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COMPARISON THEOREMS FOR MULTI-DIMENSIONAL BSDES WITH JUMPS AND

APPLICATIONS TO CONSTRAINED STOCHASTIC LINEAR-QUADRATIC CONTROL

YING HU, XIAOMIN SHI, AND ZUO QUAN XU

ABSTRACT. In this paper, we, for the first time, establish two comparison theorems for multi-dimensional

backward stochastic differential equations with jumps. Our approach is novel and completely different

from the existing results for one-dimensional case. Using these and other delicate tools, we then construct

solutions to coupled two-dimensional stochastic Riccati equation with jumps in both standard and singu-

lar cases. In the end, these results are applied to solve a cone-constrained stochastic linear-quadratic and

a mean-variance portfolio selection problem with jumps. Different from no jump problems, the optimal

(relative) state processes may change their signs, which is of course due to the presence of jumps.

Keywords: Backward stochastic differential equations with jumps, multi-dimensional comparison

theorem, stochastic Riccati equation with jumps, cone-constrained linear-quadratic control, mean-

variance problem.
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1. INTRODUCTION

The study of backward stochastic differential equations (BSDEs, for short) can be dated back to

Bismut [3], who studied the linear case, as an adjoint equation in the Pontryagin stochastic maxi-

mum principle. The general Lipschitz continuous case was later resolved in the seminal paper of

Pardoux and Peng [28]. Since then, BSDEs have attracted strong interest of many researchers and

found widely applications in partial differential equations, stochastic control, stochastic differential

game and mathematical finance; see, e.g., [6, 8, 9, 10, 12, 16, 30]. In particular, the solvability of qua-

dratic BSDEs in one-dimensional case was firstly obtained in Kobylanski [20], and then generalized to

multi-dimensional case by [11, 15, 25, 38].

BSDEs that are driven by a Brownian motion and a Poisson random measure, which are named

as BSDE with jumps (BSDEJ) in this paper, were firstly tackled by Tang and Li [37], then followed

notably by Barles, Buckdahn and Pardoux [2], Royer [33], Quenes and Sulem [32] in the Lipschitz

case. Quadratic BSDEs with jumps and their applications in utility maximization problems have also

been investigated; see, e.g., Antonelli and Mancini [1], Kazi-Tani, Possamaı̈ and Zhou [17], Laeven and

Stadje [21], Morlais [26, 27] among many others. Please refer to Papapantoleon, Possamaı̈, Saplaouras

[29] for a synopsis of these topics.

Date: November 14, 2023.
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BSDEs arising from stochastic linear quadratic (LQ) control problems, called the stochastic Riccati

equations (SREs), form an important class of BSDEs. In these BSDEs, the first unknown variable

appears on the denominator and the second unknown variable grows quadratically in the generator.

These features distinguish them from those well-studied BSDEs with Lipschitz or quadratic growth

generators, so that they have to be studied by new methods.

Bismut [4] firstly found that a linear state feedback form optimal control for a stochastic LQ control

problem is available, provided that its associated SRE admits a solution in some suitable space. Unfor-

tunately he could not show the existence of such a solution in general. Nowadays numerous progresses

have been made in solving SREs. Kohlmann and Tang [19] resolved the existence and uniqueness

issues for one-dimensional SREs, then Tang [35, 36] resolved the matrix-valued case using the sto-

chastic maximum principle and dynamic programming method respectively. Sun, Xiong and Yong

[34] studied the indefinite case. Inspired by Tang’s [36] dynamic programming method, Zhang, Dong

and Meng [39] established the existence and uniqueness of solutions to SREs with jumps (SREJ). Li,

Wu and Yu [22] studied the indefinite case using a so-called relax compensator.

Motivated by the mean-variance (MV) portfolio selection problem with no-shorting constraints, Hu

and Zhou [16] studied cone-constrained stochastic LQ problem and found that the optimal control takes

a piecewise (0 is the unique segment point) linear state feedback form. The associated SRE is a two-

dimensional, but decoupled, BSDE. Hence it can be treated separately as two one-dimensional BSDEs.

The solvability was established with the aid of quadratic BSDE theory and truncation techniques. The

decoupling phenomenon lies in the fact that the optimal state process will not change its sign (namely

not cross 0), i.e. it will stay positive (resp. negative) if the initial state is positive (resp. negative). Dong

[7] generalized the model in [16] to incorporate a jump by the enlargement of filtration framework. The

corresponding SRE is a coupled two-dimensional BSDEJ, whose solvability is obtained by solving two

recursive systems of BSDEs driven only by Brownian motions. This decomposition approach works

only in the filtration enlargement theory; see also Kharroubi, Lim and Ngoupeyou [18], Hu, Shi and

Xu [14] for the unconstrained or regime switching case. Czichowsky and Schweizer [5] extended

the cone-constrained MV model to a general semi-martingale framework, but they can not solve the

two-dimensional SREJ. They claimed that “finding a solution by general BSDE techniques seems a

formidable challenge” in [5, Remark 4.8].

This paper is intended as an attempt to cope with the formidable challenge indicated in [5]. Our main

contribution is to resolve the solvability of a two-dimensional coupled SREJ in the Wiener-Poisson

world via pure BSDE techniques. Although one can consider the more general semi-martingale frame-

work, we will focus on the Wiener-Poisson world as SREJ in this case takes more concrete structures

for presentation and illustration. We establish the solvability for both standard and singular cases,

containing the SREJ emerging in the cone-constrained MV problem as an special example. Since the

existing approximation procedures in Kohlmann and Tang [19] and our previous work [13] can not be

applied to the present problem, we provide a new approximation procedure to achieve the goal.
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A crucial and novel tool used in the approximation approach is our new comparison theorems for

BSDEJs. We establish two comparison theorems which seem to be the first ones for multi-dimensional

case. The first one requires a locally Lipschitz condition for one generator (see Remark 2.3) and works

for bounded state processes, whereas the second one requires the globally Lipschitz condition for both

generators and works for square integrable state processes.

Most of existing comparison theorems for BSDEJs require the condition γ > −1 (see Remark 2.2)

or even stronger γ > −1 + ε in order to utilize the Girsanov theorem; see, e.g., Barles, Buckdahn

and Pardoux [2] and Royer [33]. To the best of our knowledge, Quenez and Sulem’s [32] comparison

theorem is the only one that relaxes the condition to γ ≥ −1. Without resort to the Girsanov theorem,

they used the conditional expectation representation of one-dimensional linear BSDEJs to establish

their comparison theorem. Nevertheless all of these existing comparison theorems for BSDEJs can

only deal with one-dimensional case. In our approximation procedure, however, the SREJ is a fully

coupled two-dimensional BSDEJ, therefore comparison theorems for multi-dimensional BSDEJs are

strongly appealing. It is worth pointing that the conditional expectation representation method used in

[32] cannot be applied to multi-dimensional BSDEJs. In this paper, we propose a completely different

approach to establish our comparison theorems for multi-dimensional BSDEJs for the first time. We

achieve the goal by directly analyzing ((δYt)
+)2 with the aid of the Meyer-Itô formula and utilizing a

tricky elementary inequality (Lemma 2.1) that works for γ ≥ −1. Note one cannot expect to extend

the results to the case γ < −1 since counter-examples do exist in this case; see [2, Remark 2.7].

With the help of the new comparison theorems for multi-dimensional BSDEJs, we can construct

solutions to the two-dimensional coupled SREJ in both standard and singular cases. We then apply the

result to solve a cone-constrained stochastic LQ problem with jumps and obtain the efficient portfolio

for a MV problem with jumps. It is worth pointing out that even without the cone-constraint, MV

problems with jumps have not been investigated thoroughly. Lim [23] studied such a problem, but

he assumed all the coefficients are predictable with respect to the Brownian filtration, rendered the

corresponding SRE exactly the same as that in the model without jumps. On the other hand, Zhang,

Dong and Meng [39] examined stochastic LQ problems with jumps, but they assumed the control

weight in the running cost is uniformly positive so that their result cannot solve the corresponding MV

problem where the control weight is 0. We will not only solve the MV problem with jumps, but also

incorporate convex cone-constraint, especially covering the famous no-shorting constraints. By adding

cone-constraint, the associated SREJ becomes a fully coupled two-dimensional BSDEJ, thus causing

notably nontrivial difficulty in its solvability.

The rest part of this paper is organized as follows. Section 2 is devoted to proving two comparison

theorems for multi-dimensional BSDEJs. In Section 3, we study a cone-constrained stochastic LQ

control problem with jumps and prove the existence and uniqueness of solution to the associated SREJ.

In Section 4, we solve a cone-constrained MV problem. Appendix A provides a heuristical derivation

of the SREJ. A lengthy and complementary proof of Theorem 3.1 is relegated to Appendix B.
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2. COMPARISON THEOREMS FOR MULTI-DIMENSIONAL BSDEJS

Let (Ω,F ,F,P) be a fixed complete filtered probability space. The filtration F = {Ft, t ≥ 0}

is generated by two independent random sources augmented by all P-null sets: one is a standard

n-dimensional Brownian motion Wt = (W1,t, . . . ,Wn,t)
⊤, and the other one is a Poisson random

measure N(dt, de) defined on R+ × E induced by a stationary Poisson point process with a stationary

compensator (intensity measure) given by ν(de) dt satisfying ν(E) < ∞, where E ⊆ Rℓ \ {0} is

a nonempty Borel subset of the ℓ-dimensional Euclidean space Rℓ. We use an increasing sequence

{Tn}n∈N to denote the jump times of underlying Poisson point process. The compensated Poisson

random measure is denoted by Ñ(dt, de). For the ease of notations, we only consider one-dimensional

Poisson random measure, although the results of this paper can be generalized to the multi-dimensional

case without essential difficulties. Throughout the paper, let T denote a fixed positive constant, P

denote the F-predictable σ-field on Ω× [0, T ], and B(E) denote the Borel σ-algebra of E .

We denote by Rℓ the set of ℓ-dimensional column vectors, by Rℓ
+ the set of vectors in Rℓ whose

components are nonnegative, by R
ℓ×n the set of ℓ × n real matrices, and by S

n the set of symmetric

n × n real matrices. Therefore, Rℓ ≡ Rℓ×1. For any vector Y , we denote Yi as its i-th component.

For any matrix M = (mij), we denote its transpose by M⊤, and its norm by |M | =
√∑

ij m
2
ij . If

M ∈ Sn is positive definite (resp. positive semidefinite), we write M > (resp. ≥) 0. We write A >

(resp. ≥) B if A,B ∈ S
n and A − B > (resp. ≥) 0. We use the standard notations x+ = max{x, 0}

and x− = max{−x, 0} for x ∈ R and define a set M = {1, 2, ..., ℓ}. We will use the elementary

inequality |a⊤b| ≤ c|a|2 + |b|2

2c
for any a, b ∈ R

n, c > 0 frequently throughout the paper without claim.

