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Abstract

A new phase-field method is proposed in this paper for modelling complex cracking process

in rock-like brittle materials under compression-dominating stresses. For this purpose, two

crack fields are introduced in order to respectively describe tensile and shear cracks, related

to two independent dissipation processes. The evolution of these fields is described by

using the variational principle and thermodynamics framework. The proposed method is

implemented in a finite element code and applied to investigating cracking process in a rock-

like sample containing two initial flaws and subjected to uniaxial and bi-axial compression.

Both tensile wing and shear cracks as well as crack coalescence observed in laboratory tests

are successfully reproduced by the proposed method. Differently with most previous studies,

the effect of confining stress on shear cracking growth is well described.
Keywords: Damage, cracking, crack coalescence, phase-field method, rock-like materials,

Compressive stresses

Highlights

• A new phase-field model is developed for modeling complex cracking in rock-like ma-

terials under compressive loads.

• Two damage fields are introduced in order to describe tensile and shear cracks.
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• A new criterion is proposed for the description of shear crack under multi-axial com-

pression.

• The new model is able to well reproduce complex cracking processes observed in lab-

oratory tests.

1. Introduction1

In many engineering materials, macroscopic fractures are generally generated by the co-2

alescence of diffuse micro-cracks. The description of transition from diffuse micro-cracks to3

localized macroscopic fractures is the key issue of modelling failure process in materials and4

structures. Further, under multi-axial loading conditions, multiple fractures can initiate,5

propagate and interact. There is a real challenge for numerical modelling. Different meth-6

ods have been developed during the last decades to deal with this complex subject. For7

example, enriched finite element methods have been first developed to account for displace-8

ment discontinuities along crack surfaces at the elementary level with the help of enriched9

shape functions [1]. Extended finite element methods (XFEM) have been developed to deal10

with crack displacement discontinuities by using nodal enrichment techniques [2]. These11

methods have successfully been applied to different types of materials and structures, in12

particular hydraulic fracturing in porous rocks [3, 4]. In these two types of methods, the13

transition from diffuse damage to localized fractures is still a pending issue. The thick level14

set has been recently proposed to remediate the issue of damage-fracturing transition [5, 6].15

The description of multiple cracks in three-dimensional conditions is also a delicate task.16

On the other hand, based on homogenization techniques, some micro-mechanical models17

have also been developed for capturing the initiation and growth of micro-cracks and their18

transition to localized cracks in a representative elementary volume [7, 8, 9]. The efficiency19

of such models at the structure scale still needs to be demonstrated.20

More recently, based on the framework of variational principle for fracture mechanics21

[10] and the optimal approximations methods of functionals with jumps [11, 12, 13], the22

so-called phase-field method has been rapidly developed [14]. The sharp topology of crack is23
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approximated by a regularized one which is a non-local function of damage variable and its24

gradient (phase-field). The phase-field is determined by a specific boundary values problem.25

This approach is particularly suitable to deal with the natural transition from diffuse damage26

to localized cracks, interacting multiple cracks and three dimensional problems. Different27

extensions have been proposed for various purposes, dynamic brittle fracture [15], fast com-28

puting with a new hybrid formulation [16], multi-physics problems [17], finite deformation29

[18], and coupling between damage and plasticity [19, 20], etc..30

In most previous studies, the accent was put on tensile cracks which are driven by31

the elastic strain energy related to tensile eigenvalues. As in a wide range of engineering32

structures, shear cracks are also an important mechanism, different extensions have been33

proposed in some recent works. For instance in [21, 22], the authors have proposed a34

specific decomposition of the ratio between driving strain energy and critical fracture energy35

into a tensile part (mode I) and a shear part (mode II). The phase-field evolution is thus36

driven by both the tensile and shear strain energy. And each part is controlled by a critical37

fracture energy (mode I and mode II). The efficiency of this method in modelling mixed crack38

propagation has been demonstrated. More recently, in [23], the concept of multiple phase-39

field has been introduced to describe the damage accumulation in different cleavage planes40

of polycrystalline materials. Similarly, this type of concept has been applied to anisotropic41

materials in order to capture different cracking patterns in [24]. However, those previous42

studies have mainly focused on tensile and shear loads.43

Most rock-like materials are subjected to compression-dominating stresses. Crack initia-44

tion and propagation in these materials subjected to compressive loads exhibit complex and45

mixed patterns [25, 26], such as compression-induced tensile wing and shear cracks. Further,46

the mechanical behavior of rock-like materials is strongly dependent on compressive mean47

