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Fig. 1. A wavy hair wisp made of 2025 super-helices is virtually combed, yielding a hundred thousand tight frictional contacts (𝜇 = 0.1). In this paper we show
that during such a sliding motion, the force response is highly dependent on the proxy elements used for collision detection. In particular, we find that even in
the case of a rod model with a C1-smooth centreline, segment-based collision detection yields artificial noise in the contact force response, which increases
with the curvature of the rod at each contact point. We introduce a new detection scheme between two smooth curves that fixes this issue. Compared to a
classical segment-based detection scheme (right plot, black curve), our method retrieves force profiles that integrate much less noise (yellow curve), hence
increasing the accuracy of force prediction.

Computer Graphics has a long history in the design of effective algorithms
for handling contact and friction between solid objects. For the sake of
simplicity and versatility, most methods rely on low-order primitives such
as line segments or triangles, both for the detection and the response stages.
In this paper we carefully analyse, in the case of fibre systems, the impact
of such choices on the retrieved contact forces. We highlight the presence
of artifacts in the force response that are tightly related to the low-order
geometry used for contact detection. Our analysis draws upon thorough
comparisons between the high-order super-helix model and the low-order
discrete elastic rod model. These reveal that when coupled to a low-order,
segment-based detection scheme, both models yield spurious jumps in the
contact force profile. Moreover, these artifacts are shown to be all the more
visible as the geometry of fibres at contact is curved. In order to remove such
artifacts we develop an accurate high-order detection scheme between two
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smooth curves, which relies on an efficient adaptive pruning strategy. We
use this algorithm to detect contact between super-helices at high precision,
allowing us to recover, in the range of wavy to highly curly fibres, much
smoother force profiles during sliding motion than with a classical segment-
based strategy. Furthermore, we show that our approach offers better scaling
properties in terms of efficiency vs. precision compared to segment-based
approaches, making it attractive for applications where accurate and reliable
forces are desired. Finally, we demonstrate the robustness and accuracy of
our fully high-order approach on a challenging hair combing scenario.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation.

Additional Key Words and Phrases: High-order contact detection, Dry fric-
tional contact, Kirchhoff thin elastic rod, Super-Helices
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1 INTRODUCTION
In physics-based animation, accounting for contact and friction
between moving solid bodies is essential to convey visual realism.
Computer Graphics has dedicated more than thirty years of research
to devising effective methods for both contact detection [Teschner
et al. 2005] and contact response [Baraff 1994; Bridson et al. 2002;
Daviet et al. 2011; Goldenthal et al. 2007; Kaufman et al. 2008], which
are nowadays well-settled in the film and video game industries.

ACM Trans. Graph., Vol. 43, No. 4, Article 132. Publication date: July 2024.

https://doi.org/10.1145/3658191
https://doi.org/10.1145/3658191


132:2 • Crespel, O. et al.

Essentially driven by visual applications, the community has often
favoured the development of low-order and position-based sim-
ulation primitives in order to accelerate the process of collision
detection and develop simple and fast response strategies. However,
with the recent fostering of new applications mixing virtual and
real scenarios, such as special effects [Museth 2020], sound genera-
tion [An et al. 2012; Schweickart et al. 2017], virtual try-on [Bartle
et al. 2016; Clegg et al. 2015; Erickson et al. 2017], or virtual proto-
typing [Martínez et al. 2019; Tricard et al. 2020], there is nowadays
an increasing demand for high realism in the predictions made by
the physics simulators, not only regarding the resulting geometry –
important for the visual evaluation of an object – but also regarding
the resulting contact forces – essential for the feeling, stability, or
feasibility of a physical system. These new considerations call for
a profound revision of past choices merely focused on producing
virtual objects with a plausible appearance.

In this paper, we show that provided a high-order collision detec-
tion strategy is set up, high-order fibremodels yield a better response
in terms of both geometry and forces than low-order models when
coupled to an accurate frictional contact solver. To support this claim,
our analysis proceeds in two steps. First, relying upon thorough
comparisons between the (high-order) super-helix model [Bertails
et al. 2006] and the (low-order) discrete elastic rod model [Bergou
et al. 2008], we show that when coupled to a low-order detection
scheme, both models generate spurious artifacts in the contact force
profile that amplify as the fibre curvature at contact increases. We
then develop a geometrically exact helix-helix collision detection
scheme, which allows us to recover smoother and more physically
accurate force profiles when coupled to the high-order super-helix
model. We showcase the advantages of this new fully high-order
pipeline by validating the computed forces in a controlled curved
three point bending scenario before ramping up the complexity by
considering the combing of realistic hair wisps with various natural
curvatures, which highlights the robustness of our approach.

2 RELATED WORK
Visually correct collision detection is key to the realism of physics
simulations. In both interactive and baked scenarios, preventing
interpenetration gives a sense of concreteness to the objects in-
volved. Frictional contacts are also crucial to achieving immersive
experiences, both in terms of geometry and dynamics, by includ-
ing physical dissipation into interactions. Collisions must therefore
be handled accordingly, and significant efforts have gone towards
making reliable collision detection computationally tractable.
Collision detection pipelines usually require three components

[Ericson 2004]:

(1) A broad phase, which first prunes out non-colliding primitive
pairs with simple space partitioning and region overlap tests.
As such, this phase drastically decreases the computational
load when large scenes are involved.

(2) A representation of the geometry under consideration, approx-
imated at the appropriate level of detail.

(3) A narrow phase, which computes the contact regions between
two shapes, along with all the required information (e.g. nor-
mals, penetration depth, local coordinates).

When high precision is required, these last two points are in
practice responsible for most of the algorithmic complexity of the
overall collision detection, and must therefore carefully balance the
ratio between cost and accuracy to maintain robust yet tractable
simulations.

Contact detection between surfaces. In the case of contacting sur-
faces, triangle meshes are often used to parametrise the geometry, as
they provide convenience and versatility. The same representation,
although at varying levels of detail, can be seamlessly used for sim-
ulation, rendering, and collision detection. Parametric or implicit
shape descriptions are more rarely used in Computer Graphics, but
techniques do exist to handle these (see e.g. [Teschner et al. 2005]
for a review). For example, Von Herzen et al. [1990] use kd-trees in
parametric space to find collisions between two surfaces, and accel-
erate the traversal of these kd-trees using first-order information
about the surfaces. Similarly, Snyder et al. [1993] describe an algo-
rithm to find multiple collision points between a pair of deforming
surfaces by refining parameter-space intervals using the jacobian
of the gap function. Regarding curves, Lakshmanan et al. [2019]
propose a routine to compute curve-curve distances by subdividing
parametric curves and bounding sub-curves with ellipsoids using
first-order information, and suggest using this routine for collision
detection.

Low-order contact detection between curves. Efficient geometric
representations are all the more crucial in the case of thin rod struc-
tures which easily deform when subjected to contact, and for which
robustness with respect to non-penetration is crucial to prevent
instabilities and tunnelling. In Computer Graphics, most numer-
ical models for thin elastic rods are built using a segment-based
discretisation of the curve geometry [Bergou et al. 2008; Hadap
2006; Selle et al. 2008; Spillmann and Teschner 2007]. As such they
naturally resort to segment-based proximity queries, which benefit
from simple closed forms for the distance computations. To ensure
that collision detection does not introduce convergence issues or in-
correct results, it is noteworthy that “contact smoothing” has started
being investigated in Mechanics for low-order primitives (see e.g.
section 8.5 of [Wriggers and Laursen 2006]), a research direction
that is orthogonal to ours.
Still, a few higher-order simulation primitives have been pro-

posed for elastic rods, such as spline-based models [Nocent and
Remion 2001] or curvature-based models [Bertails et al. 2006; Casati
and Bertails-Descoubes 2013]. However, those usually employ an
additional low-order, segment-based representation to perform col-
lision detection. In this paper we show that resorting to a low-order
detection scheme substantially deteriorates the quality of the con-
tact force signal, even in the presence of a high-order simulation
primitive.

High-order contact detection between curves. In Mechanics, Iso-
geometric analysis (IGA), as introduced by [Hughes et al. 2005],
builds the simulated primitives directly on top of CAD data and
provides stronger convergence guarantees than disjointed represen-
tations for simulation and detection. De Lorenzis et al. [2014] review
the use of IGA in contact simulation, and notably mention that re-
sorting to higher-order primitives can help remove some spurious
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oscillations. However, their focus is put on the continuity of the
normal and tangent fields, which is not the cause of the artifacts we
identify and remove, as detailed in section 4. In the particular case
of IGA applied to rods, Meier et al. [2017] propose a local Newton
algorithm coupled to specific segment-based initial guesses, which
allows for high-order closest point queries between cubic curves.
While our method also falls into the category of – isogeometric –
contact solvers, it is more generic than Newton-based approaches,
and naturally handles configurations where the collision detection
amounts to a non-convex optimisation problem, as discussed below.
In Graphics, Marschner et al. [2021] have recently introduced

a new framework for high-order geometry processing, which is
expanded upon in a follow-up paper ([Zhang et al. 2023]). Among
other problems, this sum-of-squares geometry processing approach
solves continuous collision detection between high-order (polyno-
mial) patches. Although Zhang et al. [2023] greatly improve the
performance of the approach, it remains computationally expensive
and relies on existing general-purpose optimisation packages to find
solutions. Besides, the sum-of-squares programming framework is
restricted to polynomial approximation, and as such only applies to
polynomial patches in the context of geometry processing, while
the algorithm proposed in our work addresses the case of arbitrary
curves with a bounded second derivative.
One should also mention the complementary Eulerian on La-

grangian (EoL) approach, previously devised in Mechanics as an
Arbitrary Lagrangian Eulerian (ALE) framework [Pechstein and Ger-
stmayr 2013; Vu-Quoc and Li 1995], and extended in the Graphics
community to handle contacting rods [Cirio et al. 2014; Sánchez-
Banderas et al. 2020; Sueda et al. 2011] or solids [Fan et al. 2013]:
in order to bypass the difficulties pertaining to contact detection,
these approaches directly represent contact points with additional
Eulerian degrees of freedom, and naturally incorporate the con-
tact response into the overall dynamics of the system. While this
naturally ensures that the motion at contact points is compatible
with the underlying geometry, it is however restricted in essence to
persistent contacts, and changes in the contacting set must resort
to standard detection algorithm in order to update the set of EoL
points.

