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The main objective of this work is to use Convolutional Neural Network (CNN) to improve the performance of the work of Astolfi et al. (2020) on their baseline for pollen grain classification, by improving the performance of the following eight popular architectures : InceptionV3, VGG16, VGG19, ResNet50, NASNet, Xception, DenseNet201 and InceptionResNetV2, because of their performance on several classification tasks and on the ImageNet dataset. We use the annotated public image dataset for the Brazilian savanna called POLLEN73S composed of 2523 images of 73 pollen types from Astolfi et al. (2020). The method used is called holdout cross-validation. The experiments carried out showed that DenseNet201 and ResNet50 outperformed the other CNNs tested, achieving results of 97.217% and 94.257% respectively in terms of accuracy, higher than the results of Astolfi et al. (2020) with 1.517% and 0.257%, respectively.VGG19 the architecture with the lowest performance, achieving a result of 89.463%. For Astolfi et al. (2020), it's NASNet with 76.3%. To promote advances in computer vision in the field of palynology, POLLEN73S offers an exhaustive variety of pollen grains, providing satisfactory categorical coverage and diversity of examples.

I INTRODUCTION

Pollen grains are tiny particles carried by the wind and essential to the reproduction of flowering plants. They are produced by the male organs of flowers, called stamens, in particular the anthers which contain the pollen grains. Pollinators in general ensure the reproduction of flowering plants, contributing to biodiversity and playing a crucial role in climate regulation, although climate change may disrupt this synergy [START_REF] Potts | Global pollinator declines: trends, impacts and drivers[END_REF]. The classification of pollen grains represents a major challenge in the fields of plant biology and paleoecology 1 . This process is of great importance, as it enables the identification of the plants responsible for these grains and the reconstruction of environmental history through the ages thanks to sediment analysis [START_REF] Demers | État des connaissances sur le pollen et les alergies[END_REF][START_REF] Girard | La mélissopalynologie l'étude des pollens dans le miel[END_REF].

Pollen analysis is also widely used to detect and monitor allergenic particles in the air. In recent years, pollen seasons have become longer due to global warming and climate change [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF], leading to an increase in seasonal allergies in patients exposed to high levels of allergenic pollen in the air [START_REF] Bianco | Benchmark analysis of representative deep neural network architectures[END_REF]. In palynological research, the identification of pollen grains plays an essential role in the development of suitable treatments for patients suffering from allergic rhinitis. This enables patients and healthcare professionals to monitor allergenic pollen levels in the air, organize their outdoor activities and plan their medical treatments accordingly [START_REF] Li | Analysis of automatic image classification methods for Urticaceae pollen classification[END_REF]. The study of pollen grains present in individuals, objects, air, pollinators and beekeeping products also contributes to the protection, surveillance and monitoring of flora in order to preserve this ecosystem [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF].

The automation of pollen grain analysis relies on the creation of image datasets containing numerous examples categorized by experts. This task requires considerable effort and specialized equipment such as an optical microscope and slides. For this reason, there are few pollen grain image datasets specifically designed for computer vision automation [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF]. A limited number of examples can result in poor performance of learning models, as there are not enough to train efficient convolutional neural networks (CNNs) [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF]. CNNs are deep neural networks capable of learning complex patterns from images. They have been used successfully in the classification of pollen grain images. Using these networks, it is possible to accurately classify images of pollen grains from different species.

The main goal of this work is to improve the performance of eight (08) architectures of Astolfi et al. [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] for the classification of Pollen73S, using the holdout cross-validation method. The work is structured as follows: Section II is devoted to the state of art. Section III describes the POLLEN73S dataset of Astolfi et al. [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] used in this work. In Section IV, we give an overview of the methods used. Results are presented in Section V is devoted to results and discussions. Conclusion round up the paper.

