE == ADD then

T « T+ contribution;

10 A* — A*U{(u,ni)};

1 end

12 if MODE == REMOVE then

T « T — contribution;

A" = A" U {(un)};

13

14

15 end

16 end

17 if 7 > 0 then

18 ‘ check « test(G,A*, MODE);
19 end

20 end

21 if check == True then
22 ‘ return A*;

23 else

24 ‘ return 0;

25 end

combination (Line 8). We then iterate through all the combinations
by ascending size and contribution value (if tie), and perform the
same kind of checks as in Algorithm 3.

5.2.2 Exhaustive Comparison. Up to now, the different alternatives
were making use of the contribution in Equation 6 or 5, which
indicates whether a node is contributing more to the current rec-
ommendation rec or to the Why-Not item WNI. However, we also
needed to ensure that WNI will not be dominated by any other
(target) item, verified by the final check in Algorithms 3 and 4.

To address this issue, we propose to incorporate a more nuanced
monitoring system that takes into account not just the sign of the
contribution value, but also its magnitude. By doing so, we can
identify nodes that may be contributing more to WNT than to rec,
but also may favor more another item ¢, which may dominate WNI
in the final recommendation list. Then, we avoid considering such
items as candidates for the explanation.

Algorithm 5 first computes the contribution Cp,; of n € H to
W NI, relative to each item ¢ in the recommendation list (Lines 7
and 14).

To select the set of neighbors to be removed or added to the graph,
we apply a condition to the weights of the matrix. This condition
ensures that WNTI is the top item. We also need to consider the

Algorithm 4: Powerset Why-Not explanation computation.
Data: G = (V,E,0),I € V,ue V,rec € L WNI € I, H (the
list of nodes for the explanation), 7, MODE
Result: A* (the explanation for u and WNI)
1 A {(u,n;) | nj € Nowr(u),n; # u};
2 A¥ «— 0
3 /* we prune the irrelevant contributions from the list*/

foreach (n;, contribution) € H do

4 if contribution <= 0 then

5 ‘ H.remove(n;, contribution)
6 end

7 end

8 HP « powerset(H);
9 foreach c € [0,|HP|] do

10 h¢ < all combinations of size ¢ ordered by contribution;
1 Te & T;

12 check < False;

13 while |Ac| > 0 AND check == False do

14 (nj, contribution) < h¢.pop(0);

15 A" — A" U {(u,ny)};

16 if MODE == ADD then

Tc < T + contribution;
Acheck — AU A%

19 end

20 if MODE == REMOVE then
7o < Tc — contribution;
Acheck — A\ A%

17

18

21

22

23 end

24 if 7. > 0 then

25 ‘ check « test(G,A*, MODE)
26 end

27 end

28 if check == True then

29 ‘ return A*;

30 end

31 end

32 return 0;

alternative situation, where WNT is not the top recommendation.
To do this, we compute a threshold above which any item from T,
the list of target nodes, switches position with WNTI.
For each target item t, we compute (at Line 19) the switching
threshold as follows:
Nous
Threshold(t) = Z Chode,t (7)
node
Similar to the Algorithm 2, in Add Mode, the threshold is always
computed from the contributions of the nodes in A. For readabil-
ity purposes, in Algorithm 5 at Line 19, we consider that these
necessary values are already computed.
The contribution is now a matrix of size |H| X T instead of a
vector of size |H|. Differently than in the previous cases, no filter is
applied beforehand based on the sign of the contribution. We keep

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

Algorithm 5: Why-Not explanation computation using

Exhaustive Comparison.

1
2
3
4
5
6
7

10
11
12
13
14
15
16

17

=

8

20

5]

1

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Data: G = (V,E,0),I € V,u € V,rec € [WNI € I, H (the
list of nodes for the explanation), r, MODE, T C I