The impact of spurious noise in contact forces was also analysed
in the work of Zheng and James [2011], where the contact response is
adjusted to remove an important source of noise in sound synthesis,
related to the non-uniqueness of contact force solutions. However,
their approach does not consider the detailed role of contact detec-
tion and its effect on the resulting contact force signal, even in the
case when contact forces are spatially and temporally well-defined.
Our work is complementary to this study, and aims at addressing
geometrical discontinuities at the detection level.
To our knowledge, the effect of using low-order collision prim-

itives on the resulting force signal has not been examined in the
Computer Graphics community, which generally focuses its analysis
on geometry rather than forces. In this work, we identify and anal-
yse force discontinuities caused by low-order collision detection,
and fix the problem by computing the distance between parametric
𝐶2-smooth curves, devising an efficient branch-and-bound like iter-
ative procedure and leveraging second-order information about the
curves to accelerate inner iterations.

3 PROBLEM AND CONTRIBUTIONS
As a first step to motivate the forthcoming developments, we focus
on an elementary hair combing scenario featuring a single hair fibre
(see fig. 2, top). Our goal here is not only to look at the resulting
geometry of the fibre, but also and especially at the force applied
by the comb onto the fibres. Predicting accurately contact forces
emerging from fibres would be crucial for many applications ranging
from reliable physical measurements in cosmetology to immersive
haptic feedback within a virtual hair salon, and even realistic sound
generation from bowed strings. Besides, inaccurate forces may lead
to unphysical oscillations or convergence issues, and may end up
influencing the geometry itself.
To maximise our chances to achieve a realistic prediction, we

perform the virtual comb experiment using graphics tools known
for their robustness and physical reliability, as they have been ex-
tensively validated in the past on challenging scenarios [Romero
et al. 2021]. On the one hand, we rely on the Discrete Elastic Rod
model [Bergou et al. 2010] coupled with the so-bogus frictional
contact solver [Daviet et al. 2011] through an adaptive nonlinear
scheme [Kaufman et al. 2014].We directly use the free creamystrand
library released by Fei et al. [2019]. On the other hand, we use the
Super-Helix model [Bertails et al. 2006], which code has been pro-
vided by the authors, again coupled with so-bogus.

The results of our virtual experiment are shown in fig. 2 (bottom).
Unfortunately, it is clear that they look flawed, for both simulators.
Indeed we observe spurious jumps in the central force signal1, even
in the Super-Helix case, where the centreline is smooth. Worse, the
noise increases with time, i.e. with the indentation of the comb.
Since the fibre portion which is in contact with the comb gets more
and more curved as the comb travels through the wisp, one can
reasonably suspect that the noise is amplified by the curvature of
the fibre at the contact point.
What is the origin of these jumps? Could it be that they come

from physical events, e.g. some kind of stick-slip behaviour? A lack
of fibre resolution? The frictional contact solver? The algorithm for
collision detection?

In this paper, we demonstrate that the choice of low-order proxys
for collision detection is the very cause of these jumps, and we fix
this issue in the case of smooth rod models such as Super-Helices.
More precisely, our contributions are three-fold:
• In section 4 we carefully analyse the origin of the jumps in the
force signal during sliding motion on a model case, namely
the curved three-point bending test, for which we derive an
analytic solution. In particular we find out that the jumps stem
directly from the low-order proxy elements used for collision
detection, and that they worsen as the curvature of the fibre
at contact points increases. Our study is carefully led on two
popular rod models, Discrete Elastic Rods and Super-Helices.
• In section 5 we devise a new detection scheme for rod models
described by a smooth centreline, with no need for low-order

1Here, we do not focus on another source of noise, which yields the very high amplitude
discontinuities well above and below the main, central force signal. This additional
noise, especially visible on DER, is due to isolated (i.e. for one time-step) losses of
contact which appear as unfortunate consequences of the constraint-based contact
response which is not activated immediately as the gap function becomes positive,
possibly as a result of numerical approximations.
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(a) Combing a wavy hair fibre, either with a Discrete Elastic Rod (in green) or a Super-Helix (in blue)
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Discrete Elastic Rods [Bergou et al. 2008, Kaufman et al. 2014]

(b) Comb force onto the Discrete Elastic Rod
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Super-Helices [Bertails et al. 2006, Daviet et al. 2011]

(c) Comb force onto the Super-Helix

Fig. 2. Noisy contact forces: Simulating the combing of a wavy hair fibre using graphics tools dedicated to physical realism... and yet, discovering the noisy,
unphysical aspect of the resulting forces. In green we use the Discrete Elastic Rod model [Bergou et al. 2010] coupled with the so-bogus frictional contact
solver [Daviet et al. 2011] through an adaptive nonlinear scheme [Kaufman et al. 2014]. In blue we use the Super-Helix model [Bertails et al. 2006] coupled
with so-bogus [Daviet et al. 2011]. Albeit yielding apparent consistent geometries (top), both simulations hide in reality fairly noisy contact forces (bottom),
whose noise increases with the curvature of the fibre at contact point. The origin of this noise, as we demonstrate in this paper, is directly due to the low-order
proxy geometry (segments) used for collision detection.

proxys such as segments. Our method works for any pair of
smooth curves whose second derivative is bounded, including
helices and splines. Furthermore, compared to the standard
approach of using a fixed-resolution segment discretisation
it scales favourably in terms of arc-length resolution vs. run-
time.
• In section 6 we apply our new detection algorithm to the
Super-Helix model and show that it removes the force artifacts
identified previously. We demonstrate the relevance of our

method on complex and large-scale hair combing simulations
featuring 2025 hairs with various natural curliness, and tens
of thousands of frictional contact points on average. On such
a large-scale scenario, the classical segment-based detection
method causes significant drift in the resulting contact force
due to an accumulation of noise on every fibre, which is
removed by our method. Finally (section 7), our algorithm
is shown to apply onto polynomial curves as well and to
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compare favourably to recent spline-based detection methods
of the literature.

4 ANALYSIS OF THE CONTACT FORCE JUMPS ON THE
CURVED THREE-POINT BENDING TEST

Our goal in this section is to explain and quantify the jumps ob-
served previously in the contact force signal from a hair strand
during sliding motion. To this aim we consider the well-known
three-point rod bending test [Frisch-Fay 1962] for which an analytic
force solution can be computed. We furthermore extend this test to
the naturally curved case in order to analyse the influence of the
curvature of the rod at contact points on the force profile.

4.1 Protocols
Classical three-point bending test. The three-point rod bending

test is a simple and canonical 2D mechanical protocol used to probe
the bending stiffness of a (naturally straight) rod. It is usually per-
formed experimentally by quasi-statically indenting a rod placed on
two horizontal supports spaced by some distance Δ, while measur-
ing the resulting vertical force 𝐹 applied onto the indenting body
as a function of the indentation (c.f. fig. 3). To further simplify the
analysis, we do not simulate the indenting body, but equivalently
enforce horizontal clamping of the rod in the middle, and account
for indentation by lifting the supports. The supports are represented
as disks of radius 𝑅, with 𝑅 ≪ Δ; each of them is in contact with
the rod at a single contact point. In practice, as the problem is sym-
metric, we consider only one half of the system (in red in fig. 3),
and measure the contact force 𝑓 on the support to compute the
equivalent load as 𝐹 = −2𝑓𝑦 , where 𝑓𝑦 is the vertical component of
𝑓 . Let Δ the distance between the two supports, and 𝑠 ∈ [0, 𝐿2 ] the
arclength along the half rod, where 𝐿 is the total length of the rod.
We denote by 𝑠𝑐 ∈ [ Δ2 ,

𝐿
2 ] the arclength of the contact point with

the support, which varies with the indentation 𝛿 .

Curved three-point bending test. We augment the test by adding
a uniform natural curvature 𝜅0 to the rod. Our resulting curved
three-point bending test is illustrated in fig. 4. Note that due to the
absence of gravity and to the particular boundary conditions of the
three-point bending test (no force nor torque applied beyond the
contact point), the curvature 𝜅 (𝑠) of the rod at the contact point 𝑠𝑐
and beyond is theoretically equal to the natural curvature 𝜅0 of the
rod. In other words, the rod describes a circular arc of radius 1

𝜅0
for

𝑠 ≥ 𝑠𝑐 . Varying the natural curvature 𝜅0 of the rod hence directly
controls the value of the curvature 𝜅 (𝑠𝑐 ) at contact, and allows to
study the influence of this curvature on the force response. Note
that numerically, this equivalence only holds at the limit 𝑛elts →∞,
where 𝑛elts is the number of elements of the rod model. In practice
we checked that our choice of 𝑛elts (see table 2) ensures a good
approximation of the limit case, for both rod models.

The whole set of parameters used in our protocol is summarised
in table 1 (note that for visualisation purposes, the supports have
been magnified in fig. 4 and fig. 3 compared to their size in the
simulations, taken identical to the radius of the rod). To allow for
proper indentation of the rod (i.e. the contact force 𝑓 between the
rod and the support should be activated), 𝜅0 has to be chosen below
the tangent limit 2

Δ−𝑅−𝑟 , where 𝑅 is the radius of the support and

Initial state

𝑅

Δ

Indented state

𝐹

𝑓𝑦

𝑠𝑐

𝑓

𝑠 = 0

𝛿

Fig. 3. Classical three-point bending test setup. In our simulations, we
consider for simplicity the equivalent “half-system” with an horizontal
clamp in the middle, as shown in red. Indentation is obtained by lifting the
right-most support.

Initial state

𝑅

Δ

Indented state

𝐹

𝑓𝑦

𝑠𝑐

𝑓

𝛿

𝑠 = 0

Fig. 4. Our curved three-point bending test setup, where the rod may have
some non-vanishing natural curvature 𝜅0, chosen between 0 and 2

Δ−𝑅−𝑟 ,
where 𝑅 is the radius of the support.

𝑟 is the radius of the rod . In practice we vary 𝜅0 between 0 and
0.3 cm−1 < 2

Δ−𝑅−𝑟 ≈ 0.4 cm−1.