II LITERATURE REVIEW OF RELATED WORK

In recent years, many state-of-the-art convolutional neural networks (CNNs) have been applied to pollen grain classification tasks. A seven-layer deep convolutional neural network designed by Daood et al. in [START_REF] Daood | Pollen grain recognition using deep learning[END_REF], was trained on a dataset of 30 pollen grain classes and achieved a correct classification rate of 94%. In [START_REF] Sevillano | Precise automatic classification of 46 different pollen types with convolutional neural networks[END_REF], pre-trained AlexNet was used to classify a dataset with 46 different pollen grain classes. By incorporating data augmentation and cross-validation techniques, an precision of 98% was achieved. In [START_REF] Battiato | Detection and classification of pollen grain microscope images[END_REF], AlexNet and SmallerVGGNet were implemented to classify five classes of pollen grains, using 13,000 images. The two networks achieved 89.63% and 89.73% precision respectively. Astolfi et al. in [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] analyzed a pollen dataset consisting of 73 pollen grain categories. They compared the performance of eight state-of-the-art CNNs, including InceptionV3, VGG16, VGG19, ResNet50, NASNet, Xception, DenseNet201 and InceptionResNetV2. They showed that DenseNet201 and ResNet50 outperformed other CNNs with an precision of 95.7% and 94.0%, respectively. Li et al. in [START_REF] Li | Analysis of automatic image classification methods for Urticaceae pollen classification[END_REF] analyzed two genera of the Urticaceae family, named Parietaria and Urtica, showing strong morphological similarities composed of 3 categories of a dataset from 6472 images of pollen grains. To find a better classifier, they used both machine learning and deep learning methods. For the first method, they measured both texture and moment characteristics based on images of pollen grains with feature selection techniques and a hierarchical strategy. In the second, they compared the performance of six popular convolutional neural networks : AlexNet, VGG16, VGG19, MobileNet V1, MobileNet V2 and ResNet50. The highest precision they achieved was 94.5% among machine learning-based methods and 99.4% among deep learning-based methods.

In addition to CNN, there are other works that use computer vision techniques as references. Treloar et al. [START_REF] Treloar | Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images[END_REF] provided a dataset containing 12 pollen grain types with a few hundred grayscale images per class collected on Henderson Island, Polynesia. To define a baseline on the dataset, the authors used as a feature extractor an approach that considers geometric measures of pollen grains such as perimeter, roundness and surface area as input to obtain texture measures; and as a classifier, an approach based on Fisher's linear discriminant. They reported a proportion of correctly classified pollen ranging from 81% to 100% depending on the subset of variables used. The best set of variables had an average classification rate of around 95%. Travieso et al. [START_REF] Travieso | Pollen classification based on contour features[END_REF] used the Hidden Markov Model (HMM) and Support Vector Machine (SVM) to classify 47 different pollen grain types from a dataset containing a total of 564 images. These images were captured from 22 different plant species in Costa Rica, Central America. The proposed method achieved an average classification accuracy of 93.8%. García et al. García et al. [START_REF] García | Pollen Grains Contour Analysis on Verification Approach[END_REF] also used an HMM classifier to classify pollen grains, however, they used an approach based on binarization and contour identification to obtain features from the grains. The constructed dataset contains a total of 426 pollen grains of 17 types from 11 different tropical honeybee plant families from Costa Rica, Central America. The proposed method achieved an average of 98.77% on classification. Ticay-Rivas et al. [START_REF] Ticay-Rivas | Pollen Classification Based on Geometrical, Descriptors and Colour Features Using Decorrelation Stretching Method[END_REF], used the same dataset as [START_REF] García | Pollen Grains Contour Analysis on Verification Approach[END_REF] to define a baseline. The authors proposed a method that combines geometric measurements, Fourier descriptors of morphological details using the discrete cosine transform (DCT) and color information to obtain discriminative features of pollen grains. These features are used to train a multilayer neural network classifier, which achieved an average accuracy of 96.49%.

Instead of deep learning methods that automatically extract features from the image [START_REF] Daood | Pollen grain recognition using deep learning[END_REF][START_REF] Sevillano | Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks[END_REF][START_REF] Sevillano | Precise automatic classification of 46 different pollen types with convolutional neural networks[END_REF][START_REF] Polling | Neural networks for increased accuracy of allergenic pollen monitoring[END_REF], machine learning methods are also implemented to extract features with functionalities, selected manually before they can be extracted from images [START_REF] Gonçalves | Feature extraction and machine learning for the classification of Brazilian Savannah pollen grains[END_REF][START_REF] Manikis | Pollen grain classification using geometrical and textural features[END_REF]. The so-called handcrafted features used in machine learning techniques are mainly based on the shape, texture and other related properties of pollen grain images. The features extracted play an important role in classification performance. In addition, appropriate feature selection methods and classifiers are also crucial for machine learning-based classification methods.