We use the following spaces throughout the paper:

L2
FT

(Ω;R) =
{
ξ : Ω → R

∣∣∣ ξ is FT -measurable, and E|ξ|2 < ∞
}
,

L∞
FT

(Ω;R) =
{
ξ : Ω → R

∣∣∣ ξ is FT -measurable, and essentially bounded
}
,

L2
F
(0, T ;R) =

{
φ : Ω× [0, T ] → R

∣∣∣ φ is P-measurable and E
∫ T

0
|φt|

2 dt < ∞
}
,

L∞
F (0, T ;R) =

{
φ : Ω× [0, T ] → R

∣∣∣ φ is P-measurable and essentially bounded
}
,

L2,ν(R) =
{
φ : E → R

∣∣∣ φ is B(E)-measurable and ||φ||2ν :=
∫
E
|φ(e)|2ν(de) < ∞

}
,

L∞,ν(R) =
{
φ : E → R

∣∣∣ φ is B(E)-measurable and essentially bounded w.r.t. dν
}
,

L2,ν
P (0, T ;R) =

{
φ : Ω× [0, T ]× E → R

∣∣∣ φ is P ⊗ B(E)-measurable

and E
∫ T

0

∫
E
|φt(e)|

2ν(de) dt < ∞
}
,

L∞,ν
P (0, T ;R) =

{
φ : Ω× [0, T ]× E → R

∣∣∣ φ is P ⊗ B(E)-measurable and

essentially bounded w.r.t. dP⊗ dt⊗ dν
}
,

S2
F
(0, T ;R) =

{
φ : Ω× [0, T ] → R

∣∣∣ (φt)0≤t≤T is càd-làg, F-adapted
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and E sup0≤t≤T |φt|
2 < ∞

}
,

S∞
F
(0, T ;R) =

{
φ : Ω× [0, T ] → R

∣∣∣ (φt)0≤t≤T is càd-làg, F-adapted

and essentially bounded
}
.

These definitions are generalized in the obvious way to the cases that R is replaced by R
n, Rn×ℓ or

Sn. Arguments s, t and ω, or statements “almost surely” (a.s.) and “almost everywhere” (a.e.), may be

suppressed for simplicity in many circumstances when no confusion occurs. We shall use c to represent

a generic positive constant which can be different from line to line. All the equations and inequalities

in subsequent analysis shall be understood in the sense that dP-a.s. or dν-a.e. or dP ⊗ dt-a.e. or

dP⊗ dt⊗ dν-a.e. etc.

In this paper, any ℓ-dimensional backward stochastic differential equation with jumps (BSDEJ) (on

[0, T ]) is characterized by a pair (ξ, f), in which ξ : Ω → Rℓ is called the terminal value which is an

FT -measurable random vector, and f : Ω× [0, T ]×Rℓ×Rn×ℓ×L2,ν(Rℓ) → Rℓ is called the generator

which is a P⊗B(Rℓ)⊗B(Rn×ℓ)⊗B(L2,ν(Rℓ))-measurable process. We call the BSDEJ ℓ-dimensional

as its state process is Rℓ-valued. We often rewrite in its component form for the ease of presentations.

2.1. Comparison theorem for bounded processes. We first prove a comparison theorem where the

state processes are essentially bounded.

Theorem 2.1. Suppose, for every i ∈ M,

(Yi, Zi,Φi), (Y i, Z i,Φi) ∈ S∞
F
(0, T ;R)× L2

F
(0, T ;Rn)× L2,ν

P (0, T ;R),

and they satisfy BSDEJs

Yi,t = ξi +

∫ T

t

fi(s, Ys−, Zi,s,Φs) ds

−

∫ T

t

Z⊤
i,s dWs −

∫ T

t

∫

E

Φi,s(e)Ñ(ds, de) dP⊗ dt-a.e.,(2.1)

and

Y i,t = ξi +

∫ T

t

f i(s, Y s−, Z i,s,Φs) ds

−

∫ T

t

Z
⊤

i,s dWs −

∫ T

t

∫

E

Φi,s(e)Ñ(ds, de) dP⊗ dt-a.e..(2.2)

Also suppose that, for all i ∈ M and s ∈ [0, T ],

(1) ξi ≤ ξi;
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(2) there exists a constant c > 0 such that

fi(s, Ys−, Zi,s,Φ1,s, · · · ,Φi,s, · · · ,Φℓ,s)

− fi(s, Ys−, Zi,s,Φ1,s, · · · ,Φi,s, · · · ,Φℓ,s)

≤ c

∫

E

(Φi,s(e)− Φi,s(e))
+ν(de) +

∫

E

|Φi,s(e)− Φi,s(e)|ν(de);

(3) there exists a constant c > 0 such that

fi(s, Ys−, Zi,s,Φ1,s, · · · ,Φi,s, · · · ,Φℓ,s)− fi(s, Y s−, Z i,s,Φs)

≤ c
(
|Yi,s− − Y i,s−|+

∑

j 6=i

(Yj,s− − Y j,s−)
+ + |Zi,s − Z i,s|

+
∑

j 6=i

∫

E

(Yj,s− + Φj,s(e)− Y j,s− − Φj,s(e))
+ν(de)

)
; and

(4) fi(s, Y s−, Zi,s,Φs) ≤ f i(s, Y s−, Zi,s,Φs).

Then Yi ≤ Y i for all i ∈ M.

To prove this theorem, we need the following critical elementary result.

Lemma 2.1. For all (x, y) ∈ R× R and c ≥ −1, we have

[(x+ y)+]2 − (x+)2 − 2(1 + c)x+y ≥ −(c2 ∨ 1)(x+)2.

Proof: There are three cases:

• If x ≤ 0, then

[(x+ y)+]2 − (x+)2 − 2(1 + c)x+y = [(x+ y)+]2 ≥ 0 = −(c2 ∨ 1)(x+)2.

• If y ≤ 0, then, since c ≥ −1,

[(x+ y)+]2 − (x+)2 − 2(1 + c)x+y ≥ [(x+ y)+]2 − (x+)2 ≥ −(x+)2 ≥ −(c2 ∨ 1)(x+)2.

• If x ≥ 0 and y ≥ 0, then

[(x+ y)+]2 − (x+)2 − 2(1 + c)x+y = y2 − 2cxy = (y − cx)2 − c2x2

≥ −(c2 ∨ 1)x2 = −(c2 ∨ 1)(x+)2.

The proof is complete. �

Proof of Theorem 2.1.

For t ∈ [0, T ] and i ∈ M, set

δYi,t = Yi,t − Y i,t, δZi,t = Zi,t − Z i,t, δΦi,t = Φi,t − Φi,t.
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Applying the Meyer-Itô formula [31, Chapter IV, Theorem 70] to (δYi,t)
+, we get,

d(δYi,t)
+ = −1{δYi,t−>0}[fi(t, Yt−, Zi,t,Φt)− f i(t, Y t−, Zi,t,Φt)] dt

+

∫

E

[(δYi,t− + δΦi,t(e))
+ − (δY i

i,t−)
+ − 1{δYi,t−>0}δΦi,t(e)]ν(de) dt+

1

2
dLi,t

+ 1{δYi,t−>0}δZ
⊤
i,t dWt +

∫

E

[(δYi,t− + δΦi,t(e))
+ − (δYi,t−)

+]Ñ(dt, de),

where Li,t is the local time of δYi,t at 0. Since δYi,t− dLi,t = 0, applying Itô’s formula to ((δYi,t)
+)2

yields

d((δYi,t)
+)2 = −2(δYi,t−)

+[fi(t, Yt−, Zi,t,Φt)− f i(t, Y t−, Zi,t,Φt)] dt + 1{δYi,t−>0}|δZi,t|
2 dt

+

∫

E

[((δYi,t− + δΦi,t(e))
+)2 − ((δYi,t−)

+)2 − 2(δYi,t−)
+δΦi,t(e)]ν(de) dt

+ 2(δYi,t−)
+δZ⊤

i,t dWt +

∫

E

[((δYi,t− + δΦi,t(e))
+)2 − ((δYi,t−)

+)2]Ñ(dt, de).(2.3)

Using the condition 4 and inserting two zero-sum terms, we get

fi(t, Yt−, Zi,t,Φt)− f i(t, Y t−, Zi,t,Φt)

≤ fi(t, Yt−, Zi,t,Φt)− fi(t, Y t−, Z i,t,Φt)

= [fi(t, Yt−, Zi,t,Φt)− fi(t, Yt−, Zi,t,Φ1,t, · · · ,Φi,t, · · · ,Φℓ,t)]

+ [fi(t, Yt−, Zi,t,Φ1,t, · · · ,Φi,t, · · · ,Φℓ,t)− fi(t, Y t−, Z i,t,Φt)].

By the conditions 2, the first difference on the right hand side (RHS) in above is upper bounded by
∫

E

γi,t(e)δΦi,t(e)ν(de),

where

γi,t(e) =




c if δΦi,t(e) ≥ 0;

−1 if δΦi,t(e) < 0.

By the conditions 3, the second difference on the RHS is upper bounded respectively by

c
(
|δYi,t−|+

∑

j 6=i

(δYj,t−)
+ + |δZi,t|+

∑

j 6=i

∫

E

(δYj,t− + δΦj,t(e))
+ν(de)

)
.

Using these estimates and ν(E) < ∞, we deduce that

2(δYi,t−)
+[fi(t, Yt−, Zi,t,Φt)− f i(t, Y t−, Zi,t,Φt)]

≤ c

ℓ∑

i=1

((δYi,t−)
+)2 + 1{δYi,t−>0}|δZi,t|

2 + 1{δYi,t−>0}

∑

j 6=i

∫

E

((δYj,t− + δΦj,t(e))
+)2ν(de)

+ 2(δYi,t−)
+

∫

E

γi,t(e)δΦi,t(e)ν(de).(2.4)
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Integrating from t to T in (2.3), taking conditional expectation and using (2.4), we obtain

((δYi,t)
+)2

≤ Et

∫ T

t

(
c

ℓ∑

i=1

((δYi,s−)
+)2 + 1{δYi,s−>0}

∑

j 6=i

∫

E

((δYj,s− + δΦj,s(e))
+)2ν(de)

)
ds

− Et

∫ T

t

∫

E

[
((δYi,s− + δΦi,s(e))

+)2 − ((δYi,s−)
+)2 − 2(1 + γi,s(e))(δYi,s−)

+δΦi,s(e)
]
ν(de) ds.

Because γi ∈ L∞,ν
P (0, T ;R) and γi ≥ −1, it follows from Lemma 2.1 that

(2.5) − [((δYi,s− + δΦi,s(e))
+)2 − ((δYi,s−)

+)2 − 2(1 + γi,s(e))(δYi,s−)
+δΦi,s(e)]

≤ (γi,s(e)
2 ∨ 1)((δYi,s−)

+)2 ≤ c((δYi,s−)
+)2.

Combining the above estimates and using ν(E) < ∞, we obtain

((δYi,t)
+)2 ≤ cEt

∫ T

t

ℓ∑

i=1

((δYi,s−)
+)2 ds +

∑

j 6=i

Et

∫ T

t

∫

E

((δYj,s− + δΦj,s(e))
+)2ν(de) ds,(2.6)

where the constant c is independent of t, T and i.

Note that

Et

∫ T

t

∫

E

((δYj,s− + δΦj,s)
+)2ν(de) ds = Et

∫ T

t

∫

E

((δYj,s− + δΦj,s(e))
+)2N(ds, de)

= Et

[ ∑

n∈N, t<Tn≤T

((δYj,Tn− + δΦj,Tn
(∆UTn

))+)2
]

= Et

[ ∑

n∈N, t<Tn≤T

((δYj,Tn
)+)2

]
,(2.7)

where Ut :=
∫ t

0

∫
E
zN(ds, de), ∆UTn

:= UTn
−UTn−, recalling that {Tn}n∈N denotes of jump times of

underlying Poisson point process. Substituting (2.7) into (2.6) yields,

((δYi,t)
+)2 ≤ cEt

∫ T

t

ℓ∑

i=1

((δYi,s−)
+)2 ds+

∑

j 6=i

Et

[ ∑

n∈N, t<Tn≤T

((δYj,Tn
)+)2

]
.