Analytic model. We first focus on the (classical) case where the
rod is naturally straight (𝜅0 = 0). In the – linear – small deflection
regime, the flexural test provides direct measurement of the bending
modulus 𝐵 ≡ 𝐸𝐼 of the rod through the linear relation between the
load 𝐹 and the indentation 𝛿 ,

𝛿 ≡ 𝛿

Δ
=
𝐹Δ2

48𝐵 ≡ 𝐹 .
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Rod radius 𝑟 1.85 × 10−4 m
Distance between supports Δ 5 × 10−2 m
Support radius 𝑅 1.85 × 10−4 m
Natural curvature 𝜅0 [0 ,0.1 ,0.2 ,0.3 ]cm−1

Density 𝜌 6.45 × 103 kg m−3

Young modulus 𝐸 83 GPa
Poisson ratio 𝜈 0.33

Indentation velocity 𝑣 5 × 10−3 m s−1

Maximal indentation 𝛿max 2 × 10−2 m
Table 1. Parameters used in our (curved) three-point bending protocol.
Contact is assumed to be frictionless. Note that the lifting velocity 𝑣 of the
support is chosen so as to be much smaller than the characteristic flexural

wave velocity 𝑟
Δ

√
𝐸
𝜌
to ensure quasi-static indentation.

The barred variables are dimensionless quantities which allow for
equations that are independent of the problem’s specific physical
parameters.

When the rod is thin enough to satisfy the Kirchhoff assumptions
(i.e. no stretching, nor cross-section shearing), this relation can be
analytically extended to the large deflection regime [Batista 2015;
Frisch-Fay 1962]. In the case of supports without friction, this yields
the following implicit relation:

∀𝛼 ∈
[
0; 𝜋2

]
,


𝛿 = 𝐷̄ (1 − cos(𝛼)) +

(
1
2 − 𝐷̄ sin(𝛼)

)
𝐼2 (𝛼)
𝐼1 (𝛼)

𝐹 =
cos(𝛼)(

1 − 2𝐷̄ sin(𝛼)
)2 𝐼1 (𝛼)2 (1)

with 𝐷̄ = 𝑟+𝑅
Δ the normalised distance between the center of the

obstacle and the centerline of the rod, and

𝐼1 (𝛼) ≡
∫ 𝛼

0

cos(𝛼 − 𝜃 )√
sin(𝜃 )

𝑑𝜃

𝐼2 (𝛼) ≡
∫ 𝛼

0

sin(𝛼 − 𝜃 )√
sin(𝜃 )

𝑑𝜃 .

In practice, both integrals are evaluated numerically using the
scipy library and a pair (𝛿, 𝐹 ) is deduced for a range of known values
of 𝛼 .
When the rod is naturally curved, the formulas for computing

the exact contact force become more intricate. We provide them
in appendix A.

4.2 Numerical setting
To demonstrate the impact of collision detection across different rod
models, we consider the three model variants described hereafter.

Numerical models of rods and contact. We study the contact force
response from two popular and very different 3D discrete rod mod-
els from the Computer Graphics literature, possibly coupled with
different proxy elements for detection:
• the low-order Discrete Elastic Rod model (DER-segments) from
Bergou et al. [2010, 2008] coupled with the segment-based

- 𝑛elts 𝑛prox 𝑑𝑡 (s)

DER-segments (100) 100 100 1 × 10−4

SH-segments 20 100 1 × 10−4

SH-helices (ours) 20 20 1 × 10−4

Table 2. Three-point bending numerical parameters. Number of elements
𝑛elts (segments for DER, helices for Super-Helices), number of collision proxy
elements 𝑛prox segments for DER and SH-helices, helices for SH-segments)
and time-step 𝑑𝑡 used for the three-point bending simulations.

collision detection method from Kaufman et al. [2014] im-
plemented in the open-source creamystrand software [Fei
et al. 2019], that we have improved to also handle contacts
between rods and rigid cylinders;
• the curvature-based SuperHelix model from Bertails et al.
[2006], coupled either with a standard segment-based proxy
for collision detection [Daviet et al. 2011] (SH-segments, orig-
inal code provided by the authors), or with the high-order
helix-based algorithm that we introduce in this paper (SH-
helices, ours). We recall that Super-Helices discretise 3D Kirch-
hoff rods using 𝑁 elements 𝑖 ∈ {1, ..., 𝑁 } with uniform ma-
terial curvatures and twist 𝜿𝑖 along their constant length 𝑙𝑖 ,
resulting in a 𝐺1-smooth, piecewise helical centreline. Given
appropriate boundary conditions (e.g. setting the position and
material frame at one end of the rod), and given the continuity
of the curve and the attached material frame at element junc-
tions, the 𝜿𝑖 vectors define the centreline and material frame
of the rod unequivocally. From this geometric description, a
reduced-coordinate model is built. The equations of motion
take the form of a linear system𝑀 ¥𝒒 = 𝒇 , where𝑀 is a dense
3𝑁 × 3𝑁 mass matrix, 𝒒 = (𝜿1, ...,𝜿𝑁 ) is the state vector,
and 𝒇 is a generic reduced force term which includes inertial
forces, internal elastic forces, as well as external forces such
as the weight of the rod. Time-stepping the simulation in-
volves solving this linear problem, possibly under non-linear
frictional contact constraints. See [Bertails et al. 2006] and
[Daviet et al. 2011] for more details.

Note that in all three cases, contact response is handled with the
same non-smooth constraint-based frictional contact solver from
[Daviet et al. 2011] implemented in the so-bogus library. This al-
lows us to focus our study on the exact influence of the order of
the rod model and detection scheme used. Note that the general
conclusions drawn below also hold in the case of smoother contact
responses, as shown in appendix C, where the three-point bending
test is simulated with the Incremental Potential Contact method
from Li et al. [2020a]. The parameters used for each simulation are
summarised in table 2. They are non-dimensionalised in the simu-
lations in order to prevent round-off errors and ensure numerical
stability.

Computing the normals at contact. We always consider that a
contact involves no more than two bodies. In the ideal continuous
setting, two smooth contacting objects define a unique tangent
plane, hence a unique contact normal. In our case however, due to
time-stepping, contact may be detected once objects have slightly
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interpenetrated, which makes the contact normal more delicate to
estimate and leaves us with several options. By testing a few of them,
we have noticed that such a choice is actually critical in the way
the contact force response is computed. Too approximate a normal
estimation may artificially amplify the jumps we observe. Worse, it
may cause the loss of contact and further interpenetration. To avoid
such issues while remaining consistent over the two numerical rod
models that we use, we choose to systematically compute the contact
normal as the cross product between tangents of the two objects at
the contact point, should the objects in contact be rods or obstacles.
With this choice, the normal is guaranteed to be orthogonal to both
objects’ surfaces, even though objects may not be touching at a
single point.

4.3 Force results
Discovering jump points. For each value𝜅0 ranging in [0, 0.1, 0.2, 0.3]

we perform the three-point bending test and report the (dimension-
less) contact force 𝐹 as a function of the (dimensionless) indenta-
tion 𝛿 . Results are shown in fig. 5 for both DER-segments (left, green)
and SH-segments (right, blue). Both models use the same number of
proxy segments (𝑛prox = 100) for collision detection. The absolute
force curves (top) match analytic curves (dotted black curves) very
well for SH-segments, and fairly well for DER-segments. However, as
𝜅0 increases (darker curves) we note the presence of jumps in the
force signal. These are particularly visible in the DER-segments plots,
but they are actually also present in the SH-segments plots albeit
less directly visible. To better visualise these jumps, we normalise
each force curve by its analytic counterpart (bottom). In both cases
one now clearly sees jumps, which occur with a larger amplitude
in DER-segments than in SH-segments, but at the same constant fre-
quency in both models. As shown in appendix B, the jumps appear
exactly when a node of the segment-based detection proxy comes
in contact with the obstacle.

One can also note by comparing the DER-segments (100) and the
twice as refined DER-segments (200) curves (respectively, the SH-
segments (100) and the refined SH-segments (200) curves) shown in
appendix B that the force jumps induced at the junctions between
segments do not disappear as the number of segments is increased,
but occur twice as often, while producing smaller force oscillations.
Despite the decrease in discontinuities achieved by increasing the
number of segments, we observe that the convergence rate is very
low (see fig. 20), with jumps amplitudes still much larger than the
numerical noise even with 200 or 400 elements in the DER-segments
case. Segment-based refinement is particularly detrimental for fully
low-order models such as DER-segments, for which increasing the
number of segments not only affects collision detection but also
the mechanical model itself, thereby strongly raising the overall
computational cost.
Last but not least, the natural curvature 𝜅0 (equivalently the

curvature 𝜅 (𝑠𝑐 ) at the contact point) turns out to play a major role
in the jump amplification.

Quantifying the jumps w.r.t. curvature. To quantify more precisely
the role of the curvature 𝜅 (𝑠𝑐 ) at the contact point, in fig. 6 we plot

the 𝐿1 norm (bottom) of the finite difference derivative of the force-
indentation curves (top). Remarkably, and for both models DER-
segments and SH-segments, this analysis reveals a linear dependence
of the jump size with respect to the curvature at the contact point.

Rationale behind the force jumps. The observed force jumps can
be related to the low-order approximate geometry used to detect
contacts, as illustrated in fig. 7 and explained in detail in our accom-
panying video. Imagine a fibre sliding upon an external body (which
can be another fibre or a rigid body) at some contact point (denoted
in orange in fig. 7. If this exact theoretical contact point lies any-
where in the normal cone at the intersection of the two segments
used as detection proxy elements for the fibre, it gets projected
onto the same curve abscissa (in green), thereby leading to incor-
rect contact force locations, and possible impacts when the contact
leaves the cone. These impacts, regularly spaced according to the
length of the segment proxy, match the “jumps” that appear with
constant frequency in the force signals of the three-point bending
test. Furthermore, note that even when the contact point lies outside
the junction normal cone, the error between the exact location of
the contact point and its projection onto the segment proxy gets
amplified all the more so as the rod centreline is curved near the
contact location, hence leading to larger jumps.
On the contrary, exact contact detection with high-order simu-

lated rods would correctly project any contact point onto the point
closest to it on the centreline (in pink), leading to smooth contact
evolution. Although similar artefacts have been detected in the nu-
merical mechanics literature (see e.g. [De Lorenzis et al. 2014]), the
proposed solution is to ensure that the normal and tangent fields
vary smoothly over the contacting bodies, especially at element
boundaries. This is not sufficient however, as demonstrated by our
SH-segments scenario. In that setting, normals are smooth along the
entire fiber (i.e. in space), but force discontinuities remain because
the contact detection scheme ends up sampling this smooth normal
field at a sequence of abscissae that is itself not smooth with respect
to the actual sliding motion. In other words, our contribution is
to identify and fix an artificial lack of smoothness with respect to
the sliding motion (i.e. in time) rather than only with respect to the
surface.