stress. For instance, the shear crack growth is directly affected by the compressive normal48

stress. For this purpose, a phase-field model for compressive-shear fracture was proposed49

by introducing a hybrid approach in [27]. Moreover, based on the assumption of frictional50

contact [28] and friction energy [29], some authors proposed a frictional fracture phase-field51

model [30] and a mixed-FE scheme [31] to deal with compression-induced shear cracks in52
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rock-like materials. On the other hand, the phase-field model for mixed-mode fracture were53

introduced in [32, 33]. Further, some authors focused on the compressive-ductile behavior54

of mixed-mode phase-field model by considering micro-structure [34, 35].55

The so-called multi phase-field were firstly proposed and applied on polycrystal [36].56

The conception of “multi” is introduced to describe the anisotropy of damage on cleavage57

planes. The same conception is also used in the most work of multi phase-field [37, 38, 39].58

Conversely, it is worth to note that the conception of the double phase-field is different from59

that of the multi phase-field, even if they have a similar call. The principal feature of double60

phase-field method is the use of two damage variables (or more than two if necessary). This61

conception is firstly appeared in the study of [40], the two damage variables is introduced to62

identify the different effect of longitudinal and transverse failure for anisotropic materials.63

For a different purpose, [41] proposed a double phase-field with the damage variables defined64

as tensile damage and shear damage, which are driven by the energy decomposed according65

to the strain state. Similarly, [42] proposed a double phase-field method to consider the66

tensile and compressive-shear crack. The onset/effect of tensile crack and compressive-shear67

crack are according to crack conditions of “open”, “stick” and “slip”. The two types of crack68

are identified based on a complex calculation due to the stress in the direction perpendicular69

and parallel to the interface of the crack.70

In the present study, a new phase-field method is proposed for modelling mixed cracks71

in rock-like brittle materials subjected to compression-dominating stresses. Two phase-field72

variables are introduced to describe the tensile and compressive-shear cracks respectively.73

Mixed cracks can be represented by the combination of these two phase-field variables by74

using a spectral decomposition of stress. Different from the work of [41], the tensile and75

compressive crack are distinguished by stat of stress instead of strain in order to adopt76

the rock-like material. Furthermore, with a same purpose of [42], by using a more sim-77

ply and also reasonable way, a modified Morh-Coulomb criterion is introduced to identify78

the compressive-shear crack, which is more suitable to consider the properties of internal79

friction and cohesion for rock-like material. Another way to deal with the issue of mixed80

crack is provided. The efficiency of the proposed method is assessed through comparisons81
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between numerical results and experimental evidence. It is shown that different types of82

crack propagation scenarios can be well described by the proposed method.83

2. A double phase-field method84

2.1. Regularized crack density85

We consider here a solid body occupying the volume Ω, subjected to the body force fb in86

Ω, the surface force tN on its external boundary ∂Ωf and the prescribed displacement u on87

its external boundary ∂Ωu. Due to the applied loads, there is initiation and propagation of88

cracks. In the case of rock like materials under compression-dominating stresses, complex89

cracking processes have been observed [43, 44, 45]. In general, three types of cracks, namely90

tensile, shear and mixed, can initiate and propagate depending on loading path and material91

microstructure. Under direct tension or in triaxial extension conditions, tensile cracks repre-92

sent the main process. Under triaxial compression conditions, in particular when confining93

stress is high, frictional shear cracks are the dominant mechanism. In general loading con-94

ditions, mixed cracks can be generated by combined tensile and shear strains or stresses. In95

order to conveniently describe such complex cracking processes, two independent crack fields96

are here introduced to respectively represent the tensile and shear cracks. Mixed cracks are97

then described by the combination of these two fields.98

In the framework of phase-field method, the real crack surface area is approximated by99

the regularized one [14]. By considering the two crack fields, the total regularized crack100

surface area Γld is expressed as follows:101

Γld = Γt
ld
(dt) + Γs

ld
(ds) =

∫
Ω

{γt(dt,∇dt) + γs(ds,∇ds)}dV (1)

where Γα
ld

(α = t, s) are the contributions of tensile and shear cracks to the total crack102

surface area. Two scalar-valued functions γα(dα,∇dα) denote the tensile and shear crack103

density (surface area per unit volume). There are different forms available to define the104

crack surface density γα. A common form was introduced in [11] and it is adopted here:105