Since the jumps of δY are accountable, we can replace δYi,s− by δYi,s in the above integral to get

((δYi,t)
+)2 ≤ cEt

∫ T

t

ℓ∑

i=1

((δYi,s)
+)2 ds+

∑

j 6=i

Et

[ ∑

n∈N, t<Tn≤T

((δYj,Tn
)+)2

]
.(2.8)

For any constant h ∈ (0, T ], set

M(h) := ess sup
(t,i)∈[T−h,T ]×M

((δYi,t)
+)2,
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which is finite since δY is bounded. For any t ∈ [T − h, T ], we obtain from (2.8) that

((δYi,t)
+)2 ≤ c

∫ T

t

ℓ∑

i=1

M(h) ds+
∑

j 6=i

Et

[ ∑

n∈N, t<Tn≤T

M(h)
]

= cℓM(h)(T − t) +M(h)
∑

j 6=i

Et

∫ T

t

∫

E

1N(ds, de)

= cℓM(h)(T − t) +M(h)(ℓ− 1)ν(E)(T − t)

≤ (cℓ+ (ℓ− 1)ν(E))M(h)h.

Taking essential supreme over (t, i) ∈ [T − h, T ]×M on both sides leads to

M(h) ≤ (cℓ+ (ℓ− 1)ν(E))M(h)h.(2.9)

Setting h = min{1/(cℓ+(ℓ−1)ν(E)+1), T} from now on. It then follows from above that M(h) = 0,

thus δYi,t ≤ 0 for all t ∈ [T −h, T ]. Similarly, using δYi,T−h ≤ 0 and repeating the above argument on

[0∨ (T −2h), T −h], one can get δYi,t ≤ 0 for all t ∈ [0∨ (T −2h), T −h]. Repeating this procedure,

the desired comparison result follows. �

Remark 2.1. If the inequalities in the conditions 1 and 4 are reversed, then so is the conclusion.

Remark 2.2. It is not hard to see that the condition 2 is equivalent to that there exists a process

γi ∈ L∞,ν
P (0, T ;R) with γi ≥ −1 such that

fi(s, Ys−, Zi,s,Φ1,s, · · · ,Φi,s, · · · ,Φℓ,s)

− fi(s, Ys−, Zi,s,Φ1,s, · · · ,Φi,s, · · · ,Φℓ,s)

≤

∫

E

γi,s(e)(Φi,s(e)− Φi,s(e))ν(de).

Most of existing comparison theorems for BSDEJs require the condition γ > −1 or even stronger

γ > −1 + ε in order to utilize the Girsanov theorem; see, e.g., Barles, Buckdahn and Pardoux [2] and

Royer [33]. Our requirement, namely γ ≥ −1, is the same as Quenez and Sulem’s [32]. But all these

existing comparison theorems work for one-dimensional BSDEJs only.

Remark 2.3. The condition 3 holds if, for every K > 0, there exists a constant c > 0 (depending on

K) such that

fi(s, y, z, φ)− fi(s, y, z, φ)

≤ c
(
|yi − yi|+

∑

j 6=i

(yj − yj)
+ + |z − z|+

∑

j 6=i

∫

E

(yj − yj + φj(e)− φj(e))
+ν(de)

)

holds for all (y, z, φ) and (y, z, φ) ∈ Rℓ × Rn × L2,ν(Rℓ) satisfying φi ≡ φi and |y|+ |y| ≤ K. Since

|y|+ |y| ≤ K, it is a locally Lipschitz condition w.r.t y. The condition implies fi is increasing w.r.t yj
and φj for every j 6= i. Also, the term

∑
j 6=i(yj − yj)

+ can be removed if there does exist jump, i.e.

ν(E) > 0.
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Remark 2.4. We call a generator f is Lipschitz in (y, z, φ) with Lipschitz constant c if

|f(ω, t, y, z, φ)− f(ω, t, y, z, φ)| ≤ c(|y − y|+ |z − z|+ ||φ− φ||ν) dP⊗ dt-a.e.

holds for all (y, z, φ), (y, z, φ) ∈ Rℓ × Rn×ℓ × L2,ν(Rℓ). Then the condition 3 holds if

(1) fi(s, y, z, φ) is Lipschitz in (y, z, φ);

(2) fi(s, y, z, φ) is increasing w.r.t yj for every j 6= i; and

(3) there exists a constant c > 0 such that

fi(s, Ys−, Zi,s,Φ1,s, ...,Φi−1,s,Φi,s,Φi+1,s, ...,Φℓ,s)

− fi(s, Y 1,s−, ..., Y i−1,s−, Yi,s−, Y i+1,s−, , ..., Y ℓ,s−, Zi,s−,Φs−)

≤ c
∑

j 6=i

∫

E

(Yj,s− + Φj,s(e)− Y j,s− − Φj,s(e))
+ν(de).

Remark 2.5. In (2.5) the condition γ ∈ L∞,ν
P (0, T ;Rℓ) can be replaced by the following weaker one:

there exist constants 0 < h, ε < 1 such that

ess sup
t∈[0,T ]

Et

∫ T∧(t+h)

t

∫

E

|γs(e)|
2ν(de) ds ≤ 1− ε.

This condition is satisfied, for instance, when
∫
E
|γ·(e)|

2ν(de) ∈ L∞
F
(0, T ;R). Indeed, the above

condition implies, for t ∈ [T − h, T ],

Et

∫ T

t

((δYi,s−)
+)2

∫

E

(γi,s(e)
2 ∨ 1)ν(de) ds ≤ M(h) Et

∫ T

t

∫

E

(γi,s(e)
2 + 1)ν(de) ds

≤ M(h)(1 − ε+ hν(E)) ≤ (1− ε/2)M(h),

by choosing h small enough. This together with (2.3) and (2.4) will lead to an estimate similar to (2.9)

in the above proof.

2.2. Comparison theorem for square integrable processes. Theorem 2.1 requires the state pro-

cesses to be bounded, which may be too restrictive for applications. The following result relaxes this

assumption to square integrable processes, but we have to in addition assume that both f and f are

globally Lipschitz.

Theorem 2.2. We shall use the same notations as in Theorem 2.1. Suppose, for all i ∈ M,

(Yi, Zi,Φi), (Y i, Zi,Φi) ∈ S2
F
(0, T ;R)× L2

F
(0, T ;Rn)× L2,ν

P (0, T ;R),

and they satisfy the BSDEJs (2.1) and (2.2). Also suppose that, for every i ∈ M,

(1) the conditions 1, 2, 3 and 4 hold;

(2) fi(·, 0, 0, 0) and f i(·, 0, 0, 0) ∈ L2
F
(0, T ;R);

(3) both fi and f i are Lipschitz in (y, z, φ).

Then Yi ≤ Y i for all i ∈ M.
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Proof: For each m ≥ 1 and i ∈ M, we denote

ξmi = ξi1|ξ|+|ξ|≤m, f
m
i (t, y, z, φ) = fi(t, y, z, φ)1|f(t,0,0,0)|+|f(t,0,0,0)|≤m,

ξ
m

i = ξi1|ξ|+|ξ|≤m, f
m

i (t, y, z, φ) = f i(t, y, z, φ)1|f(t,0,0,0)|+|f(t,0,0,0)|≤m.

Note that ξmi , ξ
m

i , fm
i (·, 0, 0, 0) and f

m

i (·, 0, 0, 0) are bounded by m and the generators fm =

(fm
1 , ..., fm

ℓ ) and f
m
= (f

m

1 , ..., f
m

ℓ ) are both Lipschitz in (y, z, φ) with the same Lipschitz constant as

f and f . It then follows from [37, Theorem 2.4] or [2, Theorem 2.1, Proposition 2.2] that the following

BSDEJs:

Y m
i,t = ξmi +

∫ T

t

fm
i (s, Y m

s−, Z
m
i,s,Φ

m
s ) ds

−

∫ T

t

(Zm
i,s)

⊤ dWs −

∫ T

t

∫

E

Φm
i,s(e)Ñ(ds, de) dP⊗ dt-a.e., i ∈ M,

and

Y
m

i,t = ξ
m

i +

∫ T

t

f
m

i (s, Y
m

s−, Z
m

i,s,Φ
m

s ) ds

−

∫ T

t

(Z
m

i,s)
⊤ dWs −

∫ T

t

∫

E

Φ
m

i,s(e)Ñ(ds, de) dP⊗ dt-a.e., i ∈ M,

admit unique solutions (Y m, Zm,Φm) and (Y
m
, Z

m
,Φ

m
) respectively, such that

(Y m
i , Zm

i ,Φm
i ), (Y

m

i , Z
m

i ,Φ
m

i ) ∈ S2
F
(0, T ;R)× L2

F
(0, T ;Rn)× L2,ν

P (0, T ;R) for all i ∈ M.

We temporally suppose that

Y m
i , Y

m

i ∈ S∞
F (0, T ;R) for all i ∈ M.(2.10)

Then applying Theorem 2.1 leads to

Y m
i ≤ Y

m

i for all i ∈ M.(2.11)

From [2, Proposition 2.2], we know there is constant c > 0 independent of m such that

E

[
sup

0≤t≤T

|Yt − Y m
t |2

]
≤ cE

[
|ξ − ξm|2 +

∫ T

0

|f(t, Yt, Zt,Φt)− fm(t, Yt, Zt,Φt)|
2 dt

]
,

E

[
sup

0≤t≤T

|Y t − Y
m

t |
2
]
≤ cE

[
|ξ − ξ

m
|2 +

∫ T

0

|f(t, Y t, Zt,Φt)− f
m
(t, Y t, Zt,Φt)|

2 dt
]
.

These estimates together with the definitions of ξm, ξ
m
, fm, f

m
and the dominated convergence theo-

rem lead to

lim
m→∞

E

[
sup

0≤t≤T

|Yt − Y m
t |2 + sup

0≤t≤T

|Y t − Y
m

t |
2
]
= 0.
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Applying the elementary inequalities (x+)2 ≤ 2(y+)2 + 2(x− y)2, (x+ y)2 ≤ 2x2 +2y2 for x, y ∈ R

and (2.11), we have

E

[
sup

0≤t≤T

ℓ∑

i=1

[(Yi,t − Y i,t)
+]2

]

≤ E

[
2 sup
0≤t≤T

ℓ∑

i=1

[(Y m
i,t − Y

m

i,t)
+]2 + 2 sup

0≤t≤T

ℓ∑

i=1

(Yi,t − Y m
i,t + Y

m

i,t − Y i,t)
2
]

= E

[
2 sup
0≤t≤T

ℓ∑

i=1

(Yi,t − Y m
i,t + Y

m

i,t − Y i,t)
2
]

≤ E

[
4 sup
0≤t≤T

ℓ∑

i=1

(Yi,t − Y m
i,t )

2 + 4 sup
0≤t≤T

ℓ∑

i=1

(Y
m

i,t − Y i,t)
2
]
.

Sending m → ∞ in the above, we get the desired result Yi ≤ Y i for all i ∈ M.