What we propose to fix. In this paper we focus on high-order
fibre models, whose centreline is a smooth curve, and propose an
efficient high-order detection algorithm between two such smooth
curves. Specifically, our method avoids having to resort to low-
order proxy elements with nonsmooth junctions (e.g. segments) and
directly builds upon the smooth geometry of the fibre centreline. We
apply our new algorithm to the Super-Helix model, which features
a 𝐶1-smooth centreline made of helical arcs that are tangentially
connected. Our new algorithm is presented in the next section.
As a conclusion to this analysis, in fig. 8 we provide a synthetic

view of our findings on the curved three-point bending test, for a
rod featuring a large natural curvature 𝜅0 = 0.3. The plot shows the
force-indentation curves obtained for all three simulators, including
our new SH-helices method (described in the following section),
compared with the smooth analytic solution. While the forces com-
puted by the three simulators are for the most part in very good
agreement with the analytic model, we retrieve the localised force
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Fig. 5. Curved three-point bending test: noisy force results. Top: Force-indentation curves for DER (left, green) and SH-segments (right, blue), as the natural
curvature 𝜅0 is increased (light to dark). Bottom: Normalised curves to better highlight the presence of force jumps in both models, due to segment-based
detection.

jumps already observed earlier for the two segment-based detection
scenarios (severe jumps for DER-segments (in green), visible at full
scale, and moderate jumps for SH-segments (in blue), revealed by
zooming in), which precisely match the geometrical discontinuities
at the junctions between the segments used for collision detection.
On the contrary, in anticipation to the next section, we can see
that our new high-order detection scheme coupled with the smooth
Super-Helix rod model (in red) completely fixes the jump issue and
yields a nice, smooth force-indentation curve even when largely
zoomed in.

5 HIGH-ORDER CONTACT DETECTION
Detecting contact points between two shapes𝐴, 𝐵 ⊂ R𝑑 amounts to
building a numerical representation of the set𝐴∩𝐵 from numerical
representations of𝐴 and 𝐵. In the following, we focus on the case of

fibres with constant thickness, so that 𝐴 and 𝐵 can be represented
as the 𝜖-neighbourhoods of the image of finite intervals by some
parametric curves: 𝐴 = {𝒑 𝑠 .𝑡 . ∃ 𝑠 ∈ I𝐴, ∥𝒂(𝑠) − 𝒑∥ ≤ 𝜖}, where 𝒂
defines the parametric curve in question, and similarly for 𝐵.
In this case, computing 𝐴 ∩ 𝐵 may be framed as computing a

number of contact regions 𝑆 in the parametric spaceI𝐴×I𝐵 such that
∀(𝑠𝐴, 𝑠𝐵) ∈ 𝑆, ∥𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵)∥ ≤ 𝑟𝐴 + 𝑟𝐵 . Although these regions
may be sampled more or less densely, as is the case in [Snyder et al.
1993], we instead yield a single contact “point” (𝑠𝐴, 𝑠𝐵) per curve
pair, which corresponds to the pair (𝑠𝐴, 𝑠𝐵) at which the distance
∥𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵)∥ is minimal. That is, our collision problem amounts
to a closest point query between two parametric curves. More contact
points may be added by subdividing the curves prior to running the
collision algorithm. All contact points are then used to build the
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Fig. 6. Curved three-point bending test: analysis of the force discontinuities. Top: Derivatives of the force-indentation curves for DER (left, green) and
SH-segments (right, blue), as the natural curvature 𝜅0 is increased (light to dark). Bottom: 𝐿1 norm of the above curves depict the linear dependency of jump
size with respect to the curvature at contact.

system of equations to be solved (as described in [Daviet et al. 2011]
for our applications).
Producing a single contact point reduces the collision detection

problem to a generally non-convex global optimisation problem of
two variables (the two parameters along the curves), whose objective
function is

𝐹 : (𝑠𝐴, 𝑠𝐵) ↦→ ∥𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵)∥2,
the pointwise distance between the two curves at the given param-
eters.
As such, our algorithm takes inspiration from the global optimi-

sation literature, and especially from so-called branch and bound
methods (see e.g. the first chapters of [Scholz 2011] for a review). The
starting intervals (I𝐴,I𝐵) are recursively subdivided until either

(1) the desired precision 𝛿 is reached, i.e.

max( |I𝐴 |, |I𝐵 |) ≤ 𝛿,

(2) or the shapes 𝐴 and 𝐵 can be proven not to intersect, i.e.

∀𝑠𝐴 ∈ I𝐴,∀𝑠𝐵 ∈ I𝐵, ∥𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵)∥ > 𝑟𝐴 + 𝑟𝐵 .

In order to fulfil the second criterion, more information needs to
be gathered regarding the two curves. In particular, given two bound-
ing volumes 𝑉𝐴 and 𝑉𝐵 such that 𝒂(I𝐴) ⊆ 𝑉𝐴 and 𝒃 (I𝐵) ⊆ 𝑉𝐵 , we
have𝑑 (𝒂(I𝐴), 𝒃 (I𝐵)) ≥ 𝑑 (𝑉𝐴,𝑉𝐵)where𝑑 (𝑋,𝑌 ) = min𝑥 ∈𝑋,𝑦∈𝑌 ∥𝑥−
𝑦∥ denotes the minimum distance between two point sets. Criterion
2 may therefore be checked by building a bounding volume for each
piece of curve, and checking for

𝑑 (𝑉𝐴,𝑉𝐵) > 𝑟𝐴 + 𝑟𝐵 . (2)

Hence, bounding volumes for which this distance may be easily
computed must be constructed.

At its simplest, such a volumemay for instance be a sphere centred
at the midpoint of the curve, with a radius equals to half its length,
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Fig. 7. Segment-based detection generates spurious contact discontinu-
ities: as a potential point contacting the rod (in orange) enters the normal
cone (highlighted in green) at the junction between collision detection seg-
ments, it gets constantly projected onto the same rod curvilinear abscissa
(in green) rather than onto the geometrically exact closest curve point (in
pink), thereby causing incorrect contact position and force response despite
the smoothness of the original centreline.
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Fig. 8. Three-point bending force-indentation results. The insets show a
zoom of the correspondingly framed zone of the curve to illustrate that,
even though segment-based detection can provide a seemingly accurate
signal, their geometric discontinuities produce non-physical force jumps. In
contrast, our method (in red) yields a perfectly smooth signal.

or the axis-aligned bounding box of the curve. In [Lakshmanan et al.
2019], a bounding ellipsoid is derived by bounding the arc-length of
the curve from above.

In the following, we derive a simpler volume by taking advantage
of Taylor’s inequality for C2 regular curves. The obtained volume
corresponds to the fixed distance neighbourhood to a line segment,
which is often called a capsule (or swept sphere volume [Larsen
et al. 1999]) in the real-time physics literature [Ericson 2004; Van
Den Bergen 2003]. In contrast with the ellipsoids, which require
numerical solves to evaluate the distance between each other (c.f.
[Choi 2020]), the minimum distance between two capsules derives

from the distance between two line segments, which can be com-
puted in constant time (see [Ericson 2004], pp. 148-151). Figure 9
illustrates this bounding volume over a short curve.

Fig. 9. A short curve (left), and the bounding capsule computed from it with
Taylor’s inequality (right).

Curve bounding volume. Suppose 𝒂 is C2, and let

𝐾 (I𝐴) ≡ max
𝑠∈I𝐴
∥𝒂′′(𝑠)∥ .

Then, according to Taylor’s inequality [Apostol 1991; Taylor 1717],
for any 𝑠 and 𝑠0 in I𝐴 such that |𝑠 − 𝑠0 | ≤ Δ:

∥𝒂(𝑠) − (𝒂(𝑠0) + (𝑠 − 𝑠0)𝒂′(𝑠0))∥ ≤
1
2𝐾 (I𝐴)Δ

2 (3)

Having fixed 𝑠0, the above equation bounds the distance between
a curve patch and its first order approximation – that is, a line
segment – by a constant. Note that Δ ≤ |I𝐴 |, which means that as
our algorithm progresses and I𝐴 shrinks to a singleton, the bound
given by (3) improves quadratically.

Branch and bound algorithm. As mentioned above, the second-
order bound obtained in (3) can be exploited within a recursive
subdivision algorithm to compute the minimum distance or reject
collision, algorithm 1. Note that by letting the user input a distance
upper bound 𝑏, the algorithm may opt-out early when the curves
under consideration are distant enough: if the curves are more than
𝑏 units apart, the algorithm only does enough work to prove that
this is the case and exits without providing the curve parameters
where the minimum distance is reached. Setting 𝑏 = 𝑟𝐴 + 𝑟𝐵 allows
for exiting early when detecting collisions, whereas setting 𝑏 to +∞
(or to any known upper bound to the minimum distance between
the two curves) provides the minimum distance and the matching
parameters unconditionally.
We illustrate this algorithm in two ways. First, fig. 10 shows

the geometric nature of the procedure, whereby capsules are built
from the tangents at the curves’ centres (in red), and the curves get
subdivided when these capsules intersect pairwise. Second, fig. 11
and the accompanying video depict it as a generic optimisation
process, over a 1D domain for clarity. The same ideas generalise
to 2D or higher-dimensional domains. Depending on the value of
𝑑∗ when a specific region is considered, it will either be ruled out
because the function is proven to stay above 𝑑∗ in this region (figure
11a), or subdivided into two regions that will be re-examined later
(figure 11b).
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Algorithm 1: Curve-curve distance computation
Data:
• precision 𝛿 > 0,
• curves 𝒂, 𝒃 : R→ R𝑑 ,
• intervals I𝐴,I𝐵 ,
• distance upper bound 𝑏

Result:
• Distance 𝑑∗ between the two curves and parameters 𝑠∗

𝐴
and 𝑠∗

𝐵
where this distance is reached

• OR 𝑑∗ = 𝑏 and null values for 𝑠∗
𝐴
and 𝑠∗

𝐵
if the distance

between the two curves is larger than 𝑏.
1 𝑄 ← empty priority queue of interval pairs;
2 enqueue(𝑄 , (I𝐴,I𝐵));
3 𝑘 ← 0;
4 𝑑∗ ← 𝑏;
5 𝑠∗

𝐴
, 𝑠∗
𝐵
← null;

6 while 𝑄 is not empty do
7 (I𝑘

𝐴
,I𝑘

𝐵
) ← pop(𝑄);

8 𝑠𝐴 ← sample from I𝑘
𝐴

;
9 𝑠𝐵 ← sample from I𝑘

𝐵
;