(the set of target nodes)
Result: A* (the explanation for u and WNI)
A — {(u,n;) | ni € Noue(u),ni # u};
A* «— 0;
/*Cp, is an entry of C, the matrix of contributions*/;
if MODE == REMOVE then
foreach n € H do

foreacht € T do
Cnt —

end
end
end
if MODE == ADD then
foreach n € H do
foreacht € T do
| Cnt < (PPR(n,t|A) — PPR(n, WNI|A));
end

end
end
foreacht € T do
Threshold; — YNout Cp ;
end
/* Fill in the lines of C, for combinations of size >1*/
foreach ! € [2, |H|] do
h; « all combinations of size /;
foreach combi € h; do
foreach t € T do
‘ Ccombi,t — Z;ombi Cj,t§
end
Ceombi < Ceombi — Threshold,
/* we select the lines in C that strictly contain
positive values*/
if Ccombit > 0, VCcombi,t € Ceompi then
‘ candidates — Ceompi ;
end

end
end
foreach combi € candidates do
A* — 0;
foreach n € combi do
‘ A* — A*U{(u,n)};
end
check « test(G, A", MODE);
if check == True then
‘ return A*;

end
end
return 0;

W (,n) + (PPR(n, t|A) — PPR(n, WNI|A));

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

all available elements in H to compute the possible combinations.
This allows elements that would have been considered irrelevant
in the previous cases to be considered here if they can participate
in lowering the influence of any item that is not WNT.

Applying the threshold to the matrix entails two constraints;
First, it ensures that the weight of all better items decreases by more
than the threshold so that the WNI overtakes them; and second, it
ensures that the degree of all worse items does not increase by more
than the threshold. This is achieved by subtracting the threshold
vector from every line of the Matrix C and preserving the positive
ones (see Line 29), after extrapolating the contribution values to all
possible combinations at Line 21. We still have to perform a check
of the potential solutions to remove false positives, at Line 34. This
process is justified by the experiment (Section 6) where we compare
our solution to the Algorithm without the "CHECK" (i.e. direct).

Example. To clarify Algorithm 5 we use the running example,
seen on Figure 1a. For a reminder, we apply the Remove Mode for
the source node u=2 and the Why-Not Item WNI=8 and items in
the recommendation list T={6,7,9, 8, 10, 13, 17, 15, 12, 16}. For this
setting, we get an initial contribution matrix C described in Table 1.

Table 1 shows the contribution from each neighbor in
Nour to each target item ¢ relative to WNI. In this example,
Nowr={1,5,11, 14}, T={6,7,9, 10, 13,17, 15, 12, 16} (the node 8 is ex-
cluded because it’s the Why-Not Item WNTI). The threshold vector
is described in Table 2. As we expected, all items ranked worse than
WNI have a negative threshold and the better item has a positive
threshold. This means we can decrease the PPR of the target items
as much as the threshold indicates.

We then build a contribution matrix (Table 3), for all combina-
tions of neighbors by summing for each combination the individual
contributions and subtracting the threshold vector from each con-
tribution line (C,,p; — threshold).

The potential solutions are the combinations that have a vec-
tor of positive coordinates and are selected in order of their sizes.
Here, the potential solutions to consider are {(11, 14), (5,11, 14)}.
After the "TEST" phase, we can see that the removal of the edges
(2,14), (2,11) leads to the WNI = 12 becoming the recommenda-
tion. Thus, A”=A*={(2,14), (2,11)}.

Table 1: Initial Contribution Matrix

6 7 9 10 13 17 15 12 16
1 -0.011 -0.011 -0.0 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024
5 -0.002 -0.002 -0.002 0.003 0.005 0.008 0.008 0.011 0.016
11 0.0 0.0 0.0 0.024 0.024 0.0 0.0 0.024 0.0
14 0.0 0.0 0.0 0.0 0.0 0.024 0.024 0.0 0.024

5.3 Complexity and Correctness

The complexity of our solution can be considered with respect to the
different sub-algorithms of the method. For the Remove and the Add
Mode the complexity for defining the search space is O(|Noy:|) and

Table 2: Transposed Threshold vector

6 7 9 10 13 17 15 12 16

-0.013 | -0.013 | -0.002 | 0.003 | 0.005 | 0.008 | 0.008 | 0.011 | 0.016

Why-Not Explainable Graph Recommender

Table 3: Contribution Matrix after Threshold Subtraction

6 7 9 10 13 17 15 12 16

(2,) 0.002 0.002 0.002 -0.028 -0.029 -0.033 -0.033 -0.036 -0.041
(5, 0.011 0.011 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(11,) 0.012 0.012 0.002 0.021 0.019 -0.008 -0.008 0.013 -0.016
(14, 0.012 0.012 0.002 -0.003 -0.005 0.016 0.016 -0.011 0.008
(1, 5) 0.0 0.0 0.0 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024
(1, 11) 0.002 0.002 0.002 -0.003 -0.005 -0.033 -0.033 -0.011 -0.041
(1, 14) 0.002 0.002 0.002 -0.028 -0.029 -0.008 -0.008 -0.036 -0.016
(5, 11) 0.011 0.011 0.0 0.024 0.024 0.0 0.0 0.024 0.0