It remains to establish (2.10). To this end, let β > 0 be a large constant to be chosen later. Applying

Itô’s formula to eβt(Y m
i,t )

2, for each i ∈ M, yields

eβt(Y m
i,t )

2 + Et

∫ T

t

eβs
(
β(Y m

i,s )
2 + |Zm

i,s|
2 + ||Φm

i,s||
2
ν

)
ds

= Et[e
βT (ξmi )2] + Et

∫ T

t

2eβsY m
i,s−f

m
i (s, Y m

s−, Z
m
i,s,Φ

m
s ) ds

≤ m2eβT + Et

∫ T

t

2eβs|Y m
s−||f

m
i (s, Y m

s−, Z
m
i,s,Φ

m
s )− fm

i (s, 0, 0, 0)| ds

+ Et

∫ T

t

2eβs|Y m
s−||f

m
i (s, 0, 0, 0)| ds

≤ m2eβT + Et

∫ T

t

2eβs|Y m
s−|c

(
|Y m

s−|+ |Zm
i,s|+ ||Φm

s ||ν

)
ds

+ Et

∫ T

t

eβs|Y m
s−|

2 + Et

∫ T

t

eβs|fm
i (s, 0, 0, 0)|2 ds

≤ m2(1 + T )eβT + Et

∫ T

t

eβs
(
c|Y m

s−|
2 + |Zm

i,s|
2 +

1

ℓ
||Φm

s ||
2
ν

)
ds,

where the last constant c does not depend on t, β and i. Canceling the common terms involving |Zm
i,s|

2,

we get

eβt(Y m
i,t )

2 + Et

∫ T

t

eβs
(
β(Y m

i,s)
2 + ||Φm

i,s||
2
ν

)
ds

≤ m2(1 + T )eβT + Et

∫ T

t

eβs
(
c|Y m

s−|
2 +

1

ℓ
||Φm

s ||
2
ν

)
ds.
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Summing i from 1 to ℓ gives

eβt|Y m
t |2 + Et

∫ T

t

eβs
(
β|Y m

t |2 + ||Φm
t ||

2
ν

)
ds

≤ ℓm2(1 + T )eβT + Et

∫ T

t

eβs
(
cℓ|Y m

s−|
2 + ||Φm

s ||ν

)
ds

= ℓm2(1 + T )eβT + Et

∫ T

t

eβs
(
cℓ|Y m

s |2 + ||Φm
s ||ν

)
ds,

where the last equation is due to the fact that the jumps of Y are accountable. By setting β = cℓ and

canceling the common integrals in the above estimate, we obtain Y m ∈ S∞
F
(0, T ;Rℓ). The assertion

for (Y
m

i , Z
m

i ,Φ
m

i ) in (2.10) can be similarly proved. This completes the proof. �

3. A STOCHASTIC LQ CONTROL PROBLEM WITH JUMPS AND THE RELATED TWO-DIMENSIONAL

BSDEJ

3.1. Cone-constrained stochastic LQ control with jumps. Consider the following R-valued linear

stochastic differential equation (SDE):





dXt =
[
AtXt− +B⊤

t ut

]
dt+ [CtXt− +Dtut]

⊤ dWt

+
∫
E

[
Et(e)Xt− + Ft(e)

⊤ut

]
Ñ(dt, de), t ∈ [0, T ],

X0 = x,

(3.1)

where A, B, C, D are all P-measurable processes, and E(·), F (·) are P⊗B(E)-measurable stochastic

processes of suitable size, x ∈ R is known.

Let Π be a given closed cone in Rm, so if u ∈ Π, then λu ∈ Π for all λ ≥ 0. It is used to represent

the constraint set for controls. The class of admissible controls is defined as the set

U :=
{
u ∈ L2

F(0, T ;R
m)

∣∣∣ ut ∈ Π, dP⊗ dt-a.e.
}
.

If u ∈ U , then (3.1) admits a unique solution X , and we call (X, u) an admissible pair.

The cone-constrained stochastic LQ problem is stated as follows:



Minimize J(x, u)

subject to (X, u) is admissible for (3.1),
(3.2)

where the cost functional is given as the following quadratic form

J(x, u) :=E

[ ∫ T

0

(
QtX

2
t + u⊤

t Rtut + 2XtS
⊤
t ut

)
dt+GX2

T

]
.(3.3)

The associated value function is defined as

V (x) := inf
u∈U

J(x, u).



14 HU, SHI, AND XU

Problem (3.2) is said to be solvable (at x), if there exists a control u∗ ∈ U such that

−∞ < J(x, u∗) ≤ J(x, u), ∀ u ∈ U ,

in which case, u∗ is called an optimal control for problem (3.2), and the optimal value is

V (x) = J(x, u∗).

Our aim is to solve problem (3.2).

We put the following assumptions on the coefficients in this section.

Assumption 3.1 (Bounded coefficients). It holds that




A ∈ L∞
F
(0, T ;R), B ∈ L∞

F
(0, T ;Rm), C ∈ L∞

F
(0, T ;Rn),

D ∈ L∞
F
(0, T ;Rn×m), E ∈ L∞,ν

P (0, T ;R), F ∈ L∞,ν
P (0, T ;Rm),

Q ∈ L∞
F
(0, T ;R+), R ∈ L∞

F
(0, T ; Sm), S ∈ L∞

F
(0, T ;Rm), G ∈ L∞

FT
(Ω;R+).

Assumption 3.2 (Standard case). It holds that
(

R S
S⊤ Q

)
≥ 0, and there exists a constant δ > 0 such

that R ≥ δ1m, where 1m denotes the m-dimensional identity matrix.

Assumption 3.3 (Singular case). It holds that
(

R S
S⊤ Q

)
≥ 0 and there exists a constant δ > 0 such that

G ≥ δ and D⊤D +
∫
E
F (e)F (e)⊤ν(de) ≥ δ1m.

3.2. Coupled SRE with jumps. Nowadays, it is well known that solutions to stochastic LQ problems

depend heavily on the solvability of the related SREs. We now introduce the associated SRE for our

problem (3.2).1

For (ω, t, v, Pi,Λ,Γi) ∈ Ω×[0, T ]×Π×R×Rm×L∞,ν(R), i = 1, 2 define the following mappings:

H1(ω, t, v, P1, P2,Λ,Γ1,Γ2) := v⊤(R + P1D
⊤D)v + 2(P1(B +D⊤C) +D⊤Λ + S)⊤v

+

∫

E

[
(P1 + Γ1)

(
((1 + E + F⊤v)+)2 − 1

)
− 2P1(E + F⊤v)

+ (P2 + Γ2)((1 + E + F⊤v)−)2
]
ν(de),

H2(ω, t, v, P1, P2,Λ,Γ1,Γ2) := v⊤(R + P2D
⊤D)v − 2(P2(B +D⊤C) +D⊤Λ + S)⊤v

+

∫

E

[
(P2 + Γ2)

(
((−1 −E + F⊤v)−)2 − 1

)
+ 2P2(−E + F⊤v)

+ (P1 + Γ1)Γ((−1− E + F⊤v)+)2
]
ν(de),

and set

H∗
1 (ω, t, P1, P2,Λ,Γ1,Γ2) := inf

v∈Π
H1(ω, t, v, P1, P2,Λ,Γ1,Γ2),(3.4)

H∗
2 (ω, t, P1, P2,Λ,Γ1,Γ2) := inf

v∈Π
H2(ω, t, v, P1, P2,Λ,Γ1,Γ2).(3.5)

1We will give a heuristic derivation in Appendix A for the readers’ convenience. See also Dong [7] for a special SRE

with single jump stems from the theory of filtration enlargement.
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The associated SRE for our problem (3.2) is given as follows:




dP1,t = −
[
(2A+ C⊤C)P1,t− + 2C⊤Λ1,t +Q+H∗

1 (t, P1,t−, P2,t−,Λ1,t,Γ1,t,Γ2,t)
]
dt

+Λ⊤
1,t dW +

∫
E
Γ1,t(e)Ñ(dt, de),

dP2,t = −
[
(2A+ C⊤C)P2,t− + 2C⊤Λ2,t +Q+H∗

2 (t, P1,t−, P2,t−,Λ2,t,Γ1,t,Γ2,t)
]
dt

+Λ⊤
2,t dW +

∫
E
Γ2,t(e)Ñ(dt, de),

P1,T = G, P2,T = G,

P1,t ≥ 0, P1,t− + Γ1,t ≥ 0, P2,t ≥ 0, P2,t− + Γ2,t ≥ 0.

(3.6)

This is a new two-dimensional coupled nonlinear BSDEJ.

Remark 3.1. Hu and Zhou [16] studied a cone-constrained LQ problem without jumps; the associated

SREs [16, Eq. (3.5) and (3.6)] are decoupled, so that one can solve P1 and P2 separately. As is well-

known P1 and P2 correspond to the optimal value with positive and negative initial state. When there

is no jump in the model, the optimal state process does not change sign, so that only one of P1 and P2

is involved. Therefore, they are decoupled.

Things become notably different in models with jumps. Because of jumps, the sign of the optimal

state process may switch between positive and negative values, so P1 and P2 are coupled together and

one cannot treat them separately. So our SRE (3.6) is actually a system of coupled BSDEJs whose

solvability is far from trivial compared to the decoupled BSDEJs in [16, Eq. (3.5) and (3.6)].

If all the coefficients in Assumption 3.1 are predictable with respect to the Brownian filtration, then

Γ1 = Γ2 = 0 and the SRE becomes a two-dimensional coupled BSDE without jumps. Even without

jumps, the BSDE is still new and cannot be covered by existing results on multi-dimensional BSDEs;

see, e.g., Fan, Hu and Tang [11], Hu and Tang [15].

Remark 3.2. If Π is symmetric, namely, −v ∈ Π whenever v ∈ Π, then H∗
1 = H∗

2 and (3.6) will

degenerate to one equation since (P1,Λ1,Γ1) = (P2,Λ2,Γ2). In particular, if there is no control

constraint, that is, Π = R
m, then both H∗

1 and H∗
2 are equal to

(P + Γ)E2 + 2ΓE +
(
P (B +D⊤C) +D⊤Λ + S +

∫

E

((P + Γ)E + Γ)Fν(de)
)⊤

×
(
R + PD⊤D +

∫

E

(P + Γ)FF⊤ν(de)
)−1

×
(
P (B +D⊤C) +D⊤Λ + S +

∫

E

((P + Γ)E + Γ)Fν(de)
)
.

Under Π = Rm, Zhang, Dong and Meng [39] addressed the solvability of the matrix-valued SREJ

under the assumption R ≥ δ1m and S ≡ 0. By contrast, we will solve the BSDEJ (3.6) in both

standard and singular cases for general cone Π.

Definition 3.1. A stochastic process (P1,Λ1,Γ1, P2,Λ2,Γ2) is called a solution to the BSDEJ (3.6) if it

satisfies (3.6), and (Pi,Λi,Γi) ∈ S∞
F
(0, T ;R)× L2

F
(0, T ;Rm)× L∞,ν

P (0, T ;R), i = 1, 2. The solution
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is called nonnegative if Pi ≥ 0, and called uniformly positive if Pi ≥ c for some deterministic constant

c > 0, i = 1, 2.

3.3. Existence of solution to the BSDEJ (3.6). Dong [7] constructed a solution to a SRE with single

jump using two recursive systems of BSDEs driven only by Brownian motions. His decomposition

approach is tailor made in the filtration enlargement framework, hence fails in the Poisson random

measure model which accommodates probably accountable jumps.

Czichowsky and Schweizer [5] characterized the optimal value process of a cone-constrained mean-

variance problem in terms of a coupled system of BSDEs [5, Eq.(4.18)] in a semimartingale model.

They claimed in [5, Remark 4.8] that “Due to the coupling term coming from h, the BSDE system

(4.18) is very complicated. It has a nonlinear non-Lipschitz generator plus a generator with jumps, so

that finding a solution by general BSDE techniques seems a formidable challenge”. We now respond

to this formidable challenge in the Wiener-Poisson world by providing a proof of the existence of

solution to (3.6) by pure BSDE techniques.