10 if |I𝑘
𝐴
| ≥ 𝛿 and |I𝑘

𝐵
| ≥ 𝛿 then

11 𝑙 ← distanceLowerBound(𝒂, 𝒃 , I𝑘
𝐴
,I𝑘

𝐵
);

12 if 𝑙 < 𝑑∗ then
13 if |I𝑘

𝐴
| > |I𝑘

𝐵
| then

/* Split interval A */

14 enqueue(𝑄 , (I𝑘
𝐴
∩ ] − ∞, 𝑠𝐴],I𝑘𝐵 ));

15 enqueue(𝑄 , (I𝑘
𝐴
∩ [𝑠𝐴, +∞[,I𝑘𝐵 ));

16 else
/* Split interval B */

17 enqueue(𝑄 , (I𝑘
𝐴
,I𝑘

𝐵
∩ ] − ∞, 𝑠𝐵]));

18 enqueue(𝑄 , (I𝑘
𝐴
,I𝑘

𝐵
∩ [𝑠𝐵, +∞[));

19 𝑑 ← ∥𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵)∥;
20 if 𝑑 < 𝑑∗ then
21 𝑠∗

𝐴
← 𝑠𝐴 ;

22 𝑠∗
𝐵
← 𝑠𝐵 ;

23 𝑑∗ ← 𝑑 ;
24 𝑘 ← 𝑘 + 1;

Our method may be seen as part of the framework introduced by
Johnson and Cohen [1998], and our main algorithmic contribution
is the quickly converging yet easy to compute lower bound provided
in equation (3). Still, we have kept algorithm 1 as generic as possible,
and the following points can be tuned depending on the application:

• The distanceLowerBound function: as discussed above, we
use the Taylor bound from equation (3) around the centre of
the fibre element, but any other valid lower bound (including
the constant 0) would work as well, although with varying
levels of performance. The tighter this bound, the more the

Fig. 10. Geometric view of algorithm 1. Subdivision happens adaptively,
only when the current capsule pair intersects. The curve portions under
consideration at each step are in black, the tangents used to build the
capsules in red.

algorithm can prune interval pairs from the search tree 2

(line 12 of algorithm 1). Tighter bounds may however be
more expensive to compute, yielding an algorithm that is
overall slower despite examining fewer steps.
• The policy to select the sample points 𝑠𝐴 and 𝑠𝐵 at lines
8 and 9. In practice, we compute the pair of closest points
between the two line segments that are used to approximate
both curves, and then reproject these two points onto the
curves. A more sophisticated approach may however lead
to a lower value of 𝑑 , in turn decreasing 𝑑∗ and accelerating
the algorithm. Again, a compromise must be made between
tightness and performance.
• The splitting method.When splitting one of the intervals
under examination (lines 12 to 18), another criterion than
the interval width may be taken into account. For instance,
[Von Herzen et al. 1990] use a metric based on the Jacobian
matrix of the parametric function which defines the shapes
under consideration, making it more likely that the enqueued
interval pair will decrease𝑑∗. A curvature-based metric might
similarly be derived to match our lower bound function. Note
that the stopping criterion (line 10) must also be updated to
match the splitting policy, in order to ensure that the algo-
rithm terminates.
• An ordering for the priority queue 𝑄 . Although it does
not affect the result of the algorithm, the order in which in-
terval pairs are handled drastically changes its running time.
Indeed, each pair has the opportunity to improve 𝑑∗, which
in turn helps prune later branches of the search tree. In our
experiments, ordering 𝑄 by decreasing interval width – that
is, handling interval pairs that are widest first – resulted in
significantly faster running times than handling the narrow-
est pairs first. More sophisticated metrics may again lead to
faster results.

2N.B.: This so-called “search tree” is purely conceptual and is never fully stored in
memory.
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(a) The active (green) interval cannot be ruled out because 𝑙 < 𝑑∗. It must
be further subdivided.

(b) The active (green) interval can now be ruled out because 𝑙 > 𝑑∗.

Fig. 11. Several steps of our minimisation algorithm, in 1D for clarity.

We have only examined these points to the degree that they make
the algorithm usable in practice. Perfecting each of them may yield
better performance, but in our simulation scenarios and with a
requested precision 𝛿 = 10−8 on the result of our algorithm, the
computational cost of collision detection remained comparable to
that of time-stepping the physical simulation itself, allowing us to
run complex large-scale scenarios. However, the points above are
interesting directions for improving the performance of the algo-
rithm with no impact on its precision, potentially opening the way
for its use in real time simulation or other interactive applications.

Application to the Super-Helix model. In the following section,
we apply this collision algorithm to the Super-Helix model. The
curves 𝒂 and 𝒃 are therefore helices, and despite the simplicity of the
mathematical expression of a single helix, combining two of them
into the distance functional 𝐹 (𝑠𝐴, 𝑠𝐵) = ∥𝒂(𝑠𝐴)−𝒃 (𝑠𝐵)∥2 results in a

non-convex function, whose global minima may not be computed in
closed form. Numerical minimisation is non-trivial as well: although
in simpler cases, such as helix-point distance computation, only a
finite number of convex regions must be examined (see [Nievergelt
2009]), the function 𝐹 for helix-helix distance is non-convex and
does not present as simple a structure. Hence, this case is well suited
to the use of our algorithm.

Up to a rigid transformation, any helix can be parametrised as

𝒂(𝑠) = (𝛼 cos 𝑠, 𝛼 sin 𝑠, 𝛽𝑠),

for some parameters 𝛼, 𝛽 ∈ R. The norm of the second-derivative is
thus ∥𝒂′′(𝑠)∥ =

√
𝛼2 + 𝛽2 for all 𝑠 , which gives

𝐾 (I𝐴) =
√
𝛼2 + 𝛽2 .

The value of 𝐾 (I𝐴) therefore does not depend on I𝐴 in this case,
and may be computed ahead of time.

Contact basis. To conclude the contact detection, we need to con-
struct a local basis at the contact point. A first tangent is constructed
as the average of both tangent of the fibres

𝒕1 =
𝒂′(𝑠𝐴) + 𝒃 ′(𝑠𝐵)
∥𝒂′(𝑠𝐴) + 𝒃 ′(𝑠𝐵)∥

.

The general formula for the normal is given by

𝒏 = 𝒂′(𝑠𝐴) × 𝒃 ′(𝑠𝐵) .

When both tangents are nearly parallel or anti-parallel, the formula
above becomes ill-defined; instead, we then construct the tangent
plane orthogonal to the gap function 𝒈 = 𝒂(𝑠𝐴) − 𝒃 (𝑠𝐵) and use the
normal

𝒏 =
(𝒕1 × 𝒈) × 𝒕1
∥(𝒕1 × 𝒈) × 𝒕1∥

.

When exactly one of the contact is an endpoint of a fibre, the parallel
case is used to compute the normal. In the special case where two
endpoints are in contact, the normal is given by 𝒏 = 𝒈/∥𝒈∥ and an
arbitrary tangent 𝒕1 is constructed. We also make sure the normal
is correctly oriented from 𝐴 to 𝐵 and normalised.
The last vector is computed to ensure the basis is orthonormal

and direct, that is
𝒕2 = 𝒕1 × 𝒏.

Note that at the junction of elements, a contact point could be
duplicated in case of small penetration. To handle this specific case,
when two contact are closer than a given threshold (set in practice
to the fibre width), only the most indented one is kept.

6 RESULTS AND EVALUATION
We apply our detection algorithm, presented in section 5, to the par-
ticular case of piecewise helical curves, which allows us to simulate
contacting super-helices [Bertails et al. 2006] with high-order con-
tact detection. Contact and dry friction are then resolved precisely
using the so-bogus solver [Daviet et al. 2011] with a low tolerance
(×107 lower than in [Daviet et al. 2011]), a calibration setup which
has already been validated experimentally [Romero et al. 2021].
Please watch our accompanying video for the corresponding

animations.
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6.1 Benchmark setup
Simulation scenarios. We come back to the Hair combing sce-

nario introduced in section 3, and propose to evaluate our algorithm
on three main variants:
• Hair combing (1): As in section 3, a single fibre is gently
combed from root to tip. This scenario is intended to evaluate
precisely the benefit of our method compared to previous
ones and to connect our analysis performed in section 4 to a
more sophisticated, 3D uncontrolled scenario.
• Hair combing (2025): A wisp of 2025 tightly packed hair
– naturally straight, wavy, or curly– is gently combed from
root to tip. We furthermore vary its natural curliness, from
straight to wavy and curly. Such a challenging scenario is
meant, on the one hand, to demonstrate the scalability and
robustness of our new detection algorithm. On the other hand,
it allows us to show the significant gain in accuracy obtained
by our method compared to others, as spurious noise can
accumulate over the large number of contacts at play.
• Tightly coiled hair combing (100): A wisp of 100 tightly
packed and extremely curled hair, is gently combed from root
to tip. To our knowledge, this is the first time that such an
extreme case can be simulated effectively. Besides, we report
some interesting physical observations which give a glimpse
of the potential of our tool for exploring complex entangle-
ment phenomena that still remain poorly understood.

Physical hair parameters. We set the geometrical and physical pa-
rameters of our fibres using realistic hair parameters [Robbins 2012].
To study different physical settings, we vary their natural curliness,
from Straight to Wavy, Curly and Tightly Coiled. When mul-
tiple fibres are simulated within a wisp, we may in addition vary
the hair-hair friction coefficient, from 𝜇 = 0.1 (“clean”) to 𝜇 = 0.3
(“dirty”). Note that the friction coefficient between the fibres and the
comb is set to the same value for the sake of simplicity. See table 3
for a complete description of the chosen physical parameters.

Combing protocol. Each fibre is clamped at one end, free at the
other end. It is first left to fall under gravity until it stabilises. In the
case of a wisp, the roots of the fibres are set on a grid, with small
random offsets to break regularity. To generate pernetration-free
initial configurations, we start with straight – aligned – hair fibres,
and then wait until the wisp relaxes under its own weight: it then
slowly adopts a static equilibrium involving a competition between
the natural curliness of the fibres, gravity, and frictional contact
between the fibres (see fig. 14, top panel, and the accompanying
video).

Following the fibre relaxation process, we start moving a virtual
comb into the fibre or the wisp. The comb is designed with realistic
dimensions (teeth with diameter 1.1 mm, spaced by 1.2 mm), and is
in practice modelled as a rigid kinematic body composed of smooth
capsules (one thin capsule per tooth, and one larger capsule for
the handle), which allows us to detect contacts between the comb
and the fibres just by reusing our fibre-fibre detection algorithm.
The comb is first translated so that its teeth catch on the fiber(s),
before being pulled forwards and downwards (following a diagonal
trajectory) with constant velocity.