(5, 14) 0.011 0.011 0.0 0.0 0.0 0.024 0.024 0.0 0.024
(11, 14) 0.012 0.012 0.002 0.021 0.019 0.016 0.016 0.013 0.008
(1,5, 11) 0.0 0.0 0.0 0.0 0.0 -0.024 -0.024 0.0 -0.024
(1, 5, 14) 0.0 0.0 0.0 -0.024 -0.024 0.0 0.0 -0.024 0.0

(1,11, 14) 0.002 0.002 0.002 -0.003 -0.005 -0.008 -0.008 -0.011 -0.016
(5, 11, 14) 0.011 0.011 0.0 0.024 0.024 0.024 0.024 0.024 0.024

O(|Nout| + |PPRyw N1|) respectively, with Ny, being the outgoing
neighborhood of the user node and PPRyy N7 (Algorithm 2, Line 8)
the list of potential neighbors from the ReverseLocalPush function.

The complexity of the explanation construction is O(|H|) in
Incremental and O(2|H| — 1) in Powerset, where H is the list of
selected nodes that was created in the previous step (Add or Remove
Mode). The complexity is higher in the Powerset algorithm because
we are computing the complete powerset of edges in H (at the worst
case), while in the Incremental mode, we compute one potential
explanation for each size at every step (at the worst case). However,
we avoid exponential costs (the worst case) by considering only
solutions that meet the contribution criteria (Equations 6 and 5),
checking the candidates in a size ascending fashion. The complexity
of the complete solution using the Incremental algorithm in Remove
and Add mode is O((|Noy¢|)+|H|) and O(|Noy¢|+|PPRw N1l +|H|)
respectively. Similarly the complexity using the Powerset in Remove
and Add mode is O((|Noyu¢|)+(2/1=1)) and O(|Nowz |+|PPRy N 1|+
(Z‘H‘ — 1)) respectively.

The Exhaustive Comparison method builds the contribution ma-
trix with a time complexity of o2 x (IT| - 1)). In practice,
a similar method as before (threshold application) is applied to
avoid the exponential cost. Then, with M being the contribution
matrix, all filtered sets of actions are linearly tested. Finally the
complexity of the solution in exhaustive Remove mode an exhaus-
tive Add mode is respectively O(|Noy:| + (2H x (|T| = 1))) and
O((INoue| + |PPRw1l) + (2H1 5 (IT] = 1))).

We note that EMiGRe depends on the complexity of the Person-
alised Page Rank computation, and can benefit from optimisation
on graph-update computation results in this field of research (see
[17] for a very recent study).

The heuristics presented in Algorithms 3, 4, and 5 are correct, i.e.,
a set of edges returned by one of these algorithm is an explanation.
The proof is trivial, by the CHECK test added in the algorithms at
lines 18, 25, and 39 respectively.

5.4 Choice of the Method

The goal of both modes (Add, Remove) is the same: propose a modifi-
cation on the graph (aka Why-Not Explanation) that would change
the output of the recommendation engine, such that the new recom-
mendation be the Why-Not item. However, the space where they
are looking is different: In the Remove mode, we search in the user
node’s existing neighborhood for a modification. Thus, we want

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

to use a previous action of the user to explain "Why WNI was not
recommended ?". On the other hand, in the Add mode, we search for
a new, non-existing edge and thus propose to increase the size of
the neighborhood of the user node. In this case, we suggest a new
action for the user to explain "Why WNI was not recommended ?".

The choice of the mode depends on various criteria, the first one
being the size of the space to explore. If the neighborhood of the
user is too small (low activity user) the algorithm is less likely to
find a solution to the problem in remove mode. In this case, the add
mode will perform better as it will look for a solution in a wider
space. In addition, if the space of the neighborhood of the user is
too big (high activity user) the algorithm will consume a lot of time
and computation resources. Using the add mode, in this case, may
be beneficial. Second, the choice in the mode is linked to the desired
output to the end-user and what would be the most meaningful to
them. A platform trying to increase user activity may opt for the
add mode to suggest new actions to perform. On the other hand, if
the user need is to understand the system based on previous actions,
then the remove mode may be preferred.