Theorem 3.1 (Existence in Standard case). Suppose Assumptions 3.1, 3.2 hold, then the BSDEJ (3.6)

admits a nonnegative solution (P1,Λ1,Γ1, P2,Λ2,Γ2).

Proof: For k = 1, 2, ..., define maps

Hk
1 (ω, t, P1, P2,Λ1,Γ1,Γ2) := inf

v∈Π,|v|≤k
H1(ω, t, v, P1, P2,Λ1,Γ1,Γ2),(3.7)

Hk
2 (ω, t, P1, P2,Λ2,Γ1,Γ2) := inf

v∈Π,|v|≤k
H2(ω, t, v, P1, P2,Λ2,Γ1,Γ2).(3.8)

Then they are uniformly Lipschitz in (P1,Λ1,Γ1, P2,Λ2,Γ2) and decreasingly approach to

H∗
1 (ω, t, P1,Λ1,Γ1, P2,Γ2) and H∗

2 (ω, t, P2,Λ2,Γ2, P1,Γ1) respectively as k goes to infinity.

For each k, the following BSDE





dP k
1,t = −

[
(2A+ C⊤C)P k

1,t− + 2C⊤Λk
1,t +Q +Hk

1 (t, P
k
1,t−, P

k
2,t−,Λ

k
1,t,Γ

k
1,t,Γ

k
2,t)

]
dt

+(Λk
1,t)

⊤ dW +
∫
E
Γk
1,t(e)Ñ(dt, de),

dP k
2,t = −

[
(2A+ C⊤C)P k

2,t− + 2C⊤Λk
2,t +Q +Hk

2 (t, P
k
1,t−, P

k
2,t−,Λ

k
2,t,Γ

k
1,t,Γ

k
2,t)

]
dt

+(Λk
2,t)

⊤ dW +
∫
E
Γk
2,t(e)Ñ(dt, de),

P k
1,T = G, P k

2,T = G,

(3.9)

is a two-dimensional BSDEJ with a Lipschitz generator, so by [37, Lemma 2.4], it admits a unique

solution (P k
1 ,Λ

k
1,Γ

k
1, P

k
2 ,Λ

k
2,Γ

k
2) such that

(P k
i ,Λ

k
i ,Γ

k
i ) ∈ S2

F(0, T ;R)× L2
F(0, T ;R

n)× L2,ν
P (0, T ;R), i = 1, 2.
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From the definition of Hk
1 , we have

Hk
1 (t, P1, P2,Λ1,Γ1,Γ2)−Hk

1 (t, P1, P
′
2,Λ1,Γ1,Γ

′
2)

≤ sup
v∈Π,|v|≤k

∫

E

((1 + E + F⊤v)−)2(P2 + Γ2(e)− P ′
2 − Γ′

2(e))ν(de)

≤ ck

∫

E

(P2 + Γ2(e)− P ′
2 − Γ′

2(e))
+ν(de),

and

Hk
1 (t, P1, P2,Λ1,Γ1,Γ2)−Hk

1 (t, P1, P2,Λ1,Γ
′
1,Γ2)

≤ sup
v∈Π,|v|≤k

∫

E

(Γ1(e)− Γ′
1(e))

(
((1 + E + F⊤v)+)2 − 1

)
ν(de)

≤ sup
v∈Π,|v|≤k

∫

E

(Γ1(e)− Γ′
1(e))((1 + E + F⊤v)+)2ν(de) +

∫

E

|Γ1(e)− Γ′
1(e)|ν(de)

≤ ck

∫

E

(Γ1(e)− Γ′
1(e))

+ν(de) +

∫

E

|Γ1(e)− Γ′
1(e)|ν(de),

where ck < ∞ is defined as

ck = ess sup
v∈Π,|v|≤k

|1 + E + F⊤v|2, ν(de)-a.e..

Similar estimates for Hk
2 can be established. Hence according to Theorem 2.2, P k

i is decreasing in k,

for i = 1, 2.

Next, we show that the sequence {P k
i }k=1,2,... is nonnegative and uniformly bounded from above,

for i = 1, 2.

From Assumption 3.1, there exists a constant c > 0 such that

2A+ C⊤C +

∫

E

E(e)2ν(de) ≤ c, Q ≤ c, G ≤ c.

It is easy to check that (P 1,t,Λ1,t,Γ1,t) = (P 2,t,Λ2,t,Γ2,t) = ((c + 1)ec(T−t) − 1, 0, 0) satisfies the

following two-dimensional BSDEJ





dP 1 = −
[
cP 1 + C⊤Λ1 + c +

∫
E

(
Γ1

(
((1 + E)+)2)− 1

)
+ Γ2((1 + E)−)2

)
ν(de)

]
dt

+Λ
⊤

1 dW +
∫
E
Γ1(e)Ñ(dt, de),

dP 2 = −
[
cP 2 + C⊤Λ2 + c +

∫
E

(
Γ2

(
((1 + E)+)2)− 1

)
+ Γ2((1 + E)−)2

)
ν(de)

]
dt

+Λ
⊤

2 dW +
∫
E
Γ2(e)Ñ(dt, de),

P 1,T = c, P 2,T = c.

(3.10)
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By the definition of Hk
1 , we have

Hk
1 (t, P 1, P 2,Λ1,Γ1,Γ2) ≤ H1(t, 0, P 1, P 2,Λ1,Γ1,Γ2)

=

∫

E

(
P 1E

2 + Γ1

(
((1 + E)+)2)− 1

)
+ Γ1((1 + E)−)2

)
ν(de),

so

(2A+ C⊤C)P 1 + 2C⊤Λ1 +Q +Hk
1 (t, P 1, P 2,Λ1,Γ1,Γ2)

≤ cP 1 + C⊤Λ1 + c+

∫

E

(
Γ1

(
((1 + E)+)2)− 1

)
+ Γ1((1 + E)−)2

)
ν(de).

Similarly, we have

(2A+ C⊤C)P 2 + 2C⊤Λ2 +Q +Hk
2 (t, P 1, P 2,Λ2,Γ1,Γ2)

≤ cP 2 + C⊤Λ2 + c+

∫

E

(
Γ2

(
((1 + E)+)2)− 1

)
+ Γ2((1 + E)−)2

)
ν(de).

Keeping the above two inequalities in mind, applying Theorem 2.2 to BSDEJs (3.9) and (3.10), we

have for i = 1, 2, k = 1, 2, ...

P k
i,t ≤ P i,t ≤ M,(3.11)

where M := (c+ 1)ecT − 1.

On the other hand, notice that (P 1,t,Λ1,t,Γ1,t) = (P 2,t,Λ2,t,Γ2,t) := (0, 0, 0) satisfies




dP = Λ⊤ dW +

∫
E
Γ(e)Ñ(dt, de),

P T = 0,

and

(2A+ C⊤C)P 1 + 2C⊤Λ1 +Q +Hk
1 (t, P 1, P 2,Λ1,Γ1,Γ2)

≥ Q+ inf
v∈Rm

(v⊤Rv + 2S⊤v) = Q− S⊤R−1S ≥ 0,

thanks to Assumption 3.2. Hence, by Theorem 2.2 again,

P k
i,t ≥ P t = 0, i = 1, 2, k = 1, 2, ...(3.12)

Notice, for i = 1, 2,

E

∫ T

0

∫

E

1{P k
i,t−

+Γk
i,t

(e)<0}ν(de) dt = E

∫ T

0

∫

E

1{P k
i,t−

+Γk
i,t

(e)<0}N(dt, de)

= E

[ ∑

n∈N,Tn≤T

1{P k
i,Tn−

+Γk
i,Tn

(−∆UTn )<0}

]

= E

[ ∑

n∈N,Tn≤T

1{P k
i,Tn

<0}

]
= 0,
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where Ut =
∫ t

0

∫
E
eN(dt, de) and ∆UTn

= UTn
− UTn−, hence,

P k
i,t− + Γk

i,t ≥ 0.(3.13)

Similarly, we can establish

P k
i,t− + Γk

i,t ≤ M.(3.14)

Now we obtain

−M ≤ −P k
i,t− ≤ Γk

i,t ≤ M − P k
i,t− ≤ M.

Hence, Γk
i , k = 1, 2, · · · , are uniformly bounded by M , and thus belong to L∞,ν

P (0, T ;R).

Since P k
i is decreasing w.r.t. k, we can define Pi,t := limk→∞ P k

i,t, i = 1, 2. Combining (3.11) and

(3.12), it follows

0 ≤ Pi,t ≤ M, i = 1, 2, t ∈ [0, T ].

Applying Itô’s formula to (P k
1,t)

2, we deduce that





d(P k
1,t)

2 =
{
− 2P k

1

[
(2A+ C⊤C)P k

1,t− + 2C⊤Λk
1,t +Q +Hk

1 (t, P
k
1,t−, P

k
2,t−,Λ

k
1,t,Γ

k
1,t,Γ

k
2,t)

]

+|Λk
1|

2 +
∫
E
Γk
1(e)

2ν(de)
}
dt

+2P k
1 (Λ

k
1)

⊤ dW +
∫
E
[(P k

1,t− + Γk
1,t(e))

2 − (P k
1,t−)

2]Ñ(dt, de),

(P k
1,T )

2 = G2.

Since 0 ≤ P k
i , P

k
i + Γk

i ≤ M, i = 1, 2, and

Hk
1 ≤

∫

E

[
(P1 + Γ1)

(
((1 + E)+)2 − 1

)
− 2P1E + (P2 + Γ2)((1 + E)−)2

]
ν(de) ≤ c,

by taking expectation on both sides in above and integrating over [0, T ], we have

(P k
1,0)

2 +
1

2
E

∫ T

0

|Λk
1|

2 ds+ E

∫ T

0

∫

E

Γk
1(e)

2ν(de) ds ≤ c,(3.15)

where c > 0 is a constant independent of k. Therefore, the sequence (Λk
1,Γ

k
1), k = 1, 2, · · · , is

bounded in L2
F
(0, T ;Rn) × L2,ν

P (0, T ;R), thus we can extract a subsequence (which is still denoted

by (Λk
1,Γ

k
1)) converging in the weak sense to some (Λ1,Γ1) ∈ L2

F
(0, T ;Rn) × L2,ν

P (0, T ;R). Similar

considerations applying to (P k
2,t)

2 yield some (Λ2,Γ2) ∈ L2
F
(0, T ;Rn) × L2,ν

P (0, T ;R) which is the

weak limit of (Λk
2,Γ

k
2).

Following Kobylanski’s argument [20, Proposition 2.4] (see also Antonelli and Mancini [1, The-

orem 1], Kohlmann and Tang [19, Theorem 2.1]), we establish in Appendix B the following strong

convergence:

Lemma 3.1. It holds that

lim
k→∞

E

∫ T

0

|Λk
i − Λi|

2 dt = 0, lim
k→∞

E

∫ T

0

∫

E

|Γk
i − Γi|

2ν(de) dt = 0, i = 1, 2.(3.16)

Furthermore, (P1,Λ1,Γ1, P2,Λ2,Γ2) is a nonnegative solution to the BSDEJ (3.6).
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This completes the proof. �

Theorem 3.2 (Existence in Singular case). Suppose Assumptions 3.1, 3.3 hold, then the BSDEJ (3.6)

admits a uniformly positive solution (P1,Λ1,Γ1, P2,Λ2,Γ2).