γα(dα,∇dα) =
1

2ld
(dα)2 +

ld
2
∇dα.∇dα ; α = t, s (2)
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In these functions, a scalar-valued variable dα(x) (α = t, s) is introduced for each type of106

crack and it is conventionally called the phase-field (or crack) variable. It is worth noticing107

that the crack surface density γα is a function of dα and its gradient ∇dα. ld is a length108

scale parameter controlling the width of regularized smeared crack surfaces. This non-109

local property allows the phase-field method to avoid the pathologic mesh dependency of110

numerical solution. Further, the value of dα(x) (α = t, s) also indicate the current damage111

state of material, more precisely dα(x) = 0 being the sound state while dα(x) = 1 the fully112

damaged one as shown in Figure 1.113

Figure 1: (a) A sharp crack Γ inside solid body Ω; (b) auxiliary damage variable in sharp crack topology

along the 1D line A-A’; (c) and (d) tensile and shear crack phase-field in regularized crack topology along

the 1D line A-A’; (e) and (f) regularized representation of tensile and shear cracks with equivalent crack

surfaces Γ(dt) and Γ(ds)

Further, according to the Griffith theory of linear fracture mechanics, the energy needed114

for the creation of a crack surface area is characterized by the material toughness or fracture115

energy. With the regularized smooth representation of cracks adopted here, one can express116

the energy density per unit volume needed for the creation of tensile and shear cracks as117

follows:118

wc(d
t, ds,∇dt,∇ds) = gtcγ

t(dt,∇dt) + gscγ
s(ds,∇ds) (3)

gtc and gsc denotes the material toughness for the tensile and shear crack respectively.119
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2.2. Variational framework120

According to the variational approach to fracture mechanics of elastic materials proposed121

in [10], under the isothermal conditions, the total energy functional of a solid domain Ω is122

composed of the elastic strain energy and that requested to create the cracks, with the123

regularized crack fields adopted above, one gets:124

E(ε, dt, ds) =

∫
Ω

we(ε, d
t, ds)dV +

∫
Ω

wcdV (4)

we is the elastic strain energy density of cracked material. ϵ(u) denotes the second order125

linear strain tensor with u(x) being the displacement vector such as ϵ = ∇su.126

2.2.1. Elastic strain energy127

In the present study, two crack fields are introduced and affect differently the elastic strain128

energy. In order to better describe the coupling between the cracking processes and elastic129

properties of cracked material, the elastic strain energy of undamaged solid is decomposed130

into a tensile part w0
e++ and a compressive part w0

e−:131

w0
e(ϵ) = w0

e+(ϵ) + w0
e−(ϵ) =

1

2
σ+ : ϵ+

1

2
σ− : ϵ (5)

Two symmetric tensors σ± denote the tensile and compressive parts of the Cauchy stress132

tensor σ, and they are calculated by using the following fourth order projection operators133

P±
σ :134  σ+ = P+

σ : σ

σ− = P−
σ : σ

(6)

These operators are further constructed from the spectral decomposition of the stress tensor135

proposed in [46, 47]:136  P+
σ =

∑3
β=1⟨σβ⟩+nβ ⊗ nβ ⊗ nβ ⊗ nβ

P−
σ = I− P+

σ

(7)

I denotes the fourth-order identity tensor. nβ(β = 1, 2, 3) define the three orthogonal137

principal directions of the stress tensor while σβ are the three principal stresses. The bracket138
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⟨.⟩+ is defined as:139  ⟨a⟩+ = a, a ≥ 0

⟨a⟩+ = 0, a < 0
(8)

It is worth noticing that the projection operators are widely used for the decomposition140

of stress or strain tensor into tensile and compressive parts, including some previous phase-141

field models [48, 49, 50]. In general, even for elastically isotropic materials, the projection142

operators for stress Pσ and for strain Pϵ are different. As in the previous work [50], the de-143

composition of stress tensor is adopted here. Compared with the strain tensor decomposition144

as that used in [14], the stress decomposition avoids the implication of elastic parameters.145

It is particularly convenient for future extension to initial anisotropic materials.146

The elastic properties of cracked material are affected by the growth of cracks. This is147

generally described by introducing different forms of degradation functions. In the present148

study, two degradation functions are defined respectively for the tensile and shear cracks.149

The elastic strain energy of cracked material is expressed as follows:150

we(ϵ, d
t, ds) = ht(d

t)w0
e+ + hs(d

s)w0
e− (9)