6 EXPERIMENTAL EVALUATION
6.1 Datasets and Setting

Datasets We are using the Amazon Customer Review dataset!,
describing the activity of users on the e-commerce platform. The
provided information includes users, items, reviews, ratings (on a
scale of 1 to 5), and categories.

We performed some preprocessing on the data set, in order to
make it exploitable by our methods and to optimize the experiments.
First, we modeled the data set into a directional graph following
a similar model as in [11]. Nodes correspond to entities and links
correspond to the relationships between them, namely: “rated”
(user-item), “reviewed” (user-item), “has-review” (item-review), and
“belongs-to” (item-category).The resulting graph contains 11831
nodes and 40552 edges. In Table 4 we provide information on the
node degrees, i.e., the number of edges connected to a node, per
node type in the resulting graph.

Table 4: Node degree statistics per node type in the graph.

Node Type | # of Nodes | Average Degree | Degree STD
Reviews 2334 2.28 0.7
Categories 32 366.8 291.9
Items 7459 5.4 2.4
Users 120 22.1 2.7

In general, since the graph is directional, the relationship and the
direction of those relations need to have a semantic meaning. If a
relation can’t be mutual, the edge can’t be bidirectional. An example
in Figure 1a shows user interaction as unidirectional. However, if
the relation is mutual, the connection can but does not have to be
bidirectional. More, since the PPR computation is directional [39], a
graph with more possible paths allows less restriction. With respect
to our case, we consider any type of relationship to be bidirectional.

Then, we included only good ratings (over 3) to keep only the
items appreciated by the user. We also enriched the data set with

!(Released by Amazon:s3.amazonaws.com/amazon-reviews-pds/readme.html)

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

review-review links representing the similarity between each pair
of reviews and assigning the cosine similarity of the review embed-
ding, generated with Google’s Universal Sentence Encoder [5].

Finally, we randomly sampled 100 users from the set of ‘'moder-
ate/active’ users, i.e., those having between 10 and 100 actions in the
system. For those users, we extracted their four-hop neighborhood
from the original graph, in order to make the computations more
feasible and without harming the effectiveness of the recommenda-
tions. We call this new data set/graph ’Amazon Lite’.
Setting We implemented and ran the experiments in Python 3.9, on
a machine equipped with Intel Xeon X5670 and 128 go of RAM. The
hyper-parameter values were experimentally set as follows: (i) the
teleportation probability & = 0.15, (ii) the parameter of the Random
Walk f = 0.5, and (iii) the parameter of the reverse/forward local
push methods € = 2.7e — 8.

The implemented algorithms are openly available in the
following GIT repository: https://git.cyu.fr/hattolou/why-not-
explainable-graph-recommender

6.2 Experimental Design

We computed the top-10 recommendation list for each one of the
100 users of the Amazon Lite data set. Then, for each user, we com-
puted the Why-Not explanation for each one of the items in his/her
recommendation list (except for the first one) as the Why-Not item.
Following our privacy-related restrictions detailed in Section 4,
explanations can only be part of the subset T, that includes only
user-item edges, both in Remove and Add Mode. Since no different
weight is applied to the “rated” (user-item) and “reviewed” (user-
item) links, the results in Add Mode can be interpreted indifferently
as "the user should have rated A" or as "the user should have reviewed
A". The explanations were computed based on different variants of
the algorithms presented in Section 5. More specifically,

e add_Powerset, Powerset heuristic, Add Mode;

e add_Incremental, Incremental heuristic, Add Mode;

o add_ex Exhaustive Comparison heuristic, Add Mode;

e remove_Powerset Powerset heuristic, Remove Mode;

e remove_Incremental Incremental heuristic, Remove Mode;
o remove_ex Exhaustive Comparison heuristic, Remove Mode.

We also include 2 more methods as comparison baselines:

o Brute force: We create a list of all possible edges to remove,
sorted by size, and try all of them until a solution is found.
This model is able to find the minimal explanation when
available because it explores the full space of solution in
Remove Mode. Thus, it serves as a comparison point for
the explanation size and success rate (two of our metrics
described later). Due to the size of the space to explore the
process is expected to consume a lot of processing time. In
Add Mode the same process could be applied but the size
of the solution space is far bigger and the time needed is
prohibitive.