In [START_REF] Del Pozo-Banos | Features extraction techniques for pollen grain classification[END_REF], a combination of geometric and textural features was proposed as discriminating native features for a 17-class pollen dataset.The incorporation of Linear Discriminant Analysis (LDA) and Least Squares Support Vector Machines (LS-SVM) resulted in the best performance, with an precision of 94.92%. Marcos et al. [START_REF] Marcos | Automated pollen identification using microscopic imaging and texture analysis[END_REF] extracted four texture features, including graylevel co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and Tchebychev discrete moments (DTM) from a pollen image dataset with 15 classes. Fisher's discriminant analysis (FDA) and K-Nearest Neighbor (KNN) were then applied to perform dimensionality reduction and multivariate classification. This gave an accuracy of 95%. Manikis et al. [START_REF] Manikis | Pollen grain classification using geometrical and textural features[END_REF] used texture features obtained by GLCM and seven geometric features calculated from the binary mask of a pollen image dataset. A Random Forest (RF) classifier was used in the classification step; with this classifier, an accuracy of 88.24% was obtained on 6 pollen classes. Machine learning therefore shows highly variable results and apparently depends on the dataset used.

III DESCRIPTION OF DATASET POLLEN73S

[17] have developed a dataset called POLLEN73S containing annotated images of pollen grains present in the Brazilian savannah. This dataset includes 2523 images of pollen grains from 73 different types, captured at various angles. The flowering species used to obtain these pollen grains were collected within a 1.5 km radius of coordinates 20°23'16.8 "S 54°36'36.3 "W, located in the urban area of Campo Grande City, the capital of the Brazilian state of Mato Grosso do Sul. The POLLEN73S dataset is made up of small cropped images, obtained by resizing larger images. Due to the size of the pollen grains, the dimensions of the images in the POLLEN73S dataset vary. However, 88.6% of images have an average size of 512 × 512 or less, while the remaining 11.4% have an average size greater than 512 × 512. The following figure shows an example of a pollen grain in each category. Each category has 35 images, except for Gomphrena sp. with 10 images, Trema micrantha with 34 images, and Zea mays with 29 images [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF]. while the test set is used for model validation and testing (subsection 4.3). We then apply data augmentation, dropout layers, fine tuning and hyperparameters to the training dataset (subsection 4.4). We then set up transfer learning models. The TL models designed (a, b, c, d, e, f, g and h as shown in the figure, which we will detail in sub-section 4.2), as well as the loading of pre-trained weights, model training and evaluation are carried out. Finally, we subject the input image to each best TL model proposed, and proceed with prediction to produce the expected result, namely the percentage of membership of each class. 

IV METHODS

Block diagram of the proposed methodology

CNN architectures for pollen grain classification

Holdout cross-validation method

The holdout cross-validation method is a simple model validation method which consists of splitting the dataset into a training set and a test set. The principle of the method is as follows: the dataset is divided into two sets, the first of which is used to train the model and the second to test the model's performance. The proportion for the training set is set at 80% and 20% for the test set.

Experimental setup

• Data augmentation: is a common technique used in deep learning to increase the amount of training data available to the model, which can help improve generalization and combat underlearning. The various parameters we have used are :

rescale: 1./255, resize pixel values to between 0 and 1 by dividing each pixel by 255; -shear_range: 0.2, applies a random shear transformation to the image; -zoom_range: 0.2, randomly zooms the image in or out; -featurewise_center: True, subtracts the average of all training images from each image; -featurewise_std_normalization: True, divides each pixel by the standard deviation of the set of training images; -rotation_range: 20%, applies a 20% rotation to the image; -width_shift_range: 0.2, applies a random horizontal shift to the image; -height_shift_range: 0.2, applies a random vertical shift to the image; -horizontal_flip: True, applies random horizontal symmetry to the image; -vertical_flip: True, applies random vertical symmetry to the image; -validation_split: 0.2, separates 80% of training data and 20% for validation.

• Dropout layers: usually, when all features are connected to the FC layer, this can lead to overlearning in the training dataset. Overlearning occurs when a particular model performs so well on the training data that it has a negative impact on model performance when used on new data. To overcome this problem, an exclusion layer is used in which a few neurons are eliminated from the neural network during the training process, thus reducing the size of the model. In our case with ResNet50, the dropout layer is equal to 0.7, so 70% of the nodes are randomly eliminated from the neural network. These values can be adjusted to optimize model performance. Here are the hyperparameters used in the experimental setup (see Table 1).