Proof: Similar to the proof of Theorem 3.1, one can show the existence of a nonnegative solution

(P1,Λ1,Γ1, P2,Λ2,Γ2) to the BSDEJ (3.6), so we omit the details. We only give a sketch on how to

find a uniformly positive lower bound for such a solution.

Under Assumptions 3.1, 3.3, there exists constant c2 > 0, such that

2A+ C⊤C +

∫

E

E2ν(de)− δ−1
∣∣∣B +D⊤C ±

∫

E

EFν(de)
∣∣∣
2

≥ −c2,

where δ is the constant in Assumption 3.3. Notice (P 1,t,Λ1,t,Γ1,t) = (P 2,t,Λ2,t,Γ2,t) := (δe−c2(T−t), 0, 0)

solves the following BSDEJ




dP = −(−c2P + C⊤Λ) dt + Λ⊤ dW +

∫
E
Γ(e)Ñ(dt, de),

P T = δ.
(3.17)

We have the following estimates,

Hk
1 (t, P 1, P 2,Λ1,Γ1,Γ2)

≥ inf
v∈Rm

H1(t, v, P 1, P 2,Λ1,Γ1,Γ2)

= inf
v∈Rm

H1(t, v, P 1, P 2, 0, 0, 0)

≥ inf
v∈Rm

[
v⊤Rv + 2S⊤v

]
+ P 1

∫

E

E2ν(de)

+ P 1 inf
v∈Rm

[
v⊤(D⊤D +

∫

E

F (e)F (e)⊤ν(de))v + 2
(
B +D⊤C +

∫

E

EFν(de)
)⊤

v
]

≥ −Q + P 1

[ ∫

E

E2ν(de)− δ−1
∣∣∣B +D⊤C +

∫

E

EFν(de)
∣∣∣
2]
,

where we used Λ1 = 0, Γ1 = Γ2 = 0 in the equality, P 1 = P 2 > 0 in the second inequality, and

(
R S
S⊤ Q

)
≥ 0, D⊤D +

∫

E

F (e)F (e)⊤ν(de) ≥ δ1m

in the last inequality. Similar result also holds for Hk
2 (t, P 1, P 2,Λ2,Γ1,Γ2).

Applying Theorem 2.2 to the BSDEJs (3.9) and (3.17), we get, for i = 1, 2,

P k
i,t ≥ P i,t = δe−c2(T−t) ≥ δe−c2T , t ∈ [0, T ],(3.18)

which leads to the desired lower bound. �
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3.4. Solution to the LQ problem (3.2). In this subsection we will present an explicit solution to the

LQ problem (3.2) in terms of solutions to the BSDEJ (3.6).

For Pi > 0, Λi ∈ Rn, Γi ∈ L2,ν , i = 1, 2, define

v̂1(ω, t, P1, P2,Λ1,Γ1,Γ2) = argmin
v∈Π

H1(ω, t, v, P1, P2,Λ1,Γ1,Γ2),

v̂2(ω, t, P1, P2,Λ2,Γ1,Γ2) = argmin
v∈Π

H1(ω, t, v, P1, P2,Λ2,Γ1,Γ2).(3.19)

Theorem 3.3. Let (Pi,Λi,Γi) ∈ S∞
F
(0, T ;R)×L2

F
(0, T ;Rm)×L∞,ν

P (0, T ;R), i = 1, 2, be a nonneg-

ative (in Standard case), or uniformly positive (in Singular case) solution to the BSDEJ (3.6). Then

the state feedback control given by

u∗(t, X) = v̂1(ω, t, P1,t−, P2,t−,Λ1,t,Γ1,t,Γ2,t)X
+
t− + v̂2(ω, t, P1,t−, P2,t−,Λ1,t,Γ1,t,Γ2,t)X

−
t−,

is optimal for the LQ problem (3.2). Moreover, the optimal value is

V (x) = P1,0(x
+)2 + P2,0(x

−)2.

The proof of Theorem 3.3 is standard, and thus omitted here; please see [16, Theorem 5.2] or [39,

Theorem 5.2] for the standard verification argument.

As a byproduct of Theorem 3.3, we have the following uniqueness result.

Theorem 3.4. Suppose Assumptions 3.1 and 3.2 (resp. Assumptions 3.1 and 3.3) hold, then the BSDEJ

(3.6) admits at most one nonnegative (resp. uniformly positive) solution.

It seems a challenging task to establish this result by pure BSDE techniques.

4. APPLICATION TO MEAN-VARIANCE PORTFOLIO SELECTION PROBLEM

Consider a financial market consisting of a risk-free asset (the money market instrument or bond)

whose price is S0 and m risky securities (the stocks) whose prices are S1, . . . , Sm. And assume m ≤ n,

i.e. the number of risky securities is no more than the dimension of the Brownian motion. The asset

prices Sk, k = 0, 1, . . . , m, are driven by stochastic differential equations (SDEs):



dS0,t = rtS0,t dt,

S0,0 = s0,

and




dSk,t = Sk,t

(
(µk,t + rt) dt+

n∑
j=1

σkj,t dWj,t +
∫
E
Fk,t(e)Ñ(dt, de)

)
,

Sk,0 = sk,

where, for every k = 1, . . . , m, r is the interest rate process, µk, σk := (σk1, . . . , σkn) and Fk are the

mean excess return rate process and volatility rate process of the k-th risky security.
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Define the vectors µ = (µ1, . . . , µm)
⊤, F = (F1, . . . , Fm)

⊤ and matrix

σ =




σ1

...

σm


 ≡ (σkj)m×n, for each i ∈ M.

We shall assume, in this section,

Assumption 4.1. The interest rate r is a bounded deterministic measurable function of t,

µ ∈ L∞
F
(0, T ;Rm), σ ∈ L∞

F
(0, T ;Rm×n), F ∈ Lν,∞

P (0, T ;Rm),

and there exists a constant δ > 0 such that σσ⊤ +
∫
E
F (e)F (e)⊤ν(de) ≥ δ1m for all t ∈ [0, T ].

A small investor, whose actions cannot affect the asset prices, will decide at every time t ∈ [0, T ]

the amount πj,t of his wealth to invest in the j-th risky asset, j = 1, . . . , m. The vector process

π := (π1, . . . , πm)
⊤ is called a portfolio of the investor. Then the investor’s self-financing wealth

process X corresponding to a portfolio π is the unique strong solution of the SDE:



dXt = [rtXt− + π⊤

t µt] dt+ π⊤
t σt dWt +

∫
E
π⊤
t Ft(e)Ñ(dt, de),

X0 = x.
(4.1)

The admissible portfolio set is defined as

U =
{
π ∈ L2

F
(0, T ;Rm)

∣∣∣ πt ∈ Π dP⊗ dt-a.e.
}
,

where Π ∈ Rm is a given closed convex cone. For instance, Π = Rm means there is no trading

constraint; while Π = Rm
+ means shorting is not allowed in the market. For any π ∈ U , the SDE

(4.1) has a unique strong solution. Different from the previous sections, in this section we request the

constraint set Π to be convex in order to apply the dual approach below.

For a given expectation level z ≥ xe
∫ T

0
rs ds, the investor’s mean-variance problem is to

Minimize Var(XT ) ≡ E[X2
T − z2],

s.t.




E[XT ] = z,

π ∈ U .
(4.2)

Remark 4.1. Lim [23] studied a mean-variance problem with jumps without portfolio constraints, i.e.

Π = R
m. In his model, all the coefficients in (4.1) are assumed to be predictable with respect to the

Brownian motion filtration, so no jump term has entered into his SRE, which is exactly the same one

as in the model without jumps.

We shall say that the mean-variance problem (4.2) is feasible for a given level z ≥ xe
∫ T

0
rs ds if there

is a portfolio π ∈ U which satisfies the target constraint E[XT ] = z. An optimal portfolio to (4.2)

is called an efficient portfolio corresponding to z and the corresponding (
√

Var(XT ), z) is called an

efficient point. The set of all efficient points, with z ≥ xe
∫ T

0
rs ds, is called the efficient frontier.
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Define the dual cone of Π as

Π̂ :=
{
y ∈ R

m
∣∣∣ x⊤y ≤ 0 for all x ∈ Π

}
.

The following result gives an equivalent condition for the feasibility of (4.2). The proof is exactly the

same as [13, Theorem 5.3], so we omit it.

Theorem 4.1 (Feasibility). Under assumption 4.1, the mean-variance problem (4.2) is feasible for any

z ≥ xe
∫ T

0
rt dt if and only if

(4.3)

∫ T

0

P(µt /∈ Π̂) dt > 0.

For the rest of this section, we will always assume (4.3) holds.

The way to solve (4.2) is rather clear nowadays. To deal with the constraint E[XT ] = z, we introduce

a Lagrange multiplier −2λ ∈ R and obtain the following relaxed optimization problem:

inf J(x, π, λ; z) = E[(XT − λ)2]− (λ− z)2,(4.4)

s.t. π ∈ U .

Denote its optimal value as

V (x, λ; z) = inf
π∈U

J(x, π, λ; z).

According to the Lagrange duality theorem (see Luenberger [24])

inf
π∈U ,E[XT ]=z

Var(XT ) = sup
λ∈R

V (x, λ; z).(4.5)

So we can solve the problem (4.4) by a two-step procedure: Firstly determine V (x, λ; z) for every λ,

and then try to find a λ∗ to maximize λ 7→ V (x, λ; z).

The relaxed problem (4.4) is a special stochastic LQ problem (3.2) studied in Section 3, where

A = r, B = µ, C = 0, D = σ⊤, E = 0, Q = 0, R = 0, S = 0, G = 1.(4.6)

The associated BSDEJ (3.6) becomes





dP1,t = −
[
2rP1,t− +H∗

1 (t, P1,t−, P2,t−,Λ1,t,Γ1,t,Γ2,t)
]
dt+ Λ⊤

1,t dW +
∫
E
Γ1,t(e)Ñ(dt, de),

dP2,t = −
[
2rP2,t− +H∗

2 (t, P1,t−, P2,t−,Λ2,t,Γ1,t,Γ2,t)
]
dt+ Λ⊤

2,t dW +
∫
E
Γ2,t(e)Ñ(dt, de),

P1,T = 1, P2,T = 1,

(4.7)
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where H∗
1 , H

∗
2 , v̂1, v̂2 are defined as in (3.4), (3.5) and (3.19) with coefficients given in (4.6):

H1(ω, t, v, P1, P2,Λ1,Γ1,Γ2) = P1v
⊤σσ⊤v + 2(P1µ+ σΛ1)

⊤v

+

∫

E

[
(P1 + Γ1)

(
((1 + F⊤v)+)2 − 1

)
− 2P1F

⊤v

+ (P2 + Γ2)((1 + F⊤v)−)2
]
ν(de),

H2(ω, t, v, P1, P2,Λ2,Γ1,Γ2) = P2v
⊤σσ⊤v − 2(P2µ+ σΛ2)

⊤v

+

∫

E

[
(P2 + Γ2)

(
((−1 + F⊤v)−)2 − 1

)
+ 2P2F

⊤v

+ (P1 + Γ1)((−1 + F⊤v)+)2
]
ν(de).

Clearly, Theorems 3.2 and 3.4 can be applied to the BSDEJ (4.7) to ensure that it admits a unique

uniformly positive solution (P1,Λ1,Γ1, P2,Λ2,Γ2). Accordingly, Theorem 3.3 leads to the following

solution to the relaxed problem (4.4).