Exhaustive Comparison direct: We compute the explanations
using the Exhaustive Comparison but we terminate the pro-
cess when the smallest explanation candidate (even if it is
not guaranteed to be a correct explanation) is found, thus
skipping the "CHECK" process. The goal is to prove the ne-
cessity of the "CHECK" step by observing the gap in success

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

rates between the Exhaustive Comparison and the Exhaustive
Comparison direct versions.

To the best of our knowledge, there are no other related works
on the same problem, which explains the absence of competitor
algorithms in the comparative evaluation.

To evaluate our work, we analyze the results of the algorithms
on three quantifiable metrics:

e Success rate: measures the percentage of scenarios, i.e., (user,
missing item) pairs, for which an algorithm finds a correct
explanation, the best value being 100%. However, as men-
tioned later in Section 6.4, providing an explanation for a
missing item may be infeasible due to the nature of the data.

e Runtime: measures the efficiency of an algorithm in seconds.
Naturally, the lowest the value, the better the performance.

e Explanation size: measures the length (in the number of
edges) of an explanation returned by an algorithm. As stated
in the literature (e.g., [11]) the shorter the explanation, the
better.

6.3 Results

Success Rate. Figure 4 reports the success rates percentages for
each different algorithm. Overall, the Add Mode is far more success-
ful than the Remove Mode, and also by comparing the heuristics
(remove Incremental vs add Incremental). The Exhaustive Compari-
son sub-algorithm performs the best with a success rate of 75%.

For the Remove mode, we can first observe a low success rate
in general, even in the brute force baseline. Thus, this is a problem
linked to the scenario, and not to our algorithms, since no solution
exists in most of the cases, because of the limited past user-actions
space. Basically, in most of the failure scenarios, the recommended
item is a popular item (see Section 6.4) and thus just removing user
actions cannot lower its popularity in benefit of the Why-Not item,
in contrast to the Add mode that allows for creating a stronger
network around the Why-Not item.

To allow for a more pertinent experiment for Remove Mode, we
present also the success-rate results in the cases when a solution
can be found, given the current data structure. These cases can
be identified by the success of the brute force algorithm, and the
results are reported in Figure 5. In this figure, we can see that the
Exhaustive Comparison method can perform the closest to brute
force, while also the Powerset method has a success rate over 90%.
Should the use case focus only on the success rate in Remove mode,
we can conclude that these sub-algorithms are the most suited.

We also report here the conclusions made w.r.t. the necessity
of the check phase in the Exhaustive Comparison method. In Fig-
ure 5 we can observe a 33% drop of the success rate for the Ex-
haustive Comparison direct version (Section 6.2) of our Exhaustive
Comparison sub-algorithm. This means that the CHECK step in
the Exhaustive Comparison algorithm is necessary for pruning out
false positive explanations, even if it adds up to the runtime of the
algorithm, as seen in Table 5.

As a remedy to the low success rate, we could add a post-
processing step that informs the user of the reason of failure. This
information could be presented as a form of meta-explanations, and
includes the category of data-structure related problem as listed in
Section 6.4.

Why-Not Explainable Graph Recommender

Table 5: Average runtime in seconds per method, (a) in the
general case, (b) when an explanation is found, and (c) when
no explanation is found. Dark-shaded rows are for Add Mode,
light-shaded rows are for Remove Mode and the last two rows
are baseline models.

Method (a) (b) (©

remove_Incremental | 9.07 9.15
remove_Powerset 287.91 15.32 315.31
remove_ex 173.44 24.48 190.13
remove_ex_direct 25.14 21.81 25.38
remove_brute 908.73 22.37 1008.07

Size. In Figure 6 we present the results on the computed expla-
nations size, which are overall small. Using brute force as a baseline
for the Remove Mode, we observe that the Exhaustive Comparison
method performs the best (lowest size) along with Powerset. These
results can be compared because of the close success rates, as we re-
port averages. On the other hand, the Exhaustive Comparison direct
demonstrates relatively better results. However, since it returns
a correct explanation for less cases than the rest of the remove
mode alternatives, it may have prunned-out longer explanations,
affecting its average success rate. In Add Mode, the explanations
sizes tend to be close to the smallest possible size (one edge created),
except for the Incremental heuristic, where the size is bigger (which
is also visible in the Remove Mode in the same heuristic).