Performance evaluation measures

Confusion matrix, precision, recall, F1-score and accuracy are the standard classification model evaluation methods.

• Confusion matrix: it describes the complete performance of the model. It has four terminologies, including True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN). It is represented as a table with rows and columns, where the rows correspond to the actual classes and the columns to the predicted classes (see Figure 3). • Precision: this is the number of correctly identified cases among all identified cases. P recision, P = T P/(T P + F P ), 0 ≤ precision ≤ 1.

(

• Recall: It is the number of cases correctly identified among all positive representations. It measures a model's ability to identify all positive results.

Recall, R = T P/(T P + F N ), 0 ≤ Recall ≤ 1.

• F1-score: It is the harmonic mean of precision and recall. It provides a compromise between precision and recall.

F 1 -score, F 1 = 2 * (P * R)/(P + R), 0 ≤ F 1 -score ≤ 1. (3) 
• Accuracy: accuracy is the ratio of correct predictions to the total number of observations (total input samples). However, this measure is not very reliable if the classes are unbalanced.

Accuracy = Number of correct predictions

Total number of predictions , 0 ≤ Accuracy ≤ 1.

V RESULTS AND DISCUSSION The highest precision and accuracy , 97.5545% and 97.202%, were achieved by the DenseNet201 architecture with a batch size of 16. CNNs such as DenseNet201, InceptionResNetV2 and ResNet50 achieved the best results with a batch size of 16, VGG19, VGG16 and Xception achieved it with a batch size of 8, InceptionV3 and NASNet achieved it with 4 and 12 respectively. The DenseNet201 also achieved a high F1 score of 97.26%, showing that the rates of true positives, true negatives, false positives and false negatives did not present any major distortions and, consequently, the 97.217% accuracy achieved by it is also a relevant result. Importantly, ResNet50 obtained results less similar to DenseNet201 with a 2.96% lower precision and similar to InceptionV3 with a 0.818% lower precision . On the other hand, VGG19 obtained the lowest results compared to the other CNNs, however, the results of InceptionResNetV2, VGG16, NASNet and Xception are similar. The accuracy rates obtained by DenseNet201 and ResNet50, 97.217% and 94.257% respectively, are relevant due to the amount of pollen types in POLLEN73S, since Khanzhina et al. [START_REF] Khanzhina | Pollen grain recognition using convolutional neural network[END_REF] achieved 99% accuracy in a dataset containing 5 pollen types and 95% when the dataset was increased to 11 pollen types, demonstrating the difficulty of achieving high accuracy rates when increasing the number of pollen types. Another comparison we can make is with the work of Sevillano and Aznarte [START_REF] Sevillano | Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks[END_REF] who used three CNNs to classify 23 pollen types on the POLEN23E [START_REF] Goncalves | Feature extraction and machine learning for the classification of Brazilian Savannah pollen grains[END_REF] dataset and achieved 97% accuracy. POLLEN73S contains 22 of the 23 pollen grain types in the POLLEN23E dataset and is three times larger. This shows that DenseNet201 and ResNet50 performed well on POLLEN73S.

Architectural performance summary table

CNN architectures performances

Figure 4 depicted CNN architectures performances. We find that for all evaluation measures, DenseNet201 architecture performs better on all batch sizes.

5.3 Performance comparison of CNN architectures for pollen grain classification: current results compared to [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] In Tables 34, we summarize the results obtained for pollen73S classification by the two methods: the holdout cross-validation method (current works) in the first column of each metric and the 5-block cross-validation method of [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] works in the second column of each metric too. 

CNN models

Figure 1 :