Comparison to other fibre simulators. Our main baseline for com-
parison is SH-segments, which consists of the smooth Super-Helix
fibre model coupled with segment-based collision detection [Daviet
et al. 2011]. We do not keep the – low-order – DER-segments model
in the comparisons as it has already been shown in fig. 2b to gen-
erate prohibitive noise even for moderate curvatures (Wavy fibre)
and for a large number of segments (200): we can only expect noise
to worsen as the curvature is increased.

Fibre radius 𝑟 50 𝜇m
Fibre length 𝐿 30.5 cm
Natural curvature 𝜅0 Straight 0.1 cm−1

Natural curvature 𝜅0 Wavy 0.6 cm−1

Natural curvature 𝜅0 Curly 1.0 cm−1

Natural curvature 𝜅0 Tightly Coiled 2.0 cm−1

Density 𝜌 1 g cm−3

Young modulus 𝐸 1 GPa
Poisson ratio 𝜈 0.48
Friction coefficient 𝜇 0.1 (“clean”) or 0.3 (“dirty”)

- 𝑛elts 𝑛coll 𝑑𝑡 (s)

SH-segments (12) 12 100 1 × 10−3

SH-helices (12) (ours) 12 12 1 × 10−3

Tolerance for the detection Hair combing (1) 1 × 10−8

Tolerance for the detection Hair combing (2025) 1 × 10−6

Tolerance for the constraint solver 1 × 10−12

Max number of iterations for the constraint solver 500
Table 3. Hair combing setup and numerical parameters.

6.2 Hair combing (1)
Wavy fibre. We apply our new high-order SH-helices algorithm to

our introductory example, Hair combing (1) with a singleWavy
fibre. Results are presented in fig. 12, and compared against the
previous SH-segments method. In contrast to SH-segments (in blue),
which shows significant noise as soon as the curliness becomes
moderate, i.e. close to the tip of the fibre, our method (in red) com-
pletely gets rid of this noise and allows one to retrieve a smooth
force signal at any fibre curvature. Note that the impact at 𝑡 = 14.3 s
corresponds to a physical impact between the end of the fibre and a
teeth of the comb.

Connection with our analysis from section 4. Our observations
above are qualitatively in line with our analysis in section 4 re-
garding the influence of curvature at contact. To make a clearer
and more quantitative connection, we measure, in the Hair comb-
ing (1) –Wavy scenario, the amplitude of the noise as a function
of the actual curvature at the contact point (which differs from the
natural curvature of the fibre) for SH-segments. The amplitude of the
noise is computed in a similar way than in the three point bending
experiment. However, because no analytical curve is available in the

ACM Trans. Graph., Vol. 43, No. 4, Article 132. Publication date: July 2024.



132:14 • Crespel, O. et al.

11 12 13 14 15

time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
or

ce
m

ag
ni

tu
de

(×
10
−

5
N

)

×4

SH-segments (25 elts, 200 seg.)

SH-helices (25 elts) (ours)

Fig. 12. Hair combing (1) result: comparison between our method and
the previous Super-Helices method

combing test, the normalisation is done using the curve obtained
with SH-helices, considered as the reference.

The actual curvature at contact is defined as the ℓ2-norm of the
vector of 3 material curvatures/twist (or equivalently, as the ℓ2-
norm of the Darboux vector). To prevent incorporating large force
variations coming from real impacts at the beginning and end of the
simulation, we restrict our analysis to the interval between 11.3 s
and 15.3 s. Results are reported in fig. 13. Interestingly, although our
scenario is much more complex than the three-point bending test
(3D, multiple contact points, uncontrolled curvature at contact), we
retrieve on a large range of curvatures3 the linear dependency of the
noise amplitude with respect to the curvature at the contact point
in the SH-segments case – as predicted by our analysis in section 4.
The linear factor appears to be 6× greater4 than in the three-point
bending protocol, which makes the Hair combing (1) scenario
even more sensitive to detection artifacts. As for our method, it
systematically removes all the jumps regardless of the curvature at
the contact point.

6.3 Hair combing (2025)
We now turn to the challenging scenario of combing hair wisps
made of thousands tightly contacting fibres.

Geometries. Our visual results are depicted in fig. 14, from Straight
(top) to Wavy (middle) and Curly (bottom). For the Wavy and
Curly types, we observe interesting rearrangements of individual
hair fibres after combing. In particular, as in reality, the initially
well-formed curls are broken by the comb. In the Wavy case, the fi-
bres eventually reshape into two entwined main wisps. In theCurly
3In this more complex scenario compared to the curved three-point bending test, we
observe at the end of the comb indentation a shift between the reference curve and the
average of the noisy curve (see inset of fig. 12). This shift at large curvatures actually
degrades the method we set in section 4.3 to compute the amplitude of the jumps,
which explains the outliers in the lower part of fig. 13.
4Note that it cannot be expected to retrieve the same linear factor in the two sliding
protocols, as the magnitude of the force jumps depends on the (perturbed) dynamic
system to be integrated.
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Fig. 13. Force jumps with the actual curvature at contact in the Hair
combing (1) scenario. Normalisation of SH-segments by SH-helices.

case, the wisp gets divided into more smaller wisps, surrounded by
many individual hairs that give a fuzzy appearance to the whole
set.

Forces. To analyse the combing force applied onto the hair wisp,
we focus on the Wavy wisp, as it already allows us to address a
challenging case while keeping timings reasonable.

During the combing process, the total force applied by the comb
is measured by summing up all the forces at each contact point,
and plotted as a function of its indentation. We then compare the
force profiles between our method and SH-segments. Results are
shown in fig. 1, right. A first observation is that, unlike in Hair
combing (1), SH-segments now yields a reasonably regular force
signal, suggesting that averaging over a large number of contacts
tends to decrease the punctual impact of individual jumps. However,
a second observation is that this signal significantly deviates from
our solution, especially at large indentations where the curvature
at contact points becomes large. This shows that the noise due to
segment-based contact detection does not cancel out as multiple
hairs are involved. Quite the opposite, the noise eventually accumu-
lates, due to both comb-hair and hair-hair interactions, giving rise
in the end to a flawed force signal.
In contrast, our approach eliminates artifacts due to collision

detection in curved fibres. As such, it is expected to increase sig-
nificantly the reliability of the force predictions. In the future, this
newly reached accuracy paves the way to further investigate and
better understand tightly interacting fibre systems, for instance to
disentangle the respective roles of elasticity and friction in complex
fibrous media.

As a first illustrative study towards this goal, we vary the friction
coefficient on the Hair combing (2025) Wavy between 𝜇 = 0.1
("clean ") and 𝜇 = 0.3 ("dirty ") and observe in fig. 15 the resulting
forces during combing and the resulting geometries after combing.
As expected, the forces in the dirty case incorporates much more
dissipation than in the clean case. Interestingly, these changes in
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forces incur different trajectories of the individual fibres. In particu-
lar the initial wisp breaks into more and thinner wisps in the dirty
case, which rearrange themselves into different patterns compared
to the clean wisp.

6.4 Tightly coiled hair combing (100)
An extreme case of curliness is tightly coiled hair, where fibres may
feature a radius of curvature of a few millimeters only (down to
1.5 mm), i.e. a natural curvature well beyond 1 cm−1 (up to around
7 cm−1). We set curl radii to 5 mm, corresponding to 𝜅0 = 2 cm−1.
These parameters, though in the lower bound for “kinky” or “Afro”
hair, already yield the tight spring-like shape represented in fig. 16,
categorised as Type V-VI hair [De La Mettrie et al. 2007]. Note
also the extreme shortening of the apparent length of the wisp at
equilibrium (only 4 cm), about 87% compared to a straight wisp (30
cm). Very few approaches in the past have attempted to simulate
such highly curly hair. Bertails et al. [2005] simulate a static head
made of a few hundreds Type V-VI hair wisps, where each wisp
is guided by a single super-helix at equilibrium under gravity and
contacts. With a similar wisp-based strategy, Shi et al. [2023] has
recently achieved the fast simulation of several thousands tightly
coiled hair wisps. Their guide hair is animated using an ad-hoc
position-based coiled spring model with volumetric twist energy,
which turns out to be orders of magnitude faster thanDiscrete Elastic
Rods. However, none of these former methods tackle the accurate
simulation of each individual hair that composes a coiled wisp, let
alone the coupling to strong contact constraints imposed inside the
wisp.

To capture such a high curl density correctly, we had to raise
the number of elements of the Super-Helices from 12 to 32. Other-
wise, the discretisation creates an artificial stiffness, making the
simulation harder to converge and causing penetrations. To keep
timings reasonable (10 ms per time step), we reduce the size of the
wisp to 100 hair fibres (up to 10000 contacts, 6946 on average). As
illustrated in fig. 16 and in our accompanying video, we manage
to simulate an impressive scenario where the tightly coiled wisp is
entirely combed from root to tip. To the best of our knowledge this
is the first time that one can access such a level of precision in the
simulation of tightly coiled hair assemblies. In particular, we notice
the appearance of a helical perversion after combing, as shown in
fig. 16, bottom left and middle. This physical phenomenon is typical
of scenarios where a fibre with strong natural curvature is extended
and then relaxed [McMillen and Goriely 2002],[Bergou et al. 2008,
fig.2].

6.5 Performance
Because it subdivides the curves of interest adaptively, the algorithm
presented in section 5 allows us to reach arc-length tolerances on the
order of 10−8 in reasonable computational time. Hence, using it in
lieu of the segment-based collision schemes used in fibre simulations
not only adresses the force artifacts described in section 3, but also
keeps running times reasonable.

In our simulations, we prune out non-colliding curve pairs using
a sweep-and-prune algorithm ([Ericson 2004], pp. 329-338) on the
axis-aligned bounding boxes of the curves. This broad phase is

followed by a narrow phase, in which we may use either algorithm
1 or segment-based detection. For segment-based detection, we use
the following routine:

(1) Set a required arc-length tolerance 𝛿 .
(2) Split each curve into segments by sampling it evenly such that

the endpoints of each segment are no more than 𝛿 arc-length
units apart.

(3) Gather the segments for each curve into two bounding vol-
ume hierarchies 𝐵𝑉𝐻𝐴 and 𝐵𝑉𝐻𝐵 consisting of axis-aligned
bounding boxes.