Time. Table 5 reports the average runtime in seconds per method,
in the general case (column a), in the cases when an explanation
was found (column b) and in the cases when no explanation was
found (column c). In Remove mode, as expected brute force is the
longest. The Exhaustive Comparison method in Remove Mode is
comparable to brute force when successful, but the Exhaustive
Comparison method is 81.1% faster to respond that no solution
can be provided. The Incremental heuristic is 46.4% faster than the
Powerset heuristic, as expected. Note that Exhaustive Comparison
direct is faster than Exhaustive Comparison and this is explained
by the early termination condition of this base-line.

In Add mode, the Exhaustive Comparison is very time-consuming
both when successful and unsuccessful, showing no practical inter-
est when time performance is critical. The Incremental heuristic is
93.8% faster than the Powerset heuristic. The Exhaustive Comparison
is taking the most time, as expected, either when an explanation is
found or not. If time is an essential criterion this method should be
avoided and substituted by the Incremental or Powerset heuristic.

The general observation is that the computation time is long for
most of the methods that are not optimised for runtime, i.e., different
than Incremental, so when time is a critical parameter, Incremental
is to be preferred. However, the Exhaustive Comparison in Remove
mode is a good compromise between runtime and success rate.

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

explanation success rate per method

70%
60%
50%
40%
30%
20%
10%

0%

SUCCEES rate

add_ex
remove_powerset -
remove_ex

remove_brute

add_incremental
add_powerset
remove_incremental
remove_ex_direct

Figure 4: Explanation success rate per method.

explanation success rate relative to brute force per method

100%

80%
60%
40%
20%

0%

success rate relative to brute force

remove_ex

remove_brute

remove_ex_direct

remove_incremental
remove_powerset

Figure 5: Explanation success rate relative to brute force for
remove method.

6.4 Challenges

We now present some challenges in connection with the observed
experimental results, especially with respect to runtime and success
rate, and give directions for addressing them.

Cold Start And Less Active Users. Our graph-based algorithm
takes advantage of the modeling of the activity of users. Yet, if
no or little information is present for a user, there will be few
edges/candidates for an explanation, leading in the worst case to
empty explanations. This is connected to the low success rate that
we observe in the experiments.

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

average explanation size per method

3.0
25
20
1.5

1.0

average explanation size

05

0.0

add_ex

remove ex

add_powerset
remove brute

add_incremental

remove_incremental
remove_powerset
remove_ex_direct

Figure 6: Average explanation size per method.

Follow

3 4 5

Figure 7: Example of impossible explanation for the Why-
Not item (node 13) due to higher popularity of Paul’s recom-
mended item (node 12).

Popular Item. In PageRank, by definition, popular items tend to
have a high PPR. Thus, popular items are more likely to be recom-
mended to users, who have some previous activity in connection
with the category of the popular item. Selecting any other item
(than the popular one) as the Why-Not item may generate a case
where it is impossible to compute an explanation for it; the Why-
Not item will never be more important than the popular one. This
is a direct implication of our algorithm design choice to use only
the outgoing edges of the user (user actions) as explanations, which
may not be enough to influence the popularity of a specific item,
which depends also on other users’ actions. Nevertheless, we re-
mind that this design choice is deliberately made in order to provide
personalised, actionable explanations and to protect other users’
privacy. In Figure 7, we illustrate such a use case.

Out Of Scope Item. Another case that may arise is when only
additions or only deletions of edges to/from the user node cannot
lead to the Why-Not Item being a recommendation. In such cases,

Hervé-Madelein Attolou, Katerina Tzompanaki, Kostas Stefanidis, and Dimitris Kotzinos

EMiGRe could be extended to a combined add/remove mode, which
we leave for future work.

Check Step. When searching for an explanation in the Remove
mode (similarly for the Add mode), we may be led to removing
an edge that lowers the PPR(u, rec) between user u and the rec-
ommended item rec, but that also influences in a positive manner
not only the position of WNTI in the new recommendation list but
also that of any other item, that may surpass WNI. So, to avoid
false positive explanations we have added a CHECK step in the
algorithms that ensures that the explanation is correct, which is
time consuming.