The common form widely used in previous studies [48, 49, 50] is adopted here for the two151

degradation functions:152

hα(d
α) = (1− dα)2(1− k) + k; α = t, s (10)

k is a small positive value that is used to ensure the positive definiteness of elastic stiffness153

tensor after the material is fully broken (dα = 1).154

2.2.2. Governing equations of crack fields155

Based on the expressions of we and wc defined above, the total energy functional E can156

be detailed in the following form:157

E =

∫
Ω

we(ε, d
t, ds)dV +

∫
Ω

wc(d
t, ds,∇dt,∇ds)dV

=

∫
Ω

{
ht(d

t)w0
e+ + hs(d

s)w0
e−
}
dV +

∫
Ω

{
gtcγ

t(dt,∇dt) + gscγ
s(ds,∇ds)

}
dV

(11)
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We assume that the growths of tensile and shear cracks are two independent dissipation158

processes. Each of them verifies the positiveness condition independently. Further, inspired159

by the previous studies [51, 52], each crack field can be determined by solving the minimiza-160

tion problem of the energy functional E. By calculating the first order variation of E and161

using the unilateral stationary condition for the total energy functional with respect to each162

crack variable, namely δE = 0 for δdα > 0 and δE > 0 for δdα = 0 (α = t, s), the following163

governing equations for the evolution of two crack fields (α = t, s) can be derived:164 
−∂we

∂dα
− gαc δdαγ

α = 0 , ḋα > 0 , in Ω

−∂we

∂dα
− gαc δdαγ

α ≤ 0 , ḋα = 0 , in Ω

∂γ
∂∇dα

.n = 0 , on δΩ

(12)

where δdαγ
α =

∂γα

∂dα
− div

(
∂γα

∂∇dα

)
denotes the variational derivative of crack field dα [51, 52].165

By substituting we and γα by their specific forms presented above, one obtains the governing166

equations for two crack fields as follows:167  −h′
t(d

t)w0
e+ − gtc

{
1
ld
dt − lddiv(∇dt)

}
= 0 , ḋt > 0

−h′
s(d

s)w0
e− − gsc

{
1
ld
ds − lddiv(∇ds)

}
= 0 , ḋs > 0

(13)

where h′
t(d

t) = −2(1− k)(1− dt) and h′
s(d

s) = −2(1− k)(1− ds) are the derivatives of two168

degradation functions with respect to two damage variables.169

From the threshold function (13)(b), it is observed that the evolution of the shear crack170

ds is driven by the compressive part of the elastic strain energy associated with the intact171

state w0
e−. This is physically not fully justified. In practice, for most rock-like materials172

under compressive stresses, the shear crack is physically controlled by a generalized shear173

stress. The later can be well represented by the shear force defined by the widely used174

Mohr-Coulomb criterion. Based on this physical background and inspired by some previous175

studies [53, 27], an alternative driving energy ws is defined as follows for the description of176

shear crack growth:177

ws(σ) =
1

2G

⟨σ1 − σ3

2cosφ
+

σ1 + σ3

2
tanφ− c

⟩2

+
(14)
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In this relation, σ1 and σ3 are the major and minor principal stress respectively. G is178

the initial shear modulus of intact material. φ denotes the internal friction angle and c the179

cohesion. Moreover, it is assumed that the shear crack growth occurs only in the compressive180

domain of principal stresses. Therefore, the driving energy of shear crack growth corresponds181

to the compressive part of ws, which is defined as:182

ws
−(σ

−) =
1

2G

⟨⟨σ1⟩− − ⟨σ3⟩−
2cosφ

+
⟨σ1⟩− + ⟨σ3⟩−

2
tanφ− c

⟩2

+
(15)

with the bracket ⟨.⟩− defining:183  ⟨a⟩− = 0, a ≥ 0

⟨a⟩− = a, a < 0
(16)

By substituting the physically-based driving energy for the compressive shear crack184

growth for (13), the new criteria for two crack fields is expressed as:185  −h′
t(d

t)w0
e+ − gtc

{
1
ld
dt − lddiv(∇dt)

}
= 0 , ḋt > 0

−h′
s(d

s)ws
− − gsc

{
1
ld
ds − lddiv(∇ds)

}
= 0 , ḋs > 0

(17)

On the other hand, in order to describe the irreversible process of crack growth in general186

loading paths with unloading and reloading cycles, the concept of loading history functional187

has been introduced in [54]. Based on that concept, two energy history functionals are here188

defined as follows for the grow description of tensile and shear cracks:189  Ht = max[w0
e+(σ

+, τ)]τ∈[0,t]

Hs
− = max[ws

−(σ
−, τ)]τ∈[0,t]

(18)