 1 Figure 1: Samples from the POLLEN73S dataset [17]: 1-Acrocomia aculeata, 2-Anadenanthera colubrina, 3-Arachis sp., 4-Archontophoenix cunninghamiana, 5-Arrabidaea florida, 6-Aspilia grazielae, 7-Bacopa australis, 8-Brugmansia suaveolens, 9-Caesalpinia peltophoroides, 10-Caryocar brasiliensis, 11-Cecropia pachystachya, 12-Ceiba speciosa, 13-Chromolaena laevigata, 14-Cissus campestris, 15-Cissus spinosa, 16-Combretum discolor, 17-Cordia trichotoma, 18-Cosmos caudatus, 19-Croton urucurana, 20-Dianella tasmanica, 21-Dipteryx alata, 22-Doliocarpus dentatus, 23-Erythrina mulungu, 24-Eucalyptus sp., 25-Faramea sp., 26-Genipa americana, 27-Gomphrena sp., 28-Guazuma ulmifolia, 29-Hortia oreadica, 30-Hyptis sp., 31-Ligustrum lucidum, 32-Luehea divaricata, 33-Mabea fistulifera, 34-Machaerium aculeatum, 35-Magnolia champaca, 36-Manihot esculenta, 37-Matayba guianensis, 38-Mauritia flexuosa, 39-Mimosa ditans, 40-Mimosa pigra, 41-Mitostemma brevifilis, 42-Myracrodruon urundeuva, 43-Myrcia guianensis, 44-Ochroma pyramidale, 45-Ouratea hexasperma, 46-Pachira aquatica, 47-Passiflora gibertii, 48-Paullinia spicata, 49-Piper aduncum, 50-Poaceae sp., 51-Protium heptaphyllum, 52-Qualea multiflora, 53-Ricinus communis, 54-Schinus terebinthifolius, 55-Schizolobium parahyba,56-Senegalia plumosa,57-Serjania erecta, 58-Serjania hebecarpa, 59-Serjania laruotteana, 60-Serjania sp., 61-Sida cerradoensis, 62-Solanum sisymbriifolium, 63-Syagrus romanzoffiana, 64-Symplocos nitens, 65-Tabebuia chrysotricha, 66-Tabebuia roseoalba, 67-Tapirira guianensis, 68-Tradescantia pallida, 69-Trema micrantha, 70-Trembleya phlogiformis, 71-Tridax procumbens, 72-Vochysia divergens, 73-Zea mays.

Figure 2

 2 Figure 2 depicted the methodology used in this work. We have divided the POLLEN73S dataset into two distinct sets: a training set and a test set. The training set is used to train the model,

Figure 2 :

 2 Figure 2: A block diagram of the proposed methodology.

Figure 3 :

 3 Figure 3: Confusion matrix.

Figure 4 :

 4 Figure 4: Performances of eight architectures in terms of : (top left)precision, (top right)-recall, (bottom left)-f1-score, (bottom right) -accuracy.

  • InceptionV3 : used for our classification is made up of 48 layers, comprising 11 creation modules. Its image input size is 299 × 299. Each module consists of convolution filters, clustering layers and the ReLu activation function. To reduce the number of parameters without compromising network efficiency, convolutions are factorized; • VGG16 : The input size of the VGG16 architecture is fixed at 224 × 224 pixels for RGB images. It consists of 16 layers, including 13 convolutional layers and 3 fully connected layers. Max-pooling is also used to reduce the volume size, and classification is performed using the last fully connected layer with softmax activation; • VGG19 : The VGG19 architecture uses an input size of 224 × 224 pixels for RGB images. Xception is approximately similar to that of InceptionV3, with around 23 million; • DenseNet201 : has a fixed input size of 224 × 224 pixels for RGB images. DenseNet201 consists of 201 layers with over 19.9 million parameters. It is divided into DenseBlocks, where the dimensions of the feature maps are constant within the block, but the number of filters differs. The input layers of the blocks are called transition layers, which use batch normalization for subsampling; • InceptionResNetV2 : The fundamental module of this model is known as the Residual Origin Block. After each block, a 1 × 1 convolution layer is used to increase the dimensionality of the filter bank to match the input depth. Batch normalization is only applied to the traditional layers of this architecture. With a depth of 164 layers and an image input size of 299 × 299, InceptionResNetV2 integrates convolutional filters of different sizes via residual connections. This use of residual connections avoids the degradation problems associated with deep networks and reduces training time.

	It consists of 19 layers, including 16 convolutional layers and 3 fully connected layers.
	Max-pooling is also used to reduce the volume size, and classification is performed using
	the last fully connected layer with softmax activation;
	• ResNet50 : is a modified version of ResNet or Residual Network. It consists of 49 convo-
	lution layers, 1 MaxPool layer and 1 medium pool layer. Each convolution block contains
	3 convolution layers, and each identification block also contains 3 convolution layers.
	ResNet50 has over 23 million adjustable parameters;
	• NASNet : the NASNetLarge model, based on the Neural Architecture architecture search
	network (NASNet), is designed using two cell types : normal normal cells and reduction
	cells. The default input size for NASNetLarge is 331x33;