7 CONCLUSION

In this work, we proposed EMiGRe, a graph-based explainable rec-
ommendation system tailored for Why-Not explanations, i.e., ex-
plaining why a certain item is not recommended for a specific user.
EMiGRe formalises the problem of asking Why-Not questions in this
setting and provides actionable explanations in a form of Counter-
factual Explanations. More specifically, the explanations constitute
a set of either past user-actions or potential new actions that the
user should perform in order to place the missing recommendation
in the top of the list. We provide different sub-algorithms that re-
spond to different needs; either optimised run-time or explanation
size. EMiGRe is configurable to allow for user-preferences in the
type of actions to appear in the explanations, e.g., for addressing
privacy concerns or domain constraints. EMiGRe is implemented
over a graph-based RS based on Personalised Page Rank, but can
be easily adapted to other user-defined monotonic functions com-
puting the contribution of edges on personalised recommendations.
Our analytical experimental study on real data demonstrates the
performance of EMiGRe with respect to a variety of metrics, show-
cases the desired behaviour of each sub-algorithm, and reveals
interesting directions for future work.

Future Work One of the main directions of the future work is
to deal with the low success rate. One possible extension would
be to mix past and future actions in the explanations, or to not
only consider edges but the weight of edges in the graph for the
explanations as well. For example, an explanation could be "You
should have rated book A with 5 stars to get recommended book B".
To assess the acceptance of our explanations by the final users, we
aim to conduct a user study replicating a real use case scenario.

REFERENCES

[1] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, scrutable
and explainable user models for personalized recommendation. In Proceedings
of the 42nd international acm sigir conference on research and development in
information retrieval, pages 265-274, 2019.

[2] Behnoush Abdollahi and Olfa Nasraoui. Using Explainability for Constrained
Matrix Factorization. In Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems, RecSys ’17, pages 79-83, New York, NY, USA, August 2017.
Association for Computing Machinery.

[3] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Query-based why-not
provenance with nedexplain. In Extending database technology (EDBT), 2014.

[4] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Refining SQL queries
based on why-not polynomials. In 8th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2016, Washington, D.C., USA, June 8-9, 2016, 2016.

[5] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal sentence encoder, 2018.

Why-Not Explainable Graph Recommender

=
X0

[10]

[11]

[12]

(13

[14]

[15]

[16

[17]

[18

[19]

[20

[21

[22]

[23

[24]

[25

[26]

[27

[28]

[29]

[30

Adriane Chapman and H. V. Jagadish. Why not? In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, page
523-534, New York, NY, USA, 2009. Association for Computing Machinery.
Zixuan Chen, Panagiotis Manolios, and Mirek Riedewald. Why not yet: Fixing a
top-k ranking that is not fair to individuals. Proc. VLDB Endow., 16(9):2377-2390,
may 2023.

Weiyu Cheng, Yanyan Shen, Linpeng Huang, and Yanmin Zhu. Incorporating
interpretability into latent factor models via fast influence analysis. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 885-893, 2019.

Maartje MA De Graaf and Bertram F Malle. How people explain action (and
autonomous intelligent systems should too). In 2017 AAAI Fall Symposium Series,
2017.

Tim Donkers, Benedikt Loepp, and Jiirgen Ziegler. Sequential user-based re-
current neural network recommendations. In Proceedings of the eleventh ACM
conference on recommender systems, pages 152-160, 2017.

Azin Ghazimatin, Oana Balalau, Rishiraj Saha Roy, and Gerhard Weikum. PRINCE:
Provider-side Interpretability with Counterfactual Explanations in Recommender
Systems. Proceedings of the 13th International Conference on Web Search and Data
Mining, pages 196-204, January 2020. arXiv: 1911.08378.

Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collabo-
rative filtering recommendations. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, CSCW ’00, pages 241-250, New York, NY,
USA, December 2000. Association for Computing Machinery.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings
of the 12th international conference on World Wide Web, pages 271-279, 2003.
Yehuda Koren. Factorization meets the neighborhood: A multifaceted collab-
orative filtering model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, page 426-434,
New York, NY, USA, 2008. Association for Computing Machinery.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788-791, 1999.

Yanhong Li, Wang Zhang, Changyin Luo, Xiaokun Du, and Jianjun Li. Answering
why-not questions on top-k augmented spatial keyword queries. Knowledge-
Based Systems, 223:107047, 2021.