(4) Find colliding segments by going through 𝐵𝑉𝐻𝐴 and 𝐵𝑉𝐻𝐵

simultaneously, pruning out subtrees when their bounding
boxes are further than 𝑟𝐴 + 𝑟𝐵 apart.

This fairly simple algorithm may be tweaked in a number of
ways in order to improve its performance, but using BVHs already
constitutes a drastic improvement over naïvely checking each pair of
segments. As such, we use it as a baseline against which to compare
our algorithm.
To evaluate both algorithms, we use a trace of all calls to the

narrow phase collision routine during a frame of the comb scenario
as a benchmark, which amounts to about 18 000 pairs of curves. This
data set allows us to assess “real life” performances more clearly
than using a set of random curves would.
Figure 17 displays the convergence rate of algorithm 1 – that

is, the computation time as a function of the reached arc-length
error. For fairness, we use the mean reached error (computed as the
parameter-space 𝐿∞ distance to a “ground truth” result computed by
our algorithm with 𝛿 = 10−12) rather than the input tolerance. This
matters for example when approximating nearly-straight curves
with segments, where even low segment counts may yield very low
errors.

As we can see, algorithm 1 outperforms segment-based detection
at all but the highest errors. However, because our implementation
efforts were focused on algorithm 1 rather than on segment-based
detection, comparing raw CPU timings is not entirely fair. Still, our
algorithm is able to reach much lower errors because its complexity
scales up more slowly than that of segment-based detection. Indeed,
dividing the arc-length error by 10 results multiplies the computa-
tion time by more than 15 when using segments, but only by about
1.4 when using our algorithm.

Besides, although it is a narrow phase collision detector, our
algorithm exhibits a behaviour similar to broad phase collision
detection. Indeed, it wastes little time on non-colliding curve pairs:
as figure shown in fig. 17, rejecting a collision is at least two orders
of magnitude faster than accepting it, and the time taken to reject
a collision does not increase with the precision. This makes sense
considering that when the curves of interest do not collide, the
algorithm never explores a higher precision than that required to
prove separation.
Figure 18 shows this in more detail: as soon as the gap between

fibres is positive, the computation time drops by two orders of
magnitude, as described above, and continues dropping for further
separated curves.

Finally, our algorithm is lighter on memory than one using a BVH
to store segments. Indeed, while the segment-based algorithm must
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Fig. 14. Combing the three hair wisps Straight (brown), Wavy (blond), and Curly (red) (2025 fibres) with 𝜇 = 0.1.
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scenario # contacts time per step total time detection construction solve
Hair combing (2025), Straight, 𝜇 = 0.1 21191 12.9 s 90 h 1.7 s (13.3 %) 7.1 s (55.2 %) 3.8 s (29.8 %)
Hair combing (2025),Wavy, 𝜇 = 0.1 28709 24.4 s 170 h 10.3 s (42.1 %) 7.2 s (29.4 %) 6.7 s (27.6 %)
Hair combing (2025), Curly, 𝜇 = 0.1 84806 62.5 s 435 h 22.5 s (36.0 %) 7.6 s (12.1 %) 32.2 s (51.4 %)
Hair combing (2025),Wavy, 𝜇 = 0.3 29282 23.6 s 165 h 9.3 s (39.3 %) 7.2 s (30.5 %) 6.9 s (29.3 %)
Tightly coiled hair combing (100), 𝜇 = 0.1 6946 9.5 s 66 h 0.5 s (5.2 %) 6.3 s (66.5 %) 2.6 s (27.9 %)

Table 4. Average number of contacts per step over the whole simulation, average time per time step (𝛿𝑡 = 1 ms for all cases), total time for the whole
simulation, and time per timestep and percentage of time spent in the three main phases of the simulation. Note that only the solve and the detection of
contacts are parallelised. The construction of the system is monocore. The simulations were run on Intel Xeon CPU with 8 cores running at 3.5 GHz. Each
Hair combing (2025) represents 25 s of simulated time. The Tightly coiled hair combing (100) has a duration of 30 s.
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Fig. 15. Varying the friction coefficient gives different result both geometri-
cally (top) and force-wise (bottom). The “dirty” (𝜇 = 0.3) wisp realistically
splits into multiple smaller wisps.

Fig. 16. Simulation of the combing of a tightly coiled wisp consisting of
100 super-helices made of 32 elements each. Combing not only breaks the
initially regular curls into small fuzzy strands, but it also generates an helical
perversion (i.e. a change of handedness) in the middle of the main strand,
as in reality (bottom left).

set up and hold the BVH structure in memory before traversing it,
our algorithm builds the search tree dynamically as it traverses it.
Hence only the priority queue𝑄 must be stored in memory, and our
algorithm is unlikely to become memory bound at higher precisions.

7 DISCUSSION AND PERSPECTIVES
Our analysis and results show that the segment-basedDiscrete Elastic
Rods model, combined with a low-order detection scheme, system-
atically produces spurious high-frequency jumps in the force signal,
which do not disappear when increasing the number of elements.
For Super-Helices coupled with low-order detection, similar artifacts
arise, but only appear to be critical in curved fibre configurations.

Our high-order detection algorithm was proved to eliminate such
artifacts efficiently and robustly in the case of Super-Helices, yielding
smoother and much cleaner force profiles. Our method turns out
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Fig. 18. Our algorithm’s computation time as a function of the gap between
the two curves. Here, the benchmark was run with 𝛿 = 10−8.

to be particularly effective in eliminating the substantial noise that
can be accumulated in large curved fibre systems due to low-order
detection, hence suggesting that contact forces in wavy and curly
fibre assemblies are predicted with significantly better accuracy
using our approach.
Overall, our method represents a solid starting point to further

explore the potential of high-order collision detection schemes, and
could still be improved in a number of different ways. Below we
comment on current limitations of our approach and discuss exciting
potential venues for improvement and extension in the future.

7.1 Contact point pruning and time consistency
While contact points can be restricted to themesh vertices in the case
of polyhedral bodies [Baraff 1989; Palmer 1989], the discretisation
of smooth (and thus potentially non-convex) continuous contact
zones has not been thoroughly studied, and is often handled with
exhaustive contact detection and pruning, which lead to poorly
controlled contact positions and correspondingly ill-conditioned
systems to solve for the constraint contact forces. Despite its ability
to naturally generate a discretisation of a helix-helix contact zone
with a resolution prescribed by the arc-length tolerance (𝛿), our
algorithm does not handle the case of contact manifolds across
several pieces of curves, which are actually handled pairwise and
separately; as such, it offers no guarantee to consistently discretise
the overall contact area.

Time-aware collision detection is also important in many dynam-
ical simulations, as it ensures robustness of the non-penetration
constraints at the discrete time level and allows for accurate dy-
namics simulation with time-stepping (non event-driven) methods.
Introducing time dependency within collision detection is often per-
formed by resorting to Continuous Collision Detection approaches,
which try to predict collisions in the next time-step a priori by extrap-
olating the motion of bodies at play. This paradigm has been success-
fully used for simplicial rigid [Redon et al. 2002], deformable shapes
[Brochu et al. 2012], or high-order parametric surfaces [Marschner
et al. 2021; Snyder et al. 1993; Von Herzen et al. 1990], and extending
our algorithm to perform ahead-of-time detection would not only
improve its robustness when using large time steps, but also enable
consistent evolution of contact points in time. Directly handling
persistent contact points as an additional constraint to the system,
as performed in Kry and Pai [2003], could also provide valuable
extension of our approach to ensure that the penetration does not
increase at contact points as the system is evolved in time. Their
approach however uses surface patches rather than curves, and is
limited to one contact point, but nevertheless provides an interesting
direction for future work.

7.2 Performance
As outlined at the end of section 5, we have done little work to push
the performance of our algorithm to the best possible level. To sum
up, the lowest-hanging fruits are:

(1) Using geometric information to subdivide curves based on
how accurate Taylor’s approximation is, rather than always
splitting the longest curves. This would focus computational
effort on the regions that most need it.

(2) Further investigating how the order of the priority queue af-
fects the computation time, and using geometric information
to accelerate the traversal of the search tree.

7.3 Generalizability
Note that algorithm 1 is not limited to helical curves, and is in fact
quite general. In order to run it on a pair of curves, all that is needed
of each curve is the ability to :

(1) Sample the curve at any point
(2) Sample the curve’s derivative at any point
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(3) Compute an upper bound on the norm of the curve’s second
derivative on a given closed interval.

Of these three, requirement 3 is of course the most restrictive,
but it is by no means prohibitive in practice, because the second
derivative of any 𝐶2 curve is bounded on any closed interval. More-
over, the curvature upper bound needs not be tight, as the Δ2 term
in equation (3) ensures that in the limit, the error made by approxi-
mating the curve with a line segment goes to zero. Looser bounds
are easier to compute in many cases, and they incur little additional
computational cost, because the Δ2 term quickly compensates the
poor initial fit as Δ gets lower with subdivisions.
For instance, consider polynomial splines, which are often used

in Graphics. The second derivative of a degree 𝑑 polynomial is a
degree (𝑑−2) polynomial, for which a loose upper bound may easily
be computed by e.g. bounding each monomial individually :

∀𝑡 ∈ [𝑎, 𝑏],





𝑑−2∑
𝑘=0

𝒑𝒌𝑡
𝑘






 ≤ 𝑑−2∑
𝑘=0
∥𝒑𝒌 ∥ · |𝑡 |𝑘

≤
𝑑−2∑
𝑘=0
∥𝒑𝒌 ∥(max( |𝑎 |, |𝑏 |))𝑘

In practice it is beneficial to compute tighter bounds, especially for
lower values of𝑑 where analytical boundsmay be readily computed.