Theorem 4.2. Let (P1,Λ1,Γ1, P2,Λ2,Γ2) be the unique uniformly positive solution to (4.7). Then the

state feedback control given by

π∗(t, X) = v̂1(ω, t, P1, P2,Λ1,Γ1,Γ2)
(
Xt− − λe−

∫ T

t
rs ds

)+

+ v̂2(ω, t, P1, P2,Λ2,Γ1,Γ2)
(
Xt− − λe−

∫ T

t
rs ds

)−

,(4.8)

is optimal for the LQ problem (3.2). Moreover, the optimal value is

V (x, λ; z) = P1,0

[(
x− λe−

∫ T

0
rs ds

)+]2
+ P2,0

[(
x− λe−

∫ T

0
rs ds

)−]2
− (λ− z)2.

This resolves the first step problem. To solve the second step problem, i.e., to maximize λ 7→

V (x, λ; z), the following result is critical.

Lemma 4.1. Assume Assumption 4.1 and conditioin (4.3) hold. Then

P1,0e
−2

∫ T

0
rs ds − 1 ≤ 0, P2,0e

−2
∫ T

0
rs ds − 1 < 0.(4.9)

Proof: Applying Itô’s formula to P2,te
−2

∫ T

t
rs ds on [0, T ], we have

1− P2,0e
−2

∫ T

0
rs ds = −E

∫ T

0

H∗
2 (t, P2,t−,Λ2,t,Γ2,t, P1,t−,Γ1,t) dt.(4.10)

Since H∗
2 (t, P2,t−,Λ2,t,Γ2,t, P1,t−,Γ1,t) ≤ 0 by its very definition, it follows P2,0e

−2
∫ T

0
rs ds − 1 ≤ 0.

Similarly, we can prove that P1,0e
−2

∫ T

0
rs ds − 1 ≤ 0.

It remains to prove the strict inequalityP2,0e
−2

∫ T

0
rs ds−1 < 0. Suppose, on the contrary, P2,0e

−2
∫ T

0
rs ds−

1 = 0. It then follows from (4.10) that H∗
2(t, P1,t−, P2,t−,Λ2,t,Γ1,t,Γ2,t) = 0 dP⊗dt-a.e.. Thus we de-

duce, from the uniqueness (Theorem 3.4) of solution to the BSDE (4.7), that P2,t = e2
∫ T

t
rs ds, Λ2,t = 0

and Γ2,t = 0.
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On the other hand,

((1− F⊤v)+)2 + 2F⊤v − 1 ≤ (1− F⊤v)2 + 2F⊤v − 1 = |F⊤v|2.(4.11)

Since F ∈ Lν,∞
P (0, T ;Rm), there exists c1 > 0 such that |F (e)| ≤ c1 for almost all e ∈ E . Hence

1− F⊤v ≥ 0, if v ∈ Π and |v| ≤ c−1
1 .(4.12)

Combining (4.11) and (4.12), we have

H∗
2 (t, P1, P2, 0,Γ1, 0) = inf

v∈Π

[
P2v

⊤σσ⊤v − 2P2µ
⊤v +

∫

E

[
P2

(
((1− F⊤v)+)2 + 2F⊤v − 1

)

+ (P1 + Γ1)((1− F⊤v)−)2
]
ν(de)

]

≤ inf
v∈Π,|v|≤c−1

1

[
P2v

⊤
(
σσ⊤ +

∫

E

FF⊤ν(de)
)
v − 2P2µ

⊤v
]

≤ P2 inf
v∈Π,|v|≤c−1

1

(
c|v|2 − 2µ⊤v

)
.

Note (4.3) implies that there exists O ⊆ Ω × [0, T ] such that µ /∈ Π̂ dP⊗ dt-a.e. on O. Hence, there

exists v0 ∈ Π such that µ⊤v0 > 0 on O. By choosing v1 = εv0 with ε > 0 being sufficiently small so

that |v1| ≤ c−1
1 , we get

H∗
2 (t, P1, P2, 0,Γ1, 0) ≤ P2ε

(
cε|v0|

2 − 2µ⊤v0

)
on O.

The RHS is negative for sufficiently small ε > 0 on O, leading to a contraction. Therefore P2,0e
−2

∫ T

0
rs ds−

1 < 0. �

To find a λ∗ to maximize λ 7→ V (x, λ; z), we do some tedious calculation (using (4.9)) and obtain

max
λ

V (x, λ; z) = V (x, λ∗; z) =
P2,0

1− P2,0e
−2

∫ T

0
rs ds

(
x− ze−

∫ T

0
rs ds

)2

,

where

λ∗ =
z − xP2,0e

−
∫ T

0
rs ds

1− P2,0e
−2

∫ T

0
rs ds

.

The above analysis boils down to the following solution to the mean-variance problem (4.2).

Theorem 4.3. Let (P1,Λ1,Γ1, P2,Λ2,Γ2) be the unique uniformly positive solution to (4.7). Then the

state feedback portfolio given by

π∗(t, X) = v̂1(ω, t, P1, P2,Λ1,Γ1,Γ2)
(
Xt− − λ∗e−

∫ T

t
rs ds

)+

+ v̂2(ω, t, P1, P2,Λ1,Γ2,Γ2)
(
Xt− − λ∗e−

∫ T

t
rs ds

)−

,(4.13)

is optimal to the mean-variance problem (4.2). Moreover, the efficient frontier is determined by

Var(XT ) =
P2,0e

−2
∫ T

0
rs ds

1− P2,0e
−2

∫ T

0
rs ds

(
E[XT ]− xe

∫ T

0
rs ds

)2

,



26 HU, SHI, AND XU

where E[XT ] ≥ xe
∫ T

0
rs ds.

Remark 4.2. In the constrained mean-variance model without jumps studied in Hu and Zhou [16], the

efficient portfolio only takes the second term on the RHS of (4.13), i.e. the optimal wealth Xt will never

exceed λ∗e−
∫ T

t
rs ds on [0, T ], and it only depends on (P2,Λ2) as v̂2 does. But in our cone-constrained

MV problem with jumps, the optimal wealth Xt will probably cross the bliss point λ∗e−
∫ T

t
rs ds.

APPENDIX A. HEURISTIC DERIVATION OF THE BSDEJ (3.6)

By the Meyer-Itô formula [31, Theorem 70], we have

dX+
t = 1{Xt−>0}

[(
AtXt− +B⊤

t ut −

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de)

)
dt + (CtXt− +Dtut)

⊤ dWt

]

+

∫

E

[
(Xt− + Et(e)Xt− + Ft(e)

⊤ut)
+ −X+

t−

]
N(dt, de) +

1

2
dLt,

and

dX−
t = −1{Xt−≤0}

[(
AtXt− +B⊤

t ut −

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de)

)
dt+ (CtXt− +Dtut)

⊤ dWt

]

+

∫

E

[
(Xt− + Et(e)Xt− + Ft(e)

⊤ut)
− −X−

t−

]
N(dt, de) +

1

2
dLt,

where L is the local time of X at 0. Since X±
t dLt = 0, applying the Itô formula yields

d(X+
t )

2 = 1{Xt−>0}

[
2X+

t−

(
AtXt− +B⊤

t ut −

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de)

)
+ |CtXt− +Dtut|

2
]
dt

+ 1{Xt−>0}2X
+
t−(CtXt− +Dtut)

⊤ dWt

+

∫

E

[
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
+)2 − (X+

t−)
2
]
N(dt, de),

and

d(X−
t )

2 = 1{Xt−≤0}

[
− 2X−

t−

(
AtXt− +B⊤

t ut −

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de)

)
+ |CtXt− +Dtut|

2
]
dt

− 1{Xt−≤0}2X
−
t−(CtXt− +Dtut)

⊤ dWt

+

∫

E

[
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
−)2 − (X−

t−)
2
]
N(dt, de).

Assume that P1 and P2 are semimartingales of the following form:



dP1 = −f1 dt+ Λ⊤

1 dW +
∫
E
Γ1(e)Ñ(dt, de),

P1,T = G,

and 


dP2 = −f2 dt+ Λ⊤

2 dW +
∫
E
Γ2(e)Ñ(dt, de),

P2,T = G.
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Applying Itô’s formula to P1,t(X
+
t )

2,

dP1,t(X
+
t )

2 = P1,t−1{Xt−>0}

[
2X+

t−(AtXt− +B⊤
t ut) + |CtXt− +Dtut|

2
]
dt

+ 2X+
t−(CtXt− +Dtut)

⊤Λ1,t dt

− 2P1,t−X
+
t−1{Xt−>0}

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de) dt

+

∫

E

(P1,t− + Γ1,t(e))
(
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
+)2 − (X+

t−)
2
)
ν(de) dt

− (X+
t−)

2f1 dt +
[
(X+

t−)2Λ1,t + 2P1,t−X
+
t−(CtXt− +Dtut)

]⊤
dW

+

∫

E

[
(P1,t− + Γ1(e))[((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
+)2 − (X+

t−)
2]

+ (X+
t−)

2Γ1(e)
]
Ñ(dt, de),

and applying Itô’s formula to P2,t(X
−
t )

2,

dP2,t(X
−
t )

2 = P2,t−1{Xt−≤0}

[
− 2X−

t−(AtXt− +B⊤
t ut) + |CtXt− +Dtut|

2
]
dt

− 2X−
t−(CtXt− +Dtut)

⊤Λ2,t dt

+ 2P2,t−X
−
t−1{Xt−≤0}

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de) dt

+

∫

E

(P2,t− + Γ2,t(e))
(
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
−)2 − (X−

t−)
2
)
ν(de) dt

− (X−
t−)

2f2 dt +
[
(X−

t−)
2Λ2,t − 2P2,t−X

−
t−(CtXt− +Dtut)

]⊤
dW

+

∫

E

[
(P2,t− + Γ2(e))[((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
−)2 − (X−

t−)
2]

+ (X−
t−)

2Γ2(e)
]
Ñ(dt, de).

Then

J(x; u) = E

[ ∫ T

0

(
QtX

2
t + u⊤

t Rtut + 2XtS
⊤
t ut

)
dt +GX2

T

]

= P1,0(x
+)2 + P2,0(x

−)2 + E

∫ T

0

(
QtX

2
t + u⊤

t Rtut + 2XtS
⊤
t ut

)
dt

+ P1,t−1{Xt−>0}

[
2X+

t−(AtXt− +B⊤
t ut) + |CtXt− +Dtut|

2
]
dt

+ 2X+
t−(CtXt− +Dtut)

⊤Λ1,t dt

− 2P1,t−X
+
t−1{Xt−>0}

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de) dt

+

∫

E

(P1,t− + Γ1,t(e))
(
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
+)2 − (X+

t−)
2
)
ν(de) dt
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− (X+
t−)

2f1 dt− (X−
t−)

2f2 dt

+ P2,t−1{Xt−≤0}

[
− 2X−

t−(AtXt− +B⊤
t ut) + |CtXt− +Dtut|

2
]
dt

− 2X−
t−(CtXt− +Dtut)

⊤Λ2,t dt

+ 2P2,t−X
−
t−1{Xt−≤0}

∫

E

(Et(e)Xt− + Ft(e)
⊤ut)ν(de) dt

+

∫

E

(P2,t− + Γ2,t(e))
(
((Xt− + Et(e)Xt− + Ft(e)

⊤ut)
−)2 − (X−

t−)
2
)
ν(de) dt.

Denote φ(Xt−, ut) be the integrand on the RHS of the above equation.