Zihao Li, Donggi Fu, and Jingrui He. Everything evolves in personalized pagerank.
In Proceedings of the ACM Web Conference 2023, pages 3342-3352, 2023.

Peter Lipton. Contrastive explanation. Royal Institute of Philosophy Supplements,
27:247-266, 1990.

Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based Recom-
mender Systems: State of the Art and Trends, pages 73-105. Springer US, Boston,
MA, 2011.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model pre-
dictions. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 4768-4777, Red Hook, NY, USA, 2017. Curran
Associates Inc.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understand-
ing rating dimensions with review text. In Proceedings of the 7th ACM conference
on Recommender systems, pages 165-172, 2013.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences,
2018.

Tim Miller. Contrastive explanation: A structural-model approach. The Knowledge
Engineering Review, 36:e14, 2021.

Athanasios N. Nikolakopoulos and George Karypis. RecWalk: Nearly Uncoupled
Random Walks for Top-N Recommendation. February 2019.

Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender
systems. In 2011 IEEE 11th International Conference on Data Mining, pages 497—
506, 2011.

Dimitris Palyvos-Giannas, Katerina Tzompanaki, Marina Papatriantafilou, and
Vincenzo Gulisano. Erebus: Explaining the outputs of data streaming queries.
Proc. VLDB Endow., 16(2):230-242, 2022.

Gustavo Padilha Polleti and Fabio Gagliardi Cozman. Explaining content-based
recommendations with topic models. In 2019 8th Brazilian Conference on Intelli-
gent Systems (BRACIS), pages 800-805. IEEE, 2019.

Thomas Rebele, Katerina Tzompanaki, and Fabian M. Suchanek. Adding missing
words to regular expressions. In Dinh Q. Phung, Vincent S. Tseng, Geoffrey 1.
Webb, Bao Ho, Mohadeseh Ganji, and Lida Rashidi, editors, Advances in Knowledge
Discovery and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne,
VIC, Australia, June 3-6, 2018, Proceedings, Part II, volume 10938 of Lecture Notes
in Computer Science, pages 67-79. Springer, 2018.

J. Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-
commerce. In Proceedings of the 1st ACM conference on Electronic commerce,
EC ’99, pages 158-166, New York, NY, USA, November 1999. Association for
Computing Machinery.

Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable convolutional
neural networks with dual local and global attention for review rating prediction.
In Proceedings of the eleventh ACM conference on recommender systems, pages
297-305, 2017.

(31

[32

[33

(35]

[36

[37

[38

@
29,

[40

ICDE 2024, April 16th - April 19th, 2024, Utrecht, Netherlands

Kostas Stefanidis, Nafiseh Shabib, Kjetil Norvag, and John Krogstie. Contextual
recommendations for groups. In Advances in Conceptual Modeling - ER 2012
Workshops, pages 89-97, 2012.

Maria Stratigi, Aikaterini Tzompanaki, and Kostas Stefanidis. Why-Not Questions
& Explanations for Collaborative Filtering. In WISE, Amsterdam, Netherlands,
October 2020.

Zhigiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong
Zhao, and Yun Fu. Log2intent: Towards interpretable user modeling via recurrent
semantics memory unit. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1055-1063, 2019.
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural
graph collaborative filtering. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, jul 2019.
Yao Wu and Martin Ester. Flame: A probabilistic model combining aspect based
opinion mining and collaborative filtering. In Proceedings of the eighth ACM
international conference on web search and data mining, pages 199-208, 2015.
Minghua Xu and Shenghao Liu. Semantic-enhanced and context-aware hybrid
collaborative filtering for event recommendation in event-based social networks.
IEEE Access, 7:17493-17502, 2019.

Siyu Yao, Jun Liu, Meng Wang, Bifan Wei, and Xuelu Chen. Anna: Answering
why-not questions for sparql. In ISWC (Posters & Demos), 2015.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate Personalized
PageRank on Dynamic Graphs. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 1315-1324,
San Francisco California USA, August 2016. ACM.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate personalized
pagerank on dynamic graphs. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on knowledge discovery and data mining, pages 1315-1324,
2016.

Yongfeng Zhang and Xu Chen. Explainable Recommendation: A Survey and
New Perspectives. INR, 14(1):1-101, March 2020. Number: 1 Publisher: Now
Publishers, Inc.