The time variable τ designates the loading history from the initial state to the current time190

step t. Using these energy history functionals, the evolution of the tensile and shear crack191

is determined by the following criteria:192  −h′
t(d

t)Ht − gtc

{
1
ld
dt − lddiv(∇dt)

}
= 0

−h′
s(d

s)Hs
− − gsc

{
1
ld
ds − lddiv(∇ds)

}
= 0

(19)
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3. Numerical implementation with finite element method193

The problem to be solved here consists in the determination of displacement field u(x),194

the tensile crack field dt(x) and the shear crack field ds(x), at each loading step and with the195

boundary conditions defined above. For this purpose, the total potential energy is expressed196

as:197

Π = E(u, dt, ds)−
∫
Ω

fb · udΩ−
∫
∂Ωf

tN · udA (20)

The stationarity condition of the potential energy δΠ = 0 leads to three coupled systems of198

equations to be solved in terms of the displacement, the tensile crack and the shear crack199

fields respectively. However, due to the growth of cracks, it is needed to solve a strongly200

non-linear problem. For this purpose, the whole loading path is divided into a number of201

increments or time steps. Starting from the initial known values of all physical quantities, at202

the end of loading step i, the values of u(x, ti), dt(x, ti) and ds(x, ti) are assumed to be known.203

During the loading step tt+1 = ti+∆tt+1, the solutions to be determined are the increments204

of three principal unknowns, namely ∆u(x,∆tt+1), ∆dt(x,∆tt+1) and ∆ds(x,∆tt+1).205

The finite element method is adopted in the present work. Based on the geometrical206

discretization and with the help of the shape functions and their derivatives for the type of207

element adopted, one obtains three discrete systems of equations to be solved.208

For the mechanical problem, the Cauchy stress tensor σ verifies the following equilibrium209

equations:210  ∇ · σ + fb = 0 in Ω

σ · n = tN on ∂Ωt

(21)

The constitutive relation of cracked material is defined by:211

σ = C(dt, ds) : ϵ ; C(dt, ds) = ht(d
t)P+

σ : C0 + hs(d
s)P−

σ : C0 (22)

where C0 is the elastic stiffness matrix of intact material. Together with the kinematic212

relation ϵ = ∇su, the discrete system of equations of the mechanical problem is given by:213 
Ku△U = △F

Ku =
∫
Ω
BT

uCBudΩ

△F =
∫
Ω
NT

u△fbdΩ +
∫
∂Ωf

NT
u△tNdA

(23)
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Nu and Bu are respectively the matrix of shape functions and related derivatives of dis-214

placement components. Ku is the global stiffness matrix. △U and △F denote the column215

matrices of increment nodal displacements and forces during the current loading step (for216

the sake of simplicity, the step index i+ 1 is here omitted).217

On the other hand, with the crack growth criteria (19) in hand, the tensile crack phase-218

field is determined by the following local equations:219 

h′
t(d

t)Ht + gtc

{
1
ld
dt − lddiv(∇dt)

}
= 0 in Ω

ḋt ≥ 0 in Ω

dt = 1 on Γt

∇dt · n = 0 on ∂Ω

(24)

while the shear crack phase-field is described by the following ones:220 

h′
s(d

s)Hs
− + gsc

{
1
ld
ds − lddiv(∇ds)

}
= 0 in Ω

ḋs ≥ 0 in Ω

ds = 1 on Γs

∇ds · n = 0 on ∂Ω

(25)

The same geometrical mesh is used for the phase-field problems as for the mechanical221

one. Further, as for the displacement field, the two crack fields and their gradients inside222

each element are also approximated in terms of by the nodal values by using appropriate223

shape functions and related derivatives. With such approximations, the following discrete224

systems of equations are obtained for each crack phase-field. Namely, for the tensile cracks225

field, one gets:226 
Kdtdt = Fdt

Kdt =
∫
Ω
{(gtc/ld + 2Ht)NT

dNd + gtcldB
T
dBd}dΩ

Fdt =
∫
Ω
2HtNT

d dΩ

(26)

and for the shear crack field:227 
Kdsds = Fds

Kds =
∫
Ω
{(gsc/ld + 2Hs

−)N
T
dNd + gsc ldB

T
dBd}dΩ

Fds =
∫
Ω
2Hs

−N
T
d dΩ

(27)
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Nd and Bd are the matrices of shape functions and related derivatives for the approximation228

of two crack phase-fields. Kdα (α = t, s) is the global stiffness matrix related to the tensile229

or shear crack field. Fdα denotes the column matrix of nodal forces while dα that of nodal230

damage variables at the current loading step (for the sake of simplicity, the step index i+1231

is here omitted). It is worth noticing that with the help of two energy history functionals232

defined in (18), the values of damage variables at the current loading step are directly233

determined as functions of the accumulated driving energy for each cracking mechanisms.234