• If Xt− > 0, then

φ(Xt−, ut) =
[
Q + v⊤(R + P1,t−D

⊤D)v + 2S⊤v + P1,t−(2A+ C⊤C) + 2C⊤Λ1,t

+ 2(P1,t−(B +D⊤C) +D⊤Λ1)
⊤v

− 2P1,t−

∫

E

(E + F⊤v)ν(de) +

∫

E

(P1,t− + Γ1,t−)
(
((1 + E + F⊤v)+)2 − 1

)
ν(de)

− f1 +

∫

E

(P2,t− + Γ2,t−)((1 + E + F⊤v)−)2ν(de)
]
X2

t−,

where vt =
ut

|Xt−|
.

• If Xt− < 0, then

φ(Xt−, ut) =
[
Q+ v⊤(R + P2,t−D

⊤D)v − 2S⊤v + P2,t−(2A+ C⊤C) + 2C⊤Λ2,t

− 2(P1,t−(B +D⊤C) +D⊤Λ2)
⊤v

− 2P2,t−

∫

E

(E − F⊤v)ν(de) +

∫

E

(P2,t− + Γ2,t−)
(
((−1−E + F⊤v)−)2 − 1

)
ν(de)

− f2 +

∫

E

(P1,t− + Γ1,t−)((−1−E + F⊤v)+)2ν(de)
]
X2

t−,

where vt =
ut

|Xt−|
.

• If Xt− = 0, then φ(0, 0) = 0 and

φ(Xt−, ut) = u⊤
t Rut + P2,t−|Dut|

2 +

∫

E

(P1,t− + Γ1,t)((F
⊤ut)

+)2ν(de)

+

∫

E

(P2,t + Γ2,t−)((F
⊤ut)

−)2ν(de) ≥ 0.

In order to ensure minu∈Π φ(Xt, u) = 0, it is evident to take f1 and f2 in the form of (3.4) and (3.5).

APPENDIX B. PROOF OF LEMMA 3.1

For any positive integers k < l, set

P k,l
i,t := P k

i,t − P l
i,t ≥ 0, Λk,l

i,t := Λk
i,t − Λl

i,t, Γ
k,l
i,t := Γk

i,t − Γl
i,t, i = 1, 2.
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Let κ > 0 be a constant to be specified later, and write

Ψ(x) =
1

κ

(
eκx − κx− 1

)
.

Notice Ψ′(x) ≥ 0 for x ≥ 0. Applying Itô’s formula to Ψ(P k,l
1,t ), we get

Ψ(P k,l
1,0) +

1

2
E

∫ T

0

Ψ′′(P k,l
1,t )|Λ

k,l
1 |2 dt

+ E

∫ T

0

∫

E

[
Ψ(P k,l

1,t− + Γk,l
1,t)−Ψ(P k,l

1,t−)−Ψ′(P k,l
1,t−)Γ

k,l
1

]
ν(de) dt

= Ψ(0) + E

∫ T

0

Ψ′(P k,l
1,t )

[
(2A+ C⊤C)P k,l

1,t− + 2C⊤Λk,l
1,t

+Hk
1 (t, P

k
1,t−, P

k
2,t−,Λ

k
1,t,Γ

k
1,t,Γ

k
2,t)−H l

1(t, P
l
1,t−, P

l
2,t−,Λ

l
1,t,Γ

l
1,t,Γ

l
2,t)

]
dt.

Using the following fact:

Ψ(0) = 0, P k,l
1,t ≥ 0, Ψ′(P k,l

1,t ) = eκP
k,l
1,t − 1 ≥ 0, H l

1 ≥ H∗
1 ,

Hk
1 ≤

∫

E

[
(P1 + Γ1)

(
((1 + E)+)2 − 1

)
− 2P1E + (P2 + Γ2)((1 + E)−)2

]
ν(de) ≤ c,

where c is independent of k and l, we obtain

Ψ(P k,l
1,0) +

1

2
E

∫ T

0

Ψ′′(P k,l
1,t )|Λ

k,l
1 |2 dt

+ E

∫ T

0

∫

E

[
Ψ(P k,l

1,t− + Γk,l
1,t)−Ψ(P k,l

1,t−)−Ψ′(P k,l
1,t−)Γ

k,l
1

]
ν(de) dt

≤ E

∫ T

0

Ψ′(P k,l
1,t )

[
c+ 2C⊤Λk,l

1,t −H∗
1 (t, P

l
1,t−, P

l
2,t−,Λ

l
1,t,Γ

l
1,t,Γ

l
2,t)

]
dt.

Keeping in mind P l
i , Γ

l
i, i = 1, 2, are uniformly bounded, we have the following estimates:

−H∗
1 (t, P

l
1,t−, P

l
2,t−,Λ

l
1,t,Γ

l
1,t,Γ

l
2,t) ≤ − inf

v∈Rm
H1(t, 0, P

l
1,t−, P

l
2,t−,Λ

l
1,t,Γ

l
1,t,Γ

l
2,t)

≤ c+ c|Λl
1|

2

≤ c+ 3c(|Λk,l
1 |2 + |Λk

1 − Λ1|
2 + |Λ1|

2),

where c > 0 is a constant independent of l and k. The above estimates lead to

Ψ(P k,l
1,0) + E

∫ T

0

(1
2
Ψ′′(P k,l

1,t )− 3cΨ′(P k,l
1,t )

)
|Λk,l

1 |2 dt

+ E

∫ T

0

∫

E

[
Ψ(P k,l

1,t− + Γk,l
1,t)−Ψ(P k,l

1,t−)−Ψ′(P k,l
1,t−)Γ

k,l
1

]
ν(de) dt

≤ E

∫ T

0

Ψ′(P k,l
1,t )

[
2c+ 2C⊤Λk,l

1,t + 3c|Λk
1 − Λ1|

2 + 3c|Λ1|
2)
]
dt.(B.1)
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Take κ = 12c. Then 1
2
Ψ′′(x) − 3cΨ′(x) = 3c(eκx + 1) = 3cΨ′(x) + 6c ≥ 6c for x ≥ 0. So by the

dominated convergence theorem, the sequence
√

1

2
Ψ′′(P k,l

1,t )− 3cΨ′(P k,l
1,t )

converges strongly to √
3cΨ′(P k

1,t − P1,t) + 6c,

as l → ∞, and they are uniformly bounded. Therefore,
√
3cΨ′(P k,l

1,t ) + 6c Λk,l
1

converges weakly to √
3cΨ′(P k

1,t − P1,t) + 6c (Λk
1 − Λ1).

By the mean value theorem and the uniformly boundedness of P k,l
1,t− and Γk,l

1,t−, we obtain

Ψ(P k,l
1,t− + Γk,l

1,t)−Ψ(P k,l
1,t−)−Ψ′(P k,l

1,t−)Γ
k,l
1 =

1

κ
eκP

k,l
1,t−

[
eκΓ

k,l
1,t − κΓk,l

1,t − 1
]
≥ ε|Γk,l

1,t|
2,(B.2)

for some constant ε > 0 independent of l and k. We then get from (B.1) that

E

∫ T

0

(
3cΨ′(P k

1 − P1) + 6c
)
|Λk

1 − Λ1|
2 dt

≤ lim
l→∞

E

∫ T

0

(
3cΨ′(P k,l

1 ) + 6c
)
|Λk,l

1 |2 dt

≤ E

∫ T

0

Ψ′(P k
1 − P1)

[
2c+ 2C⊤(Λk

1 − Λ1) + 3c|Λk
1 − Λ1|

2 + 3c|Λ1|
2)
]
ds.

Canceling the common terms, it yields

E

∫ T

0

6c|Λk
1 − Λ1|

2 ds ≤ E

∫ T

0

Ψ′(P k
1 − P1)

[
2c+ 2C⊤(Λk

1 − Λ1) + 3c|Λ1|
2)
]
ds.

By passing to the limit k → ∞, applying dominated convergence theorem and noticing Ψ′(0) = 0, we

have

lim
k→∞

E

∫ T

0

|Λk
1 − Λ1|

2 dt = 0.

Using (B.2), we can similarly get

lim
k→∞

E

∫ T

0

∫

E

|Γk
1 − Γ1|

2ν(de) dt = 0.

Because Γk
1, k = 1, 2, · · · , are uniformly bounded inL∞,ν

P (0, T ;R), we conclude that Γ1 ∈ L∞,ν
P (0, T ;R).

Along appropriate subsequence (which is still denoted by (Λk
1,Γ

k
1)) we may obtain dP ⊗ dt-a.e.

convergence of
∫ T

t

(Λk
1)

⊤ dW +

∫ T

t

∫

E

Γk
1(e)Ñ(ds, de) →

∫ T

t

Λ⊤
1 dW +

∫ T

t

∫

E

Γ1(e)Ñ(ds, dy),
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and

lim
k→∞

∫ T

t

[
(2A+ C⊤C)P k

1,t− + 2C⊤Λk
1,t +Q

]
ds =

∫ T

t

[
(2A+ C⊤C)P1,t− + 2C⊤Λ1,t +Q

]
ds.

We now turn to prove

lim
k→∞

∫ T

t

Hk
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s) ds =

∫ T

t

H∗
1 (s, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s) ds.(B.3)

We have

|Hk
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H∗

1 (s, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s)|

≤ |Hk
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H∗

1 (s, P
k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)|

+ |H∗
1(s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H∗

1 (s, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s)|.

Recall that Λk
1,s → Λ1,s dP⊗ dt-a.e., so there exists k1(ω, s) such that |Λk

1,s| ≤ 1 + |Λ1,s| for k ≥ k1.

Notice that H1(s, 0, P
k
1,s−,Λ

k
1,s,Γ

k
1,s, P

k
2,s− + Γk

2,s) is upper bounded by some c > 0, and

H1(s, v, P
k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s) ≥ δ|v|2 − 2c1|v|(1 + |Λk

1|)− c1

≥ δ|v|2 − 2c1|v|(2 + |Λ1|)− c1 ≥ c,

if |v| > c2(1+ |Λ1,s|) with c2 > 0 being sufficiently large. Hence, for k ≥ max{c2(1+ |Λ1,s|), k1}, we

have

H∗
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s) = inf

v∈Π
|v|≤c2(1+|Λ1|)

H1(s, v, P
k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)

≥ inf
v∈Π
|v|≤k

H1(s, v, P
k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)

= Hk
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s).

We also have the reverse inequality H∗
1 ≤ Hk

1 by definition. Therefore, when k ≥ max{c2(1 +

|Λ1,s|), k1}, Hk
1 and H∗

1 coincide at (s, P k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s).

Notice that

|H∗
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H∗

1 (s, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s))|

≤ sup
v∈Π

|v|≤c2(1+|Λ1|)

|H1(s, v, P
k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H1(s, v, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s))|,

one can easily see, from the definition of H1, that as long as

|P k
1 − P1|+ |Λk

1 − Λ1|+

∫

E

|Γk
1 − Γ1|ν(de) + |P k

2 − P2|+

∫

E

|Γk
2 − Γ2|ν(de) → 0,

we have

lim
k→∞

|H∗
1 (s, P

k
1,s−, P

k
2,s−,Λ

k
1,s,Γ

k
1,s,Γ

k
2,s)−H∗

1 (s, P1,s−, P2,s−,Λ1,s,Γ1,s,Γ2,s))| = 0.
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Since

|Hk
1 (s, P

k
1,s−,Λ

k
1,s,Γ

k
1,s, P

k
2,s−,Γ

k
2,s)| ≤ c(1 + |Λk

1,s|
2),

the dominated convergence theorem leads to (B.3).

Now it is standard to show that

lim
k→∞

E

[
sup

t∈[0,T ]

|P k
1,t − P1,t|

]
= 0;

please refer to Antonelli and Mancini [1, Theorem 1] for details.
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