In the more common case of quadratic (respectively cubic) splines,
the second derivative of the curve is a constant (resp. affine) function,
hence a closed-form tight upper bound can be used. Our algorithm
is fast in that use case as well, taking on the order of 10 to 100
microseconds to compute the minimum distance between two cu-
bic curves with 10−8 on a single core of a modern processor. This
makes it competitive with recent techniques such as that presented
in [Zhang et al. 2023]: their approach takes about 3 milliseconds
on a 4-core CPU to detect a static collision between two so-called
“tapered cubic cylinders”, which are cubic curves swept by a sphere
whose radius varies linearly with the curve parameter. A direct
comparison would not be quite fair, however. First, the primitives
are not perfectly identical (ours lack the varying radius). Second,
and perhaps more importantly, our approaches to handling smooth
contact generalize in orthogonal directions : theirs applies to polyno-
mial patches of any dimension and allows for continuous collision
detection, whereas ours applies to arbitrary 𝐶2 curves, including
those with transcendental expressions (as illustrated in our applica-
tion to helices), and those without a closed-form expression. Still,
considering these rough timing estimates allows us to envision how
such approaches might be used in practice. In a real-time simulation
context for instance, spending 3ms of the 16 or 30 ms time budget
for a frame on a single pair of primitives is prohibitive, but shrinking
this down to a few tens of microseconds makes simulating many
more curves attainable.
Closer to our approach is the one by Chang et al. [2011]. The

execution times presented in the paper are similar to ours, on the
order of 100microseonds to compute theminimumdistance between
two randomly selected Bézier curves. However, their technique
relies on the properties of Bézier curves to bound and subdivide
curves, and as such does not generalize to other curve types.

8 CONCLUSION AND FUTURE WORK
Our contributions are three-fold.
First, we have outlined the issues that arise when using line

segments for collision detection between fibres in physics-based
animation. No matter the number of line segments used for collision
detection, their geometric nature will introduce noise to the con-
tact forces between fibres. As we have demonstrated with a simple
curved three point bending experiment, these erroneous forces are
not negligible and worsen as the curvature increases.

Second, we propose a novel branch-and-bound algorithm to com-
pute the distance between parametric curves, which may be applied
to collision detection when using high-order models such as the
Super-Helix model. By using curvature information to bypass un-
necessary computational effort, this algorithm can compute contact
point positions up to a very high precision, thereby suppressing
the force artifacts that segment-based detection leads to. Besides,
we have compared the performance of our algorithm to that of its
segment-based counterpart and found that it scales better to the
high precision needed to handle the aforementioned force artifacts.
Finally, we have tested our end-to-end high-order contact simu-

lation in a larger scale scenario with hair combing, and shown that
it remains robust even with a high number of fibres and contact
points. Our force measurements in these scenarios again highlight
the need for accurate high-order collision detection.

This work has allowed us to consider in detail the impact of colli-
sion detection on fibre simulation, and to substantially improve the
accuracy of the resulting force response. We are excited to further
enhance our entire pipeline towards the high-fidelity of large scale
simulation of fibre assemblies with extreme curvatures. Another
important avenue we plan for future research is the fine capture of
stick-slip events, which are critical to the subtle dynamics of knitted
cloth or to the sound generation from bowed string instruments.
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A CURVED THREE-POINT BENDING TEST: ANALYTIC
CURVES

In the naturally curved scenario, the initial constraints are slightly
modified to take into account the natural curvature 𝜅0 of the rod.
The resulting equations no longer offer the possibility to eliminate
a variable to get two independant equations. Instead, the following
system of two equations and three unknowns must be solved as a
whole:

∫ 𝛼

0
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(A1)

where 𝜅0 = 𝜅0Δ and the three unknowns are 𝛼 , 𝛿 and 𝐹 ≡ 𝐹Δ2/𝐵 =

48𝐹 .
In the simulations, the controlled quantity is the displacement 𝛿

and the measured quantity is the force 𝐹 . To get a similar parametri-
sation in the analytic case, we keep as unknowns 𝛼 the angle at
which the contact is made with the support and 𝐹 = 48𝐹 the nor-
malised force up to a numeric factor. We fix 𝛿 and solve the resulting
system of two equations and two unknowns. The process is repeated
over the range of 𝛿 ∈ [0.0, 0.3].

In practice the system is solved using the root function from the
scipy library. The initial seed is obtained from geometric considera-
tion, and the following steps use the previous result as seed for the
new system. To avoid the singularities, this method is only used for
𝜅0 ≥ 0.1 and 𝛼 < 𝜋

2 .

B INFLUENCE OF THE DISCRETISATION ON THE
FORCE DISCONTINUITIES

We further evaluate the role of a low-order discretisation in the
collision detection and contact response by varying the number of
segments used in the DER-segments and SH-segments models. Note
that while the proxy discretisation only affects collision detection for
the latter model, it also impacts the underlying mechanical model in
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Fig. 19. Three-point bending force-indentation results: influence of segment
discretisation for collision detection.

the former case, as the “discrete elastic” segments are naturally used
as both collision and rod primitives. Figure 19 shows the impact
of increasing the number of segments (the length of the rod being
fixed) on the indentation force for the three-point bending setup
presented in section 4. As expected, we observe that as the number
of segments doubles, so does the frequency of force jumps for both
DER-segments and SH-segments, which confirms that the apparent
discontinuities are precisely created by segment-segment junctions.
Increasing the number of segments also seems to decrease the

amplitude of the jumps, albeit non linearly. The convergence of the
amplitude of discontinuities under refinement is further studied in
fig. 20, where we show the evolution of the 𝐿1 norm of the force
derivative, normalised by its value in the most refined case, as a
function of the normalised segment length 𝑛𝑚𝑎𝑥

𝑠𝑒𝑔 /𝑛𝑠𝑒𝑔 . We vary
the number of segments from 𝑛𝑚𝑖𝑛

𝑠𝑒𝑔 = 60 to 𝑛𝑚𝑎𝑥
𝑠𝑒𝑔 = 400, and plot

the results in log-log scale, to exhibit the characteristic power-law
convergence rates.

We observe sub-linear convergence rates for both segments-based
models, thoughmuch smaller for the low-orderDER-segmentsmodel.
While this suggests that increasing the number of segments used
to detect collisions could definitely increase the accuracy of the
force response by ironing out spurious discontinuities, we should
stress that such low-order detection approach would not recover𝐶1

smoothness at any finite segment size. Furthermore, note that the
complexity of collision detection ranges from O(𝑛 log𝑛) to O(𝑛2),
highlighting the inefficiency of low-order refinement as a strategy
to control force responses.

C INFLUENCE OF THE CONTACT RESPONSE
For the sake of completeness, we investigate the role of the contact
response method in the regularity of the forces, by considering the
same low-order Discrete Elastic Rodmodel presented above, but now
coupled to the penalty-based Incremental Potential Contact method
[Li et al. 2020a], which enforces the non-penetration condition
through an implicit energy barrier. We use in practice the DER+IPC
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Fig. 20. Evolution of the amplitude of force jumps under refinement: log-log
plot of the 𝐿1 norm of the force derivative normalised by its value in the
most refined case as a function of the normalised segment length. Segment
lengths correspond to 0.1cm, 0.06cm, 0.03cm and 0.015cm for a rod of length
6cm.
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Fig. 21. Three-point bending scenario: force-indentation results obtained
with the segment-based DER method, coupled to the Incremental Potential
Contact (IPC) method to solve for the contact constraints.

coupling from Li et al. [2020b], implemented in the codim-ipc open-
source software, and denoted DER-IPC in the following.
To evaluate potential force jumps in a controlled configuration,

we focus on the frictionless classic (𝜅0 = 0) three-point bending
scenario presented in section 4, and again plot the non-dimensional
indentation force force 𝐹 = 𝐹Δ2

48𝐵 as a function of the normalised
indentation 𝛿 = 𝛿

Δ . The results obtained for DER-IPC, with respec-
tively 100 and 200 elements, are shown in fig. 21, and demonstrate
that the use of a “smoother” contact response such as IPC does
actually not remove the jumps in the forces, as these are inherent
to the underlying geometrical discontinuities.
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Fig. 22. Curved three-point bending test: dimensionless force-indentation
curves for SH-segments, as the friction coefficient 𝜇 is increased (light to
dark).
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Fig. 23. Curved three-point bending test: noisy force results. Normalised
indentation force 𝐹

𝐹𝑎
for SH-segments to highlight the presence of force

jumps, due to segment-based detection.

D FRICTIONAL THREE POINT BENDING TEST
We evaluate the role of friction in the collision detection and contact
response by adding a friction coefficient between the fibre and the
support in the three point bending experiment.

The analytic force needs some modification to take into account
the effect of friction. The development in the curved case relies on
geometric consideration, developed in Batista [2015].

In our case we fix the natural curvature to 𝜅0 = 0.3 and vary the
friction coefficient 𝜇 between 0.0 and 0.5. A very good agreement is
obtained between the theoretical and simulated curves, as shown in
fig. 22.
As for the frictionless case, despite the seemingly smooth force-

indentation curves, spurious discontinuities still occur at proxy-
segment junctions in the frictional case, as highlighted by rescaling
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Fig. 24. Curved three-point bending test: analysis of the force discontinu-
ities. Derivatives of the force-indentation curves for SH-segments, as the
friction coefficient 𝜇 is increased (light to dark).
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Fig. 25. Curved three-point bending test: analysis of the force discontinuities
depending on the friction coefficient. The 𝐿1 norm of the normalised force
derivative (which quantifies the amplitude of the jumps) shows a decreasing
linear dependency with respect to the friction coefficient at contact.

the force to the analytic solution (see fig. 23). Though the amplitude
of the jumps appears to decrease with friction (c.f. figs. 24 and 25),
the absolute value remains non-negligible even for values as high
as 𝜇 = 0.5.
In contrast, our new exact contact detection method again com-

pletely removes the jumps in the frictional case, as shown in fig. 26.

E DEGRADABILITY
We study the degradability of our method by increasing the timestep
on different experiments.
In the three-point bending test, no change in the force is visible

with 𝑑𝑡 = 10𝑚𝑠 (×100 compared to original) eventhough we do
not perform CCD. With a single contact, so-bogus reaches good
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Fig. 26. Curved three-point bending test with our high-order detection
scheme: high curvature (𝜅0 = 0.3) and high friction (𝜇 = 0.5) case. Unlike
the segment-based detection scheme (in blue), our method (in red) yields a
perfectly smooth signal.
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Fig. 27. Increasing the timestep from 1ms to 10ms gives lower forces, which
may be explained by the punctal contact losses.

precision in a single step (< 1 × 10−12), no matter the required
tolerance.
In Hair combing (1), the force still matches pretty well at 𝑑𝑡 =

10𝑚𝑠 , (×10 compared to original), though a punctual loss of contact
can be observed, which can degrade the solver convergence.
In Hair combing (2025) by multiplying the timestep by 10 to

get 𝑑𝑡 = 10𝑚𝑠 , theWavywisps converges properly, with an approx-
imate ×10 overall speedup of the simulation, going from 170ℎ of
simulation down to 18.5ℎ. However, a slight shift of the curve is
observed, see figure 27.
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