• Xception : a proposal made by Chollet in 2016, the creator of the Keras library, represents an adaptation of Inception architectures. In Xception, Inception modules are replaced by depth-separable convolutions. Xception's results surpassed those of InceptionV3 in terms of accuracy in the Top-1 and Top-5, using the ImageNet dataset. The number of parameters in

Table 1 :

 1 Hyperparameters for different models.

	Parameters	Parameter values
	batch size	4, 8, 12 and 16
	optimizer	Adam et RMSprop
	learning rate	0.001, 0.00001(min_lr=0.0001)
		et 0.00003(min_lr=0.0003)
	betas(beta_1 and beta_2)	(0.9, 0.999)
	eps(epsilon)	1e-07
	weight decay	0
	momentum	0.0
	ema_momentum	0.99

Table 2

 2 shows the different results obtained by the eight models.

	CNN models	Batch size Precision Recall F1-score	Accuracy
		4	92.519	89.713 89.941 89.861 (0.3608)
	VGG19	8 12	93.164 92.824	90.966 91.083 91.054 (0.3512) 90.839 90.920 90.855 (0.3453)
		16	92.075	89.528 89.550 89.463 (0.3989)
		4	91.471	88.205 88.963 88.867 (0.3635)
	VGG16	8 12	93.726 92.737	92.180 92.172 92.048 (0.3154) 90.648 90.920 90.855 (0.3183)
		16	91.466	89.945 90.333 90.258 (0.3755)
		4	96.686	96.193 96.282 96.223 (0.2232)
	DenseNet201	8 12	96.790 97.057	96.368 96.477 96.462 96.477 96.421 (0.1918) 96.400 (0.17)
		16	97.554	97.202 97.260 97.217 (0.1352)
		4	92.681	90.207 90.235 90.258 (0.8402)
	InceptionResNetV2	8 12	91.428 93.212	88.849 89.159 89.066 (0.5553) 90.739 91.279 91.252 (0.4930)
		16	94.012	92.352 92.407 92.445 (0.5578)
		4	94.906	93.511 93.509 93.439 (0.5030)
	InceptionV3	8 12	94.346 93.400	93.035 93.040 93.042 (0.4374) 92.281 92.368 92.247 (0.4073)
		16	93.441	92.309 92.531 92.445 (0.3779)
		4	92.297	90.742 90.809 90.855 (0.5790)
	NASNet	8 12	93.240 93.120	91.696 91.553 91.650 (0.5016) 92.030 92.094 92.048 (0.4452)
		16	92.667	91.429 91.553 91.451 (0.4603)
		4	93.788	92.596 92.239 92.673 (0.2995)
	ResNet50	8 12	94.301 94.834	93.542 93.319 93.465 (0.3405) 94.292 94.168 94.257 (0.2869)
		16	95.054	94.260 94.210 94.257 (0.2119)
		4	93.115	90.862 91.115 91.054 (0.5123)
	Xception	8 12	93.431 92.655	92.149 92.211 92.247 (0.3052) 90.670 90.920 90.855 (0.4729)
		16	91.998	90.841 90.670 90.855 (0.3102)

Table 2 :

 2 Performance summary of the different architectures used.

Table 3 :

 3 Synthesis between current results and[START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] results for the eight architectures. [P=Precision, R=Recall, F= F1-score, A=Accuracy, Aut=Authors].

Paleoecology is the study of the complex relationships between living organisms, their physical environment and their evolution over time, using fossil, archaeological and sedimentological data.

VI CONCLUSION

The aim of this work was classify pollen grains from an annotated image dataset called POLLEN73S from Astolfi et al. [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF], and improve the performance of eight state-of-the-art CNNs implemented in [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF] for the classification of pollen grains from the Brazilian savannah (Cerrado), using convolutional neural networks (CNNs). We used the holdout cross-validation method with hyperparameters and techniques such as dropout, data augmentation and fine-tuning, in contrast to the 5-block cross-validation method used by Astolfi et al. [START_REF] Astolfi | POLLEN73S: An image dataset for pollen grains classification[END_REF]. The DenseNet201 and ResNet50 architectures outperformed the other CNNs tested, achieving performances of 97.217% and 94.257% respectively. Compared with the authors, they were also superior with 1.517% and 0.257% respectively in terms of accuracy. Our results are therefore relatively appreciable.
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