It is obvious that three fields are strongly coupled. The calculation of displacement field235

is influenced by the crack phase-fields due to the fact that the elastic stiffness matrix of236

cracked material C(x) is a function of two crack fields dt(x) and ds(x). Inversely, the growth237

of both tensile and shear cracks is controlled by the mechanical energy which is related to238

the variation of displacement field.239

In this way, the so-called Alternate Minimization (AM) solver proposed in [13, 55] is240

used in this work because of its good robustness performance. At the iteration k + 1 of the241

loading step n+ 1, two solution stages are summarized as:242

Stage 1:243

Ku(C)△Uk+1
n+1 = △Fn+1, with C = C([dt, ds]kn+1) (28)

-Solving the displacement △Uk+1
n+1 by using the damage values fixed [dt, ds]kn+1 obtained from244

the last iteration k.245

Stage 2:246  Kdt(Ht)[dt]k+1
n+1 = Fdt(Ht), with Ht = Ht(Uk+1

n+1)

Kds(Hs
−)[d

s]k+1
n+1 = Fds(Hs

−), with Hs
− = Hs

−(U
k+1
n+1)

(29)

-Solving the damage values [dt, ds]k+1
n+1 by using the updated displacement Uk+1

n+1 obtained247

from the same iteration.248

The two steps are repeated until the condition ∥ max([dt]k+1
n+1−[dt]kn+1, [d

s]k+1
n+1−[ds]kn+1) ∥≤ R249

is satisfied, with R = 1× 10−5 being used in this work.250
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4. Experimental verification251

In this section, the efficiency of the proposed double phase-field method, in particular252

its capability to describe complex cracking patterns under compression-dominating loads is253

verified, through the comparison between numerical results and experimental observations.254

4.1. Uniaxial compression of a plate with two inclined flaws255

In this example, a representative laboratory test is investigated. Uniaxial compression is256

performed on a rectangular thin plate containing two initial inclined flaws, as illustrated in257

Figure 2. Different configurations of the initial flaws can be considered. More details about258

the testing procedures can be found in [56, 57]. This type of test is particularly relevant259

for the characterization of complex failure process in brittle materials, including tensile,260

shear and mixed cracks and their bridging. The proposed double phase-field method is now261

applied to capturing such cracking patterns.262

The geometry of the plate and the prescribed boundary conditions are presented in Figure263

2. The length of two initial flaws is 2a=12.7mm and their width is 0.1mm. The configuration264

of two flaws is defined in terms of the combination “flaw angle-spacing-continuity”. For265

example, the case of “45-a-2a” corresponds to the configuration of two flaws inclined with266

an angle of α = 45◦, spaced by s = a and c = 2a. In this study, three configurations are267

considered, namely “45-0-2a”, “45-a-2a” and “45-2a-2a” are selected for simulation. The268

values of mechanical parameters involved on the proposed model are selected mainly from269

previous studies [56, 57]. The set of values is given in Table 1. Therefor, ld is assumed270

as a pure numerical parameter of the regularized model of brittle fracture which depends271

on element size h: h < ld/2 [54]. In this work, we define ld = 2.5h for both of the tensile272

and shear damage field. hr is the size of the refined element which are assigned to the273

region expected to have the propagation of cracks for the sake of computational efficiency.274

Following the study of [58], gtc/ld is considered as a real material parameter, which depends275

on stiffness and strength: σc = 3
16

√
3
2

√
Egtc
ld

. gsc is calibrated according to the calculated276

toughness value of tensile crack: gsc=5gtc.277
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Figure 2: Geometry of plate, configuration of initial flaws and boundary conditions for uniaxial (Pc = 0)

and bi-axial compression tests (Pc = 7.5MPa)
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Table 1: Parameter values used in simulations of two inclined flaws test

Elastic parameters:

E (GPa) 5.96

ν (-) 0.24

Crack fields parameters:

σc(MPa) 3.2

φ (◦) 30

c (MPa) 1

gtc (kN/mm) 4.2× 10−6

gsc (kN/mm) 21× 10−6

ld (mm) 0.25

k (-) 1× 10−9

Mesh:

hr (mm) 0.1

Element number Around 300,000

Node number Around 300,000

Displacement increment:

∆u (mm) 1× 10−3

In Figure 3, one shows the distributions of tensile and shear damage (dt and ds) for278

the case of “45-0-2a” at six subsequent values of prescribed axial displacement. The red279

color shows the tensile crack and the blue color shows the shear one. In order to investigate280

the cracking patterns more clearly, only the crack with the damage value higher than 0.5281

is shown. Further, for the purpose of comparison, the main crack patterns observed in the282

laboratory test and reported in [56, 57] are illustrated in the same Figure. It is seen that from283

loading step (a) to (b), two external wing cracks and two internal wing cracks are generated284

from the ends of the initial flaws and they propagate towards the axial compression direction.285

These wing cracks are all induced by the tensile damage. At the loading step (c) and (d),286
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the wing cracks continue propagating in the axial direction while one shear damage band is287

generated from the two internal ends of the initial flaws. With the increasing of compression288

up to step (e) and (f), two external shear cracks are created from the two external ends of289

the initial flaws. And the internal shear damage band induces a sharp mixed crack which is290

located at the same position. All these features obtained from the numerical results match291

very well the experimental evidence.292
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(a) (b) (c) (d)

(e) (f)

Figure 3: Distribution of tensile and shear damage for the configuration 45-0-2a at three subsequent values

of axial displacement (a) u = 0 mm; (b) u = 0.620 mm; (c) u = 0.633 mm; (d) u = 0.635 mm; (e) u = 0.30

mm; (f) u = 0.666 mm

The results for the case of “45-a-2a” are presented in Figure 4. Four tensile wing cracks293

appear from the ends of initial flaws and propagate steadily toward the axial direction with294

the increase of compression. The shear cracks are also generated from the external and295

internal ends of initial flaws, but they propagate almost along the prolongation direction of296

the initial flaws. Due to the fact that the two initial flaws are not aligned (s = 2a), the two297
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internal shear cracks cannot connect each other along a straight line. As a consequence, the298

coalescence between the tips of two internal shear cracks emerges along a curved path by299

the generation of a mixed crack which propagates towards the axial compression direction.300

Again, all these complex cracking patterns observed in the laboratory test are well captured301

by the double phase-field model.302

(a) (b) (c) (d)

(e) (f)

Figure 4: Distribution of tensile and shear damage variable for the case of 45-a-2a at three subsequent values

of axial displacement (a) u = 0 mm; (b) u = 0.352 mm; (c) u = 0.574 mm; (d) u = 0.620 mm; (e) u = 0.623

mm; (f) u = 0.653 mm
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The third configuration of two initial flaws corresponds to “45-2a-2a”. The distributions303

of tensile and shear damage obtained are presented in Figure 5 also for three subsequent304

values of axial displacement. From step (a) to (b), similarly to the two previous cases, four305

tensile wing cracks are created and they propagate toward the compression axis. But from306

step (c), the two internal wing cracks have a longer propagation length than the previous307

configurations due to the larger spacing between the two initial flaws. At the same time,308

four shear cracks are also generated respectively from the ends of initial flaws. When the309

prescribed displacement reaches step (f), a coalescence zone is formed by the two internal310

wing cracks and two internal shear cracks. Once again, these complex cracking patterns are311

well reproduced by the proposed numerical model.312
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(a) (b) (c) (d)

(e) (f)

Figure 5: Distributions of tensile and shear damage for the configuration of 45-2a-2a at three subsequent

steps of axial displacement (a) u = 0 mm; (b) u = 0.370 mm; (c) u = 0.561 mm; (d) u = 0.679 mm; (e) u

= 0.685 mm; (f) u = 0.705 mm

In order to compare with the stress value measured from experiment and identify the stat313

of displacement loading in the simulation, the stress-displacement curve is given in Figure314

6. Furthermore, a quantitative comparison between numerical and experimental results is315

provided for all of the three tests. The step (b) of Figure 3, 4 and 5 shows the moment of wing316

crack’s onset, and the step (e) shows the one of coalescence crack’s onset. Good agreement317
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is achieved from the quantitative comparison for both of wing crack and coalescence crack.318

Moreover, it is clear to see that the onset of wing crack does not affect the linear behavior319

of stress-displacement curves. On the other hand, the onset of coalescence crack between320

two initial flaws directly leads to the reduction of stress. This reasonable feature verifies the321

proposed double phase-field model as well.322
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Figure 6: Left: Curves of stress-displacement for numerical test of ’45-0-2a’, ’45-a-2a’ and ’45-2a-2a’; Right:

The comparisons between numerical and experimental results for the wing crack and the coalescence crack

initial stress

4.2. Bi-axial compression of a plate with two inclined flaws323

In most previous studies devoted to rock-like materials, only uniaxial compression was324

generally considered. In practice, these materials are subjected to multi-axial stresses. In325

this study, the cracking process is investigated in a plate with two initial flaws subjected to326

bi-axial compression, as shown in Figure 2. Again based on the laboratory tests reported in327

[56, 57], the configuration “45-a-a” is here considered as an example.328

In Figure 7, the distributions of tensile and shear damage are presented for six different329

values of axial displacement in a bi-axial compression test with a lateral stress of 7.5 MPa. It330

is clear that contrary to the uniaxial compression tests considered above, due to the confining331

effect of lateral stress, the tensile damage is significantly attenuated. The shear cracking332

is the principal mechanism of damage. The shear crack constitutes the bridge linking two333

initial flaws. Two second shear cracks are also observed around the external ends of the334
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initial flaws. The cracking patterns provided by the proposed phase-field method agree well335

with the experimental observations. It seems that the new model is able to describe the336

effect of confining stress on the kinetics of shear cracks commonly observed in rock-like337

materials.338

(a) (b) (c) (d)

(e) (f)

Figure 7: Distribution of tensile and shear damage for the configuration 45-a-a at three values of prescribed

axial displacement at (a) u = 0 mm; (b) u = 0.793 mm; (c) u = 0.801 mm; (d) u = 0.803 mm; (e) u = 0.809

mm; (f) u = 0.850 mm, in a bi-axial compression with a lateral stress of Pc=7.5 MPa

The stress-displacement curve for the simulation of bi-axial compression is given in Figure339
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8.An obvious difference between the numerical and experimental results if the friction angle340

φ = 30◦ is used as in the uniaxial compression tests. In this way, the friction angle is341

assumed to be increased according to the lateral stress. The simulations by using φ = 32◦342

and 34◦ are given. The quantitative stress result is improved while the crack model is not343

changed (compare with figure 7).344
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Figure 8: The curves of stress-displacement simulated by using different friction angle φ = 30◦, 32◦ and 34◦

comparing with the experimental coalescence crack initial stress, in a bi-axial compression with a lateral

stress of Pc=7.5 MPa

5. Discussion345

The fundamental idea of this double phase-field model is proposed in order to identify346

the mixed crack problem from the in-situ experiment in the context of radioactive waste347

disposal. Since the complex damage zone due to the excavation plays an important role on348

the later thermo-hydromechanical coupling behavior, the concept of our double phase-field349

model is proposed to distinguish the tensile and compressive-shear damage in [41].350

Recently, Fei and Choo[30] did a excellent work by using a similar concept of double phase-351

field model. Following their old work[28], they identify the crack condition as: open, stick352

and slip according to the direction of crack interface. The tensile and compressive-shear353
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crack are properly distinguished with the help of the sign of normal stress and slip criterion354

of crack. Comparing with the work of Fei and Choo, this work focus on the rock-like355

material, so that the Mohr-Coulomb criterion is modified to identify the driving force of356

compressive-shear crack. In this way, the further assumptions of friction crack based on357

Mohr-Coulomb criterion can be considered in the future study of mixed crack. On the other358

hand, the tensile and compressive-shear crack can exist at the same time according to the359

degradation of the stiffness matrix with the help of spectral decomposition. Therefore, both360

of two double phase-field models work well for the identification of mixed cracks by using361

several damage variables, but under different physical assumptions, especially for the friction362

crack.363

6. Conclusion364

In this paper, a new phase-field method has been developed for modelling complex crack-365

ing modes in rock-like brittle materials subjected to compression-dominating loads. Two366

interacting crack fields have been introduced for capturing the tensile and shear crack re-367

spectively. The emphasis was put on the description of shear crack growth and propagation368

under compressive stresses through a specific Mohr-Coulomb type frictional sliding criterion.369

The combination of two crack fields allows modelling mixed cracking patterns. The proposed370

method has been implemented in a computer code with the finite element method. It has371

been applied to describe complex cracking processes in brittle materials under both uniaxial372

and bi-axial compressive stresses. It was found that the new double phase-field method was373

able to capture well the main cracking features observed in laboratory tests. Furthermore,374

the loading stress state corresponding to the initial wing cracks and coalescence cracks is well375

reproduced. Compared with most previous studies, the new phase-field method is able to376

well describe the effect of confining stress on the growth of shear cracks commonly observed377

in rock-like materials. The proposed method can be easily extended to materials with an378

initial anisotropy and to include plastic deformation.379
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